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Cancer is a disease characterized by the abnormal proliferation of cells in the 
body.  For many forms of cancer, there remain only limited and often ineffective 
treatment options available.  Treatment of cancer is problematic for several reasons that 
include the difficulty in establishing molecular targets, finding interventions that cause 
selective toxicity to cancer cells, and the uniform capability of cancer cells to evade 
apoptosis.  To address this, new strategies must be employed that take advantage of 
novel mechanisms of action to develop better therapies.  The goal of this research is to 
aid in this effort through the study of emerging targets and antitumor agents.  In these 
studies, we characterize the structure of an important target in the field of anticancer 
drug design, the quadruplex formed in the human c-MYC promoter region.  The 
oncogene c-MYC is dysregulated or overexpressed in approximately 70% of human 
cancers and contributes to many survival pathways used by cancer cells to evade 
apoptosis.  Stabilization of the c-MYC promoter quadruplex has been shown to reduce 
c-MYC expression and cause apoptosis in tumor cells.  We also examine the 
mechanisms of action of two novel classes of antitumor agents, the anthracenyl 
isoxazole amides (AIMs) and a group of 5,8-quinolinedione analogs.  We demonstrate 
interactions of the AIMs with quadruplex-forming sequences found in human telomeres, 
the c-MYC promoter, and mitochondrial DNA.  Additionally, we provide evidence that 
the AIMs can inhibit the electron transport chain of mitochondria, specifically Complex II.  
Further, we show that treatment with the AIMs causes damage to mitochondrial DNA 
and loss of the mitochondrial membrane potential, leading to the intrinsic pathway of 
apoptosis in human glioblastoma cells.  We also show a novel set of 5,8-quinolinedione 
analogs have potent antitumor activity in human breast cancer cells not related to their 
suitability as substrates for the NQO1-reductase that is often overexpressed in cancer.  
Together, this work has provided new insights to the field of anticancer drug discovery 
through characterization of an important target, the c-MYC promoter quadruplex, and 
through analysis of two novel classes of antitumor compounds, the AIMs and the 5,8-
quinolinediones. 
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Human Cancers 

Overview 

Cancer is a disease defined by the abnormal proliferation of cells in the body 

which form tumors leading to adverse health outcomes and often death.  Tumors are 

formed by cells containing genetic mutations and that have lost the normal mechanisms 

controlling cell growth, proliferation, and apoptosis.  Additionally, tumors can undergo a 

process known as metastasis and invade and damage healthy tissues throughout the 

body.  The National Cancer Institute estimates that approximately 1.7 million people will 

be diagnosed with cancer in the United States in 2018 alone (Siegel, Miller, and Jemal 

2018).  Significant progress has been made in the treatment options available to fight 

this deadly disease; the relative survival rate for cancer increased during the period of 

2004 – 2010 to 68% from only 49% from 1975 – 1977 (Mitra et al. 2015).  However, it 

remains the second leading cause of death in the United States, accounting for 

approximately 1 of every 4 deaths, and this highlights the need for development of 

improved anticancer therapies (Mitra et al. 2015; Siegel, Miller, and Jemal 2018). 

 

Brain Cancer & Glioblastoma 

It is estimated that brain and central nervous system tumors will cause 

approximately 17,000 deaths in 2018 and they are the leading form of childhood 

neoplasm, accounting for 26% of all pediatric cancers (Ostrom et al. 2014; Siegel, 

Miller, and Jemal 2018).  Additionally, metastases in the brain can stem from many 

primary tumor types including lung, breast, melanoma and gastrointestinal tumors, 
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resulting in approximately 170,000 cases per year (Ulrich H. Weidle, Niewöhner, and 

Tiefenthaler 2015). 

Glioblastoma is the most common form of brain cancer, accounting for 

approximately 15% of cases, and has an extremely poor prognosis with a median 

survival of only 12 – 15 months following initial diagnosis (American Cancer Society 

2014).  Glioblastoma tumors arise from astrocyte cells and represent the highest, Stage 

IV, classification of astrocytoma’s on the WHO scale (Young et al. 2015).  In contrast to 

more treatable forms of cancer, glioblastoma has very limited treatment options 

available.  Complete surgical resection of glioblastoma tumors is often unsuccessful due 

to the difficulty in distinguishing diseased from healthy brain tissue.  The extent of 

resection has been demonstrated to be linked to the rate of patient survival and survival 

is improved significantly when ≥ 98% of the tumor is excised; however, a greater extent 

of resection is also shown to increase the number of patients with permanent neural 

deficits due to damage to healthy neural tissue (Young et al. 2015).  In addition, 

chemotherapeutic intervention is difficult for glioblastoma and other brain tumors due to 

the blood-brain barrier (BBB) which prevents many potential small-molecule treatments 

from reaching tumors in the brain (Ulrich H. Weidle, Niewöhner, and Tiefenthaler 2015).  

Regardless of these challenges, the current most common treatment of glioblastoma is 

a combination of resection of the tumor followed by a regiment of radiation and/or 

treatment with highly cytotoxic agents such as the first-line therapy temozolomide 

(Furnari et al. 2007; Young et al. 2015).  Temozolomide is a non-specific alkylating 

agent that acts on guanine and adenine residues.  It exerts its toxicity through 

methylation of the O6 atoms of guanine causing formation of O6-methyl-guanine bases 
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in DNA.  These genetic lesions can be repaired by methylguanine-DNA-

methyltransferase (MGMT), however it is a suicide repair enzyme and as a result the 

repair capacity is limited (J. Zhang, FG Stevens, and D Bradshaw 2012).  Other primary 

treatments include the DNA alkylation agent carmustine and the DNA cross-linker 

cisplatin, both of which also exert their cytotoxic effect through damage to DNA 

(Reithmeier et al. 2010; Roux et al. 2017; Wang et al. 2017; Coluccia et al. 2018).  In 

theory and in practice this non-specific DNA damage is more toxic to rapidly dividing 

tumor cells than to senescent healthy cells.  However, the reality is that these 

treatments often lead to excess damage in healthy tissues. 

 

Evasion of Apoptosis in Cancer 

Evasion of apoptosis is an essential characteristic of cancer.  This can be caused 

through upregulation of anti-apoptotic signaling or downregulation of pro-apoptotic 

proteins.  The extrinsic pathway of apoptosis is often stunted through reduction in 

expression of death receptors on the cell surface.  Prevention of caspase-8 activation 

through upregulation and direct binding of proteins such as cFLIP to the death receptor 

complex can also prevent activation of the extrinsic pathway (Fulda 2010).  Similarly, 

the intrinsic apoptosis pathway can be inhibited through increases in expression of 

functional antiapoptotic (Bcl-2, Bcl-xL, Mcl-1) or decreases in expression of proapoptotic 

proteins (Bax, Bak, Bid, Apaf-1) (Figure 1.1) (Fulda 2009). 
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Figure 1.1 Evasion of Apoptosis in Cancer  

(Fulda 2009) 

Overexpression of antiapoptotic proteins such as inhibitor of apoptosis (IAP) proteins, 

Bcl-2, or genetic silencing/mutation of proapoptotic proteins such as Apaf-1 and Bax 

can contribute to evasion of apoptosis by cancer. 

 

Apoptosis Overview 

The two major apoptotic pathways are the intrinsic (mitochondrial-mediated) and 

extrinsic (death receptor-mediated) routes.  Both of these pathways lead to eventual cell 

death through activation of a family of serine proteases known as caspases.  Activation 

of a caspase cascade leads to proteolytic cleavage of target proteins in the cell causing 

cell death (Fulda 2010). 
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Extrinsic Apoptosis 

Death receptor-mediated apoptosis, also known as the extrinsic pathway, is 

caused by activation of death receptors on the surface of the cell.  Activation of death 

receptors leads to activation of initiator caspase-8 which can then act to cleave 

downstream effector caspase-3.  Caspase-8 also is capable of cleaving the 

mitochondrial protein Bid to tBid, causing permeabilization of the outer mitochondrial 

membrane and subsequent cytochrome c release from the mitochondria (Fulda 2010).  

 

Intrinsic Apoptosis 

Mitochondrial mediated apoptosis is characterized by activation of caspase-9 

following release of cytochrome c from the mitochondria.  Release of caspase-9 also 

causes activation of caspase-3 through formation of a large protein complex termed the 

apoptosome (Fulda 2010).  The apoptosome is formed by Apaf-1 and caspase-9 and 

requires the presence of cytochrome c and dATP.  Procaspase-9 is recruited to CARD 

motifs on Apaf-1 and this activates caspase-9 (Yuan and Akey 2013). 

 

Summary 

The goal of anticancer therapeutics is to develop treatments which selectively 

target and induce apoptosis in tumor cells.  Unfortunately, current therapies are often 

non-specific, especially in the case of brain tumors, and cause damage to healthy 

tissues.  To address this issue, it is necessary to examine novel targets in the effort to 

develop more selective and effective medicines.   
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In this work, multiple potential targets for antitumor agents are explored, and the 

significant findings are reported.  This work examines targeting quadruplex DNA 

structures, specifically the c-MYC quadruplex, for antitumor drug development.  The 

mechanism underlying a class of novel antitumor compounds, the anthracenyl isoxazole 

amides (AIMs), is also addressed in detail as it pertains to quadruplex DNA and 

interactions in the mitochondrial electron transport chain.  The work also contributes to 

studies of a novel set of synthetic analogs designed to utilize the NQO1-reductase to 

target tumor cells. 

Targets for Development of Antitumor Compounds 

Quadruplex DNA 

History 

Guanine-rich regions of DNA and RNA can form a secondary structure known as 

a quadruplex.  The study of quadruplex structures can be traced back to a report in 

1910 of solutions of guanylic acid forming gels at high concentrations, indicating the 

presence of a higher-order structure (Bang, I. 1910).  Later, this higher order structure 

was identified as helical through X-ray fiber diffraction studies and the basic unit of the 

quadruplex, now known as a G-quartet, was theorized (Figure 1.2) (Gellert, Lipsett, and 

Davies 1962). 
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Figure 1.2 G-Quartet 

Four guanines form the basic unit of the quadruplex structure, known as a G-quartet, 

through Hoogsteen bonding stabilized by surrounding a monovalent cation. 

 

Although there were some structural studies completed, quadruplex structures 

were largely ignored for a long period of time following their discovery as it was 

unknown if they had any biological significance.  However, it was later shown that these 

structures could form in guanine-rich DNA under physiological conditions and these 

guanine-rich regions were present in gene promoter and in human telomeres (Sen and 

Gilbert 1988; Sundquist and Klug 1989; Burge et al. 2006).  Following this realization, 

quadruplex structures have become the subject of significant scientific study, with the 

number of quadruplex-related articles being published increasing almost every year 

since (Figure 1.3). 
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Figure 1.3 Quadruplex Publications 

Articles published per year when searching “quadruplex” on PubMed. 

 

Quadruplex Topology 

As mentioned previously, quadruplex structures can form from DNA, RNA or a 

combination of both.  The basic unit of the quadruplex is the G-quartet (Figure 1.2), 

which is comprised of four guanine nucleotides surrounding a monovalent cation such 

as sodium or potassium, held together through Hoogsteen bonding.  The monovalent 

cation compensates for the electronegative charge of the O6 oxygen atoms of the 

guanine bases and is essential for this stable conformation (Burge et al. 2006; 

Bhattacharyya, Mirihana Arachchilage, and Basu 2016).  Potassium is generally 

preferred to sodium and is observed in a square antiprismatic coordination with the O6 

atoms between the interface of two G-quartets.  Sodium is also commonly observed, 

however its smaller radius allows coordination by the O6 atoms of a single G-quartet in 

a square-planar conformation.  Other, less physiologically relevant monovalent cations 
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can also be similarly involved in the quadruplex structure, however the small atomic 

radius of lithium does not allow it to stably occupy this space (Bhattacharyya, Mirihana 

Arachchilage, and Basu 2016). 

 Quadruplexes can form as intramolecular or intermolecular arrangements, arising 

from single or multiple nucleic acid strands, respectively.  Unimolecular quadruplex 

structures arising from a single strand have been the subject of the majority of studies 

due to their physiological relevance, however bimolecular and tetramolecular 

quadruplex structures have also been characterized in solution and in crystal structures.  

The sequence motif that forms quadruplex structures is similar for both intramolecular 

and intermolecular quadruplexes with the general form of G3-5L<7G3-5L<7G3-5L<7G3-5.  The 

loop nucleotides are necessary for allowing the G-quartets to stack in a stable 

conformation, with smaller loop regions generally indicating a more stable quadruplex 

structure.  Three types of loops have been shown to form (Burge et al. 2006; 

Balasubramanian, Hurley, and Neidle 2011).  

Propeller, or strand-reversal loops, occur when the G-quartet at one side of the 

overall quadruplex is connected through a loop to the G-quartet on the opposing side.  

Diagonal loops refer to those which connect two corners of G-quartets on opposite 

sides relative to each other.  Lateral loops are those which connect two corners of G-

quartets on adjacent sides.  The types of loops formed in the quadruplex determine the 

overall topology of the quadruplex, divided into three types (Figure 1.4) (Neidle 2017). 
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Figure 1.4 Quadruplex Topologies 

(Neidle, 2017) 

Three classes of quadruplex topology.  Antiparallel, parallel and hybrid refer to the 

strand direction on each edge of the overall quadruplex (5’ – 3’).   

 

 Parallel quadruplexes are those in which the direction of the nucleic acid strands 

on each edge of the structure run parallel to one another in the 5’ – 3’ direction.  Anti-

parallel refers to quadruplexes in which the two edges oppose the direction of the other 

two edges.  The third type is the hybrid, or mixed 3+1, type in which three of the nucleic 

acid strands on the edges proceed in the same direction and one in the opposite 

direction (Balasubramanian, Hurley, and Neidle 2011).  All of these types have been 

demonstrated experimentally, and multiple forms have even been observed for the 

same sequence in an equilibrium such as is exemplified by the sequence found in 

human telomeres (Parkinson, Lee, and Neidle 2002; Luu et al. 2006; Phan, Kuryavyi, 

Luu, et al. 2007). 
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Quadruplexes in Telomeres 

The terminal 3’-end of human telomeres have been shown to be single-stranded 

and comprised of a repeating sequence of the form TTAGGG (Burge et al. 2006).  This 

allows for formation of repeating quadruplex structures and this has been described as 

“beads on a string” (Yu et al. 2012).  However, the protein hPOT1 competes with 

quadruplex formation and allows telomerase to bind and maintain telomere length in 

cells as they divide.  Excessive disruption of hPOT1 binding by inducing quadruplex 

formation causes a DNA damage response in cells and causes them to undergo 

apoptosis (Neidle 2010).  This strategy is being actively explored as a possible 

mechanism to target for development of small-molecule anticancer therapies. 

Expression of telomerase is upregulated in over 80% of cancers, allowing tumor 

cells to rapidly divide while maintaining telomere length and preventing the degradation 

of coding DNA.  Telomerase activity is dependent on binding of hTERT, the catalytic 

subunit, to the single-stranded telomeric overhangs and hybridization of a telomeric 

RNA template to allow lengthening of the telomere.  Formation of quadruplex structures 

in the telomeric overhangs prevents the catalytic activity of telomerase.  It has been 

shown that small-molecules which bind telomeric quadruplex structures can shift the 

equilibrium to favor quadruplex formation and thereby prevent the lengthening of 

telomeres by telomerase. This results in induction of rapid senescence in tumor cells 

and activation of the DNA damage response leading to apoptosis (Figure 1.5) (Neidle 

2010). 
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Figure 1.5 Telomeric Quadruplex Induced Apoptosis 

(Neidle, 2010) 

Mechanisms of inducing apoptosis in cancer cells using the telomeric quadruplex ligand 

BRACO-19 as an example. hPOT1 and hTERT are displaced by formation of a 

quadruplex in the telomeric overhang and stabilization with the BRACO-19 ligand. 

 

Quadruplexes in Gene Promoters 

Quadruplex-forming sequences are prevalent in gene promoter regions, and 

specifically in multiple genes important to the pathogenesis of cancer.  These include 

the promoter regions of c-MYC, c-KIT, Bcl-2, VEGF, KRAS, and HIF-1α (Yang and 

Hurley 2006; Phan, Kuryavyi, Burge, et al. 2007; Dexheimer, Sun, and Hurley 2006, -2; 

Sun et al. 2005; Lavrado et al. 2015; De Armond et al. 2005).  The most well-studied is 
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c-MYC due to its overexpression in approximately 70% of all human cancers and 

multiple roles essential to tumor cell survival.  It has been demonstrated that quadruplex 

formation in the NHEIII1 region of the c-MYC promoter prevents transcription of c-MYC, 

leading to apoptosis in multiple tumor cell types (Figure 1.6) (Ou et al. 2007).  A more 

complete description of the c-MYC promoter quadruplex and its functions in cancer will 

follow in Chapter 2 (Stump et al. 2018). 

 

Figure 1.6 Reduction of c-MYC expression using a quadruplex stabilizing ligand 

(Balasubramanian, Hurley, and Neidle 2011) 

Stabilization of the c-MYC promoter quadruplex with a ligand such as TMPyP4 

interferes with binding of transcription factors and RNA polymerase II to prevent 

transcription and expression of c-MYC. 
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Another well-studied example is the quadruplexes formed in the c-KIT promoter 

region.  The c-KIT promoter contains two quadruplex-forming sequences and encodes 

for a tyrosine kinase important in the development of gastrointestinal tumors and other 

human cancers (Fernando et al. 2006; Rankin et al. 2005; Phan, Kuryavyi, Burge, et al. 

2007).  Multiple studies have demonstrated reduction in c-KIT expression in tumor cells 

following treatment with quadruplex targeted ligands (Bejugam et al. 2007; McLuckie et 

al. 2011; Balasubramanian, Hurley, and Neidle 2011).  Two quadruplex structures also 

form in the KRAS gene promoter.  KRAS is a member of the RAS family of G-proteins 

which are involved in pathways affecting cell growth and apoptosis (Morgan et al. 2016).  

Overactivation of KRAS is commonly found in cancers and leads to enhanced cell 

proliferation and loss of tumor suppressor function.  Previous studies have 

demonstrated that KRAS expression in cancer cells can be reduced using small-

molecule quadruplex binding ligands (Lavrado et al. 2015; Morgan et al. 2016). 

 

RNA Quadruplexes 

Quadruplexes have also been shown to form in RNA and are generally more 

stable than their DNA counterparts (Agarwala, Pandey, and Maiti 2015; Bugaut and 

Balasubramanian 2012; Fay, Lyons, and Ivanov 2017).  This is due to the fact that RNA 

is mostly single-stranded and the presence of a 2’-OH in the ribose sugar allowing for 

increased intramolecular interactions.  Known biological RNA quadruplexes are also 

restricted to the parallel topology.  For these reasons, the melting temperatures of RNA 

quadruplexes often exceed temperatures found in most biological systems.  

Interestingly, regardless of this remarkable stability, it has been suggested that RNA 
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quadruplexes do not form to any significant extent in vivo, and this is likely due to 

unwinding of these structures in the cell.  There is evidence of several proteins that bind 

RNA quadruplexes, and even some that can unwind these structures in vitro, such as 

DHX36 (G4 resolvase) and DHX9 (RNA helicase A) (Fay, Lyons, and Ivanov 2017).  

Several biological roles of RNA and DNA:RNA hybrid quadruplexes have been 

suggested including in transcriptional regulation, 3’-end RNA processing, pre-mRNA 

splicing regulation and mRNA translation, however the field is still developing and many 

of the details remain to be discovered (Fay, Lyons, and Ivanov 2017). 

 

Quadruplexes in Mitochondrial DNA 

It has been demonstrated that quadruplexes are also able to form in 

mitochondrial DNA (mtDNA).  Studies suggest that there are approximately 200 putative 

quadruplex-forming sequences present in the mitochondrial genome (Bharti et al. 2014; 

D. W. Dong et al. 2014).  A recent study using fluorescent compounds has suggested 

that quadruplexes in mtDNA may be suitable targets for development of anticancer 

therapies (Huang et al., 2015).  The researchers demonstrate that a set of carbazole 

ligands derivatized with pyridinium iodide, connected through varying lengths of alkyl 

chains, can bind quadruplex structures found in mtDNA.  The researchers suggest the 

mechanism of action of these compounds is through prevention of mtDNA gene 

expression leading to apoptosis (Huang et al., 2015).  This hypothesis is strengthened 

by previous studies demonstrating genes in mtDNA containing putative quadruplex-

forming sequences are more susceptible to DNA damage (Bharti et al. 2014). 
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Another area of significant interest in the involvement of quadruplex structures in 

transcription and replication of mtDNA.  A domain of mitochondrial DNA (mtDNA) known 

as conserved sequence block II (CSB II) has been demonstrated to form a parallel 

DNA:RNA hybrid quadruplex with nascent RNA during mtDNA transcription (Wanrooij et 

al. 2010; Zheng et al. 2013).  Transcription of mtDNA can be prematurely terminated 

through formation of a structure known as the D-loop, which is responsible for 

generation of the RNA primers required for initiation of mtDNA replication.  Multiple 

reports in the literature suggest the formation of the hybrid quadruplex as the 

mechanism responsible for the transition from transcription to synthesis of mtDNA 

(Wanrooij et al. 2010; Zheng et al. 2014). 

 

Methods for Study of Quadruplexes 

There are many common methods employed for the study of quadruplex 

structures.  The major methods utilized and referenced in this work are outlined below, 

however this is by no means an exhaustive list.  

 

Macromolecular X-ray Crystallography 

One of the best methods used to reveal nuances in the overall topology of 

quadruplex structures is X-ray crystallography.  Briefly, crystal growth conditions are 

evaluated using a high-throughput screening method, often in a 96-well format.  Once 

preliminary crystals are attained, the conditions can be refined further to improve the 

quality and size of the crystals.  Crystals suitable for structure determination are then 

placed in front of a detector and a focused beam of x-rays is directed at the crystal as it 
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is rotated in front of the detector.  The detector collects the diffraction pattern from x-

rays scattered as a result of the electrons present in the crystalline lattice.  From this 

diffraction pattern, a map of the electron density of the macromolecule of interest can be 

calculated and the position of the atoms can be determined with high precision (N. H. 

Campbell and Parkinson 2007; N. Campbell, Collie, and Neidle 2012; Parkinson, Lee, 

and Neidle 2002; Wei et al. 2012; Stump et al. 2018). 

 At the time of writing, over 130 quadruplex structures have been determined 

using macromolecular crystallographic methods and deposited in the RCSB Protein 

Databank, a repository for macromolecular structures.  Many of these structures also 

contain ligands bound to the quadruplex structures and this has allowed for further 

design and refinement of small molecules ligands. 

 

NMR Spectroscopy 

NMR spectroscopy is another common method employed for studying 

quadruplex structures and their interactions with ligands.  The imino protons of the 

guanine bases in both DNA and RNA quadruplexes display characteristic peaks 

between 10 – 12 ppm  in their 1H spectra (Adrian, Heddi, and Phan 2012; Bao et al. 

2017).  This allows measurement of anisotropy changes resulting from perturbation of 

the quadruplex structure with ligands.  Selectively N15 or F19 labeled nucleotide bases 

coupled with two-dimensional water-suppression NOSEY methods can also be 

employed in conjunction with molecular dynamics to accurately approximate the 

topology of specific quadruplex structures formed by different sequences of DNA and 
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RNA (Yang and Hurley 2006; Dai et al. 2011; Adrian, Heddi, and Phan 2012; Bao et al. 

2017). 

 

Circular Dichroism Spectroscopy 

Circular dichroism spectroscopy (CD) measures the differential absorbance of 

polarized light by chiral molecules such as DNA and RNA.  Quadruplex structures 

display characteristic peaks in their CD spectra and the method can be used to 

distinguish between parallel, anti-parallel and hybrid 3+1 type structures (Paramasivan, 

Rujan, and Bolton 2007).  Temperature melts performed at the maximum of peaks in a 

quadruplex CD spectra can be used to make inferences about the stability of the 

secondary structure and the relative effect of bound small molecule ligands (Greenfield 

2006; Paramasivan, Rujan, and Bolton 2007; Weaver et al. 2015). 

 

Summary 

Quadruplex structures represent a promising target for development of novel 

anticancer therapeutics.  The involvement of quadruplexes in many processes 

regulating expression of many oncogenes both at the transcriptional and post-

transcriptional level highlights the potential of these structures as targets.  In addition, 

the roles of quadruplexes in mitochondria and specifically mtDNA are beginning to 

emerge and may provide another avenue for creating targeted therapies for cancer. 
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Mitochondria 

History 

 Mitochondria are central to both energy metabolism and many processes 

governing homeostasis in human cells.  One of the most important functions of 

mitochondria is the role they play in the initiation of the intrinsic pathway of apoptosis.  

Targeting this pathway has become a focus of many scientists as a possible 

mechanism to employ in finding new strategies for causing apoptosis in tumor cells and 

treatment of cancer.  The suggestion that mitochondria may be important in the 

pathogenesis of cancer can be traced back to Nobel laureate Otto Warburg in 1924, 

when first proposed what is now known as the “Warburg effect” (Otto Warburg 1925; 

Liberti and Locasale 2016).  The hypothesis was based on the observation that cancer 

cells have a metabolic shift relative to normal cells where they begin to produce energy 

in the form of ATP primarily by non-oxidative glycolysis rather than through oxidative 

phosphorylation by mitochondria.  (Fulda, Galluzzi, and Kroemer 2010) (Figure 1.7). 
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Figure 1.7 Mitochondria and metabolic reprogramming in cancer 

(Fulda, Galluzzi, and Kroemer 2010) 

Cancer cells shift metabolism to primarily generate ATP through conversion of pyruvate 

to lactic acid rather than by oxidative phosphorylation due to interaction of hexokinase 

directly with VDAC proteins. 

 

  Warburg hypothesized that this shift may be responsible for tumor initiation and 

growth, and if reversed may be a useful strategy to treat cancer.  Although this strategy 

has not been singularly effective overall for treatment of cancer, it has led to discovery 

of other structural and functional abnormalities found in tumor cell mitochondria; and it 

has been demonstrated cancer cells become sensitized to mitochondrial disturbances 

(Fulda, Galluzzi, and Kroemer 2010).  Many of these mechanisms are being utilized in 

currently used, and in developing cancer therapies (Figure 1.8) (Neuzil et al. 2013). 
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Figure 1.8 Mitochondrial targets of anti-tumor agents 

(Neuzil et al. 2013) 

Mitochondrially targeted anticancer drugs, “mitocans”, as classified by Neuzil et al.  

Notably, class 5 and class 8 compounds directed to target the electron transfer chain 

and mitochondrial DNA. 
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Mitochondrial Targets 

Mitochondrial DNA (mtDNA) 

 Mitochondrial DNA (mtDNA) forms a ~17,000 base pair circular genome 

containing approximately 37 genes that code for 2 rRNAs, 22 tRNAs, and 13 

polypeptides.   All of the encoded polypeptides are involved in the electron transport 

chain machinery of the mitochondria (Taanman 1999).  The sensitivity of tumor cells to 

mitochondrial disturbances may be in part due to the increased susceptibility of mtDNA 

to damage, as mitochondria lack efficient DNA repair machinery found in the nucleus 

(Yakes and Van Houten 1997; Berridge, Dong, and Neuzil 2015).  Damage to mtDNA 

has been shown to induce senescence in tumor cells in vivo and, when combined with 

inhibition of mtDNA synthesis, lead to caspase-dependent apoptosis (Laberge et al. 

2013).  In human glioblastoma cells, intact mtDNA has also been shown to be important 

in the process of tumorigenesis and depletion of mtDNA reduces growth in transplanted 

human tumors in vivo in mice (Dickinson et al. 2013). 

 

Electron Transport Chain (ETC) 

The mitochondrial electron transport chain (ETC) is responsible for oxidative 

phosphorylation of pyruvate, using oxygen and cofactors generated in the TCA cycle, to 

phosphorylate ATP from ADP in the mitochondria of cells.  This process relies on five 

enzymatic complexes (Complex I – V) that are located in the mitochondrial inner 

membrane.  The reaction proceeds through reduction of ubiquinone by complex I and II 

using NADH or FADH2 to pass electrons to Complex III.  Complex III then reduces 

cytochrome c to pass electrons to Complex IV, which in turn reduces molecular oxygen 
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to water.  The cascade of reactions in the ETC generates a proton gradient in the 

outward direction relative to the mitochondrial matrix.  The flow of protons back into the 

matrix powers complex V, which uses energy from the proton gradient to produce ATP 

through phosphorylation of ADP using inorganic phosphate.  The proton gradient and 

flow of electrons in the ETC also is responsible for maintaining the negative 

mitochondrial membrane potential (ΔΨm) (Zorova et al. 2018).  Loss of the ΔΨm 

causes cytochrome c release and caspase-9 activation in cells leading to apoptosis in 

tumor cells (Inayat-Hussain et al. 2003).  The flow of electrons in the ETC has another 

consequence, production of reactive oxygen species (ROS) (Figure 1.9) (West, Shadel, 

and Ghosh 2011).  Nominal levels of ROS are important for signaling in healthy cells, 

however excess ROS can damage the cell and also lead to apoptosis.  Due to the 

ability of mitochondria to act as key regulators of the intrinsic apoptotic pathway, there 

has been great interest in the possibility of targeting the ETC to kill tumor cells. 
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Figure 1.9 Sources of reactive oxygen species in the electron transport chain 

(West, Shadel, and Ghosh 2011) 

Electron transport chain protein complexes I – III contribute to generation of reactive 

oxygen species (ROS) in the form of superoxide and hydrogen peroxide. 

 

Complex I 

ETC Complex I, also known as NADH ubiquinone oxidoreductase is responsible 

for transferring electrons from NADH to ubiquinone.  Complex I is located in the inner 

mitochondrial membrane and exists as a large multimeric protein.  The enzyme is a 
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major source of ROS inside the mitochondrial matrix through generation of superoxide.  

Complex I contributes approximately 4 protons per ubiquinone reduced to the outward 

proton gradient from the matrix to the intermembrane space (Lenaz et al. 2006).  

Inhibitors of Complex I such as the common inhibitor Rotenone can enhance its 

capability to produce ROS in the form of superoxide and hydrogen peroxide (Li et al. 

2003).  Rotenone-induced production of ROS has been demonstrated to lead to DNA 

damage and apoptosis in tumor cells through activation of caspase-3 (Liu, Fiskum, and 

Schubert 2002). The diabetes drug Metformin is also being explored for the potential to 

be repurposed as an anticancer therapeutic due to its inhibition of Complex I and the 

downstream effects leading to apoptosis in pancreatic cancer cells (Boukalova et al. 

2016). 

 

Complex II 

Complex II (succinate dehydrogenase) is an approximately 100 kDa hetero-

tetrameric protein located on the inner mitochondrial membrane (Kenney 1975; 

Miyadera et al. 2003; Ralph et al. 2011).  Complex II couples the conversion of 

succinate to fumarate to reduce ubiquinone, which then acts as a carrier to transfer 

electrons to Complex III.  The electrons for succinate oxidation are provided by the 

cofactor FAD, which is reduced to FADH2 in the reaction.  A more complete introduction 

to the Complex II field of study is presented in Chapter 3. 
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Complex III 

The major function of Complex III (NADH:ubiquinone oxidoreductase) is to 

reduce cytochrome c through oxidation of ubiquinol passed from Complex I / II.  This 

process is completed through a pathway termed the “Q-cycle”.  The Q-Cycle is a two-

step process; in the first step the electrons arising from oxidation of ubiquinol are 

transferred through an iron-sulfur cluster to reduce cytochrome c moving 2 H+ to the 

intermembrane space and generating a semiquinone, in the second step a second 

ubiquinol is oxidized and an additional 2 H+ are transferred to the matrix from the 

intermembrane space, reducing the semiquinone back to ubiquinol (Bleier and Dröse 

2013).  Complex III therefore contributes to the ΔΨm, and also has been shown to be a 

major source of ROS in mitochondria (Chen et al. 2003).  Antimycin A is a known 

inhibitor of Complex III, and generates superoxide through electron transfer to molecular 

oxygen (Bleier and Dröse 2013).  Unlike Complex I / II, Complex III can generate ROS 

on either side of the inner mitochondrial membrane, in the matrix or the intermembrane 

space (West, Shadel, and Ghosh 2011). 

 

Complex IV 

Complex IV, known as cytochrome c oxidase, couples the oxidation of 

cytochrome c to the reduction of molecular oxygen to form water.  This process utilizes 

4 H+ from the intermembrane space to reduce oxygen and translocates 4 H+ across the 

inner mitochondrial membrane to the intermembrane space contributing to ΔΨm.  

Altered expression of Complex IV subunits have been observed in colon and prostate 

cancer (Herrmann et al. 2003; K. Zhang et al. 2016).  Complex IV inhibition does not 



 28 

produce ROS directly, however it can indirectly affect the production by other ETC 

complexes through changes in ΔΨm (Lee, Bender, and Kadenbach 2002).  Complex IV 

inhibition also has been shown to suppress mitochondrial respiration and induce 

degradation of HIF-1a in cancer cells.  This was an important finding because HIF-1a is 

essential for adaptive response pathways used by cancer cells to promote angiogenesis 

(Krock, Skuli, and Simon 2011). 

 

Complex V 

Complex V is more well-known as the FoF1-ATPase, and is responsible for 

generating ATP from ADP in the mitochondria.   ATP is synthesized through 

phosphorylation of ADP using inorganic phosphate; the reaction is driven by the ΔΨm 

and movement of H+ back into the mitochondrial matrix.  The movement of H+ through 

the enzyme in the membrane causes a turbine-like rotation of the c-ring portion of the 

protein complex and this rotational energy is utilized to generate ATP from ADP and 

inorganic phosphate.  Inhibition of Complex V does not contribute to significant 

production of ROS, but changes in its activity does have documented roles in cancer 

cells.  Complex V can be inhibited by an oncometabolite 2-HG ((R)-2-hydroxyglutarate), 

which is highly expressed in some gliomas and leukemias.  Complex V inhibition by 2-

HG decreases mitochondrial respiration in U87 glioma cells transfected to express the 

common glioma mutation IDH1(R132H), which increases the amount of 2-HG produced 

in the cell (Fu et al. 2015). 
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Summary 

Targeting mitochondria for treatment of cancer is a growing field due to the 

abundant roles of mitochondria and associated pathways in metabolism, proliferation, 

and apoptosis.  Inhibition of the ETC complexes with drugs such as Metformin and a-

TOS, and adapting their structures to target mitochondria is being explored as a way to 

selectively kill tumor cells (Lan-Feng Dong et al. 2007; L.-F. Dong et al. 2008; Neuzil et 

al. 2013; Boukalova et al. 2016).  Additionally, it has now been observed that some 

currently used cancer drugs such as Cisplatin, previously thought to affect nuclear DNA, 

instead exert their cytotoxicity to tumor cells through interactions with mtDNA 

(Marrache, Pathak, and Dhar 2014; Kohno et al. 2015).  Taken together, this shows the 

significance of continued research focused on targeting mitochondria for development 

of anticancer therapeutics. 

 

NAD(P)H Quinone Oxidoreductase 1 (NQO1) 

NAD(P)H Quinone Oxidoreductase 1 (NQO1) 

A major mechanism proposed for the cytotoxic action of quinolinediones in tumor 

cells involves their reduction by the quinone reduction enzyme known as 

NAD(P)H:quinone oxidoreductase 1 (NQO1).  NQO1 is overexpressed in multiple types 

of tumors; these include brain, breast, liver, lung and colon cancers (Hassani et al. 

2005).  NQO1 can catalyze the two-electron reduction of quinones to hydroquinones.  

The reaction requires cofactors FAD and NAD(P)H to be bound; the reaction proceeds 

through a hydride transfer from NAD(P)H to FAD followed by reduction of the quinone to 

a hydroquinone.  Depending on the stability of the hydroquinone formed, it has been 
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suggested this conversion can cause redox cycling and subsequent generation of 

reactive oxygen species leading to apoptosis in tumor cells both in vitro and in mice 

(Keyari et al. 2013; Ross and Siegel 2017). 
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Hypotheses and Specific Aims 

 

Specific Aim 1:  Characterize the structure of the human c-MYC promoter 

quadruplex; demonstrate interaction of the AIMs with quadruplex DNA structures. 

Hypothesis:  AIMs will stabilize the human c-MYC promoter quadruplex and the 

characterization of the c-MYC quadruplex structure will inform development of more 

potent and selective AIM ligands. 

 

Specific Aim 2:  Measure the cytotoxicity of the AIMs in tumor cells and evaluate 

the mitochondrial mechanism contributing to the antitumor activity of the AIMs. 

Hypothesis:  Current generation AIMs will exhibit improved toxicity to tumor cells.  

Mitochondrial reductases and damage to mitochondria DNA are involved in the 

mechanisms underlying the AIMs antitumor efficacy. 

 

Specific Aim 3:  Examine the cytotoxicity of a novel set of quinolinedione analogs 

in parent breast cancer cells relative to NQO1 overexpressing cells and determine 

the compounds suitability as substrates for NQO1 

Hypothesis:  The set of quinolinediones will exhibit toxicity to the breast cancer cells and 

this will be enhanced in the NQO1 overexpressing cells.  Differential substitutions on the 

quinolinedione analogs will relate to their toxicity in tumor cells and enhance their 

suitability as substrates for NQO1. 
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Abstract 

The c-MYC oncogene mediates multiple tumor cell survival pathways and is 

dysregulated or overexpressed in the majority of human cancers.  The NHE III1 region of 

the c-MYC promoter forms a DNA quadruplex.  Stabilization of this structure with small 

molecules has been shown to reduce expression of c-MYC, and targeting the c-MYC 

quadruplex has become an emerging strategy for development of antitumor compounds.  

Previous solution NMR studies of the c-MYC quadruplex have assigned the major 

conformer and topology of this important target, however, regions outside the G-quartet 

core were not as well-defined.  Here, we report a high-resolution crystal structure (2.35 

Å) of the major quadruplex formed in the NHE III1 region of the c-MYC promoter.  The 

crystal structure is in general agreement with the solution NMR structure, however, key 

differences are observed in the position of nucleotides outside the G-quartet core. The 

crystal structure provides an alternative model that, along with comparisons to other 

reported quadruplex crystal structures, will be important to the rational design of selective 

compounds.  This work will aid in development of ligands to target the c-MYC promoter 

quadruplex with the goal of creating novel anticancer therapies. 

Introduction 

Guanine-rich sequences of DNA and RNA can form a secondary nucleic acid 

structure known as a quadruplex.  Quadruplex motifs have become the subject of 

significant interest due to their presence in human telomeres, 5’-untranstranslated regions 

of mRNA, and in gene promoter regions (Burge et al. 2006).  One such quadruplex-

forming sequence is found in the promoter region of the human c-MYC oncogene.  c-

MYC is estimated to be dysregulated or overexpressed in approximately 70% of all 
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human cancers and is responsible for mediating multiple pathways important in tumor cell 

survival.  Stabilization of the major quadruplex formed in the c-MYC promoter by various 

small molecules has been shown to inhibit transcription of c-MYC thereby reducing 

expression of the oncogene (Siddiqui-Jain et al. 2002; Ou et al. 2007).  This reduction in 

c-MYC expression has been demonstrated to induce apoptosis in multiple types of tumor 

cells (Su et al. n.d.; Brown et al. 2011). Taken together, these findings suggest that the 

c-MYC promoter quadruplex is a promising antitumor target. Several research groups are 

designing small molecules to stabilize the c-MYC promoter quadruplex as a strategy to 

develop potential therapies for treatment of human cancers (Phan, Modi, and Patel 2004; 

Dai et al. 2011; Hu et al. 2018).   

The general sequence motif that forms a quadruplex consists of several short 

guanine repeats (G), separated by short “loop” regions (L) comprised of other nucleotides 

with the overall general sequence of G3-5L<7G3-5L<7G3-5L<7G3-5 (Burge et al. 2006).  

Quadruplexes can form as intramolecular or intermolecular arrangements, consisting of 

single or multiple nucleic acid strands, respectively.  The basic unit of the quadruplex is 

the G-quartet, which is formed as a planar arrangement of four guanine residues held 

together through Hoogsteen bonding and stabilized by a central monovalent cation.  

Multiple G-quartets, usually three or more, stack upon each other to form the quadruplex 

secondary structure and are connected through external loop region nucleotides.  The 

central channel cations are essential for quadruplex formation, with potassium generally 

preferred to sodium.  Potassium cations are observed in a symmetric square antiprismatic 

coordination at the interface of two G-quartets, coordinated by the guanine O6 atoms, 

whereas the relatively smaller sodium atoms display square-planar coordination and are 
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central to a single G-quartet. The species and abundance of these and other cations in 

solution can also serve to influence and stabilize the overall quadruplex topology 

(Bhattacharyya, Mirihana Arachchilage, and Basu 2016).  Quadruplexes can be further 

categorized as parallel, anti-parallel, or hybrid by the types of loops formed and direction 

of the backbone in relation to the G-quartets (Figure 2.1) (Burge et al. 2006). 

 

Figure 2.1 Topology of the c-MYC promoter quadruplex 

Diagram showing fully parallel topology of the c-MYC promoter quadruplex crystal 

structure with all reversal loops continuing in the right to left direction (5’ to 3’).  Thymines 

are represented in yellow, adenines in blue, and guanines in green.  Sequence 

modifications in Pu22 are shown highlighted in red. 

 

Parallel-type quadruplexes are found in promoter regions of c-MYC and several 

other oncogenes that are potential therapeutic targets for cancer including c-KIT, Bcl-2, 

VEGF, and HIF-1α (Siddiqui-Jain et al. 2002; Fernando et al. 2006; Rankin et al. 2005; 

Dexheimer, Sun, and Hurley 2006; Agrawal et al. 2014; Sun et al. 2005; De Armond et 

al. 2005).  The human c-MYC promoter quadruplex is formed under negative supercoiling 

conditions in the nuclease hypersensitivity element III1 region (NHE III1) (Sun and Hurley 
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2009).  NHE III1 is 27 residues in length and responsible for the regulation of 80 - 90% of 

c-MYC oncogene transcription (Pu27) (Ambrus et al. 2005).  Duplex/quadruplex or single-

stranded forms of the NHE III1 region can be bound by transcription factors SP1 or 

CNBP/hnRNP, respectively, to increase c-MYC expression while formation of the 

quadruplex structure prevents transcription (Brooks and Hurley 2009; Raiber et al. 2012).  

NHE III1 contains 20 guanines grouped into five segments of 3 to 4 guanine nucleotides 

separated by one or two adenine or thymine nucleotides.  This guanine-rich character 

allows formation of four possible quadruplex topologies, with the major form being a 

parallel intramolecular quadruplex comprised of the four guanine segments at the 3’-end 

of the sequence (Ambrus et al. 2005).   

In a previous NMR study, it was found that the major biologically relevant 

conformation adopted by the c-MYC promoter quadruplex could be selected from other 

conformers by mutating residues G4, G14 and G23 to thymines and truncating the 

sequence to 22 nucleotides in length (Pu22) (Ambrus et al. 2005).  In a separate NMR 

study, the binding of a quindoline compound with Pu22 and the wild-type Pu27 sequence 

in solution was described (Dai et al. 2011). The latter study revealed the small molecule 

bound in an “induced fit” manner at two sites on the quadruplex, with the 5’ and 3’ flanking 

sequences recruited to form a binding pocket for both the Pu27 and Pu22 sequences.  To 

select the desired biologically relevant conformation, the same Pu22 sequence was 

further utilized in this work to obtain the reported crystal structure. 

 Our interest in obtaining the crystal structure of the c-MYC quadruplex formed by 

Pu22 stemmed from differences previously observed between solution and solid-state 

structures of other quadruplexes in the literature.  Additionally, crystal structures often 
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reveal other important structural information that may be absent in solution, such as the 

involvement of ions or water molecules important to the overall quadruplex topology, or 

potentially relevant quaternary interactions.  On comparison of crystal and solution NMR 

structures of similar quadruplex sequences, differences are sometimes observed in the 

type of cation in the central channel and the overall topology of the quadruplexes.  For 

example, multiple quadruplex topologies have been demonstrated in studies using the 

sequence repeat found in human telomeres, d(GGGTTA).  Solution NMR studies have 

revealed that an anti-parallel quadruplex is formed in the presence of sodium ions, and 

alternatively, a 3+1 hybrid-type quadruplex is observed in solution containing potassium 

ions,  with three parallel strand-edges and one anti-parallel (Wang and Patel 1993; Luu 

et al. 2006; Phan, Kuryavyi, Luu, et al. 2007).  In contrast, the reported crystal structure 

of the same sequence adopts a fully parallel arrangement with potassium cations 

occupying the central channel (Parkinson, Lee, and Neidle 2002).  This parallel topology 

was also shown to be favored in studies of solutions containing molecular crowding 

conditions (Xue et al. 2007; Heddi and Phan 2011).  However, this is not always the case: 

for example, the c-KIT oncogene promoter quadruplex in both solution NMR and crystal 

structures adopts a strictly parallel form containing potassium in the central channel, with 

the position of the nucleotides highly-conserved (Phan, Kuryavyi, Burge, et al. 2007; Wei 

et al. 2012; Wei, Husby, and Neidle 2015).  This led us to question whether the crystal 

structures of other oncogene promoter quadruplexes would be analogous to their NMR 

solution counterparts, or if they would differ significantly as is seen with the telomeric 

sequences. Knowledge of the distinct topology of these quadruplexes is crucial to the 

design of small molecules that stabilize their structures, and there is evidence that subtle 
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differences in structural features could allow for selectivity between specific quadruplex 

targets (Balasubramanian, Hurley, and Neidle 2011; Hu et al. 2018).   

Here, we report a high-resolution crystal structure of the major Pu22 quadruplex 

formed in the human c-MYC promoter and describe several features observed that are 

potentially important for small molecule binding and quadruplex stabilization.  We 

compare the crystal structure of Pu22 with previously reported solution NMR structures 

in an effort to inform future design of quadruplex-targeted compounds (Ambrus et al. 

2005; Yang and Hurley 2006; Dai et al. 2011; Weaver et al. 2015).  In addition, we have 

examined the features of the Pu22 crystal structure in conjunction with other quadruplex 

crystal structures to probe for similar features including positions of ions, water molecules 

and quaternary interactions.  This research aims to aid future development of novel 

quadruplex-targeted compounds and provide information helpful in co-crystallization 

studies with molecules designed to bind the c-MYC promoter and other quadruplex 

structures. 

Materials and Methods 

Crystallization 

The 22-residue DNA oligonucleotide (5’-TGAGGGTGGGTAGGGTGGGTAA-3’) 

was synthesized and purified by Integrated DNA Technologies (standard desalting).  The 

oligonucleotide was diluted into a stock concentration of 10 mM in DNAse/RNAse free 

water and the concentration was determined using a Thermo Scientific NanoDrop 

spectrometer.  The oligonucleotide was then diluted to 2.0 mM in 20 mM sodium 

cacodylate buffer at pH 6.5 containing 30 mM KCl and annealed by heating for 10 minutes 

at 95° C and cooled overnight at 4° C prior to crystallization experiments. Initial crystal 
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screening was done in a 96-well plate format using an Art Robbins Instruments 

GRYPHON liquid-handling crystallization robot.  Various precipitants (PEGs, 2-Methyl-

2,4-pentanediol (MPD)) were screened along with varying concentrations of salts (NaCl, 

KCl, LiCl etc.) as previously outlined (Campbell and Parkinson 2007). Crystals used for 

diffraction data collection were grown in a 24-well plate format using the hanging-drop 

vapor diffusion technique with 300 mM KCl, 50 mM LiCl, and 22.5% MPD in 50 mM 

sodium cacodylate at pH 6.5 with a 1:1 ratio of oligonucleotide to reservoir solution.  

Crystals were harvested using the reservoir solution or additional MPD (30%) as a cryo-

protectant and flash cooled in liquid nitrogen for storage prior to data collection.   

Data collection and refinement 

Initial diffraction screening was performed using a Rigaku MicroMax 007HF X-ray 

generator with VariMax HighFlux optic and R-AXIS IV image plate detector. Diffraction 

data for structure determination were taken at the Stanford Synchrotron Radiation 

Lightsource (SSRL) beam line 12-2.  The native dataset was collected at a wavelength of 

0.9793 Å over a 360° range with 0.2° rotation per image.  Data were processed using 

XDS with autoxds script at SSRL (Kabsch 2010).   These data were analyzed using 

Xtriage in Phenix prior to phasing (Adams et al. 2010).  Initial phases were obtained by 

molecular replacement using Phaser in Phenix using the truncated guanine decks of a 

CKIT-1 promoter quadruplex as a search model (PDBID: 4WO2) (Wei et al. 2012).  An 

improved, complete model was constructed through iterative cycles of refinement, 

phasing, and manual model building using Phenix and Coot, respectively (Emsley et al. 

2010).  Refinement was performed in Phenix refine, followed by submission to the PDB 

Redo webserver (Joosten et al. 2014).  The structure obtained from the PDB Redo 
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webserver was then re-refined in Phenix refine with simulated annealing and randomized 

atomic displacement parameters to reduce any potential bias in Rfree.  The final structure 

was refined in Phenix using data from 34.91 – 2.35 Å with a final Rwork, Rfree of 0.220 and 

0.245, respectively (Table 2.1).  Atomic coordinates and structure factors are deposited 

in the RCSB Protein Databank with ID 6AU4 (Berman et al. 2000).  Visualization and 

RMSD calculations were performed using Pymol (http://www.pymol.org) (Schrodinger 

2015). Pearson correlation coefficient (CC) was calculated by randomly assigning the 

experimental reflection data to two half-datasets (x, y) as described by Karplus and 

Diederichs (Table 2.1) (Karplus and Diederichs 2012). 

Circular dichroism spectroscopy 

Circular dichroism spectra were measured using a Jasco J-810 spectropolarimeter 

or on a Chirascan CD spectrophotometer at room temperature in a quartz cuvette with a 

10 mm or 4 mm pathlength for sample A or B, respectively.  The oligonucleotide sample 

was made at 2 µM concentration with 300 mM KCl, 50 mM LiCl, and 22.5% MPD in a 50 

mM sodium cacodylate buffer at pH 6.5 to mimic the crystallization conditions (A) or at 5 

µM in 10 mM potassium phosphate buffer pH 6 to replicate the conditions used in previous 

studies (Paramasivan, Rujan, and Bolton 2007; Dai et al. 2011) (B). The solutions were 

annealed by heating to 95° C for 10 minutes and cooled overnight to 4° C prior to data 

collection.  

Results 

The 22 residue c-MYC promoter sequence Pu22 crystallized in the P21212 space 

group in a stacked dimer formation with two parallel, single-stranded quadruplex 

structures per asymmetric unit (Table 2.1 and Figure 2.1).  The two independent 
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quaduplexes (A, B) are structurally similar with the majority of the core guanine-residue 

positions being maintained between the strands (G4-G6A/B, G8-G10A/B, G13-G15A/B, and 

G17-G19A/B RMSD = 0.190 Å).  Each individual quadruplex contains three loops and a 

5’-head and 3’-tail region.  The 5’-head region consists of residues T1-G2-A3 and is 

observed stretched away from the central G-quartets with the residues roughly orthogonal 

relative to the core guanines.  The two related 5’-head regions appear in a quasi-mirror-

related arrangement with the related atomic positions maintained (T1-G2-A3A/B, RMSD = 

0.568 Å).  The 3’-tail regions of the two quadruplexes in the asymmetric unit are 

comprised of residues T20-A21-A22 and are positioned below and approximately planar 

to the central G-quartets.  The quadruplex structure also contains three double-chain 

reversal propeller-type loops, with two consisting of single thymine residues (T7, T16) that 

flank a third, two-residue loop (T11-A12). These regions display less similarity between 

quadruplex A and B, owing predominately to the loop formed by residues T11 and A12 

(T7A/B, T16A/B, and T11-A12A/B RMSD = 2.182 Å).  All of the loops, the head, and the tail 

regions are involved in interactions important for the crystal packing.  Electron density is 

also observed for a non-channel potassium ion and several water molecules. 

 

Table 2.1 Data collection and refinement statistics 

Sequence 5’-TGAGGGTGGGTAGGGTGGGTAA-3’ 
Data Collection  
    Space group P 21 21 2 
    Unit cell dimensions (a, b, c) (Å) α, β, γ (°) 65.7 69.8 33.0 90 90 90 
    Wavelength (Å) 0.9793 
    Resolution (Å)* 34.91 – 2.35 (2.43 – 2.35) 
    Total reflections* 85280 (8398) 
    Unique reflections* 6774 (652) 
    Multiplicity*  12.6 (12.9) 
    Completeness (%)* 99.4% (99.7%) 
    I/σ* 33.9 (4.4) 
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    Wilson B-factor (Å2) 58.8 
    Rmeas

†* 0.042 (0.605) 
    CC1/2

‡* 1.000 (0.966) 
Refinement  
    Resolution (Å)* 34.91 – 2.35 (2.53 – 2.35) 
    Rwork

§* 0.220 (0.319) 
    Rfree

§* 0.245 (0.322) 
    Macromolecules 2 
    DNA Residues 44 
    Total Atoms 956 
    Potassium ions 6 
    Waters 16 
    Average Overall B-factor (Å2) 80.2 
    Average B-factor DNA Residues (Å2) 80.7 
    Average B-factor Potassium Ions (Å2) 53.1 
    Average B-factor Waters (Å2) 59.7 
    RMS (bonds) (Å) 0.009 
    RMS (angles) (°) 1.08 
    TLS groups 2 
PDB ID 6AU4 

*Statistics in parentheticals are for the high-resolution shell 

† 𝑅#$%& = 	
∑ * +

+,-∑ |/0(234)6/(̅234)|+
08-9:;

∑ ∑ /0(234)+
08-9:;

, where Ii(hkl) is the ith observation of the intensity of the 

reflection hkl and n is the multiplicity. 

§ 𝑅<=>3 = 	
∑ ||?@AB|6|?CD;C||9:;

∑ |?@AB|9:;
, where Fobs and Fcalc are the observed and calculated structure-factor 

amplitudes for each reflection hkl.  𝑅E>$$ was calculated with 10% of the diffraction data that were 

selected randomly and excluded from refinement. 

‡CC1/2 is the intra-dataset Pearson correlation coefficient (CC) calculated by randomly assigning 

the experimental reflection data to two half-datasets (x, y).  𝐶𝐶 = 	 ∑ (G06G̅)6	+
08- (H06HI)

*∑ (G06G̅)	+
08-

J*∑ (H06HI)	+
08-

J
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Figure 2.2 Crystal structure of c-MYC quadruplex 

Side-view (A) and top-view (B) of the crystal structure of the c-MYC promoter quadruplex 

formed by Pu22, guanine bases in green, thymine in yellow, adenine in blue.  Potassium 

ions in purple (two shown positioned behind strand backbones), waters in red.  

Orange/cyan backbone coloring represents strand A and B, respectively. 

 

Potassium ions 

Each individual quadruplex contains two potassium ions at the centers of two 

stacked G-quartets and an additional potassium ion similarly positioned at the interface 

that forms the dimer in the asymmetric unit, for a total of five potassium ions in the central 

cavity (Figure 2.2).  The positions of these potassium ions relative to the G-quartets is 

consistent with that reported for other quadruplex crystal and NMR structures (Yang and 

Hurley 2006; Phan, Kuryavyi, Burge, et al. 2007).  The ions central to the G-quartets are 

observed in symmetric square antiprismatic coordination with the O6 atoms of the 

guanine residues, as expected, with an average bond distance of 2.65 Å.  An additional 

potassium ion is positioned between two adjacent symmetry-related strand B 

quadruplexes, interacting with O4 oxygen of T7 of one and backbone phosphate of G9 of 
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the other (Figure 2.3B).  This ion is also observed in close proximity (< 3.7 Å) to three 

additional water molecules.  This additional potassium ion was placed following careful 

consideration of each of the other components present in the crystallization conditions. 

 

Figure 2.3 Crystal packing and non-channel potassium ions 

Packing arrangement in the unit cell of c-MYC promoter quadruplex crystal structure 

formed by Pu22, coloring scheme same as Figure 2.2; black box indicates region shown 

in Figure 2.3B (A). Non-channel potassium ions interact with residues T7 and G9 (B). 

 

Packing interactions 

The Pu22 c-MYC promoter quadruplex structure displays several interesting 

packing interactions that induce a more elongated conformation than that observed for 

the same sequence by solution NMR.  The two quadruplex strands, A and B, π–π stack 

together at the G-quartets near their 5’-ends with the G-quartets containing residues G4, 

G8, G13, and G17 of each quadruplex interacting to create the extended dimer structure 

(Figure 2.2).  Residues T1-G2-A3 from the 5’-head of four quadruplexes in the lattice, 

two of A and two of B, form stacked structures stretched away from the central G-quartets, 

with base pairing between T1A/T1B, G2A/G2B and G3A/G3B (Figure 2.4A). 
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Figure 2.4 Packing interactions 

Quaternary interaction of four 5’-head regions (T1-G2-A3); each color represents a 

separate symmetry-related strand (A).  Stacked helical structure formed between 3’-tail 

regions of (T20-A21-A22) in the crystal lattice (B). 

 

This exposes the G-quartet composed of residues G4, G7, G12, and G17, allowing 

the stacking of the two quadruplexes head-to-head in the asymmetric unit (Figure 2.2). 

Residues T20-A21-A22 from the 3’-tail of the two quadruplexes, A and B, interact forming 

a near-planar double helical structure (Figure 2.4B).  Residue T20A/B and A22A/B form 

Watson-Crick base pairs with slightly elongated hydrogen bonds and A21A and A21B are 

involved in an apparent π-stacking interaction. 

Conserved water molecules 

Two water molecules were observed in nearly identical positions in each of the 

independent quadruplexes formed by strand A and B (Figure 2.5). The conserved 

positions of these waters suggests their presence may be important in stabilizing the 

quadruplex secondary structure.  The first water is seen interacting with O4’ of residue 

G6, OP1 of G8 and N2 of G5.  The second water is seen in interaction with N2/N3 of 
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residue G8 and O4’ of G9.  These waters were placed based on the presence of 

positive density observed in the difference map.  More bound waters of this type may be 

present, however, the high B-factor of the data did not allow for confident placement of 

additional atoms even at this near-atomic resolution. 

 

Figure 2.5 Conserved water molecules 

Water molecules in conserved positions between strand A and B of the c-MYC promoter 

crystal structure (only strand A shown as an example), 2Fo-Fc map shown contoured at 

1.0 σ. 

 

Comparison of the crystal and solution structures of Pu22 

The overall topology of the crystal structure is consistent to that reported for the 

same sequence by solution NMR with several notable differences (Table 2.2, 

PDB:1XAV).  The most striking difference between the solution and crystal structure is 

observed in the T1-G2-A3 region at the 5’-head of the quadruplexes (Figure 2.6). In the 

NMR structure, these residues lay stacked on top of the G-quartet composed of residues 

G4, G7, G12, and G17. ((Ambrus et al. 2005, 20015), PDB: 1XAV).  In contrast, in the 

crystal structure this 5’-head region is observed extended and the top, nearest, G-quartet 
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is the interface where the dimer is formed. The difference in this region in comparison to 

the NMR structure is also likely responsible for the high RMSD observed in the position 

of loop residue T7 and differences in the general shape of the phosphate backbone in 

this region.  The 3’-tail region is also extended, albeit to a lesser degree, away from the 

G-quartet comprised of residues G6-G10-G15-G19 in the crystal structure in comparison 

to the NMR structure.  The difference in the position of loop residue T16 can also likely 

be attributed to this extended conformation that is involved in crystal packing interactions. 

 

Table 2.2 RMSD of strand A of Pu22 (PDB: 6AU4) to published DNA quadruplex 
structures 

RMSD (Å)    
 c-MYC (NMR, PDB: 

1XAV) 
c-KIT (X-ray, PDB: 
4WO2) 

HTelo (X-ray, PDB: 
4FXM) 

G-quartets* 1.36 6.65 1.03 
T1-G2-A3 (5’-head) 4.16 - - 
T20-A21-A22 (3’-tail) 3.45 - - 
T7, T11-A12, T17 
(loop) 

4.34 - - 

Overall 7.31 10.38 2.78 
*G-quartets are comprised of G4-G5-G6, G8-G9-G10, G13-G14-G15, and G17-G18-G19.  RMSD 
comparisons were not made between distinct quadruplex structures (c-KIT, telomeric) for the 
loop, head and tail regions due to significant sequence differences. 
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Figure 2.6 Comparison to NMR solution structure 

Overlay of NMR solution structure (PDB:1XAV, grey) with strand A (orange) and strand 

B (cyan) of the c-MYC promoter crystal structure, side view (A), top view (B). 

 

To examine the effect of the crystallization conditions on the conformation of Pu22, 

we performed circular dichroism spectroscopy at conditions analogous to those used in 

solution NMR studies (Dai et al. 2011).  Parallel quadruplex structures display 

characteristic peaks at approximately positive 265 nm and negative 240 nm in their CD 

spectra (Burge et al. 2006).  The parallel topology was confirmed for the Pu22 

oligonucleotide under both the conditions used in the solution NMR studies as well as at 

the crystallization conditions to provide additional evidence the conformation observed in 

the crystal structure is not an artifact of the crystallization environment (Figure 2.7). 
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Figure 2.7 Circular dichroism spectroscopy 

CD spectra of the Pu22 oligonucleotide under crystallization conditions (A) or conditions 

previously reported to form the parallel c-MYC promoter quadruplex (B). 

 

Comparison to other crystal structures 

The human c-KIT promoter region also contains a quadruplex sequence motif, and 

its crystal structure has some distinct similarities and differences to the c-MYC quadruplex 

formed by Pu22 (Figure 2.8A and Table 2.2, PDB: 4WO2).  In both crystal structures, a 

quadruplex dimer forms the asymmetric unit, with the G-quartets closest to the 5’-region 

observed in a stacked formation.  The c-KIT strands (A & B) forming the dimer are rotated 

one guanine relative to one another (approximately 90°), whereas the c-MYC strands (A 

& B) are rotated two guanines relative to one other (approximately 180°).  This causes 

the c-KIT quadruplex loop region nucleotide C9A to occupy the same space as loop 

nucleotide A12A of the c-MYC quadruplex, and this is regardless of the additional T11A 

present in this loop region of the c-MYC structure.  The loop nucleotide C9B of c-KIT 

superimposes with loop nucleotide T7B of the c-MYC quadruplex.  The c-MYC quadruplex 

structure contains a non-channel potassium ion interacting with residues T7 and G9.  A 



 61 

non-channel potassium ion is also observed at an unrelated site in the c-KIT crystal 

structure interacting with residues A16 and G17.   

 

Figure 2.8 Comparison to other quadruplex crystal structures 

Overlay of c-KIT crystal structure (PDB:4WO2, grey) with strand A (orange) and strand B 

(cyan) of the c-MYC promoter crystal structure; loop residue labels correspond to c-MYC 

crystal structure (A).  Overlay of human telomeric crystal structure (PDB: 4FXM, grey, 

ligand not shown) with strand A (orange) of the c-MYC promoter crystal structure (B).   

 

Several crystal structures of the fully parallel quadruplex formed by the human 

telomeric repeat sequence in complex with a small molecule ligand have been reported, 

including an example of the intramolecular arrangement at 1.65 Å (Figure 2.8B, PDB: 

4FXM) (Nicoludis et al. 2012).  The telomeric quadruplex forms a dimer with both strands 

reported as identical in the asymmetric unit.  The telomeric structure is remarkably similar 

to the Pu22 c-MYC quadruplex with the exception of the loop regions.  In the c-MYC 

structure, these loops are formed by one or two nucleotides, whereas the telomeric 

structure contains loops made of three nucleotides each.  However, even with this 

difference in loop region length, the c-MYC quadruplex can be superimposed on the 
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telomeric quadruplex with an RMSD of only 2.78 Å (Table 2.2, PDB: 4FXM).  Interestingly, 

the Watson-Crick packing interaction seen with the T20-A21-A22 tail of two c-MYC 

quadruplexes is also observed in the crystal structure of the telomeric quadruplex, but 

between two loop regions containing residues T11-A13 and A1, suggesting that a 3’-

terminal TAA sequence may be useful for crystallization of other quadruplexes (Nicoludis 

et al. 2012). 

During preparation of this manuscript, a 3.8 Å structure was reported of a 

sequence modified c-MYC promoter quadruplex in complex with the DEAH/RNA helicase 

DHX36 (Chen et al. 2018).  In the reported complex structure, it is suggested quadruplex 

destabilization by the helicase results in a one-residue shift of the nucleotides involved in 

formation of the three G-quartets, causing the quartet nearest to the 5’-head region to be 

reformed by G4, G8, A12, and T16.  This finding is noteworthy, however, due to the low-

resolution of the structure and rearrangement observed in the presence of the helicase, 

it did not appear relevant for comparison with our crystal structure. 

Discussion 

In this manuscript we report a high-resolution crystal structure of the major 

quadruplex formed in the promoter region of the human c-MYC oncogene.  The overall 

topology is in general agreement with the previously published solution NMR structures, 

with the major differences occurring predominately in the head and tail regions of the 

sequence and not in the central G-quartet structure (Ambrus et al. 2005; Dai et al. 2011).  

This is important as it strengthens the validity of previous and ongoing computational and 

synthetic studies that have used the NMR solution structures as a guide. 
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The more exposed G-quartets observed in the crystal structure, in comparison to 

those reported using solution NMR, confirm both the flexibility of the head and tail regions 

of the promoter sequence and the rigid nature of the G-quartets in this quadruplex.  This 

could be biologically relevant as the flanking regions would not be terminal residues in 

genomic DNA and are likely able to project away from the G-quartets as is observed in 

the crystal structure (Figure 2.2).  This will be important in future studies with the goal of 

developing small molecule ligands to bind the c-MYC quadruplex.  For example, in the 

solution NMR study of a small molecule interaction with the c-MYC promoter quadruplex, 

it was observed that part of the ligand binding pocket involved nucleotides in the 5’-head 

(A3) and 3’-tail regions (T20, A21) (PDB: 2L7V, (Dai et al. 2011)).  It is possible, as 

suggested by the c-MYC quadruplex crystal structure, that these residues are not in close 

proximity to provide such interactions in the biological setting as illustrated schematically 

in Figure 2.1.  In this scenario, the reported “induced fit” mode of ligand binding would 

require major structural rearrangement and be less energetically favorable.  Therefore, 

an alternative strategy would be to design ligands with a binding mode that takes 

advantage of the more linearized conformation of the head and tail regions, potentially 

affording tighter binding and selectivity for the c-MYC quadruplex.  This alternative binding 

hypothesis will be a crucial consideration in the future design of c-MYC quadruplex-

targeted small molecule ligands. 

The packing interactions observed in the crystal highlight the importance of the 

loop, head and tail regions of the sequence to allow for crystal formation and will be 

generally helpful in optimizing quadruplex sequences for crystallization.  The Watson-

Crick bonding observed at the 3’-tail of the Pu22 sequence also suggests a preference 
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for nucleotides not involved in the G-quartet core region to follow the normal B-DNA base 

pairing paradigm even in very close proximity to the G-quartets. However, there is 

previous evidence that these flanking regions may remain single-stranded under 

conditions of negative supercoiling (Sun and Hurley 2009). 

Comparison of the c-MYC quadruplex crystal structure to the c-KIT quadruplex and 

the human telomeric quadruplex show the majority of differences occur in the head, tail 

and loop regions.  Differences in the length of loop regions and position of the loop 

nucleotides will provide useful tools for designing ligands that would be selective for 

specific quadruplex structures as has been suggested previously (Neidle 2017; Hu et al. 

2018).  Overall, this work has provided the basis for ongoing co-crystallization studies 

with the Pu22 c-MYC promoter quadruplex and our set of novel quadruplex ligands, the 

anthracenyl isoxazole amides (AIMs) (Han et al. 2009; Weaver et al. 2015).  These 

findings will also be of benefit to other researchers in their efforts to target the c-MYC 

promoter and other therapeutically relevant quadruplex targets. 

Accession number 

Atomic coordinates and structure factors for the reported crystal structures have been 

deposited with the Protein Data bank under accession number 6AU4. 
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Figure S.2.1 G-quartet potassium ions 

Example of square antiprismatic coordinated potassium ions central to two stacked G-

quartets in the crystal structure  
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Abstract 

 The anthracenyl isoxazole amides (AIMs) are a novel class of compounds 

previously demonstrated to have significant antitumor activity.  The AIMs interact with 

quadruplex DNA structures and are being investigated as quadruplex-ligands designed 

to treat human cancers.  Previous studies have examined the interaction of the AIMs 

with quadruplex DNA using methods including fluorescence spectroscopy, mass 

spectrometry, and computational modeling.  In this work we provide evidence of the 

interaction of the AIMs with quadruplex-forming DNA sequences found in the human c-

MYC promoter region and in human telomeres.  The interaction of the AIMs with 

quadruplex DNA and the consequent increase in the stability of these structures is 

examined through circular dichroism thermal melting studies and by 1H NMR. 

 

Introduction 

Anthracenyl Isoxazole Amides (AIMs) 

 The class of compounds known as the anthracenyl isoxazole amides (AIMs) are 

synthesized in the Natale laboratory at the University of Montana.  The AIMs have 

previously been submitted to the National Cancer Institute 60 cell line panel (NCI60) 

and demonstrated significant activity in multiple cancer cell lines.  A subsequent 

COMPARE analysis of the NCI60 revealed that the AIMs mechanism of action did not 

correlate significantly with any known agents in the database (Han et al. 2009).  

Additional studies showed the compounds had a preference toward quadruplex DNA 

structures relative to the B-form found in duplex DNA.  Computational modeling has 

also been previously performed to develop a potential structure activity relationship for 
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the AIMs with quadruplex sequences found in human telomeres and in oncogene 

promoters.  This led to design of the current generation of AIM compounds by the 

Natale laboratory. The general structure of the AIMs consists of a hydrophobic 

anthracene region connected through an isoxazole-pyrrole scaffold to two alkyl amine 

tails, with a variable substitution at the 10-position of the anthracene (Figure 2.9).  This 

includes a variety of double-tail AIM analogs, including the 10-Chloro and 10-Phenyl 

AIMs, which have been reported to have low- and sub-micromolar antitumor activity in 

SNB-19 glioblastoma cells (Han et al. 2009; Weaver et al. 2015). 

 

Figure 2.9 Structure of the anthracenyl isoxazole amides (AIMs) 

Structure of the anthracenyl isoxazole amides (AIMs) demonstrating the double-tail 

tertiary alkyl amines, isoxazole pyrrole scaffold, and the hydrophobic anthracene region 

with variable substitutions at the 10-position. 

 

In this work, we demonstrate the interactions of the 10-Chloro and 10-Phenyl 

AIMs with quadruplex DNA structures using circular dichroism (CD) and NMR 

spectroscopy.  Thermal melting curves were measured in the presence of the AIMs to 

determine their effect on the stability of various quadruplex sequences and topologies.  



 70 

In addition, 1H NMR spectra were acquired to examine interactions of quadruplexes with 

the AIMs through chemical shift measurements of readily identifiable peaks in the imino 

region of the spectra that are observed for quadruplex structures. 

Methods 

Circular Dichroism 

Oligonucleotide Sequences 

Pu22: 5’-TGAGGGTGGGTAGGGTGGGTAA-3’ 

HTelo: 5’-TTAGGGTTAGGGTTAGGGTTAGGG-3’ 

mt9438: 5’-GGCGTAGGTTTGGTCTAGGG-3’ 

CSB II: 5’-AAGGGGGAGGGGGGGTTTrGrGrGrArA-3’ (r prefix means RNA base) 

 

c-MYC Promoter Sequence & Human Telomeric Sequence (Pu22 & HTelo) 

Oligonucleotides were added to pH 6 10 mM potassium phosphate buffer to make 

a 1 mM DNA stock solutions. Samples were made using previously made 5 mM stock 

solutions of AIM compounds in DMSO. Three independent samples were made at 5 µM 

strand concentration in pH 6 10 mM potassium phosphate buffer for the oligonucleotide 

strands alone and oligonucleotides plus 2 equiv. compounds. Samples were annealed by 

heating to 90 °C for 10 minutes and then gradually cooling to 4 °C overnight prior to data 

collection. 

CD spectra and thermal melting curves were acquired using an Applied 

Photophysics Chirascan CD Spectrophotometer. CD spectra were gathered from 200 nm 

– 400 nm with a 1 nm bandwidth and 0.2 nm step-size at 5 °C and 0.5 seconds time-per-

point. CD thermal melting curves were gathered at 295 nm (HTelo) or 265 nm (Pu22) 
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from 10 °C – 90 °C at a rate of 1 °C/min in 0.5 °C steps. The CD thermal melting curves 

were acquired at 24 seconds time-per-point with 1 nm bandwidth. 

 

Mitochondrial COX I Sequence (mt9438) 

Samples were made using previously made 5 mM stock solutions of AIM 

compounds in DMSO. Three independent samples were made at 4 µM strand 

concentration in 20 mM potassium phosphate buffer for the oligonucleotide alone or with 

4 equiv. of the AIM compounds. Samples were annealed by heating to 90 °C for 10 

minutes and then gradually cooling to 4 °C overnight prior to data collection. 

CD spectra and thermal melting curves were acquired using a Jasco J-810 

spectropolarimeter. CD spectra were gathered from 220 nm – 350 nm.  CD thermal 

melting curves were gathered at 290 nm 10 °C – 60 °C at a rate of 1 °C/min in 0.1 °C 

steps. 

 

Mitochondrial CSB II Sequence (CSB II) 

Samples were made at 2 µM strand concentration in 10 mM potassium phosphate 

buffer at the desired pH for the oligonucleotide alone or with 1 equiv. of the AIM 

compound. Samples were annealed by heating to 90 °C for 10 minutes and then gradually 

cooling to 4 °C overnight prior to data collection. 

CD spectra and thermal melting curves were acquired using a Jasco J-810 

spectropolarimeter. CD spectra were gathered from 200 nm – 400 nm.  CD thermal 

melting curves at pH 6 were gathered at 265 nm 60 °C – 90 °C at a rate of 1 °C/min in 

0.5 °C steps.  CD thermal melts of pH 4, 8, 9 were gathered at varying temperature ranges 
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due to intermittent issues with the temperature controller, however all covered the range 

of interest, determined to be 50 °C – 80 °C. 

 

Data Analysis 

Following data collection, thermal melting curves were fit to a six-parameter logistic 

curve using the qpcR package for the R statistical computing software environment (R 

Core Team, 2014; Spiess, 2014).  The six-parameter logistic fit was chosen to minimize 

the number fitting parameters while maximizing goodness-of-fit using criteria such as AIC, 

BIC and R2. Thermal melting values (Tm) for each condition were assigned by computing 

the minimum value of the first derivative of the fitted curve for each sample. A statistical 

analysis between the sample groups was then conducted where appropriate using the 

ANOVA method in R and additionally a post-hoc Tukey’s range test. 

 

NMR Spectroscopy 

 The Pu22 sample was made at a concentration of 1 mM oligonucleotide in 10 

mM potassium phosphate buffer at pH 6 in H2O containing 10% D2O.  The HTelo 

sample was made at a concentration of 2.5 mM oligonucleotide in 100 mM potassium 

phosphate buffer at pH 6 in H2O containing 10% D2O.  Spectra were taken using water 

suppression techniques on a 500 MHz Varian NMR as described previously (Weaver et 

al. 2015). 
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Results 

Circular Dichroism Spectroscopy 

 In these studies, we examined the interaction of the AIMs with multiple quadruplex-

forming DNA sequences using circular dichroism spectroscopy (CD).  First, we collected 

a CD spectra of the quadruplex formed in the c-MYC promoter using the Pu22 

oligonucleotide sequence with and without two equivalents of the 10-Chloro or 10-Phenyl 

substituted AIMs in solution.  The CD spectra of the Pu22 oligonucleotide confirmed the 

presence of a fully parallel quadruplex topology, demonstrated by the characteristic peaks 

at approximately +265 nm and -240 nm.  The obtained spectra also display a 

hypsochromic shift in the presence of the AIMs (Figure 2.10).  To determine if interaction 

of the AIMs would affect the stability of the quadruplex structure, we performed thermal 

melting studies near the CD signal maxima (265 nm).  The presence of both the 10-Chloro 

and 10-Phenyl AIMs created a noticeable right shift of the thermal melting curves (Figure 

2.11).  Next, we calculated the melting temperature (Tm) of the curves as defined by 

maximum slope of the curve.  This revealed that the presence of the 10-Chloro and the 

10-Phenyl AIMs in solution caused a statistically significant increase in the Tm for the 

quadruplex structure formed by Pu22 of 3.2° C and 2.1 C°, respectively (Figure 2.12).  
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Figure 2.10 Circular dichroism spectra of Pu22 oligonucleotide 

Circular dichroism spectra of Pu22 oligonucleotide with and without two equivalents of 

AIM compounds in solution. Pu22 only (blue), 10-Chloro (orange), and 10-Phenyl (grey). 
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Figure 2.11 Thermal melting curves of the Pu22 oligonucleotide 

Circular dichroism thermal melting curves of the Pu22 oligonucleotide taken at 265 nm 

with and without two equivalents of AIM compounds in solution.  Pu22 only (blue), 10-

Chloro (orange), and 10-Phenyl (grey). 
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Figure 2.12 Statistical analysis of Pu22 thermal melting 

Tm change induced by two equivalents of both the 10-Chloro AIM (P = 0.00008) and 10-

Phenyl AIM (P = 0.0008) compared to Pu22 alone (ANOVA P = 9.5E-05).  Post-hoc 

testing also reveals a difference between Tm 10-Chloro AIM and 10-Phenyl AIM at two 

equivalents (P = 0.02).  Error bars represent 95% confidence intervals for three 

independent samples (n=3).  Tukey’s post-hoc test used for comparisons between 

groups.  Symbols represent significance levels (P < 0.05 *, P < 0.01 **, P < 0.001 ***). 
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Next, we repeated the above series of studies using the same conditions with the 

sequence known to form quadruplex structures in human telomeres (HTelo).  The HTelo 

oligonucleotide displayed peaks at +295 nm and -240 nm with a shoulder at 

approximately +270 nm, consistent with the expected mixed 3+1 quadruplex topology.  

The 10-Chloro and 10-Phenyl AIMs both cause a similar hypsochromic shift as previously 

observed for the Pu22 sequence (Figure 2.13) (Weaver et al. 2015).  Additionally, the 

shoulder region observed in the spectra of HTelo alone at approximately 270 nm 

appeared to shift left in the presence of the 10-Phenyl AIM.  Thermal melting experiments 

with the HTelo sequence also demonstrated a right-ward shift in the presence of both 

AIMs (Figure 2.14).  Analysis of the melting curves indicated the presence of the 10-

Chloro and 10-Phenyl AIMs increased the Tm of the quadruplex formed by the HTelo 

sequence by 3.3° C for both compounds (Figure 2.15) (Weaver et al. 2015). 
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Figure 2.13 Circular dichroism spectra of HTelo oligonucleotide 

Circular dichroism spectra of HTelo oligonucleotide with and without two equivalents of 

AIM compounds in solution. HTelo only (green), 10-Chloro (orange), and 10-Phenyl 

(grey). (Weaver et al. 2015) 
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Figure 2.14 Thermal melting curves of the HTelo oligonucleotide 

Circular dichroism thermal melting curves of the HTelo oligonucleotide taken at 295 nm 

with and without two equivalents of AIM compounds in solution.  HTelo only (green), 10-

Chloro (orange), and 10-Phenyl (grey). (Weaver et al. 2015) 
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Figure 2.15 Statistical analysis of HTelo thermal melting 

Tm change induced by two equivalents of both the 10-Chloro AIM (P = 0.002) and 10-

Phenyl AIM (P = 0.002) compared to HTelo alone (ANOVA P = 0.0009).  Error bars 

represent 95% confidence intervals for three independent samples (n=3).  Tukey’s post-

hoc test used for comparisons between groups.  Symbols represent significance levels 

(P < 0.05 *, P < 0.01 **, P < 0.001 ***). (Weaver et al. 2015) 
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We then similarly measured the effect of the AIMs on two sequences that form 

quadruplex structures in mitochondrial DNA (mt9438 & CSB II).  The mt9438 

oligonucleotide displays peaks characteristic of a fully anti-parallel quadruplex (+290 

nm, -260 nm).  The 10-Phenyl AIM did not create a significant shift in the spectra even 

at four equivalents of compound in solution (Figure 2.16).  No right-ward shift was 

observed in the thermal melting curves measured in the presence of either of the 10-

Chloro or 10-Phenyl AIM (Figure 2.17).  This was verified by comparison of the Tm 

calculated for each curve, which demonstrated there was no statistically significant 

change observed in the presence of the AIMs (Figure 2.18). 

The CSB II oligonucleotide displayed peaks at +265 nm and -240 nm, indicating 

a fully parallel quadruplex topology.  A hypsochromic shift was observed for the CSB II 

spectra in the presence of one equivalent of the 10-Phenyl AIM (Figure 2.19).  

However, we were unable to calculate a Tm for this sequence to determine the effect of 

the AIMs, as the CSB II sequence is remarkably stable and could not be unfolded even 

at 90° C (Figure 2.20).  Due to this finding, we also performed pH titrations and found 

the CSB II quadruplex is able to form in solutions with a wide-range of pH’s from 4 – 9 

(Figure 2.21).  Additional melting studies with the CSB II quadruplex in pH 4 – 9 

solutions confirmed its resistance to temperature melting even under these variable 

conditions (Figure 2.22). 
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Figure 2.16 Circular dichroism spectra of mt9438 oligonucleotide 

Circular Dichroism spectra of mt9438 oligonucleotide with and without four equivalents of 

AIM compounds in solution. mt9438 only (dark blue) and 10-Phenyl (grey). 
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Figure 2.17 Thermal melting curves of the mt9438 oligonucleotide 

Circular dichroism thermal melting curves of the mt9438 oligonucleotide taken at 290 nm 

with and without four equivalents of AIM compounds in solution.  mt9438 only (blue), 10-

Chloro (orange), and 10-Phenyl (grey). 
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Figure 2.18 Statistical analysis of mt9438 thermal melting 

No significant change in Tm was observed with four equivalents the 10-Chloro AIM and 

10-Phenyl AIM compared to mt9438 alone.  Error bars represent 95% confidence 

intervals for three independent samples (n=3).   
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Figure 2.19 Circular dichroism spectra of CSB II oligonucleotide 

Circular Dichroism spectra of CSB II oligonucleotide with and without one equivalent of 

10-Phenyl AIM in solution. CSB II only (yellow) and 10-Phenyl (grey). 
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Figure 2.20 Thermal melting curves of the CSB II oligonucleotide 

Thermal melting curves of the CSB II oligonucleotide at 265 nm with and without one 

equivalent of 10-Phenyl AIM.  CSB II only (yellow) and 10-Phenyl (grey). 
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Figure 2.21 Circular dichroism spectra of CSB II oligonucleotide in varying pH solutions 
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Figure 2.22 Thermal melting curves of the CSB II oligonucleotide in varying pH 
solutions  
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NMR Spectroscopy 

The authors would like to acknowledge Matthew J. Weaver of the Natale laboratory, and 

Dr. Earle Adams at the University of Montana for their contributions to these experiments. 

 We examined interactions of the AIMs with quadruplex DNA using nuclear 

magnetic resonance spectroscopy (NMR).  The 1H NMR spectra for the Pu22 

oligonucleotide displayed shifts in the anisotropy observed for protons in the key imino 

region in the presence of two equivalents of the 10-Phenyl AIM (Figure 2.23).  The peaks 

for the Pu22 sequence have been previously assigned, and this will allow for insight into 

the precise interactions between the AIMs and the c-MYC promoter quadruplex.  This 

analysis is currently being performed by the Natale laboratory and will be reported on in 

a subsequent publication. 

Shifts in the imino region were also observed for the HTelo oligonucleotide at two 

equivalents of the 10-Chloro AIM in solution (Figure 2.24) (Weaver et al. 2015).  The 

peaks for this sequence are less well-defined, owing to the existence of an equilibrium of 

folded and unfolded states as reported previously (Luu et al. 2006).   
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Figure 2.23 NMR spectra of the Pu22 oligonucleotide 

Comparison of the imino proton region of the 1H NMR spectra for the quadruplex formed 

by the human c-MYC promoter sequence (Pu22) in the presence and absence of two 

equivalents of the 10-Phenyl AIM.  Chemical shifts in ppm.  Pu22 alone (blue), 10-Phenyl 

AIM (green). 
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Figure 2.24 NMR spectra of the HTelo oligonucleotide 

Comparison of the imino proton region of the 1H NMR spectra for the quadruplex formed 

by the human telomeric (HTelo) sequence in the presence and absence two equivalents 

of the 10-Chloro AIM.  Chemical shifts in ppm.  HTelo alone (blue), 10-Chloro AIM (green). 

(Weaver et al. 2015) 
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Discussion 

In this study we demonstrated that the AIMs stabilize multiple quadruplex DNA 

structures in solution using both NMR and CD.  The hypsochromic shifts observed in 

spectra the Pu22, HTelo, and CSB II sequences in the presence of the AIMs is similar to 

that observed for other quadruplex binding ligands (Zhou et al. 2005; Freyer et al. 2007; 

Paramasivan, Rujan, and Bolton 2007) (Figures 2.10, 2.13, and 2.19).  In addition, the 

10-Chloro and 10-Phenyl AIMs were shown to stabilize the quadruplex structure formed 

by both the Pu22 and HTelo sequences as demonstrated by increases in the Tm of the 

structures measured by CD spectroscopy (Figures 2.12 and 2.15).  The Pu22 and HTelo 

quadruplexes are examples of mixed 3+1 and parallel topologies, respectively.  In 

contrast, no significant change in melting temperature was observed for the anti-parallel 

quadruplex formed by the mt9438 sequence found in mitochondrial DNA (Figure 2.18).  

This suggests the AIMs could have selectivity between distinct quadruplex topologies and 

their binding could be affected by the type of loops present in the specific quadruplex 

structure.  This is an important finding as the field has expressed both curiosity and 

skepticism regarding the possibility of selectively targeting specific quadruplex sequences 

or topologies (Burge et al. 2006; Neidle 2017).  The high melting point of the CSB II 

DNA:RNA hybrid quadruplex structure did not allow for characterizing the effect of the 

AIMs on its stability.  However, it was shown that the hybrid quadruplex is remarkably 

resistant to changes in temperature and pH, and it was confirmed that the chimeric 

sequence did form a parallel quadruplex as expected.  The stability of the CSB II 

quadruplex is likely due to the incorporation of the RNA nucleotides, as recent reports 

indicate RNA quadruplexes are generally more stable than their DNA counterparts (Fay, 
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Lyons, and Ivanov 2017).  This is consistent with previous studies that suggest a helicase 

is involved in resolution of the CSB II hybrid quadruplex in cells, as the structure is unlikely 

to spontaneously resolve under physiological conditions (Wanrooij et al. 2012).  Our 

studies using solution 1H NMR also demonstrated the interaction of the AIMs for both the 

Pu22 and HTelo oligonucleotides as indicated by shifts in the peaks observed for the 

imino region of the spectra.   

Overall, this work will significantly contribute to the continued development of the 

AIMs as quadruplex-targeted ligands.  The CD experiments provide the basis for 

efficiently screening future generations of AIM compounds with various quadruplex-

forming sequences.  Additional analysis of the NMR experiments is underway by the 

Natale laboratory and should reveal insights about the precise interactions between the 

AIMs and quadruplex DNA. 
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Abstract 

 Mitochondria are regulators of many important processes in cells including 

metabolism and apoptosis.  Targeting mitochondria to induce the intrinsic pathway of 

apoptosis is being examined in the field of anticancer drug design as a way to kill tumor 

cells for treatment of cancer.  One strategy involves inhibition of the electron transfer 

chain (ETC) of mitochondria causing loss of the mitochondrial membrane potential  

(ΔΨm) and leading to apoptosis in tumor cells.  In this study we provide evidence for a 

mitochondrial mechanism of action for a novel set of antitumor compounds, the 

anthracenyl isoxazole amides (AIMs), mediated by their inhibition of the ETC.  We first 

demonstrate that the AIMs can inhibit ETC protein complexes, specifically Complex II, 

using spectrophotometric assays and provide an initial binding hypothesis for the 

interaction of the AIMs with Complex II using computational molecular docking.  We 

also show that treatment with the AIMs leads to rapid damage in mitochondrial DNA 

(mtDNA) and an associated reduction in mtDNA copy number.  Further, we confirm a 

dose-dependent loss of the ΔΨm and induction of the intrinsic pathway of apoptosis in 

glioblastoma cells following treatment with the AIMs. 

 
Introduction 

 Mitochondria are crucial regulators of many homeostatic processes in cells and 

are responsible for both energy metabolism and as gatekeepers to the intrinsic pathway 

of apoptosis.  Targeting mitochondria to induce apoptosis in tumor cells has been the 

focus of many researchers with the goal of developing new anticancer therapeutics 

(Fulda, Galluzzi, and Kroemer 2010).  Multiple agents that act on the mitochondria have 

been demonstrated to have selective toxicity to tumor cells (Neuzil et al. 2013). 
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Targeting mitochondria could be especially advantageous when developing 

therapeutics as they are present throughout all types of human cancers; therefore a 

mitochondrial-targeted agent could be more universally applicable in contrast to 

targeting a mutation or gene expression pattern specific to only a smaller subset of 

cancers (Neuzil et al. 2013).  

One strategy employed to target mitochondria is perturbation of the electron 

transport chain (ETC).  The ETC refers to five protein complexes (Complex I – V) that 

are located in the inner mitochondrial membrane and responsible for the generation of 

cellular ATP through oxidative phosphorylation.  Complex I (NADH ubiquinone 

oxidoreductase) converts ubiquinone to ubiquinol using NADH to pass electrons to 

Complex III.  Similarly, Complex II passes electrons to Complex III through reduction of 

ubiquinone to ubiquinol coupled with oxidation of succinate to fumarate.  Due to the high 

electron flow through Complexes I, II, and III, all of these represent sites of significant 

reactive oxygen species (ROS) production as superoxide and hydrogen peroxide (Liu, 

Fiskum, and Schubert 2002; St-Pierre et al. 2002; Indo et al. 2007; West, Shadel, and 

Ghosh 2011).  Complex IV and V are not major contributors to the production of ROS, 

however they have also been explored as potential mitochondrial targets of antitumor 

agents (Lee, Bender, and Kadenbach 2002; Fu et al. 2015).   

Complex II has several known inhibitors, and they fit into two groups, those that 

bind at one of two ubiquinone sites (Up and Ud) or those that bind at the succinate site.  

Some examples of known ubiquinone site inhibitors include thenoyltrifluoroacetone 

(TTFA), Atpenin 5 (AA5), and carboxin (Miyadera et al. 2003).  Ubiquinone is held in the 

binding pocket through a hydrogen bonding interaction with residue Tyr-D83.  As the 
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reaction proceeds, hydrogen bonds are formed between His-B207 and Ser-C27, 

ubiquinone is then reduced to ubiquinol and leaves the binding pocket (Sun et al. 2005).  

It is thought that the His-207B allows flow of electrons from the 3Fe-4S iron-sulfur 

cluster in Complex II (Horsefield et al. 2006).  Inhibitors of Complex II at the ubiquinone 

site can take the place of ubiquinone in the binding pocket, preventing reduction of 

ubiquinone (Sun et al. 2005).  The result of this is an increase in ROS, partially due to 

leak of electrons in the mitochondrial matrix and loss of succinate to fumarate 

conversion.  It has also been suggested that Complex II inhibition can cause an 

increase in ROS generation by Complex I through a reverse electron flow mechanism.  

The evidence for this is a reduction in the amount of ROS produced by Complex II 

inhibition in the presence of rotenone, a potent inhibitor of Complex I (Ralph et al. 

2011).  The increase in ROS has been demonstrated to induce apoptosis in multiple 

types of tumor cells (L.-F. Dong et al. 2008; Byun et al. 2008; Ralph et al. 2011; Wang 

et al. 2016).  Inhibition of Complex II specifically, using the known ubiquinone site 

inhibitor TTFA, has been shown to delay cell cycle progression by prolonging G1, S and 

G2/M phases, as well as causing oxidation of glutathione (Byun et al. 2008).  Another 

set of studies with TTFA demonstrated an increase in autophagy in cancer and 

transformed cells following treatment, and this was mediated through ROS (Chen et al. 

2007).  The vitamin E analog a-Tocopheryl succinate (a-TOS) is yet another example of 

a Complex II inhibitor that disrupts ubiquinone binding, generating superoxide and 

ultimately causing apoptosis in tumor cells (Sun et al. 2005; L.-F. Dong et al. 2008).  In 

the case of a-TOS and a targeted derivative “MitoVES”, this toxicity has been shown to 

be selective for tumor cells relative to normal endothelial cells and to inhibit tumor 
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angiogenesis in vivo in mice (L.-F. Dong et al. 2008).  The ROS generated by Complex 

II inhibition is exacerbated by damage to mtDNA, and increased mitochondrial ROS can 

cause damage to mtDNA and ETC proteins (Indo et al. 2007; Byun et al. 2008; 

Alexeyev et al. 2013).  Additionally, mtDNA depleted transformed endothelial cells were 

shown to be resistant to apoptosis induced by a-TOS, suggesting mtDNA damage may 

mediate induction of apoptosis following inhibition of Complex II (Lan-Feng Dong et al. 

2007).  Together, these studies highlight the importance of exploring Complex II as a 

potential target for development of selective antitumor agents. 

The anthracenyl isoxazole amides (AIMs) are a class of compounds synthesized 

in the laboratory of Nicholas Natale at the University of Montana.  The AIMs structure 

consists of three major regions, the alkyl amine tails, the isoxazole pyrrole scaffold and 

the anthracene ring system.  The compounds explored in this work also contain a 

variable substitution at the 10-position of the anthracene (Figure 3.1).  Substitutions of 

electron-rich moieties at the 10-position have been demonstrated to improve the 

antitumor cell efficacy of these compounds (Weaver et al. 2015). 
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Figure 3.1 Structure of the anthracenyl isoxazole amides (AIMs) 

Structure of the anthracenyl isoxazole amides (AIMs) demonstrating the double-tail 

tertiary alkyl amines, isoxazole pyrrole scaffold, and the hydrophobic anthracene region 

with variable substitutions at the 10-position. 

 

The generation of compounds that are the focus of this work are referred to as 

the “double-tails”, referencing the addition of the two alkyl amine chains which has 

improved the pharmacokinetic properties and toxicity of these molecules over previous 

generations (Han et al. 2009; Weaver et al. 2015).  The AIMs have previously 

demonstrated significant antitumor activity in a National Cancer Institute 60 human 

cancer cell line panel (NCI60) and sub-micromolar efficacy in human glioblastoma cells, 

specifically (Gajewski et al. 2009; Han et al. 2009; Weaver et al. 2015).  The 

mechanism underlying the activity of the AIMs against these cancer lines could not be 

determined by an NCI60 COMPARE analysis as they did not correlate significantly with 

any agents of known mechanism of action.  The AIMs have also previously been 

studied as ligands for quadruplex DNA, as our laboratory has demonstrated the 

interaction with these secondary structures (Han et al. 2009; Weaver et al. 2015).  The 
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focus of this work is to characterize a mitochondrial mechanism of action for the AIMs 

that contributes to their antitumor activity in glioblastoma cells. 

Dr. Alison K. Kearns of the Beall laboratory first demonstrated the possibility of a 

mitochondrial modulated mechanism of apoptosis induced by the AIMs in glioblastoma 

cells (Kearns 2013).  This included the observation that AIMs appeared to localize to 

mitochondria of cells and that treatment with AIMs caused a subsequent increase in 

mitochondrial ROS (Kearns 2013).  Initially, our cell viability studies with the AIMs relied 

on using MTT reduction as an indicator of AIM cytotoxicity, however MTT results can 

depend partially on involvement of mitochondrial reductases (Mosmann 1983; Berridge, 

Herst, and Tan 2005; Fedotcheva et al. 2017; Rai et al. 2018).  Careful examination of 

our previous data and the methods used led us to the hypothesis that the AIMs may be 

acting through interactions with the electron transport chain or mitochondrial DNA. 

To explore this further, this work evaluated the two most potent AIM compounds, 

the 10-Biphenoxy and 10-Phenyl analogs, in an effort to determine the mechanism 

underlying their effect on mitochondria in cells.  We also performed confocal imaging 

experiments with glioblastoma cells treated with AIMs and a mitochondrial-specific 

fluorescent dye to confirm localization of the AIMs to mitochondria.  Next, we employed 

a lactate dehydrogenase (LDH) activity assay as a measure of cell viability that is not 

dependent on mitochondrial reductases. 

Comparison of the LDH results with our MTT data led us to consider the AIMs 

could be inhibiting activity of mitochondrial reductases and as a result display lower 

measured toxicity in the LDH assay.  To test this hypothesis, we employ activity assays 

of several ETC protein complexes to measure the inhibitory activity of the AIMs.  For 
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this purpose, we utilize several commercially available kits to measure the inhibitory 

effect of the AIMs on ETC complexes isolated using specific antibodies (complexes I, II 

and IV) and in intact mitochondria (complexes II + III) as described previously (Lai et al. 

2013).  Additionally, we perform molecular docking calculations to explore the potential 

of the AIMs as ubiquinone site inhibitors at Complex II.  We also examine whether 

treatment with the AIMs increased mtDNA damage and reduced copy number as would 

be expected to occur alongside an increase in mitochondrial ROS due to inhibition of 

ETC complexes (Yakes and Van Houten 1997; Indo et al. 2007; Phillips, Sprouse, and 

Roby 2014).  For this purpose, we use a previously reported method to accurately 

measure changes in mtDNA damage and copy number (Chan and Chen 2009; Chan et 

al. 2012).  Analysis of glioblastoma cells treated with AIMs by flow cytometry allows for 

measurement of the expected downstream effects of inhibition of ETC activity.  With this 

method we measured changes in ΔΨm using the mitochondrial redox sensor JC-1.  Our 

analysis using JC-1 includes both the classic approach and an alternative approach that 

utilizes an alternative excitation at 405 nm to better distinguish JC-1 aggregates from 

monomers (Perelman et al. 2012).  With this method, we were able to define 

populations of “hyperpolarized” mitochondria, which we defined as cells with greater 

mitochondrial update of the JC-1 dye due to increased ΔΨm (Giovannini et al. 2002; 

Perelman et al. 2012).  We also measured activation of caspase-9 and caspase- 3/7 as 

indicators of activation of the intrinsic apoptotic pathway.  Finally, we demonstrate 

induction of apoptosis in the glioblastoma cells using Annexin-V and propidium iodide. 
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Methods 

Cell Culture 

SNB-19 Human Glioblastoma 

SNB-19 (American Type Cell Culture Cat No. CRL-2266) were grown in RPMI-

1640 medium with 10% FBS, 2 mM L-Glutamine, and Penicillin Streptomycin added.  

Cells were grown under optimal growth conditions (37° C, 5% CO2, humidified 

atmosphere) to approximately 90% confluence before use in experiments. 

 

C6 Rat Glioma 

C6 rat glioma cells were obtained as a gift from the Patel laboratory at the 

University of Montana.  The cells were grown in RPMI-1640 medium with 10% FBS, 2 

mM L-Glutamine, and Penicillin Streptomycin added.  Cells were grown under optimal 

growth conditions (37° C, 5% CO2, humidified atmosphere) to approximately 90% 

confluence before use in experiments. 

 

E-18 Primary Rat Astrocytes 

Primary E-18 astrocytes taken from the hippocampus and cortex of Sprague-

Dawley rats were given to us by the Jackson Laboratory at the University of Montana.  

The cells were grown in BrainBitsâ NbASTROâ medium under optimal growth 

conditions (37° C, 5% CO2, humidified atmosphere) prior to use. 
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MTT Cell Viability Assay 

Cells were washed with PBS (2 mL) and then treated with Trypsin EDTA (2 mL) 

to detach cells from culture flask prior to counting with a Coulter counter.  Cells were 

diluted to 10,000 cells / mL and plated on a 96-well plate with 100 µL per well (1000 

cells / well).  Cells were grown in optimal growth conditions and allowed to adhere 

overnight. Treatment solutions were prepared in growth medium at varying 

concentrations using a 5 mM compound stock solution prepared previously in sterile 

DMSO.  Medium was removed from the 96-well plate via aspiration and treatment 

solutions were added as outlined (Table 3.1).  Cells were grown in treatment medium 

for 24 hours and then treatment medium was removed via aspiration and 100 µL of 

untreated growth medium was added to each well.  Cells were then allowed to grow for 

a four-day growth period.  Following the growth period, 50 µL of MTT solution (1 mg/mL 

in growth medium) was added to each well and the 96-well plate was placed on a plate 

shaker for 5 minutes to mix.  The plate was then incubated at growth conditions for 4 

hours before removing medium/MTT solution from the wells carefully via aspiration to 

avoid disturbing the formazan crystals.  One hundred µL of DMSO was then added to 

each well and the plate was placed on a plate shaker for 5 minutes to dissolve the 

crystals.  A SpectraMax 190 plate reader was used to measure the absorbance of the 

wells at 562 nm. 

Table 3.1 Example 96-well plate layout for MTT assay 

Column: #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 

Treatment: 
No 

Cells 

DMSO 

Control 
5 nM 

 

10 nM 

 

25 nM 50 nM 100 nM 250 nM 500 nM 1 µM 2.5 µM 5 µM 
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Data Analysis 

IC50 values were calculated using the ‘R’ statistical computing software and the 

‘ic50’ package (R Core Team, 2014; Frommolt, 2010).  This package fits a logistic 

model to the dose-response data collected using the MTT assay and approximates the 

concentration of the compound required to inhibit the growth of the cells by 50% versus 

the DMSO control (IC50). 

 

LDH Cell Viability Assay 

LDH cytotoxicity assays were performed using a commercially available kit 

(PierceÔ LDH Cytotoxicity Kit #88953).  The assays were carried out according to the 

manufacturer protocol.  Cells were plated in sterile 96-well plates at approximately 

7,500 cells / well in 100 µL medium (RPMI-1640 with 10% FBS, L-Glutamine, and 

Penicillin-Streptomycin added for SNB-19 & C6 cells; BrainBitsâ NbASTROâ for 

primary rat astrocytes).  Cells were incubated overnight at optimal growth conditions to 

allow them to adhere to the bottom of the wells.  Cells were treated by removing 

medium and adding treatment medium containing DMSO vehicle or AIMs at the desired 

concentration and incubated 24 hours at growth conditions (Table 3.2).  Forty-five 

minutes prior to the end of the 24-hour incubation, 10 µL of lysis buffer (10x) was added 

to each of the maximum LDH release wells and the plates were placed back in the 

incubator to finish the 24-hour treatment period.  Following treatment, 50 µL of medium 

from each well was transferred to a second 96-well plate and 50 µL of the LDH reaction 

solution was added to each well.  These plates were then incubated again at growth 

conditions for 30 minutes in the dark.  Fifty µL of stop solution was added to each well to 
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halt the LDH reaction and plates were measured at 490 nm and 680 nm using a 

SpectraMax 190 plate reader to measure LDH activity as formazan formation and 

background absorbance, respectively. 

 

Data Analysis 

IC50 values were calculated using the ‘R’ statistical computing software and the 

‘ic50’ package (R Core Team, 2014; Frommolt, 2010).  This package fits a logistic 

model to the dose-response data collected using the LDH assay and approximates the 

concentration of the compound required to inhibit the growth of the cells by 50% versus 

the DMSO control (IC50).   

 

Table 3.2 96-well plate layout for LDH assay 

Column: #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 

Treatment: 
No 

Cells 

Medium 

Only 

DMSO 

Control 

 

0.1 µM 

 

0.25 µM 0.5 µM 1 µM 2.5 µM 5 µM 10 µM 25 µM 

Maximum 

LDH 

Release 

 

Confocal Microscopy 

Cells were washed with PBS (2 mL) and then treated with Trypsin EDTA (2 mL) 

to detach cells from culture flask prior to counting with a Coulter counter.  Cells were 

diluted to 100,000 cells / mL and plated on an 8-well Lab-Tek II chambered coverglass 

slide at a density of 20,000 cells / well in 0.2 mL growth medium.  Cells were grown in 

optimal growth conditions and allowed to adhere overnight.  The following day, 

treatment medium was made by dilution of 5 mM DMSO stock solutions of AIM 

compounds in growth medium.  Culture medium was removed by aspiration and 
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treatment medium containing the desired compound was added.  The cells were then 

incubated at growth conditions 10 minutes prior to removing treatment medium by 

aspiration.  Each well was washed with 0.2 mL of PBS twice prior to addition of staining 

solution.  For mitochondrial staining, 0.2 mL of 100 nM MitoTracker™ DeepRed FM 

(Invitrogen™) in culture medium was added prior to a second incubation under the 

previous conditions for 45 minutes.  Following staining, the solutions were removed by 

aspiration and each well was washed twice with 0.2 mL of PBS.  Cells were then fixed 

in 4% PFA, prepared fresh the previous day, for 10 minutes on ice prior to imaging.  

Imaging was completed on an Olympus FV-1000 confocal laser scanning microscope 

immediately following fixation.  Images were captured using a 60x oil-immersion 

objective lens (NA 1.42).  Compound fluorescence was captured using selective 

excitation at 405 nm and emission collected at 422 nm.  MitoTracker™ fluorescence 

was measured at an excitation of 635 nm and emission at 688 nm. 

 

Image Processing 

Confocal images were processed using Fiji and ImageJ (Schindelin et al. 2012, 

2015).  Contrast was adjusted using image LUT to match intensity of the compound 

fluorescence to the MitoTracker™, avoiding oversaturation of regions of interest.  The 

StackReg plugin was used to perform a translation, scaling, and rotation alignment of 

images to correct for chromatic aberration observed in the images due to the large 

difference in emission wavelengths of the compound versus the Mitotracker (422 nm vs. 

668 nm, respectively) (Thevenaz, Ruttimann, and Unser 1998).  Images were filtered 
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using the “Unsharp Mask” function of ImageJ.  The unprocessed images are available 

upon request. 

ETC Inhibition Assays 

Complex I 

Complex I inhibition was measured using a commercially available kit (Abcam 

MitoToxä Complex I OXPHOS Activity Assay #ab109903) according to the 

manufacturer protocol.  Bovine heart mitochondria (BHM) were solubilized through 

addition of 40 µL of the supplied detergent to 360 µL of BHM and mixture by vortex.  

The solubilized BHM were incubated on ice for 30 minutes and then centrifuged at 

25,000 x g for 20 minutes at 4° C.  The supernatant was collected, and the pellet 

discarded prior to adding 5 mL of Mito Buffer.  Fifty µL of the above solution was then 

added to each well of a provided 96-well plate pre-coated with Complex I specific 

antibodies and incubated for two hours at room temperature.  Following incubation, the 

solution was removed from the wells by inversion and blotting of the plate on a Kimwipe.  

Each well was washed with 300 µL of Wash Solution and subsequently inverted and 

blotted a second time.  Forty µL of provided phospholipids were then added to each well 

and the plate was covered and incubated for 45 minutes at room temperature.   

AIM compound solutions were made by diluting 32.4 µL of a 5 mM DMSO stock 

solution into a total volume of 1.8 mL of the provided Complex I activity solution to 90 

µM and then performing serial dilutions to achieve 900 µL of each desired 

concentration.  Rotenone solutions were made similarly using a 10 µM DMSO stock 

diluted in 1.8 mL of Complex I activity solution to 0.125 µM and then performing serial 

dilutions to achieve 900 µL of each desired concentration.  DMSO controls were made 
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using 16.2 µL of DMSO in Complex I activity solution to a final volume of 900 µL to 

match the maximum DMSO concentration of the above AIMs solutions. 

Following the 45-minute incubation, 200 µL of compound diluted in Complex I 

activity solution was added to each well of the plate as outlined (Table 3.3).  Output was 

immediately measured as absorbance at 340 nm on a SpectraMax M4 microplate 

reader in kinetic mode, taking a reading once per minute for 2 hours at 30° C. 

 

Table 3.3 Layout of Complex I 96-well plate 

Rows ↓ 1 2 3 4 5 6 7 8 9 10 11 12 
A – D 
(µM Conc.) 

90  45  22.5  11.25  5.625  2.813  1.406  0.703  0.352  0.176  0.088  DMSO 

E – H 
(µM Conc.) 

90  45  22.5  11.25  5.625  2.813  0.125  0.063  0.031  0.016  0.008  DMSO 

10-Biphenoxy in blue, 10-Phenyl in yellow, Rotenone in green. 

 

Data Analysis 

The reaction rate was calculated as the change in absorbance per minute 

(mOD/min).  This rate was calculated in the linear phase of the assay (0 – 4000 

seconds) as determined by the fitted linear curves with the goal of achieving 

approximately R2 of 0.99 for each well as per the manufacturer protocol.  Row A + H do 

not contain the Complex I specific antibodies and therefore were used as “background” 

rates which were averaged and subtracted from the calculated rates prior to fitting the 

IC50 curves.  The IC50 for each compound was calculated using the R statistical 

computing software with the package “drc” (R Core Team, 2014; Ritz et al., 2015).  The 

data was fit to a three-parameter logistic curve and the IC50 was defined as the 
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concentration required to reach 50% inhibition of the activity of the DMSO control 

samples.  Data was visualized in R using the package “ggplot2”. 

Complex II 

Complex II inhibition was measured using a commercially available kit (Abcam 

MitoToxä Complex II OXPHOS Activity Assay #ab109904) according to the 

manufacturer protocol.  Bovine heart mitochondria (BHM) were solubilized through 

addition of 36 µL of the supplied detergent to two 360 µL samples of BHM and mixture 

by vortex.  The solubilized BHM were incubated on ice for 30 minutes and then 

centrifuged at 25,000 x g for 20 minutes at 4° C.  The supernatant was collected, and 

the pellet discarded prior to adding 20 mL of Buffer Solution.  200 µL of the above 

solution was then added to each well of a provided 96-well plate pre-coated with 

Complex II specific antibodies and incubated for two hours at room temperature.  

Following incubation, the solution was removed from the wells by inversion and blotting 

of the plate on a Kimwipe.  Each well was washed with 300 µL of Wash Solution and 

subsequently inverted and blotted a second time. 

AIM compound solutions were made by diluting 32.4 µL of a 5 mM DMSO stock 

solution into a total volume of 1.8 mL of the provided Complex II activity solution to 90 

µM and then performing serial dilutions to achieve 900 µL of each desired 

concentration.  DMSO controls were made using 16.2 µL of DMSO in Complex II activity 

solution to a final volume of 900 µL to match the maximum DMSO concentration of the 

above AIMs solutions. 

200 µL of compound diluted in Complex II activity solution was added to each 

well of the plate as outlined (Table 3.4).  Output was immediately measured as 
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absorbance at 600 nm on a SpectraMax M4 microplate reader in kinetic mode, taking a 

reading once per minute for 1 hour at room temperature. 

 

Table 3.4 Layout of Complex II 96-well plate 

Rows ↓ 1 2 3 4 5 6 7 8 9 10 11 12 
A – D 
(µM Conc.) 

90  45  22.5  11.25  5.625  2.813  1.406  0.703  0.352  0.176  0.088  DMSO 

E – H 
(µM Conc.) 

90  45  22.5  11.25  5.625  2.813  1.406  0.703  0.352  0.176  0.088  DMSO 

10-Biphenoxy in blue, 10-Phenyl in yellow. 

 

Data Analysis 

The reaction rate was calculated as the change in absorbance per minute 

(mOD/min).  This rate was calculated in the linear phase of the assay (720 – 3000 

seconds) as determined by the fitted linear curves with the goal of achieving 

approximately R2 of 0.99 for each well as per the manufacturer protocol.  Row A + H do 

not contain the Complex II specific antibodies and therefore were used as “background” 

rates which were averaged and subtracted from the calculated rates prior to fitting the 

IC50 curves.  Column 6 was excluded from the analysis for both compounds as the 

activity in this entire column contained outliers in the dose-response curve fits as 

determined by the residual standard error and residual plots of the fits.  The IC50 for 

each compound was calculated using the R statistical computing software with the 

package “drc” (R Core Team, 2014; Ritz et al., 2015).  The data was fit to a three-

parameter logistic curve and the IC50 was defined as the concentration required to reach 

50% inhibition of the activity of the DMSO control samples.  Data was visualized in R 

using the package “ggplot2”. 
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Complex II + III 

Complex II + III inhibition was measured using a commercially available kit 

(Abcam MitoToxä Complex II + III OXPHOS Activity Assay #ab109905) according to 

the manufacturer protocol.  The Complex II + III activity solution was made using 12 mL 

of the succinate solution, 500 µL of the oxidized cytochrome C solution, 120 µL of 0.2 M 

KCN and 15.2 µL of 10 mM rotenone as per the manufacturer protocol. 

AIM compound solutions were made by diluting 16.6 µL of a 5 mM DMSO stock 

solution into a total volume of 920 µL of the Complex II + III activity solution to 90 µM 

and then performing serial dilutions to achieve 460 µL of each desired concentration.  

DMSO controls were made using 8.3 µL of DMSO in Complex II + III activity solution to 

a final volume of 460 µL to match the maximum DMSO concentration of the above AIMs 

solutions.  Antimycin A solutions were made by diluting 11.5 µL of a 10 µM antimycin A 

DMSO stock solution to 0.125 µM and then performing serial dilutions to achieve 460 µL 

of each desired concentration. 

One hundred-twenty µL of BHM was diluted into 880 µL of Complex II + III Mito 

Buffer and 20 µL of this solution was rapidly added to the solutions containing the 

Complex II + III activity solutions and compounds.  The solutions were mixed rapidly 

and 100 µL was transferred to the 96-well plate as outlined below for rows B, C, D and 

E, F, G (Table 3.5).  The output was measured immediately as absorbance at 550 nm 

on a SpectraMax M4 microplate reader in kinetic mode, with a measurement every 20 

seconds for 10 minutes at room temperature. 
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Table 3.5 Layout of Complex II + III 96-well plate 

Rows ↓ 1 2 3 4 5 6 7 8 9 10 11 12 
A – D 
(µM Conc.) 

90  45  22.5  11.25  5.625  2.813  1.406  0.703  0.352  0.176  0.088  DMSO 

E – H 
(µM Conc.) 

90  45  22.5  11.25  5.625  2.813  0.125  0.063  0.031  0.016  0.008  DMSO 

10-Biphenoxy in blue, 10-Phenyl in yellow, Antimycin A in green. 

 

Data Analysis 

The reaction rate was calculated as the change in absorbance per minute 

(mOD/min).  This rate was calculated in the linear phase of the assay (0 – 400 seconds) 

as determined by the fitted linear curves with the goal of achieving approximately R2 of 

0.99 for each well as per the manufacturer protocol.  Row A + H do not contain the BHM 

and therefore were used as “background” rates which were averaged and subtracted 

from the calculated rates prior to fitting the IC50 curves.  Column 6 was excluded from 

the analysis for the 10-Phenyl AIM and column 11 was excluded from the analysis for 

the 10-Biphenoxy AIM and antimycin A as the volume in these wells was double the 

volume of the other reaction wells due to the serial dilutions performed.  The IC50 for 

each compound was calculated using the R statistical computing software with the 

package “drc” (R Core Team, 2014; Ritz et al., 2015).  The data was fit to a three-

parameter logistic curve and the IC50 was defined as the concentration required to reach 

50% inhibition of the activity of the DMSO control samples.  Data were visualized in R 

using the package “ggplot2”. 
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Complex IV 

Complex IV inhibition was measured using a commercially available kit (Abcam 

MitoToxä Complex IV OXPHOS Activity Assay #ab109907) according to the 

manufacturer protocol.  300 µL of Blocking Solution was added to each well of the 

provided 96-well plate pre-coated with Complex IV specific antibodies and incubated at 

room temperature for 1 hour.  Bovine heart mitochondria (BHM) were solubilized 

through addition of 10 µL of the supplied detergent to 90 µL of BHM and mixture by 

vortex.  The solubilized BHM were incubated on ice for 30 minutes and then centrifuged 

at 25,000 x g for 20 minutes at 4° C.  The supernatant was collected and kept on ice 

until use.  The 96-well plate was emptied by inversion and blotted with a Kimwipe prior 

to a second addition of 300 µL blocking solution to each well.  The plate was emptied 

and blotted a second time.  Twenty µL of solubilized BHM solution was diluted into 22 

mL of Mito Buffer.  Twenty µL of the above solution was then added to each well of a 

provided 96-well plate pre-coated with Complex IV specific antibodies and incubated for 

3 hours at room temperature.  Following incubation, 300 µL of Mito Buffer was added to 

each well to wash and then the solution was removed from the wells by inversion and 

blotting of the plate on a Kimwipe.  Each well was washed with 300 µL of Wash Solution 

and subsequently inverted and blotted a second time. 

AIM compound solutions were made by diluting 32.4 µL of a 5 mM DMSO stock 

solution into a total volume of 1.8 mL of the provided Complex IV activity solution to 90 

µM and then performing serial dilutions to achieve 900 µL of each desired 

concentration.  DMSO controls were made using 16.2 µL of DMSO in Complex II activity 
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solution to a final volume of 900 µL to match the maximum DMSO concentration of the 

above AIMs solutions. 

Two hundred µL of compound diluted in Complex IV activity solution was added 

to each well of the plate as outlined (Table 3.6).  Output was immediately measured as 

absorbance at 550 nm on a SpectraMax M4 microplate reader in kinetic mode, taking a 

reading once per minute for 1 hour at room temperature. 

 

Table 3.6 Layout of Complex IV 96-well plate 

Rows ↓ 1 2 3 4 5 6 7 8 9 10 11 12 
A – D 
(µM Conc.) 

90  45  22.5  11.25  5.625  2.813  1.406  0.703  0.352  0.176  0.088  DMSO 

E – H 
(µM Conc.) 

90  45  22.5  11.25  5.625  2.813  1.406  0.703  0.352  0.176  0.088  DMSO 

10-Biphenoxy in blue, 10-Phenyl in yellow. 

 

Data Analysis 

The reaction rate was calculated as the change in absorbance per minute 

(mOD/min).  This rate was calculated in the linear phase of the assay (600 – 2400 

seconds) as determined by the fitted linear curves with the goal of achieving 

approximately R2 of 0.99 for each well as per the manufacturer protocol.  Row A + H 

were not used as “background” rates for this assay due to inconsistency of the readings.  

The IC50 for each compound was calculated using the R statistical computing software 

with the package “drc” (R Core Team, 2014; Ritz et al., 2015).  The data was fit to a 

three-parameter logistic curve and the IC50 was defined as the concentration required to 

reach 50% inhibition of the activity of the DMSO control samples.  Data was visualized 

in R using the package “ggplot2”. 
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Computational Modeling 

GOLD docking software (v5.2.2) was utilized to perform molecular docking 

calculations for the AIMs using a crystal structure of Complex II from porcine heart with 

waters removed (PDB:1ZOY) (Jones et al. 1997; Sun et al. 2005).  The positions of the 

ubiquinone sites were determined using the related crystal structure of Complex II 

bound by the known inhibitors TTFA and 3-NP (PDB: 1ZP0).  The AIM compounds were 

docked in a 20 Å sphere centered on the hydroxy of residues Tyr-D91 & Tyr-D61 of the 

two ubiquinone sites (Qp and Qd, respectively).  The known inhibitor TTFA was also 

docked using the same method to validate the method. Docked poses were scored with 

the CHEMPLP scoring function and high-ranking poses were considered based on polar 

surface interaction distances and visualization by Pymol (Schrodinger 2015).  

Interaction diagrams were made using Discovery Studio (Dassault Systèmes, 2018). 

 

Determination of mtDNA Copy Number and Measurement of mtDNA Damage 

Cell Treatment & Sample Collection 

Treatment solutions were prepared in growth medium at various concentrations 

using a 5 mM compound stock solution prepared previously in sterile DMSO.  Medium 

was removed via aspiration and cells were rinsed with 2 mL of PBS.  The PBS was 

removed and medium containing the desired treatment was added to the culture dish.  

Cells were then incubated at growth conditions for the desired treatment period.  After 

treatment and incubation, medium was transferred to a 15 mL conical tube.  The cells 

were washed with 2 mL PBS and the wash was added to the 15 mL tube.  1.5 mL of 

trypsin-EDTA was added to the cells and they were incubated at 37° C for 
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approximately 3 minutes to allow cells to detach.  Two mL of fresh growth medium was 

added to inactivate the trypsin-EDTA and the cells plus medium were transferred to the 

corresponding 15 mL tube.  Samples were centrifuged at 1,500 RPM for 5 minutes at 4° 

C, the supernatant was discarded, and pellets were resuspended in 1 mL PBS and 

transferred to 1.5 mL tubes.  The samples were then centrifuged at 5,000 RPM for 10 

minutes at 4 C.  The supernatants were discarded, and the pellets were frozen at -80° C 

until use. 

 

DNA Isolation 

Nuclear and mtDNA were isolated using a QIAGEN Blood & Cell Culture DNA 

Mini Kit as described in the protocol outlined by Chand and Chen (Chan and Chen 

2009).  Briefly, cells were thawed on ice and resuspended in 50 µL of nuclease-free 

water.  One mL of G2 digestion buffer was added to each tube and samples were 

vortexed immediately for 25 seconds.  Three µL of RNase A was added to each sample, 

mixed, and briefly centrifuged.  Twenty-five µL of reconstituted protease was added to 

each sample, and samples were inverted to mix.  Samples were then incubated in a 

water bath at 50° C for 1 hour.  Genomic tips were equilibrated for 15 minutes with QBT 

buffer and samples were vortexed 10 seconds and each transferred to a genomic tip 

following incubation.  Genomic tips were washed three times with 1 mL of QC buffer. 

Each DNA sample was eluted into a 15 mL tube by adding 910 µL of buffer QF, pre-

warmed to 50° C, twice to the corresponding genomic tip.  DNA was mixed by inversion 

and briefly centrifuged before dividing each sample into two 1.5 mL tubes. DNA was 

precipitated from each sample by addition of 700 µL of isopropanol, mixture by 
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inversion, and incubating at room temperature for 10 minutes.  Samples were 

centrifuged a 18,000 x g for 20 minutes at 4° C to pellet the nuclear and mitochondrial 

DNA.  The sample DNA pellets were washed twice with 500 µL ethanol pre-chilled to -

20° C, centrifuging at 18,000 x g for 10 minutes after each wash.  The supernatant was 

removed, and the residual ethanol was allowed to evaporate approximately 10 minutes 

in air.  Eighty µL TE buffer was added to each sample and the pellets were allowed to 

slowly dissolve overnight in the fridge at 4° C. 

 

DNA Quantification 

Sample DNA concentrations were measured using a NanoDrop instrument.  

Following initial measurements, dilutions were made at 10 ng/µL and measured again in 

triplicate.  Five ng/µL dilutions were made, measured in triplicate, and then diluted to 1 

ng/µL samples.  Five ng/µL samples were used for the nuclear marker in qPCR 

reactions.  One ng/µL samples were split equally, and one set was heated to 95° C for 6 

minutes in a PCR instrument to relax supercoiled mtDNA.  The 1 ng/µL samples, with 

and without heat treatment (native and relaxed), were then used for the mtDNA markers 

in qPCR reactions. 

 

Standards Preparation 

Standards were prepared using DNA isolated from untreated SNB-19 cells.  For 

both mtDNA markers (D-loop & CO-2), standards were prepared by PCR using DNA 

isolated from untreated SNB-19 cells.  Fifty µL PCR reactions were performed to amplify 

a 3285 b.p. fragment (CO-2) and a 2467 b.p. fragment (D-loop).  Each reaction 
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contained 5 µL of 10x Thermophilus DNA polymerase buffer (Fisher Scientific), 4 µL of 

25 mM MgCl2, 1 µL of 10 mM dNTP mixed bases, 0.5 µL of Tth DNA polymerase 

(Fisher Scientific), 0.4 µL of both the respective upstream and downstream primers, 17 

µL of DNA stock at 0.031 µg / µL, and 21.9 µL of ddH2O.  Reactions were carried out in 

a thermocycler using the following settings:  94° C for 2 minutes, followed by 30 cycles 

of 94° C for 15 seconds, 60° C for 30 seconds, and 72° C for 3 minutes 30 seconds.  

Samples were then left at 72° C for 5 minutes prior to holding at 10° C at the end of the 

reaction.  Reaction products were purified using the Qiagen “Qiaquick (50)” kit as per 

manufacturer instructions.  The mtDNA (D-loop & CO-2) standards were then serially 

diluted to form standards from 3,000,000 to 30 copies.  Primers used for the reactions 

are outlined in the protocol from Chan et al., 2012.  For Calicin nuclear DNA standards, 

DNA isolated from SNB-19 control cells was serially 5-fold diluted from 40 ng / µL to 

0.064 ng / µL to create the 5 nuclear standards used. 

 

qPCR for Measurement of mtDNA Copy Number and Damage 

Changes in mtDNA damage and copy number were measured using a protocol 

previously published method (Chan et al. 2012).  Samples and standards were gently 

mixed by flicking and centrifuged briefly.  PCR mastermixes were prepared for each 

marker (Calicin, CO-2, and d-loop) using stock solutions of the appropriate forward and 

reverse primers along with nuclease free water and SYBR Mix.  Each reaction volume 

was set at 20 µL and contained 0.7 µL of the forward and reverse primers, 7.6 µL of 

nuclease-free water and 10 µL of SYBR mix along with 1 µL of template DNA.  The 

primers used for these reactions are outlined in the protocol from Chan, 2012.  The 
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qPCR reactions were carried out on a Stratagene qPCR instrument using the following 

settings:  95° C for 30 seconds, followed by 40 cycles of 95° C for 3 seconds and 60° C 

for 30 seconds.  Following completion of the 40 cycles, a dissociation melting curve was 

created for each sample by heating to 95° C 30 seconds, cooling 55° C for 30 seconds, 

and finally heating to 95° C for 30 seconds. 

 

Data Analysis 

Six-point standard curves from 3e6 copies to 3e1 copies were created for the 

mtDNA markers (CO-2 & D-loop) using the qPCR standards reactions.  This was used 

to quantify the precise copy number of the mtDNA markers in each of the control and 

treatment samples.  For the nuclear marker (Calicin), a standard curve was constructed 

using the 5 standard samples ranging from 40 ng / µL to 0.064 ng / µL.  Calicin is a 

single copy nuclear gene, and with this in mind the following equation was used to 

calculate the approximate number of cells in each standard sample:  

(𝐴𝑝𝑝𝑟𝑜𝑥.		𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐶𝑒𝑙𝑙𝑠) = 	
[𝑆𝑎𝑚𝑝𝑙𝑒𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛] × (6.022 × 10fg)

(3088286401) × (660) × (1 × 10k) ×
1
2 

Where 6.022 x 1023 is Avogadro’s constant used to convert to moles, 3,088,286,401 are 

the number of base pairs in the human genome, 660 g/mol/bp is the average molecular 

weight of a DNA base pair, 1 x 109 is a conversion factor (g to ng) and 1/2 to account for 

a diploid genome.  The approximate number of cells in each qPCR control or treated 

sample was then calculated using the Calicin standard curve and normalized to 5 ng/µL 

using the concentration measured previously by NanoDrop.  The percent of damage in 

each sample for both mtDNA markers (CO-2 & D-loop) was determined as outlined by 

Chen and Chan (Number of Copies in Unheated Sample / Number of Copies in related 
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Pre-heated sample) (Chan and Chen 2009).  Statistical analysis was performed by 

ANOVA with Dunnett’s post-hoc tests using the R statistical computing software and the 

library “DescTools” (R Core Team, 2014; Signorell, 2019). 

 

Annexin-V / Propidium Iodide Flow Cytometry 

Apoptosis was assessed using a commercially available Annexin-V / Propidium 

Iodide kit according to the manufacturer protocol (BD Biosciences FITC Annexin V 

Apoptosis Detection Kit I #556547).  SNB-19 human glioblastoma cells were cultured at 

optimal growth conditions.  Cells were seeded at a density of 250,000 cells / mL in 

sterile 6-well polystyrene plates (35mm / well) and let adhere overnight at growth 

conditions.  Medium was removed by aspiration and cells were treated with medium 

containing either DMSO vehicle or AIMs at the desired concentration and incubated at 

optimal growth conditions for 24 hours.  Following incubation, culture medium from each 

sample was collected in 15 mL tubes and cells were rinsed with 2 mL PBS prior to 

adding 2 mL Trypsin-EDTA to each well.  Cells were again incubated at growth 

conditions for 5 minutes to detach adherent cells prior to adding 2 mL of fresh medium.  

The PBS rinse and medium containing unadhered cells, was combined with the medium 

contained in the corresponding 15 mL tube.  Samples were centrifuged at 3,000 RPM 

for 5 minutes at 4 C° to pellet the cells.  The supernatant from each sample was 

discarded and pellets were each resuspended in 1 mL PBS prior to transfer to 1.5 mL 

tubes.   Cells were counted using a Beckman Coulter® automated cell counter prior to a 

second centrifugation at 3,000 RPM for 5 minutes.  Sample supernatants were then 

discarded and cells were resuspended in Binding Buffer at approximately 1 million cells 
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/ mL.  Approximately 200 µL of each sample was transferred to a new 1.5 mL tube and 

5 µL of FITC Annexin-V dye was added to each sample prior to incubation for 15 

minutes at room temperature.  Following incubation, 300 uL of binding buffer was added 

to each sample before transfer to a 12x75mm culture tube through a 35 µm cell strainer 

cap.  Samples were kept on ice and 1 µL of propidium iodide was added immediately 

prior to analysis on a Attune NxT flow cytometer.  Data analysis was performed using 

the FlowJo v10.5.2 software.  Statistical analysis was performed by ANOVA with 

Dunnett’s post-hoc tests using the R statistical computing software and the library 

“DescTools” (R Core Team, 2014; Signorell, 2019). 

 

JC-1 Flow Cytometry 

Mitochondrial membrane potential (ΔΨm) was analyzed using a commercially 

available JC-1 assay kit according to the manufacturer protocol (Thermo Fisher 

MitoProbe™ JC-1 Assay Kit for Flow Cytometry #M34152).  SNB-19 human 

glioblastoma cells were cultured at optimal growth conditions.  Cells were seeded at a 

density of 250,000 cells / mL in sterile 6-well polystyrene plates (35mm / well) and let 

adhere overnight at growth conditions.  Medium was removed by aspiration and cells 

were treated with medium containing either DMSO vehicle or AIMs at the desired 

concentration and incubated at 37 C° in 5% CO2 for 24 hours.  Following incubation, 

culture medium from each sample was collected in 15 mL tubes and cells were rinsed 

with 2 mL PBS prior to adding 2 mL Trypsin-EDTA to each well.  Cells were again 

incubated at 37 C° in 5% CO2 for 5 minutes to detach adherent cells prior to adding 2 

mL of fresh medium.  The PBS rinse and medium containing unadhered cells, was 
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combined with the medium contained in the corresponding 15 mL tube.  Samples were 

centrifuged at 3,000 RPM for 5 minutes at 4 C° to pellet the cells.  The supernatant from 

each sample was discarded and pellets were each resuspended in 1 mL PBS prior to 

transfer to 1.5 mL tubes.   Cells were counted using a Beckman Coulter® automated 

cell counter prior to a second centrifugation at 3,000 RPM for 5 minutes.  Sample 

supernatants were then discarded and cells were resuspended in 1 mL PBS at 

approximately 1 million cells / mL and allowed to equilibrate to room temperature.  To 

each sample, 10 µL of JC-1 dye was added prior to incubation for 30 minutes at 37 C° 

in 5% CO2.  Following incubation, cells were pelleted by centrifugation at 3,000 RPM for 

5 minutes at 4 C°.  Sample pellets were resuspended in 500 µL of PBS before transfer 

to a 12x75mm culture tube through a 35 µm cell strainer cap.  Samples were kept on ice 

until analysis on a Attune NxT flow cytometer.  Data analysis was performed using the 

FlowJo v10.5.2 software.  Statistical analysis was performed by ANOVA with Dunnett’s 

post-hoc tests using the R statistical computing software and the library “DescTools” (R 

Core Team, 2014; Signorell, 2019). 

 

Caspase-9 Flow Cytometry 

Caspase-9 activity was determined using a commercially available kit according 

to the manufacturer protocol (SR-FLICA® Caspase-9 Assay Kit (#961)).  SNB-19 

human glioblastoma cells were cultured at optimal growth conditions.  Cells were 

seeded at a density of 250,000 cells / mL in sterile 6-well polystyrene plates (35mm / 

well) and let adhere overnight at growth conditions.  Medium was removed by aspiration 

and cells were treated with medium containing either DMSO vehicle or AIMs at the 
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desired concentration and incubated at 37 C° in 5% CO2 for 24 hours.  Following 

incubation, culture medium from each sample was collected in 15 mL tubes and cells 

were rinsed with 2 mL PBS prior to adding 2 mL Trypsin-EDTA to each well.  Cells were 

again incubated at 37 C° in 5% CO2 for 5 minutes to detach adherent cells prior to 

adding 2 mL of fresh medium.  The PBS rinse and medium containing unadhered cells, 

was combined with the medium contained in the corresponding 15 mL tube.  Samples 

were centrifuged at 3,000 RPM for 5 minutes at 4 C° to pellet the cells.  The 

supernatant from each sample was discarded and pellets were each resuspended in 1 

mL PBS prior to transfer to 1.5 mL tubes.   Cells were counted using a Beckman 

Coulter® automated cell counter prior to a second centrifugation at 3,000 RPM for 5 

minutes.  Samples were resuspended in 500 µL of medium and 16.7 µL of the SR-

FLICA reagent was added (1:30) prior to incubation for 1 hour at 37 C° in 5% CO2 with 

brief mixing every 10 minutes.  Samples were then centrifuged at 3,000 RPM for 5 

minutes and, after removal of the supernatant, pellets were resuspended in 500 µL 

apoptosis wash buffer and incubated at 37 C° in 5% CO2 for 10 minutes to allow 

unbound SR-FLICA reagent to diffuse out of the cells.  The wash step was repeated two 

additional times prior to resuspension in 500 µL of fresh apoptosis wash buffer and 

transfer to a 12x75mm culture tube through a 35 µm cell strainer cap.  Samples were 

kept on ice and immediately analyzed on a Attune NxT flow cytometer.  Data analysis 

was performed using the FlowJo v10.5.2 software.  Statistical analysis was performed 

by ANOVA with Dunnett’s post-hoc tests using the R statistical computing software and 

the library “DescTools” (R Core Team, 2014; Signorell, 2019). 
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Caspase-3/7 Flow Cytometry 

Caspase-3/7 activity was determined using a commercially available kit 

according to the manufacturer protocol (SR-FLICA® Caspase-3/7 Assay Kit (#931)).  

SNB-19 human glioblastoma cells were cultured at optimal growth conditions.  Cells 

were seeded at a density of 250,000 cells / mL in sterile 6-well polystyrene plates 

(35mm / well) and let adhere overnight at growth conditions.  Medium was removed by 

aspiration and cells were treated with medium containing either DMSO vehicle or AIMs 

at the desired concentration and incubated at 37 C° in 5% CO2 for 24 hours.  Following 

incubation, culture medium from each sample was collected in 15 mL tubes and cells 

were rinsed with 2 mL PBS prior to adding 2 mL Trypsin-EDTA to each well.  Cells were 

again incubated at 37 C° in 5% CO2 for 5 minutes to detach adherent cells prior to 

adding 2 mL of fresh medium.  The PBS rinse and medium containing unadhered cells, 

was combined with the medium contained in the corresponding 15 mL tube.  Samples 

were centrifuged at 3,000 RPM for 5 minutes at 4 C° to pellet the cells.  The 

supernatant from each sample was discarded and pellets were each resuspended in 1 

mL PBS prior to transfer to 1.5 mL tubes.   Cells were counted using a Beckman 

Coulter® automated cell counter prior to a second centrifugation at 3,000 RPM for 5 

minutes.  Samples were resuspended in 500 µL of medium and 16.7 µL of the SR-

FLICA reagent was added (1:30) prior to incubation for 1 hour at 37 C° in 5% CO2 with 

brief mixing every 10 minutes.  Samples were then centrifuged at 3,000 RPM for 5 

minutes and, after removal of the supernatant, pellets were resuspended in 500 µL 

apoptosis wash buffer and incubated at 37 C° in 5% CO2 for 10 minutes to allow 

unbound SR-FLICA reagent to diffuse out of the cells.  The wash step was repeated two 
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additional times prior to resuspension in 500 µL of fresh apoptosis wash buffer and 

transfer to a 12x75mm culture tube through a 35 µm cell strainer cap.  Samples were 

kept on ice and immediately analyzed on a Attune NxT flow cytometer.  Data analysis 

was performed using the FlowJo v10.5.2 software.  Statistical analysis was performed 

by ANOVA with Dunnett’s post-hoc tests using the R statistical computing software and 

the library “DescTools” (R Core Team, 2014; Signorell, 2019). 
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Results 

AIMs Reduce Cell Viability in Tumor Cells 

MTT Cell Viability Assay 

 We utilized an MTT assay to determine the effect of the 10-Phenyl and 10-

Biphenoxy AIMs on cell viability.  The 10-Phenyl and the 10-Biphenoxy AIMs both 

demonstrated sub-micromolar toxicity in the SNB-19 human glioblastoma cells (Table 

3.7).  The 10-Biphenoxy AIM was the most effective at inhibiting the growth of SNB-19 

cells, with a calculated IC50 of 0.68 ± 0.04 µM (Figure 3.2).  The 10-Phenyl AIM showed 

similar toxicity of 0.89 ± 0.02 µM in the cells. 

 

Table 3.7 Cell viability results from MTT assay 

SNB-19 

(Human Glioblastoma) 

Compound IC50 (µM) 95% CI (±) 

10-Phenyl AIM 0.89* 0.02* 

10-Biphenoxy AIM 0.68 0.04 

*Previously published in BMCL, error for these values is ±Standard Deviation (Weaver et al. 2015) 
AIMs cause loss of cell viability in SNB-19 human glioblastoma cells at sub-micromolar 

concentrations following 24-hour treatment.  Results shown are the average of three 

MTT experiments each.  IC50 is defined as the concentration required to inhibit the 

growth of 50% of the cells. 
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Figure 3.2 Example dose-response curve for MTT assay in SNB-19 cells 

Example of SNB-19 dose-response curve generated using the MTT cell viability assay 

as described.  Error bars represent standard deviations, IC50 shown as a vertical black 

line with dotted lines representing the respective 95% confidence interval. 
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LDH Cell Viability Assay 

 As a separate measure of cell viability not dependent on mitochondrial reductase 

function, we employed an LDH assay to measure the effect of the AIMs in multiple cell 

types (SNB-19, C6, and E-18).  The AIMs demonstrated low-micromolar toxicity in all of 

the cells tested (Table 3.8).  The 10-Biphenoxy remained the most potent compound 

tested in the SNB-19 human glioblastoma cells with an IC50 of 4.44±0.16 µM (Figure 

3.3).  The 10-Biphenoxy and 10-Phenyl had comparable activity in the C6 rat glioma 

cells (C6 IC50 = 3.83±0.10 µM and 3.76±0.12 µM, respectively) (Figure 3.4).  

Surprisingly, the 10-Biphenoxy and 10-Phenyl AIMs showed more toxicity toward the 

primary E-18 healthy rat astrocytes than the C6 rat glioma cells (E-18 IC50 = 2.09±0.20 

µM and 2.20±0.16 µM, respectively) (Figure 3.5). 

 

Table 3.8 Cell viability results from LDH assay 

SNB-19 

(Human Glioblastoma) 
 

C6 

(Rat Glioma) 
 

E-18 

(Primary Rat Astrocytes) 

Compound 
 
IC50 (µM) 95% CI (±) 

 
IC50 (µM) 95% CI (±) 

 
IC50 (µM) 95% CI (±) 

10-Phenyl AIM 
 

5.92 0.68 
 

3.76 0.12 
 

2.20 0.16 

10-Biphenoxy AIM 
 

4.44 0.16 
 

3.83 0.10 
 

2.09 0.20 

AIMs reduce cell viability in SNB-19 human glioblastoma cells at low-micromolar 

concentrations following 24-hour treatment.  Results shown are the average of three 

LDH experiments each.  IC50 is defined as the concentration required to inhibit the 

growth of 50% of the cells. 
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Figure 3.3 Example dose-response curve for LDH assay in SNB-19 cells 

Example of SNB-19 dose-response curve generated using the LDH cytotoxicity assay 

as described.  Error bars represent standard deviations, IC50 shown as a vertical black 

line with dotted lines representing the respective 95% confidence interval. 
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Figure 3.4 Example dose-response curve for LDH assay in C6 cells 

Example of C6 dose-response curve generated using the LDH cytotoxicity assay as 

described.  Error bars represent standard deviations, IC50 shown as a vertical black line 

with dotted lines representing the respective 95% confidence interval. 
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Figure 3.5 Example dose-response curve for LDH assay in E-18 cells 

Example of E-18 dose-response curve generated using the LDH cytotoxicity assay as 

described.  Error bars represent standard deviations, IC50 shown as a vertical black line 

with dotted lines representing the respective 95% confidence interval. 
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AIMs Localize to the Mitochondria of Glioblastoma Cells 

Confocal Imaging 

 We performed confocal imaging of SNB-19 glioblastoma cells to examine the 

intracellular localization of the AIMs.  The AIMs are conveniently auto-fluorescent and 

can be visualized in cells using laser excitation.  The MitoTracker™ dye selectively 

stains the mitochondria of living cells.  Treatment with 1 µM of the 10-Phenyl AIM and 

100 nM MitoTracker™ demonstrates localization of the AIMs to the mitochondria of 

glioblastoma cells (Figure 3.6).  This was also shown for the 10-Biphenoxy AIM under 

the same conditions (Figure 3.7).  Confocal Z-stacks further verified the mitochondrial 

localization of the AIMs in the glioblastoma cells (Figure 3.8 and Figure 3.9).  However, 

it is noted that it appears the AIMs may also be present in other organelles or vesicles 

as well.  Taken together, these results confirm both the 10-Phenyl and 10-Biphenoxy 

AIMs can localize to the mitochondria of glioblastoma cells. 
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10-Phenyl AIM Mitotracker Overlay 

   

Figure 3.6 Confocal images of SNB-19 cells with 10-Phenyl AIM 

Confocal images of SNB-19 human glioblastoma cells treated with 1 µM of the 10-

Phenyl AIM (green, left), 100 nM Mitotracker (magenta, middle), and overlay (white, 

right).  Scale bar shown is 20 µM. 

 

10-Biphenoxy AIM Mitotracker Overlay 

   

Figure 3.7 Confocal images of SNB-19 cells with 10-Biphenoxy AIM 

Confocal images of SNB-19 human glioblastoma cells treated with 1 µM of the 10-

Biphenoxy AIM (green, left), 100 nM Mitotracker (magenta, middle), and overlay (white, 

right).  Scale bar shown is 20 µM. 

  



 139 

 
Figure 3.8 Confocal Z-stack images of SNB-19 cells with 10-Phenyl AIM 

Confocal Z-stack images of SNB-19 human glioblastoma cells treated with 500 nM of 

the 10-Phenyl AIM and 100 nM Mitotracker with co-localization observed as white.  

Scale bar shown is 20 µM.  Images shown represent 4 µm of total depth and each 

individual image is separated by 1 µm depth. 

 



 140 

 
Figure 3.9 Confocal Z-stack images of SNB-19 cells with 10-Biphenoxy AIM 

Confocal Z-stack images of SNB-19 human glioblastoma cells treated with 500 nM of 

the 10-Biphenoxy AIM and 100 nM Mitotracker with co-localization observed as white.  

Scale bar shown is 20 µM.  Images shown represent 9 µm of total depth and each 

individual image is separated by 1.5 µm depth. 
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AIMs Inhibit Mitochondria ETC Complexes 

We measured the inhibitory effect of the AIMs on Complex I – IV of the ETC 

using commercially available kits (Table 3.9).  The AIMs were measured using the 

antibody isolated ETC complexes for Complex I, II, and IV.  For Complex II + III, the 

assay utilized intact mitochondria, but cannot distinguish between the two ETC protein 

complexes. 

The AIM compounds tested do not appear to be significant inhibitors of Complex 

I.  However, both the 10-Phenyl and 10-Biphenoxy showed significant inhibition in the 

Complex II assay (IC50 = 18.3 ± 10.7 µM and 2.9 ± 1.2 µM, respectively) (Figure 3.10 

and Figure 3.11).  The Complex II + III assay in intact mitochondria showed inhibition of 

25.63 ± 3.78 µM for the 10-Phenyl AIM and 8.67 ± 0.68 for the 10-Biphenoxy AIM 

(Figure 3.12 and Figure 3.13). 

There was also some inhibition observed for Complex IV for the 10-Biphenoxy 

AIM with a calculated IC50 of 26.89 ± 2.87 µM, however even at 90 µM the 10-Phenyl 

did not reach 50% inhibition (Appendix Figure A.3.10 and Figure A.3.11). 

   

Table 3.9 Summary of ETC protein complex assay results 

IC50 (µM ± 95%CI)  10-Phenyl AIM 10-Biphenoxy AIM Rotenone Antimycin A 

Complex I > 90 > 90 0.121 ± 0.031 
 

Complex II 18.27 ± 10.72 2.91 ± 1.21 
  

Complex II + III* 25.63 ± 3.78 8.67 ± 0.68 
 

0.059 ± 0.008 

Complex IV > 90 26.89 ± 2.87 
  

*Intact Bovine Heart Mitochondria 
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Figure 3.10 Complex II inhibition curve for the 10-Phenyl AIM 

Complex II inhibition curve for the 10-Phenyl AIM.  Points represent individual 

measurements, curve represents three-parameter logistic fit with shaded area indicating 

the 95% confidence interval of the fit. (n=3) 
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Figure 3.11 Complex II inhibition curve for the 10-Biphenoxy AIM 

Complex II inhibition curve for the 10-Biphenoxy AIM.  Points represent individual 

measurements, curve represents three-parameter logistic fit with shaded area indicating 

the 95% confidence interval of the fit. (n=3) 
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Figure 3.12 Complex II + III inhibition curve for the 10-Phenyl AIM 

Complex II + III inhibition curve for the 10-Phenyl AIM in intact mitochondria.  Points 

represent individual measurements, curve represents three-parameter logistic fit with 

shaded area indicating the 95% confidence interval of the fit. (n=3) 
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Figure 3.13 Complex II + III inhibition curve for the 10-Biphenoxy AIM 

Complex II + III inhibition curve for the 10-Biphenoxy AIM in intact mitochondria.  Points 

represent individual measurements, curve represents three-parameter logistic fit with 

shaded area indicating the 95% confidence interval of the fit. (n=3)  
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Computational Modeling 

The authors would like to acknowledge Michael J. Campbell of the Natale 

Laboratory, and the Molecular Computational Core Facility (MCCF) at the University of 

Montana for their contributions to these experiments. 

 To further examine the interaction of the AIMs with Complex II, we performed 

molecular docking studies at the ubiquinone sites of a crystal structure of the protein 

complex (PDB: 1ZOY) (Sun et al. 2005).  We chose the ubiquinone sites as the 

succinate site was determined to be too inaccessible for binding by AIMs.  First, we 

verified the known Complex II inhibitor TTFA was docked correctly by GOLD in both 

ubiquinone sites (Qp and Qd) in comparison to a crystal structure of a Complex II / TTFA 

complex (PDB: 1ZP0) (Figure 3.14).  Next, we performed molecular docking 

calculations for both the 10-Phenyl and 10-Biphenoxy AIMs and evaluated the top 10 

docking poses determined by their CHEMPLP fitness scores (Table 3.10 and Table 

3.11).  The top pose for the 10-Biphenoxy AIM show the biphenyl moiety in the 

ubiquinone binding pocket of the Qp site, with the anthracene in proximity to allow for p-

p interactions with the Trp-B173 and His-C29 (Figure 3.15 and Figure 3.16).  There are 

also carbon hydrogen bond interactions suggested at Tyr-91 and Val-81 by the alkyl 

amine tails.  Finally, the biphenyl moiety interacts with Trp-B173, Met-C39, Pro-B169 

and Ile-C43.  The top pose for the 10-Phenyl AIM suggests the smaller phenyl moiety 

allows for deeper access in the binding pocket for the anthracene portion of the 

molecule and displays p-p interactions with Pro-B169 and Ile-C43.   The phenyl moiety 

shows p-p interactions with Ile-B218 and Arg-C46, and other parts of the AIM molecule 

suggest various other potential interactions (Figure 3.17 and Figure 3.18). 
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Table 3.10 Docking scores for Complex II Qp site 

Complex II Qp Site GOLD Docking Results 

Solution # CHEMPLP Fitness Score 

 10-Phenyl 10-Biphenoxy TTFA 

1 82.78 75.21 48.51 

2 101.67 51.74 50.37 

3 80.76 66.21 49.56 

4 88.81 61.43  

5 78.59 78.05  

6 79.22 75.02  

7 92.00 82.75  

8 81.84 80.25  

9 78.14 66.68  

10 83.73 88.45  
 
Docking scores calculated for TTFA and the 10-Phenyl and 10-Biphenoxy AIMs at the 

Qp ubiquinone site of a crystal structure of Complex II (PDB: 1ZOY). 
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Table 3.11 Docking scores for Complex II Qd site 

Complex II Qd Site GOLD Docking Results 

Solution # CHEMPLP Fitness Score 

 10-Phenyl 10-Biphenoxy TTFA 

1 86.54 78.32 44.38 

2 79.88 74.56 43.35 

3 88.98 80.46 43.91 

4 85.29 69.66 44.45 

5 84.56 85.98 44.10 

6 90.12 71.36  

7 86.37 70.63  

8 86.97 70.82  

9 90.20 78.60  

10 84.65 71.38  
 
Docking scores calculated for TTFA and the 10-Phenyl and 10-Biphenoxy AIMs at the 

Qd ubiquinone site of a crystal structure of Complex II (PDB: 1ZOY). 
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Figure 3.14 Complex II computational docking with TTFA 

Overlay of TTFA from a published crystal structure (PDB: 1ZP0, magenta) with the 

highest scoring TTFA pose from GOLD (green) in the Qp ubiquinone site of the crystal 

structure of Complex II (PDB: 1ZOY). 
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Figure 3.15 Complex II computational docking with 10-Biphenoxy AIM 

Overlay of the three top scoring poses for the 10-Biphenoxy AIM from GOLD in the Qp 

ubiquinone site. Solutions 5, 7 and 10 shown as green, magenta and yellow, 

respectively.  View is the same orientation as Figure 3.14. 
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Figure 3.16 Diagram of ligand interactions for 10-Biphenoxy AIM 

2D diagram showing ligand interactions for the top scoring pose for the 10-Biphenoxy 

AIM from GOLD in the Qp ubiquinone site (Solution #10).  Interaction distances are 

labeled in angstrom units. 
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Figure 3.17 Complex II computational docking with 10-Phenyl AIM 

Overlay of the three top scoring poses for the 10-Phenyl AIM from GOLD in the Qp 

ubiquinone site. Solutions 2, 7 and 10 shown as green, magenta and yellow, 

respectively.  View is the same orientation as Figure 3.14. 
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Figure 3.18 Diagram of ligand interactions for 10-Phenyl AIM 

2D diagram showing ligand interactions for the top scoring pose for the 10-Phenyl AIM 

from GOLD in the Qp ubiquinone site (Solution #2).  Interaction distances are labeled in 

angstrom units.  
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Treatment with AIMs leads to rapid mtDNA damage and reduced mtDNA copy 

number in glioblastoma cells 

 To measure the effect of treatment with the 10-Biphenoxy AIM on mtDNA, we 

employed a previously reported method to examine changes in mtDNA damage and 

copy number (Chan and Chen 2009; Chan et al. 2012).  A time-course was performed 

to determine the effect of 10-Biphenoxy AIM treatment at multiple exposure time points 

(3, 6, 12, and 24 hours).  Treatment with 1 µM of the 10-Biphenoxy AIM caused a 

significant increase in percentage damaged mtDNA the CO-2 gene (Figure 3.19).  A 

reduction in the number of intact copies, normalized to a single-copy nuclear gene 

Calicin, was significant at the 6-hour time-point for both the CO-2 and D-loop mtDNA 

markers (Figure 3.20).  Further examination of the intact copy number per cell led us to 

determine the variance in the 24-hour group was a significant outlier in both markers as 

calculated by a Cochran’s C test in R using the “outliers” package (P = 0.03 and P = 

0.002 for D-loop and CO-2 genes, respectively) (R Core Team, 2014, Komsta, 2011).  

As a result, we excluded the 24-hour group and reanalyzed the time-course experiment 

data.  This allowed us to demonstrate a significant change in the number of intact 

copies per cell for the CO-2 gene at the 3-, 6-, and 12-hour time-points, and for the D-

loop gene at 6- and 12-hours following treatment with the 10-Biphenoxy AIM (Figure 

3.21). 
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Figure 3.19 mtDNA damage following treatment with 10-Biphenoxy AIM 

Treatment with 1 µM 10-Biphenoxy AIM causes a significant increase in the percent 

damage in CO-2 gene of mtDNA at 3 hours and 6 hours.  Error bars represent standard 

deviation.  Dunnett post-hoc test used for comparisons between treatment and control 

groups.  Symbols represent significance levels (P < 0.05 *, P < 0.01 **, P < 0.001 ***) 

(n=3). 
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Figure 3.20 Intact copy number of mtDNA following treatment with 10-Biphenoxy AIM 

Treatment with 1 µM 10-Biphenoxy AIM causes a decrease in the intact copies per cell 

of two mtDNA markers (CO-2 & D-loop) after 6 hours.  Error bars represent standard 

deviation.  Dunnett post-hoc test used for comparisons between treatment and control 

groups.  Symbols represent significance levels (P < 0.05 *, P < 0.01 **, P < 0.001 ***) 

(n=3). 
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Figure 3.21 Intact copy number of mtDNA following treatment with 10-Biphenoxy AIM 

Treatment with 1 µM 10-Biphenoxy AIM causes a decrease in the intact copies per cell 

of two mtDNA markers (CO-2 & D-loop) at multiple time points.  Same as previous 

figure except with 24-hour group excluded from analysis due to significantly higher 

variance in the group as determined by Cochran’s C test (P = 0.03 and P = 0.002 for D-

loop and CO-2 genes, respectively).  Error bars represent standard deviation.  Dunnett 

post-hoc test used for comparisons between treatment and control groups.  Symbols 

represent significance levels (P < 0.05 *, P < 0.01 **, P < 0.001 ***) (n=3). 
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AIMs Induce Apoptosis in Glioblastoma Cells 

 Apoptosis was measured in SNB-19 human glioblastoma cells following 

treatment with the AIMs using flow cytometry in conjunction with Annexin-V and 

propidium iodide staining.  The Annexin-V / PI results confirmed induction of apoptosis 

in SNB-19 glioblastoma cells by the 10-Biphenoxy AIM (Figure 3.22).  Statistical 

analysis performed for the 10-Biphenoxy AIM showed a significant decrease in the 

healthy cell population for the 2.5 µM and 5 µM treatments (Figure 3.23).  The 5 µM 10-

Biphenoxy AIM treated samples showed a significant increase in apoptosis with a mean 

of 92.8% of the total cell population versus only 3.9% observed in the control samples.  

There was also a significant decrease observed in the amount of necrosis in the 5 µM 

treatment versus control samples.  These results suggest the AIMs are potent activators 

of apoptosis in glioblastoma cells without causing an increase in necrosis. 
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DMSO Control 1 µM Biphenoxy AIM 

  

2.5 µM Biphenoxy AIM 5 µM Biphenoxy AIM 

  

 

Figure 3.22 Dot-plots of the flow cytometry experiments with Annexin-V/PI 

Representative dot-plots of the flow cytometry experiments with Annexin-V and 

propidium iodide staining.  Quadrants are defined as follows: Q1 is necrosis, Q2 is late 

apoptosis, Q3 is early apoptosis, and Q4 is healthy non-apoptotic cells. 

Q1
0.78

Q2
7.78

Q3
3.95

Q4
87.5

Annexin-V →

Pr
op

id
iu

m
 Io

di
de

 →

Q1
0.67

Q2
6.19

Q3
5.80

Q4
87.3

Annexin-V →

Pr
op

id
iu

m
 Io

di
de

 →

Q1
0.81

Q2
9.65

Q3
6.03

Q4
83.5

Annexin-V →

Pr
op

id
iu

m
 Io

di
de

 →

Q1
0.42

Q2
4.95

Q3
90.7

Q4
3.90

Annexin-V →

Pr
op

id
iu

m
 Io

di
de

 →



 160 

 

Figure 3.23 Statistical analysis of the flow cytometry experiments with Annexin-V/PI 

Treatment with 5 µM of 10-Biphenoxy AIM for 24-hours causes a significant increase in 

early apoptosis (P = 0.0001).  A significant decrease in the population of healthy cells 

relative to control is observed for both the 2.5 µM and 5 µM 10-Biphenoxy AIM treated 

groups (P = 0.009 and P = 2E-16, respectively).  No increase in necrosis is observed for 

any 10-Biphenoxy treatment group.  Healthy ANOVA P = 1.58E-14.  Early Apoptosis 

ANOVA P = 1.21E-13.  Late Apoptosis ANOVA P = 1.11E-4.  Necrosis ANOVA P = 

0.04. Symbols represent significance levels (P < 0.05 *, P < 0.01 **, P < 0.001 ***) 

(n=3). 
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Treatment with AIMs Induces Loss of Mitochondrial Membrane Potential 

 To determine the effect of the 10-Biphenoxy AIM on the mitochondrial membrane 

potential, the mitochondrial dye JC-1 was utilized.  JC-1 accumulates in mitochondria 

with a normal mitochondrial membrane potential (ΔΨm) and the aggregates formed 

fluoresces red, however when there is a loss of the ΔΨm, the dye leaks into the cytosol 

where it becomes monomers which fluoresce green. 

In analysis of the JC-1 data utilizing only the 488 nm excitation wavelength, the 5 

µM 10-Biphenoxy AIM treated cells revealed a dramatic shift to 88.0% of cells 

demonstrating mitochondrial depolarization, as indicated by the green fluorescence of 

JC-1 monomers (Figure 3.24 and Figure 3.25).  This is in stark contrast to only 6.4% of 

cells showing mitochondrial depolarization in the control samples.  The positive control 

behaved as expected and the 50 µM CCCP treated group showed approximately 75.1% 

of the cells with depolarized mitochondria. 

Consideration of the data collected using the alternative excitation wavelength of 

405 nm to better distinguish JC-1 aggregates, we show that the increase in 

mitochondrial hyperpolarization, as defined by an increase in red fluorescence, was 

statistically significant for the 1 µM and 2.5 µM 10-Biphenoxy AIM treatment groups 

(Figure 3.26 and Figure 3.27).  The 5 µM 10-Biphenoxy AIM treatment group did not 

show a significant increase in hyperpolarization, however did show significant increases 

in partial and full depolarization populations as they were defined by our gating strategy, 

and this is similar to that observed for the 50 µM CCCP positive control group.  As a 

result, the percentage of cells displaying normal mitochondrial polarization showed a 
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dose-dependent decrease with increasing concentrations of 10-Biphenoxy AIM 

treatment. 
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DMSO Control 1 µM Biphenoxy AIM 

  
2.5 µM Biphenoxy AIM 5 µM Biphenoxy AIM 

  
50 µM CCCP (Positive Control)  

 

 

 
Figure 3.24 Dot-plots of the flow cytometry experiments with JC-1 at 488 nm 

Representative dot-plots of the flow cytometry experiments with JC-1 staining and 488 

nm excitation.  Gated area is defined as JC-1 monomers indicated by a decrease in red 

fluorescence (529 nm) and increase in green fluorescence (590 nm). 
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Figure 3.25 Analysis of mitochondrial membrane potential using JC-1 at 488 nm 

24-hour treatment with 5 µM 10-Biphenoxy AIM causes a decrease in mitochondrial 

membrane potential observed as a significant increase of JC-1 monomers in SNB-19 

human glioblastoma cells (P = <2E-16).  50 µM CCCP used as a positive control (P = < 

2E-16).  ANOVA P = 6.18E-12.  Error bars represent standard deviation.  Dunnett post-

hoc test used for comparisons between treatment and control groups.  Symbols 

represent significance levels (P < 0.05 *, P < 0.01 **, P < 0.001 ***) (n=3). 
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DMSO Control 1 µM Biphenoxy AIM 

  
2.5 µM Biphenoxy AIM 5 µM Biphenoxy AIM 

  
50 µM CCCP (Positive Control)  

 

 

 
Figure 3.26 Analysis of mitochondrial membrane potential using JC-1 at 405/488 nm 

Representative dot-plots of the flow cytometry experiments with JC-1 staining and 

excitation at 405 nm and 488 nm.  Quadrants are defined as follows: Q1 is 

hyperpolarized (­ red fluorescence), Q2 is partially depolarized (­ green & ­ red 

fluorescence), Q3 depolarized (­ green fluorescence), and Q4 is normal (control level 

red and green fluorescence).    

Q1
1.32

Q2
0.46

Q3
7.65

Q4
90.5

0-10
2

10
2

10
3

10
4

10
5

10
6

Green Fluorescence →

0
-10

2
10

2

10
3

10
4

10
5

10
6

R
ed

 F
lu

or
es

ce
nc

e 
→

Q1
23.2

Q2
1.14

Q3
2.26

Q4
75.5

0-10
2

10
2

10
3

10
4

10
5

10
6

Green Fluorescence →

0
-10

2
10

2

10
3

10
4

10
5

10
6

R
ed

 F
lu

or
es

ce
nc

e 
→

Q1
36.2

Q2
1.80

Q3
1.39

Q4
63.8

0-10
2

10
2

10
3

10
4

10
5

10
6

Green Fluorescence →

0
-10

2
10

2

10
3

10
4

10
5

10
6

R
ed

 F
lu

or
es

ce
nc

e 
→

Q1
4.70

Q2
22.7

Q3
37.4

Q4
37.0

0-10
2

10
2

10
3

10
4

10
5

10
6

Green Fluorescence →

0
-10

2
10

2

10
3

10
4

10
5

10
6

R
ed

 F
lu

or
es

ce
nc

e 
→

Q1
7.74

Q2
7.60

Q3
31.2

Q4
54.6

0-10
2

10
2

10
3

10
4

10
5

10
6

Green Fluorescence →

0
-10

2
10

2

10
3

10
4

10
5

10
6

R
ed

 F
lu

or
es

ce
nc

e 
→



 166 

 

Figure 3.27 Analysis of mitochondrial membrane potential using JC-1 at 405/488 nm 

24-hour treatment with 10-Biphenoxy AIM at increasing concentrations effects the 

mitochondrial membrane potential in SNB-19 human glioblastoma cells.  50 µM CCCP 

used as a positive control.  Hyperpolarized (ΔΨm) ANOVA P = 0.0005.  Depolarized 

(ΔΨm) ANOVA P = 1.14E-05.  Partial Depolarization (ΔΨm) ANOVA P = 0.001.  Normal 

(ΔΨm) ANOVA P = 0.007.  Error bars represent standard deviation.  Dunnett post-hoc 

test used for comparisons between treatment and control groups.  Symbols represent 

significance levels (P < 0.05 *, P < 0.01 **, P < 0.001 ***). 
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AIMs Induce the Mitochondrial-mediated Intrinsic Pathway of Apoptosis 

To measure activation of the intrinsic pathway of apoptosis, we performed flow 

cytometry experiments with SR-LEHD-FMK and SR-DEVD-FMK staining to detect 

activity of caspases 9 and 3/7, respectively.  Caspase-9 is an initiator caspase and is 

involved in formation of the apoptosome that is responsible for cleavage of executioner 

pro-caspases-3 and 7 to their active forms.  These data showed a significant 1.7-fold 

increase in caspase-9 staining in the 5 µM 10-Biphenoxy AIM treatment group in SNB-

19 glioblastoma cells (Figure 3.28 and Figure 3.29).  Importantly, the increase in 

caspase-9 staining corresponded to a significant increase in caspase-3/7 staining 

(Figure 3.30 and Figure 3.31).  The increase in caspase-3/7 was approximately 1.9-

fold in the 5 µM 10-Biphenoxy AIM treatment group, similar to that observed for 

caspase-9.  The amount of caspase-3/7 staining appeared higher in the cells than 

caspase-9, however this is likely a result of the SR-DEVD-FMK staining both active 

caspases 3 and 7. 
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DMSO Control 1 µM Biphenoxy AIM 

  

2.5 µM Biphenoxy AIM 5 µM Biphenoxy AIM 

  

 
Figure 3.28 Dot-plots of the caspase-9 flow cytometry experiments 

Representative dot-plots of the flow cytometry experiments with SR-LEHD-FMK to stain 

for caspase-9 activity.  Gated region is defined as positive for caspase-9 activity. 
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Figure 3.29 Statistical analysis of the caspase-9 flow cytometry experiments 

Analysis of Caspase-9 activation using SR-LEHD-FMK revealed that 24-hour treatment 

with 5 µM 10-Biphenoxy AIM causes an increase in Caspase-9 activation in SNB-19 

human glioblastoma cells (P = 0.002).  ANOVA P = 0.003.  Error bars represent 

standard deviation.  Dunnett post-hoc test used for comparisons between treatment and 

control groups.  Symbols represent significance levels (P < 0.05 *, P < 0.01 **, P < 

0.001 ***). 
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DMSO Control 1 µM Biphenoxy AIM 

  

2.5 µM Biphenoxy AIM 5 µM Biphenoxy AIM 

  

 
Figure 3.30 Dot-plots of the caspase-3/7 flow cytometry experiments 

Representative dot-plots of the flow cytometry experiments with SR-DEVD-FMK to stain 

for caspase-3/7 activity.  Gated region is defined as positive for caspase-3/7 activity.  
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Figure 3.31 Statistical analysis of the caspase-3/7 flow cytometry experiments 

Analysis of Caspase-3/7 activation using SR-LEHD-FMK showed that 24-hour treatment 

with 2.5 µM and 5 µM 10-Biphenoxy AIM causes an increase in Caspase-3/7 activation 

in SNB-19 human glioblastoma cells (2.5 µM treatment P = 0.05, 5 µM treatment P = 

0.002).  ANOVA P = 0.004.  Error bars represent standard deviation.  Dunnett post-hoc 

test used for comparisons between treatment and control groups.  Symbols represent 

significance levels (P < 0.05 *, P < 0.01 **, P < 0.001 ***) (n=3). 
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Discussion 

 In this work we elucidated a mitochondrial mechanism of action for the AIMs in 

tumor cells.  We also have provided evidence that suggests this mechanism contributes 

to their antitumor activity.  These data support the hypothesis that the AIMs can inhibit 

activity of ETC protein complexes and induce loss of the mitochondrial membrane 

potential (ΔΨm). 

Our confocal imaging experiments revealed that the auto-fluorescent AIMs 

display punctate binding in glioblastoma cells, indicating a distinct molecular target.  

Furthermore, the AIMs did not show a significant amount of fluorescence in the nucleus 

of SNB-19 cells (Appendix Figure A.3.2).  This should be an important consideration 

when considering the AIMs potential interactions with quadruplex DNA in the nucleus, 

as has been the focus of previous work by our laboratory and collaborators (Gajewski et 

al. 2009; Han et al. 2009; Mirzaei et al. 2012; Weaver et al. 2015).  However, this does 

not rule out the possibility of AIMs interaction with quadruplexes in nuclear DNA, as 

quenching of the AIMs fluorescence has been shown previously to occur when binding 

quadruplex structures (Han et al. 2009).  In contrast, the AIMs did appear to colocalize 

with the MitoTracker™ mitochondria specific fluorescent dye (Figure 3.6 and Figure 

3.7).  Inspection of the AIMs structure suggested it could accumulate in mitochondria, 

as this has been seen for other structures with similar lipophilic molecules containing 

tertiary amines (Smiley et al. 1991; Gorlach, Fichna, and Lewandowska 2015).  This led 

us to determine the cytotoxicity of the AIMs using an LDH cell viability assay not 

dependent on mitochondrial health for comparison to our previous MTT cell viability 

experiments that could be affected by mitochondria reductase activity. 
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The MTT cell viability results indicated the AIMs cause toxicity in tumor cells at 

low- to sub-micromolar concentrations in human glioblastoma cells (Figure 3.2 and 

Table 3.7). The LDH results overall showed less toxicity when compared to MTT results 

for the same cell lines and compounds (Table 3.7 and Table 3.8).  This can be 

interpreted in several ways, as the assays are different measures of cell viability.  It was 

postulated that one possible scenario would be the mitochondrial reductases 

responsible for reducing the MTT dye were being inhibited by the AIMs.  This could 

produce a lower measured IC50 in the MTT experiments relative to LDH; if the enzymes 

responsible for conversion of MTT to the measurable formazan were inhibited, it would 

appear less cells were viable in the assay.  However, one other possibility was a 

difference in toxicity due to the four-day incubation period that was utilized in the MTT 

experiments.  In the LDH experiments, the AIMs also displayed higher toxicity in the 

primary rat astrocytes compared to the rat glioma cell line (Table 3.8).  This is 

concerning, as the AIMs are being pursued as potential anticancer therapeutics.  

However, species differences (rat vs. human) and the specific mutations present in the 

C6 rat glioma cells may play a role in the toxicity of the AIMs.  Taken together, this 

suggests the AIMs should be tested in healthy human astrocytes and potentially other 

cancer lineages.  To determine if the AIMs were affecting mitochondrial reductase 

activity as suggested by comparison of the MTT and LDH data, we performed activity 

experiments in ETC complex proteins isolated from mitochondria and in whole intact 

mitochondria. 

The electron transport chain activity assays contributed several important 

findings regarding the activity of the AIMs on mitochondria.  Primarily, the studies 
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demonstrate that the AIMs can act as low-micromolar inhibitors of ETC protein 

complexes in intact mitochondria, and more specifically in isolated Complex II (Table 

3.9).  This is a significant result as it demonstrates a plausible mitochondrial mechanism 

of action for the AIMs.  Complex II inhibition has been documented for other antitumor 

agents as their major mechanism of action (Chen et al. 2007; L.-F. Dong et al. 2008; 

Ralph et al. 2011).  In addition, the inhibition of Complex II was greater for the 10-

Biphenoxy AIM than the 10-Phenyl AIM, and this is consistent with their relative 

induction of apoptosis in SNB-19 cells as demonstrated in the LDH cell viability results.  

The Complex II + III assay also verifies inhibition in intact mitochondria, but as the assay 

cannot distinguish between Complex II or Complex III inhibition, it is possible the AIMs 

have activity at both.  However, it is noted that the inhibition in the intact mitochondria is 

less for both compounds and this would not be expected if a combined inhibitory effect 

was present.  It was also noted that the ratio of inhibition (10-Biphenoxy vs. 10-Phenyl) 

is also approximately two-fold greater in the Complex II only assay relative to the assay 

measuring combined Complex II + III activity. Together, these results could indicate that 

the activity at Complex II is the major inhibition target of the AIMs and this will be an 

important distinguishment in future studies.  To examine the potential mechanism of 

binding of the AIMs to Complex II, molecular docking studies were performed in 

collaboration with the Molecular Computational Core Facility (MCCF) at the University of 

Montana. 

Our molecular docking results suggest the AIMs are able to bind the ubiquinone 

sites of Complex II (Table 3.10 and Table 3.11).  These have been reported as binding 

sites for other Complex II inhibitors in the literature (Miyadera et al. 2003; Sun et al. 
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2005).  The poses generated by the GOLD docking algorithm also are chemically 

reasonable and the potential molecular interactions observed suggest the AIMs could fit 

and anchor themselves in the ubiquinone binding pockets (Figure 3.15 and Figure 

3.17). Although the molecular docking studies do not prove the mechanism of AIMs 

interaction with Complex II, the results could serve as an initial binding hypothesis for 

continued development of AIMs as ubiquinone-site inhibitors. Overall, the molecular 

docking studies were promising and were in support of our biochemical data. 

Our laboratory has previously observed an increase in mitochondrial ROS 

following AIMs treatment (Kearns 2013).  This is consistent with reports in the literature 

that inhibition of the mitochondrial ETC at various protein complexes can cause 

generation of ROS as superoxide and hydrogen peroxide (Sun et al. 2005; Chen et al. 

2007; L.-F. Dong et al. 2008; Bleier and Dröse 2013).  The production of ROS from 

mitochondrial ETC complexes has also been reported previously to cause damage to 

mtDNA  (Lan-Feng Dong et al. 2007).  With this in mind, we performed a time-course 

study using the AIM measured as the most potent complex II inhibitor to determine the 

effect of treatment on mtDNA. 

The 10-Biphenoxy AIM was also shown to reversibly induce mtDNA damage and 

reduce mtDNA copy number in glioblastoma cells (Figure 3.19, Figure 3.20, and 

Figure 3.21).  These findings were consistent with results previously observed where 

hydrogen peroxide treatment caused mtDNA damage and mtDNA copy number 

reduction, followed by recovery of mtDNA integrity at 24 hours in prostate cancer cells 

(Chan and Chen 2009).  Additionally, hydrogen peroxide treatment has also been 

shown to lead to loss of ΔΨm in cells (Li et al. 2003).  Taken together, our findings and 
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reports in the literature serve to reinforce our hypothesis that the increase in 

mitochondrial ROS following treatment with the AIMs is contributing to damage in 

mitochondria resulting in loss of ΔΨm. 

The loss of ΔΨm in glioblastoma cells following treatment with AIMs was 

demonstrated by our experiments using JC-1 with both a classical and alternative 

method of analysis.  The results suggest that low concentrations of AIMs treatment 

result in hyperpolarization of the mitochondria (Figure 3.25 and Figure 3.27).  This is 

consistent with our theory of Complex II mediated increase in oxidative stress causing 

hyperpolarization prior to permeabilization of the mitochondria membrane and the 

subsequent loss of ΔΨm.  Interestingly, it has also been previously observed that the 

hyperpolarization event occurs at the same time as the excessive ROS generation 

(Zorov, Juhaszova, and Sollott 2006).  Our results also showed a dose-dependent 

decrease in the number of cells with a normal ΔΨm with increasing doses of the 10-

Biphenoxy AIM.  These results suggested that the AIMs are disrupting ΔΨm; the loss of 

ΔΨm is also consistent with previous studies of ETC complex inhibitors effect on 

mitochondria leading to apoptosis in tumor cells (L.-F. Dong et al. 2008; Byun et al. 

2008; Ralph et al. 2011; Wang et al. 2016). 

 Our results also confirm activation of the mitochondrial-mediated intrinsic 

pathway of apoptosis, measured as an increase in caspase-9 activation (Figure 3.29).  

Furthermore, caspase-9 activity resulted in a measured increase in activity of 

executioner caspases 3/7 (Figure 3.31).  This confirms formation of the apoptosome by 

activated caspase-9, and initiation of intrinsic apoptosis.  Finally, induction of apoptosis 

in glioblastoma cells without a significant increase in necrosis was confirmed by 
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Annexin-V and propidium iodide staining (Figure 3.23).  Overall, our flow cytometry 

experiments demonstrate that the AIMs are inducing intrinsic apoptosis in glioblastoma 

cells leading to caspase activation and tumor cell death. 

 

Figure 3.32   

Our working hypothesis of the mechanism of intrinsic apoptosis induction by the AIMs 

through inhibition of ETC protein complexes in mitochondria. 

 

Collectively, these studies have provided strong evidence in support of a novel 

mitochondrial-associated mechanism of apoptosis, mediated through inhibition of ETC 

protein complexes, as a contributor to the antitumor activity of the AIMs (Figure 3.32).    

Future studies will investigate the mechanism of Complex II inhibition in depth with a 

focus on binding kinetics and measure the effect of AIMs on respiration and ATP 

production in mitochondria.  This work will act as the foundation for exploring the 

possibility of using AIMs designed to target Complex II as potential antitumor agents 

and guide the continued structure-based drug design of the AIMs. 
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Appendix 

10-Quinoline AIM 10-Phenyl AIM 10-Biphenoxy AIM 

   

Figure A.3.1   

SNB-19 cells treated with 1 µM of the 10-Quinoline AIM (left), 1 µM of the 10-Phenyl 

AIM (middle), and 1 µM of the 10-Biphenoxy AIM (right). 

 

10-Quinoline AIM HCS Nuclear Mask Overlay 

   

Figure A.3.2   

SNB-19 cells treated with 1 µM of the 10-Quinoline AIM (green, left), 1x HCS Nuclear 

Mask (magenta, middle), and overlay (white, right).  Scale bar shown is 20 µM. 
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Figure A.3.3   

Example of MDA-468 dose-response curve generated using the MTT cell viability assay 

as described (intermediate range).  Error bars represent standard deviations, IC50 

shown as a vertical black line with dotted lines representing the respective 95% 

confidence interval. 
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Figure A.3.4 

Example of C6 dose-response curve generated using the MTT cell viability assay as 

described (intermediate range).  Error bars represent standard deviations, IC50 shown 

as a vertical black line with dotted lines representing the respective 95% confidence 

interval. 
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Figure A.3.5 

Example of SNB-19 dose-response curve generated using the MTT cell viability assay 

as described (intermediate range).  Error bars represent standard deviations, IC50 

shown as a vertical black line with dotted lines representing the respective 95% 

confidence interval. 
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SNB-19 

(Human Glioblastoma) 
 

MDA-468 

(Human Breast Cancer) 
 

C6 

(Rat Glioma) 

MTT 
 
IC50 (µM) 95% CI (±) 

 
IC50 (µM) 95% CI (±) 

 
IC50 (µM) 95% CI (±) 

Chloro 
 
2.41*‡ 0.55* 

      
Phenyl 

 
0.89*§ 0.02* 

 
0.82 0.03 

   
Biphenoxy 

 
0.68 0.04 

      
O-Pyridyl 

 
>25 

  
6.34† 0.67 

 
>25 

 
M-Pyridyl 

 
7.76 0.42 

 
1.29† 0.3 

 
>25 

 
P-Pyridyl 

 
7.08 0.26 

 
3.1† 0.27 

 
16.94 0.5 

Quinoline 
 
2.03 0.09 

 
1.17† 0.25 

 
6.71 0.12 

*Previously published in BMCL, error for these values is ±Standard Deviation 
§Matthew J. Weaver and ‡Alison K. Kearns performed these experiments. 
†Michael J. Campbell contributed to these experiments. 
 
Table A.3.1   

Summary of MTT Results for 10-substituted AIMs.  
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SNB-19 

(Human Glioblastoma) 
 

C6 

(Rat Glioma) 
 

E-18 

(Primary Rat Astrocytes) 

Compound 
 
IC50 (µM) 95% CI (±) 

 
IC50 (µM) 95% CI (±) 

 
IC50 (µM) 95% CI (±) 

10-Phenyl AIM 
 

5.92 0.68 
 

3.76 0.12 
 

2.20 0.16 

10-Biphenoxy AIM 
 

4.44 0.16 
 

3.83 0.10 
 

2.09 0.20 

10-Quinoline AIM     17.46 0.58  18.32 0.76 

 
Table A.3.2 

Summary of LDH Results for 10-substituted AIMs.  
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Complex I 

 

Figure A.3.6 

Complex I Inhibition by Rotenone 

Points represent individual measurements, curve represents three-parameter logistic fit 

with shaded area indicating the 95% confidence interval of the fit. (n=3) 
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Figure A.3.7  

Complex I Inhibition by 10-Phenyl AIM 

Points represent individual measurements. (n=3) 
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Figure A.3.8   

Complex I Inhibition by 10-Biphenoxy AIM 

Points represent individual measurements. (n=3) 
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Complex II + III 

 

Figure A.3.9 

Complex II + III inhibition curve for Antimycin A in intact mitochondria.  Points represent 

individual measurements, curve represents three-parameter logistic fit with shaded area 

indicating the 95% confidence interval of the fit. (n=3) 
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Complex IV 

 

Figure A.3.10   

Complex IV Inhibition by 10-Phenyl AIM 

Points represent individual measurements, curve represents three-parameter logistic fit 

with shaded area indicating the 95% confidence interval of the fit. (n=3) 
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Figure A.3.11  

Complex IV Inhibition by 10-Biphenoxy AIM 

Points represent individual measurements, curve represents three-parameter logistic fit 

with shaded area indicating the 95% confidence interval of the fit. (n=3) 
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Figure A.3.12 

Standards curves for D-loop mtDNA marker.  Analysis 1 contained two control samples, 

three 12-hour samples and three 24-hour samples (native & relaxed).  Analysis 2 

contained one control sample, three 3-hour samples, and three 6-hour samples (native 

& relaxed).  An exponential fit used to generate the standard curve.  
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Figure A.3.13 

Standards curves for CO-2 mtDNA marker.  Analysis 1 contained two control samples, 

three 12-hour samples and three 24-hour samples (native & relaxed).  Analysis 2 

contained one control sample, three 3-hour samples, and three 6-hour samples (native 

& relaxed).  An exponential fit used to generate the standard curve. 

 

  

Figure A.3.14 

Standards curves for Calicin nuclear DNA marker.  Analysis 1 contained two control 

samples, three 12-hour samples and three 24-hour samples (native & relaxed).  

Analysis 2 contained one control sample, three 3-hour samples, and three 6-hour 

samples (native & relaxed).  An exponential fit used to generate the standard curve. 
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mtDNA Damage and Copy Number (10-Phenyl AIM) 

  

Figure A.3.15 

Results for 1 µM treatment with 10-Phenyl AIM in D-loop gene of mtDNA (n=2) 

  

Figure A.3.16 

Results for 1 µM treatment with 10-Phenyl AIM in CO-2 gene of mtDNA (n=2) 
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Figure A.3.17 

Annexin-V/PI staining of 24-hour treatment with 10-Phenyl AIM at increasing 

concentrations in SNB-19 human glioblastoma cells.  Results of one experiment. 
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Figure A.3.18 

Annexin-V/PI staining of 24-hour treatment with 10-Quinoline AIM at increasing 

concentrations in SNB-19 human glioblastoma cells.  Results of one experiment. 
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Abstract 

 It has been demonstrated previously that certain forms of cancer overexpress an 

enzyme known as NAD(P)H:quinone oxidoreductase 1 (NQO1).  NQO1 can act to 

bioactivate antitumor agents through a reductive mechanism.  Previous reports have 

suggested structural analogs of the 5,8-quinolinedione moiety of the naturally occurring 

compound lavendamycin could serve as substrates for NQO1 and cause apoptosis in 

tumor cells through bioactivation and redox cycling.  In this work, we measure the 

activity of a novel set of 5,8-quinolinedione analogs in parent breast tumor cells and 

those overexpressing recombinant NQO1.  We also determine the suitability of this set 

of compounds as substrates for NQO1 using a spectrophotometric assay. 

 

Introduction 

NAD(P)H:quinone oxidoreductase 1 (NQO1) is a cytosolic, two-electron 

reductase that is characterized by its capacity for using either NADH or NADPH as 

reducing cofactors.  NQO1 has been categorized as a detoxification enzyme, and it can 

protect the cell from a broad range of chemically reactive metabolites (Riley and 

Workman 1992; Talalay and Dinkova-Kostova 2004).  However, NQO1 can also 

function as an activating enzyme and can reduce quinones and other bioreductive 

antitumor agents to form reactive metabolites that can damage DNA through alkylation, 

crosslinking, or generation of reactive oxygen species (Ross et al. 2000). 

In previous studies, the NQO1 activity in cancer cells has been positively 

correlated with the cytotoxicity of quinone antitumor agents  (H. D. Beall et al. 1995; 

Plumb, Gerritsen, and Workman 1994; Robertson et al. 1994).  Multiple series of indole- 
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and quinolinedione agents have been reported to be selectively toxic to cell lines with 

high NQO1 expression relative to those deficient in NQO1  (Howard D. Beall et al. 1998; 

Swann et al. 2001; Fryatt et al. 2004).  Increased NQO1 expression has also been 

observed in tumors or cell lines from lung, liver, colon, and breast cancer (Schlager and 

Powis 1990; Malkinson et al. 1992; Cresteil and Jaiswal 1991). 

Lavendamycin is a naturally occurring antibiotic that has been shown to have 

potent antitumor activity (Doyle et al. 1981) (Figure 4.1).  However, due to the non-

specific cytotoxicity observed with lavendamycin it is not used clinically (Fang et al. 

2003).  As a result of this, many synthetic analogs of lavendamycin have been 

developed to improve its solubility and therapeutic index (Hassani et al. 2005, 2008; Cai 

et al. 2010).  It has also been reported that synthetic analogs containing the 5,8-

quinolinedione moiety found in lavendamycin can overcome the associated non-specific 

cytotoxicity and be used as selective antitumor agents in cells overexpressing NQO1 

(Cai et al. 2010).  Together, these previous findings suggest there is potential for 

creating lavendamycin-inspired 5,8-quinolinedione analogs with improved efficacy and 

selectivity for treatment of cancers that overexpress NQO1. 

 

 
Figure 4.1 Structure of Lavendamycin 

(Keyari et al. 2013) 
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In this study we explored the cytotoxic effects of a set of novel 5,8-

quinolinediones (Figure 4.2; synthesis and characterization by Rob Sammelson’s 

laboratory at Ball State University, Muncie, IN) in two breast tumor cell lines with 

differing amounts of NQO1 expression to assess the relative cytotoxicity of these 

compounds by MTT assay. The MDA-468-WT breast tumor cell line was previously 

shown to have no measurable NQO1 activity.  In contrast, the MDA-468-NQ16 cell line, 

which has been stably transfected with NQO1, was shown to have approximately 1070 

nmol/min/mg (total cell protein) NQO1 activity as measured by reduction of 

dichlorophenolindophenol (DCPIP) (Keyari et al. 2013).  In addition, we performed a 

previously developed quinone reduction assay to determine the suitability of these 

compounds as substrates for NQO1-dependent reduction and subsequent re-oxidation, 

as measured by their ability to reduce cytochrome c (Keyari et al. 2013). 
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Figure 4.2 Novel 5,8-quinolinediones 
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Methods 

Cell Viability Assay 

MDA-468-WT or MDA-468-NQ16 cells were grown in RPMI-1640 medium with 

10% FBS, L-Glutamine (2 mM) and Penicillin-Streptomycin (1x, 100 µg/mL) added to 80 

- 90% confluence under optimal growth conditions (37 C, 5% CO2, humidified 

atmosphere).  Cells were washed with PBS (2 mL) and then treated with Trypsin EDTA 

(2 mL) to detach cells from culture flask prior to counting with a Coulter counter.  Cells 

were diluted to 10,000 cells / mL and plated on a 96-well plate with 100 µL per well 

(1000 cells / well).  Cells were grown in optimal growth conditions and allowed to adhere 

overnight. Treatment solutions were prepared in growth medium at various 

concentrations using a 5 mM compound stock solution prepared previously in sterile 

DMSO.  Medium was removed from the 96-well plate via aspiration and treatment 

solutions were added as outlined for the intermediate treatment range (Table 4.1). Cells 

were grown in treatment medium for 24 hours and then treatment medium was removed 

via aspiration and 100 µL of untreated growth medium was added to each well and cells 

were allowed to grow for a four-day growth period.  Following the growth period, 50 µL 

of MTT solution (1 mg/mL in growth medium) was added to each well and the 96-well 

plate was placed on a plate shaker for 5 minutes to mix.  The plate was then incubated 

at growth conditions for 4 hours before removing medium/MTT solution from the wells 

carefully via aspiration to avoid disturbing the formazan crystals.  One hundred µL of 

DMSO was then added to each well and the plate was placed on a plate shaker for 5 

minutes to dissolve the crystals.  A SpectraMax 190 plate reader was used to measure 
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the absorbance of the wells at 562 nm.  Three replicate experiments were run per 

compound. 

Table 4.1 96-well Plate Layout MTT Assay (Intermediate Range) 

Column: #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 

Treatment: 
No 

Cells 

Medium 

Control 

DMSO 

Control 

 

0.1 µM 

 

0.25 

µM 
0.5 µM 1 µM 2.5 µM 5 µM 10 µM 25 µM 

DMSO 

Control 

 

Data Analysis 

IC50 values were calculated using the ‘R’ statistical computing software and the ‘ic50’ 

package (R Core Team, 2014; Frommolt, 2010).  This package fits a logistic model to 

the dose-response data collected using the MTT assay and approximates the 

concentration of the compound required to inhibit the growth of the cells by 50% versus 

the DMSO control (IC50). 

 

Quinone Reduction Assay 

5,8-quinolinedione reduction was measured using a previously published method 

(Keyari et al. 2013).  The reaction mixture consisted of 70 µM cytochrome c combined 

with either 1 µg  (RRS-01 – RRS-08) or 0.25 µg (RRS-09 – RRS-12) of recombinant 

hNQO1 (gift from David Ross, University of Colorado Denver, Denver, CO) in a solution 

containing 25 µM of the test compound, 0.7 mg/mL of BSA, 0.1% Tween-20 and 25 mM 

Tris Buffer at pH 7.4.  Immediately prior to reading, 1 mM of NADH from a 20 mM stock 

was added to create a final volume of 1 mL in a cuvette with a 10 mm pathlength.  The 

solution was inverted to mix and change in absorbance at 550 nm was recorded 
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immediately using a SpectraMax M4 microplate reader in kinetic mode for 30 seconds.  

Each reaction was performed in triplicate.  Quinone reduction was defined as the rate of 

cytochrome c reduction in µmol/min/mg NQO1. 

Results 

Cell Viability 

 Cytotoxicity to the MDA-468 WT and NQ16 cells was determined using the MTT 

cell viability assay (Table 4.2).  All of the novel analogs were active against both cell 

lines at the single digit micromolar level, and several of the 5,8-quinolinedione showed 

submicromolar activity in the MDA-468 breast tumor cells.  The most active compound 

was the methyloxymethylisoxazole, RRS-10, with an IC50 value of 269 nM.  Three of the 

four N-hydroxyimino derivatives showed increased toxicity to the NQO1-transfected 

variant suggesting a role for this enzyme in selective toxicity.  RRS-02 had the highest 

WT/NQO1 IC50 ratio of 1.84, indicating a nearly two-fold greater toxicity to the NQO1-

expressing cells.  Cytotoxicity was greater going from R = methyl to R = isopropyl for 

the N-hydroxyimino compounds (RRS-01 – RRS-04), the reverse for t-butylisoxazoles 

(RRS-05 – RRS-08), and mixed for the methyoxymethylisoxazoles (RRS-09 – RRS-12). 
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Table 4.2 Cell viability results for RRS compounds 

Cell Viability Results 

Cell Line: MDA-468-WT MDA-468-NQ16 WT/NQ16 

Compound IC50 (µM) ± 95% CI IC50 (µM) ± 95% CI IC50 Ratio 

RRS-01 3.84 0.05 4.33 0.72 0.89 
 

RRS-02 2.99 0.18 1.62 0.10 1.84 

RRS-03 1.43 0.09 1.40 0.08 1.02 

RRS-04 1.35 0.12 0.81 0.04 1.67 

RRS-05 0.95 0.08 0.80 0.14 1.18 

RRS-06 1.13 0.07 1.66 0.07 0.68 

RRS-07 1.46 0.08 1.97 0.26 0.74 

RRS-08 3.16 0.13 3.68 0.05 0.86 

RRS-09 0.83 0.09 1.83 0.24 0.45 

RRS-10 0.27 0.02 0.45 0.02 0.60 

RRS-11 0.80 0.06 1.19 0.08 0.67 

RRS-12 0.73 0.03 0.63 0.04 1.17 

Table 4.2  

MTT Cell Viability Results for RRS compounds in MDA-468-WT and MDA-NQ16 breast 

cancer cells.  (n=3) 
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Quinone Reduction 

Quinone reduction was monitored using a spectrophotometric assay that 

measures cytochrome c reduction by the NQO1-reduced 5,8-quinolinedione (Table 

4.3). The methyloxymethylisoxazole compounds (RRS-09 – RRS-12) were by far the 

best NQO1 substrates, with reduction rates of approximately 100 µmol/min/mg NQO1.  

NQO1 reduction rates generally decreased with bulk at R as expected (exception was 

RRS-12).  Compound RRS-08 had the greatest bulk at both ends of the molecule and 

was by far the poorest substrate for NQO1. 

  



 210 

Table 4.3 Quinone reduction results for RRS compounds 

Quinone Reduction Results 

Compound Red. Rate 

(µmol/min/mg) 

± SD 

RRS-01 25.75 1.72 

RRS-02 18.03 0.42 

RRS-03 20.13 0.07 

RRS-04 12.42 0.11 

RRS-05 19.18 0.79 

RRS-06 16.31 0.12 

RRS-07 13.30 0.22 

RRS-08 2.47* 0.09 

RRS-09 121.97 3.44 

RRS-10 90.90 8.00 

RRS-11 88.51 3.47 

RRS-12 107.41 3.02 

Quinone reduction results for RRS compounds using recombinant hNQO1.  (n=3, *n=2) 
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Discussion 

The novel 5,8-quinolinediones have excellent activity against both the NQO1-null 

and NQO1-expressing MDA-468-WT breast tumor cells, but exhibited mixed results 

regarding selectivity to NQO1-expressing cells.  The most NQO1 selective compounds 

were RRS-02 and RRS-04, and the most NQO1 protective were RRS-09 and RRS-10.  

However, many of the other analogs showed better activity in the parent cells, 

suggesting that NQO1 is protective against those compounds. This has been shown 

previously for simple 5,8-quinolinediones, whereas those compounds that more closely 

resemble the lavendamycin structure tend to be more selective to NQO1-expressing 

cells (Hassani et al. 2005, 2008; Behforouz et al. 2007; Keyari et al. 2013).  This result 

could also be due to involvement of other reductases in the breast cancer cells acting to 

convert the RRS compounds to bioactive metabolites, as has been suggested 

previously for other quinone-based compounds (Beall and Winski 2000).  This 

explanation would also align with the observation that although the 

methyloxymethylisoxazole compounds (RRS-09 – RRS-12) were the most suitable 

reduction substrates for NQO1 and had the highest antitumor activity, higher NQO1 

expression was also protective to the tumor cells for these compounds. 
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Conclusions 

 Cancer is a disease that will cause a hardship in the life of nearly every person in 

one way or another, whether it be a personal diagnosis of that of a family or friend.  The 

National Cancer Institute estimates nearly 40% of individuals in the United States will 

face a cancer diagnosis at some point during their lifetime (Siegel, Miller, and Jemal 

2018).  Through research, we have made great progress in treating some types of 

cancer; however, for other forms such as malignant cancers of the brain and central 

nervous system, the prognosis has remained quite grim (American Cancer Society 

2014).  The limited success in treatment of certain aggressive forms of cancer such as 

glioblastoma highlights the need to develop new strategies to create more effective 

therapies (Y. Wang et al. 2017).  This will almost certainly require the examination of 

new mechanistic targets to allow for creation of more selective and potent antitumor 

agents.  In this work, we detail our significant findings from studies of three distinct 

molecular targets as they relate to development of novel antitumor agents. 

 

Quadruplex DNA 

 Targeting quadruplex DNA for treatment of cancer has been the focus of an 

increasing number of research groups over the past two decades.  This has been 

catalyzed by the discovery of quadruplex-forming DNA sequences in human gene 

promoter regions and telomeres (Burge et al. 2006; Balasubramanian, Hurley, and 

Neidle 2011).  The realization that stabilizing quadruplex structures with small molecule 

ligands could affect gene expression and prevent telomere elongation suggests 
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development of these compounds could lead to creation of promising new anticancer 

drugs (Neidle 2017).  

 

Structure of the human c-MYC promoter quadruplex 

 We have reported and characterized the first high-resolution crystal structure of 

the major quadruplex formed in the human c-MYC promoter region (Stump et al. 2018).  

The oncogene c-MYC is overexpressed in approximately 70% of all human cancers, 

and reduction in c-MYC expression has been reported to induce apoptosis in multiple 

tumor cell types (Siddiqui-Jain et al. 2002; Ou et al. 2007).  Stabilization of the 

quadruplex formed in the c-MYC promoter with small molecules has been demonstrated 

to inhibit transcription and expression of c-MYC.  These previous findings illustrate the 

significance of the high-resolution crystal structure reported in this work.  The core 

region of the crystal structure is similar to that observed in NMR solution studies, 

however the flanking regions showed a previously uncharacterized conformation and 

presented a plausible alternative binding hypothesis (Stump et al. 2018).  This crystal 

structure will aid future and current endeavors to selectively target the c-MYC promoter 

quadruplex for development of anticancer therapies. 

 

AIMs interact with quadruplex DNA structures 

 In this work we provided evidence that the AIMs interact with quadruplex DNA 

structures.  Our circular dichroism spectroscopy thermal melting studies demonstrate 

the AIMs increase the stability of both 3+1 mixed and fully parallel quadruplex 

topologies formed by human telomeric and c-MYC promoter sequences (Weaver et al. 
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2015).  In contrast, we observed no significant stabilizing effect on an anti-parallel 

quadruplex formed in the COX I gene of mitochondrial DNA (Huang et al. 2015).  This 

suggests the AIMs chemical structure may discriminate between different quadruplex 

topologies as it relates to their binding.  Discovery of small molecules with selectivity 

between different quadruplex topologies and loop structures may be necessary to 

develop better therapeutics; our findings with the AIMs may present an opportunity to 

design these types of selective ligands (Burge et al. 2006; Neidle 2017).  The results 

with the CSB II DNA:RNA hybrid quadruplex demonstrate the remarkable stability of this 

structure and suggest it must be resolved by an enzyme such as a helicase in 

mitochondria to allow for transcription and replication of mitochondrial DNA.  Our NMR 

studies further confirm interaction of the AIMs with c-MYC promoter and telomeric 

quadruplex DNA sequences through anisotropy induced by the presence of the 

compounds in solution.  The solution NMR results also provide insight about the specific 

molecular interactions involved in stabilization of the c-MYC promoter and telomeric 

quadruplexes by the AIMs.  These studies together are informing development of the 

next generation of AIM compounds by the Natale laboratory for targeting quadruplex 

DNA (Weaver et al. 2015). 

 

Mitochondria 

AIMs localize to mitochondria and can inhibit mitochondrial ETC complexes 

Our confocal microscopy studies reveal that the AIMs localize to the 

mitochondria of glioblastoma cells as indicated by their punctate staining and 

colocalization with a mitochondria specific dye.  We have also shown that the AIMs 
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inhibit activity of the electron transport chain, specifically Complex II, and we provided 

insights into the potential mechanism of binding.  Further, we demonstrated several 

expected downstream effects of ETC protein complex inhibition.  Our results indicate 

treatment with the AIMs causes rapid damage to mtDNA and a loss in the intact mtDNA 

copy number in glioblastoma cells.  We also measured a loss of mitochondrial 

membrane potential resulting from treatment with the AIMs.  These results suggested 

that hyperpolarization of the mitochondria occurs at low AIM treatment concentrations, 

and the literature suggests that this event may precede loss of the mitochondrial 

membrane potential (Zorov, Juhaszova, and Sollott 2006).  Our molecular docking 

calculations also provide an initial binding hypothesis for AIMs interaction with the 

ubiquinone sites of Complex II.  Together, these studies will inform continued 

development of the AIMs and could provide the basis for designing AIMs to target the 

ubiquinone sites of Complex II for treatment of cancer. 

 

AIMs induce the intrinsic pathway of apoptosis in glioblastoma cells 

This work shows that treatment with the AIMs in glioblastoma cells causes 

activation of the mitochondrial-dependent intrinsic pathway of apoptosis.  This finding 

reinforces our hypothesis that destabilization in mitochondria following AIMs treatment 

is contributing to the induction of apoptosis.  In addition, it further demonstrates that the 

AIMs can overcome the resistance to apoptosis, a known “hallmark of cancer”, and 

cause tumor cell death.  This was verified through measurement of activated caspase-9, 

an initiator caspase, and the downstream executioner caspases 3 and 7.  Further, we 

show that the AIMs cause an increase in apoptosis without a corresponding increase in 
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necrosis.  This lack of necrosis is favorable for antitumor agents as the necrotic process 

often damages surrounding healthy tissue. 

 

NAD(P)H Quinone Oxidoreductase 1 (NQO1) 

Novel quinolinedione analogs reduce cell viability in breast cancer cells and the effect is 

not dependent on NQO1 expression or compound suitability as a substrate for NQO1 

Our studies in collaboration with the Sammelson laboratory at Ball State 

University showed that a novel series of quinolinedione analogs had sub-micromolar 

efficacy against breast cancer cells.  We evaluated the series of compounds in both a 

parent cell line and those transfected to overexpress NQO1.  Our results show that the 

cytotoxicity of the quinolinedione analogs did not depend on NQO1 expression as we 

initially expected.  However, our experiments did demonstrate the suitability of the 

compounds for reduction by NQO1.  Taken together, these results indicate that this 

series of quinolinedione analogs has significant antitumor activity that is not related to 

NQO1 expression.  This suggests that the activity of these compounds may be due to 

interactions with other reductases present in the cell and presents an opportunity for 

continued research.  

 

Future Directions 

The findings of this work contributed to the understanding of important targets for 

anticancer drug development, and the mechanism of action underlying the activity of 

two classes of novel antitumor compounds.  As a result, this has uncovered several new 

questions and opportunities for future research. 
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AIMs Interactions with Quadruplex DNA 

 These studies have provided the basis for developing a more complete 

understanding of the AIMs interaction with quadruplex DNA.  Our crystallization 

experiments and the knowledge gained regarding the c-MYC promoter quadruplex have 

already begun to be applied to co-crystallization studies with the AIMs, and success in 

this endeavor will greatly benefit the continued development of these compounds. 

The CD spectroscopy experiments demonstrate the feasibility of utilizing this method for 

the AIMs and could be expanded to other quadruplex-forming DNA sequences to 

develop a better understanding of the AIMs measured preference for certain quadruplex 

topologies. 

 

AIMs Activity at the Electron Transport Chain 

Our work has shown the capability of the AIMs to inhibit the electron transport 

chain, specifically Complex II, and proposed an initial binding hypothesis for 

consideration.  However, studies to measure the impact of the AIMs on mitochondrial 

function in the presence of other ETC inhibitors could provide additional insights 

regarding their specificity for Complex II and the mechanism of inhibition.  Our cell 

viability studies with primary rat astrocytes highlight the importance of measuring the 

toxicity of these compounds against healthy human cells in the future.  It would also be 

prudent to screen the AIMs against additional tumor cell lines arising from types of 

cancer that have been shown to be sensitive to Complex II inhibition such as breast and 

skin cancer (L. Wang et al. 2016; Guo et al. 2016). 
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Summary 

 Collectively, this work has revealed several significant findings that will be 

important to future endeavors in antitumor drug development.  The characterization of 

the c-MYC promoter quadruplex we report is the first definitive high-resolution crystal 

structure of this important anticancer target and will provide the basis for design of 

targeted quadruplex-ligands.  Our mechanistic studies with the AIMs demonstrate a 

plausible mitochondrial mechanism of action through inhibition of the electron transport 

chain protein complexes, specifically Complex II, and disruption of the mitochondrial 

membrane potential.  This is a novel mechanism that has not been previously shown for 

these compounds and demonstrates their potential for development as mitochondrial 

medicines for treatment of cancer.  Taken together, the studies presented here advance 

the field of anticancer therapeutics through elucidation of the molecular structure of an 

important target, the c-MYC promoter quadruplex, and by laying the foundation for 

continued development of the AIMs as antitumor agents. 
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