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Abstract 
 

Burmeister, Rachel, M.S., May 2019            Toxicology 
 
Prevention of Crystalline Silica-Induced Inflammation by the Anti-Malarial Hydroxychloroquine 
 
Chairperson:  Andrij Holian 
 

 
Exposure to inhaled crystalline silica (cSiO2) is common in occupations where there is cutting, 
milling, or grinding of cSiO2 containing material. The Occupational Safety and Health 
Administration estimates that over 2 million workers may be exposed to inhaled cSiO2 in the 
United States. Inhalation of cSiO2 causes acute and chronic inflammation and may lead pulmonary 
diseases such as silicosis, as well as an increased risk of developing autoimmune diseases. 
Unfortunately, treatment of cSiO2-induced lung diseases is limited and primarily focused on 
supportive care.  
 
Inflammation caused by cSiO2 begins when, cSiO2 particles are phagocytized by alveolar 
macrophages. Interaction between the particle and lysosomal membrane results in damage to the 
phagolysosomal membrane; a state known as lysosomal membrane permeability (LMP). Leakage 
of lysosomal contents into the cytoplasm induces NLRP3 inflammasome activation leading to cell 
death and systemic inflammation. There are currently no pharmaceutical treatments that are 
directed at this mechanism of disease. Many existing pharmaceuticals become sequestered in the 
lysosome through an ion-trapping mechanism, and our laboratory aims to determine if these 
pharmaceuticals are capable of blocking permeabilization of the lysosomal membrane. Previously, 
our laboratory has shown that the tricyclic antidepressant, imipramine, blocks inflammatory 
cytokine production and toxicity in alveolar macrophages after exposure to cSiO2. The objective 
of this research is to determine whether another pharmaceutical, hydroxychloroquine, prevents 
cSiO2-induced toxicity by blocking LMP in alveolar macrophages. The ability to target the 
mechanism responsible for initiating particle-induced inflammation may lead to potential 
treatments and prevention strategies for people exposed to cSiO2. 
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Chapter 1: Background and Significance 

 1.1 Silica Exposure 
 

Exposure to inhaled crystalline silica particles (cSiO2) remains a significant occupational health 

concern. The Occupational Safety and Health Administration (OSHA) estimates that over 2 

million workers may be chronically exposed to inhaled cSiO2 in the United States alone (Bang et 

al., 2015). Lung disease caused by cSiO2 inhalation was recognized as an occupational hazard as 

far back as 1690 when Hippocrates observed that miners often developed difficulty breathing 

(Greenberg, Waksman, & Curtis, 2007). However, it is now known that cSiO2 exposure is 

associated with both pulmonary and systemic disease including pulmonary fibrosis, silicosis, 

chronic inflammation, and autoimmune diseases (Pollard, 2016). 

 

Materials containing cSiO2 are used for purposes ranging from building materials to electronic 

components (IARC, 2012). Exposure is most common in occupations such as mining, 

construction, and manufacturing where cSiO2 containing materials are mechanically disturbed 

creating inhalable aerosolized particles less than 10 µm in size (Leung, Yu, & Chen, 2012; Pollard, 

2016). While the use of control measures, including dust control and wet-milling practices, have 

been successful at reducing the cases of silicosis in the United States and other developed 

countries, overexposures happen regularly and low level exposures over long time-frames are 

common (Bang et al., 2015; Castranova & Vallyathan, 2000). Modern technologies are also 

creating new opportunities for exposure. Silica nanoparticles have become the most widely used 

nanotechnology and are being used extensively for biomedical purposes (J. Wang et al., 2017). In 

the developing world, cSiO2 exposure is more common due to a lack of regulation and use of 

personal protection equipment. Additionally, the demographics of cSiO2 exposed populations in 
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developing countries may be markedly different from developed nations. In the United States the 

majority of people employed in trades where cSiO2 exposure is likely have historically been men, 

and between 2001-2010 over 95% of silicosis cases in the United States were male. In developing 

countries women and children make up a significant portion of cSiO2 exposures due to the 

increased likelihood of these individuals being employed in unskilled work (Brass et al., 2010; 

Sharma, 2008; Tiwari, Saha, & Parikh, 2009).  

 

Pulmonary morbidities associated with the deposition of cSiO2 in the lungs include bronchitis, 

silicosis, chronic obstructive pulmonary disease, increased risk of tuberculosis infections, and 

cancer. Additionally, cSiO2 exposure is associated with development of systemic diseases 

including rheumatoid arthritis, scleroderma, systemic lupus erythematosus, and chronic renal 

disease (Leung et al., 2012; Pollard, 2016). This research focuses on the mechanisms following 

cSiO2 exposure that lead to silicosis. Silicosis is a fibrotic disease characterized by pulmonary 

edema, chronic interstitial inflammation, and the development of silicotic nodules (Kawasaki, 

2015). Silicosis is classified into several subtypes determined by the amount of cSiO2 inhaled and 

length of exposure period. Acute silicosis, also called silicoproteinosis, occurs after exposure to 

high levels of cSiO2 for a short period of time. During acute silicosis the alveolar spaces become 

filled with lipid and protein rich fluid and extensive neutrophilic infiltration occurs. Patients 

experience severe symptoms due to decreased gas exchange capabilities and respiratory failure 

(Castranova & Vallyathan, 2000). Chronic silicosis develops after 15-20 years of low to moderate 

cSiO2 exposure and is the most commonly seen form of silicosis due to occupational exposures. 

An accelerated form of chronic silicosis can occur after 5-10 years of higher exposure levels 

(Pollard, 2016).   
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After inhalation, cSiO2 particles small enough to enter deep into the lung reach the alveolar spaces; 

however, cellular mechanisms for clearing debris from the alveolar spaces are ineffective at 

removing cSiO2 particles. When the resident alveolar macrophages (AM) attempt to phagocytize 

and clear the particles, the cSiO2 causes caspase-1 dependent pyroptosis of the AM (Bergsbaken, 

Fink, & Cookson, 2009). This propagates a chronic inflammatory response as subsequent AM 

ingest the particles and continue a cycle of cell death. The damaged cells release damage-

associated molecular patterns (DAMPs) and inflammatory cytokines such as TNF-α, IL-1b, and 

IL-6 recruiting other inflammatory cells, primarily other macrophages and polymorphonuclear 

neutrophils, and stimulating fibrogenic processes (Beamer & Holian, 2007; Kawasaki, 2015; 

Pollard, 2016; Rimal, Greenberg, & Rom, 2005). Fibroblasts surround the cSiO2 particles with 

collagen creating fibrotic nodules which increase in size as disease progresses. The nodules can 

become necrotic and massive fibrosis develops throughout the lungs. The resulting damage can be 

severe and compromise pulmonary function (Rimal et al., 2005). 

 

1.2 The NLRP3 Inflammasome and Lysosomal Membrane Permeability  
 

Inflammation induced by cSiO2 is directed by the NLRP3 inflammasome which drives the 

production of the inflammatory cytokines IL-1b and IL-18 (Jo, Kim, Shin, & Sasakawa, 2016; 

Sayan & Mossman, 2016). Two signals are required for the induction of the NLRP3 inflammasome 

(Fig. 1). The first signal is a priming signal which upregulates expression of the NLRP3 

components. It is dependent on activation of the NF-kB pathway through TLR signaling due to 

various pathogen-associated molecular patterns (PAMPs) or damage-associated molecular 

patterns (DAMPs) (Biswas, Hamilton, & Holian, 2014; Sayan & Mossman, 2016). The 
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translocation of NF-kB to the nucleus also increases transcription of pro-IL-1b and pro-IL-18. A 

second signal induces the assembly of the NLRP3 inflammasome into the multi-protein complex 

containing the apoptosis-associated speck-like protein (ASC) which binds to procaspase-1. 

Procaspase-1 is cleaved into an active form and in turn cleaves pro-IL-1b and pro-IL-18 into their 

mature, secreted forms  (Hornung et al., 2008). Together, the first signal and the second signal 

induce an inflammatory cascade and ultimately cell death (Bunderson-Schelvan et al., 2016). 

 

There are several mechanisms proposed to initiate the second signal. These include potassium 

efflux, mitochondrial damage, reactive oxygen species production, and lysosomal injury; however, 

the primary mechanism of cSiO2-produced NLRP3 induction is thought to be lysosomal injury  (Jo 

et al., 2016). When cSiO2 particles are phagocytized by AM, they interact with the interior of the 

phagolysosomal membrane and cause disruption to the membrane.  This is referred to as lysosomal 

membrane permeability (LMP) (Bunderson-Schelvan et al., 2016; Serrano-Puebla & Boya, 2016). 

The compromised lysosomal membrane allows the acidic hydrolases, including cathepsin B, 

normally contained by the lysosome to leak into the cytosol (P Boya & Kroemer, 2008). There are 

currently no pharmaceuticals that target a molecular mechanism of cSiO2 toxicity to reverse or 

prevent silicosis; however, targeting the lysosome in order to block LMP could be a promising 

way to diminish cSiO2 toxicity (Biswas et al., 2017).  
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Figure 1: Proposed model of LMP 
 
Model of the inflammatory cascade following particle-induced lysosomal membrane permeability. 

(Bunderson-Schelvan et al., 2016) 

 

1.3 Cationic Amphiphilic Drugs 
 

Many existing pharmaceuticals are known to interact with and become sequestered in the 

lysosome. This primarily occurs in a class of drugs known as cationic amphiphilic drugs (CAD). 

CAD tend to be weak bases that easily diffuse through membranes in their unprotonated state. 

Once they have diffused into the lysosome, they become protonated in the acidic environment 

subsequently preventing them from diffusing out of the lysosome. This ion-trapping mechanism 

results in a high concentration of drug stored within the lysosome (Villamil Giraldo et al., 2014). 

While this is considered an off-target effect for many drugs, this action may provide an opportunity 

to prevent particle-induced damage. Previously, our laboratory has shown that one CAD, 
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imipramine (IMP), can reduce pulmonary inflammation after exposure to cSiO2 both in vivo and 

in vitro (Biswas et al., 2017). IMP is a tricyclic antidepressant that has been shown to have some 

protective effects against lung injury (Yang et al., 2010). Interestingly, another CAD, 

hydroxychloroquine (HCQ) is commonly used in the treatment of the autoimmune disease 

systemic lupus erythematosus (Fig. 2). Exposure to cSiO2 has been shown to contribute to the 

development of systemic lupus erythematosus; however there has been no research examining the 

effect of HCQ on cSiO2-induced toxicity.  

 

HCQ  has been extensively used to prevent malaria and as treatment for autoimmune diseases such 

as rheumatoid arthritis and systemic lupus erythematosus (Olsen, Schleich, & Karp, 2013). 

Recently HCQ has been investigated for use in diseases including endometriosis, cancer, 

cardiovascular disorders, diabetes, and infectious diseases (Ben-Zvi, Kivity, Langevitz, & 

Shoenfeld, 2012; D. Chen et al., 2018; Ruiz et al., 2016). There are many proposed mechanisms 

to explain how HCQ could be acting in such a diverse number of diseases. Some evidence has 

shown that HCQ can reduce inflammatory cytokine production by macrophages and alter 

macrophage phenotype (D. Chen et al., 2018). Other reports show changes in B and T cell signaling 

and inhibition of phospholipase A2 (Ben-Zvi et al., 2012). HCQ’s effect on cancer and 

endometriosis have been attributed to modulation of autophagy. Furthermore, in a murine model 

of endotoxic shock, Chen et al. showed that chloroquine can decrease activation of the NLRP3 

inflammasome and block production of IL-1b and IL-18 (D. Chen et al., 2018). However, no work 

has been done to examine whether HCQ accomplishes this by preventing destabilization of the 

lysosomal membrane nor if HCQ can prevent cSiO2-induced LMP. 
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Figure 2: Chemical structure of HCQ 

IUPAC name 2-[4-[(7-chloroquinolin-4-yl)amino]pentyl-ethylamino]ethanol 

 

1.4 Specific Aims 
 
The objective of this research was to determine if HCQ reduces cSiO2 toxicity in alveolar 

macrophages. There are currently no pharmaceuticals that target a molecular mechanism of cSiO2 

toxicity to reverse or prevent silicosis; however, targeting the lysosome in order to block LMP 

could be a promising way to diminish cSiO2 toxicity (Biswas et al., 2017). The objective of this 

research is to determine if HCQ has the ability to attenuate pulmonary cSiO2 toxicity. My 

hypothesis is that HCQ blocks LMP and decreases cSiO2-induced inflammation in alveolar 

macrophages. 

 

Specific Aim 1: Determine that cSiO2-induced toxicity is blocked by hydroxychloroquine in 

vitro.   

 

Hypothesis: LMP will be decreased in HCQ treated alveolar macrophages which are exposed to 

cSiO2 particles in vitro.  In vitro studies will be conducted in order to show that HCQ can prevent 

LMP after cSiO2 exposure. These studies will be conducted in bone marrow derived macrophages 
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(BMDM) from C57Bl/6 mice. LMP will be assessed through a digitonin assay measuring β-N-

acetylglucosaminidase release. Additionally, inflammasome activation, toxicity, and cytokine 

production will be measured.   

 

Methods: 

Toxicity Assays 

Using C57Bl/6 BMDM, I will show that HCQ blocks cSiO2-induced toxicity. BMDM will be 

exposed to various doses (0-50 µg/mL) of cSiO2. Toxicity will be analyzed with a common 

tetrazolium viability (MTS) assay (Promega, cat. G3580) and the lactate dehydrogenase assay 

(Promega, cat. G1780). NLRP3 inflammasome activation will be confirmed by assaying the 

release of IL-1b (R&D Systems, cat. DY201). 

Measures of LMP 

• In order to determine if HCQ can reduce LMP caused by cSiO2, LMP will be quantified 

through measurement of released a-N-acetylglucosaminidase after digitonin extraction 

based on Aits et al., 2015, as previously described by our laboratory (Aits, Jäättelä, & 

Nylandsted, 2015; Jessop, Hamilton, Rhoderick, Shaw, & Holian, 2016) 

• Alternative methods of assessing LMP using Lysotracker dyes will also be used. 

Phagocytosis 

To ensure that LMP is not being altered due to differences in phagocytosis after being 

treated with HCQ, the relative amount of particle phagocytized by macrophages will be 

assessed by measuring relative side-scatter by flow cytometry of untreated macrophages 

and those treated with HCQ.  
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Specific Aim 2: Establish that HCQ prophylactically reduces cSiO2-induced inflammation 

in a murine model of acute silicosis.  

 

Hypothesis: Mice treated with HCQ before cSiO2 treatment will show reduced toxicity after acute 

cSiO2 exposure.  C57Bl/6 mice will be treated with HCQ by oral gavage (to simulate normal 

pharmaceutical administration of HCQ by patients) for 7 days prior to oropharyngeal instillation 

of cSiO2. Twenty-four hours after cSiO2 exposure mice will be sacrificed. Inflammatory cytokines, 

cathepsin release, and toxicity will be assessed.  

 

Methods: Mice will be treated with HCQ (10 mg/kg) through oral gavage once per day for a 

duration of seven days. Mice will then be exposed to cSiO2 (0.25 mg or 1 mg) by oropharyngeal 

instillation and sacrificed 24 hours after exposure. Whole lung lavage fluid will be collected and 

assayed for cathepsin release as a measure of LMP. Lavage fluid will be assessed for protein, 

inflammatory cytokines (IL-1b, TNF-a, IL-6, IL-18, IL-33), cytotoxicity, and infiltration of 

immune cells.  
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Chapter 2: Methods 

2.1 Mice  

C57Bl/6 mice (Jackson Laboratories, Bar Harbor, ME) were housed in the University of 

Montana’s specific-pathogen-free Laboratory Animal Resources facility. The mouse room is 

maintained on a 12 hr light/dark cycle and mice were provided with mouse feed and deionized 

water ad libitum. Male and female mice between 8-16 weeks of age were used for the studies. 

Euthanasia was administered through intraperitoneal injection of a lethal dose of pentobarbital 

sodium (Euthasol, Virbac, Fort Worth, TX). The University of Montana Institutional Animal Care 

and Use Committee (Missoula, MT, USA) approved all procedures performed on the animals.  

2.2 Crystalline Silica 

Crystalline silica (Min-U-Sil-5, average particle size 1.5-2 µm in diameter) was obtained from 

Pennsylvania Sand Glass Corporation (Pittsburgh, PA), and acid washed in 1N HCl. The cSiO2 

was washed with sterile water four times and dried in an oven at 200°C. Before use, cSiO2 particles 

were suspended in PBS or dispersion media (for in vivo experiments) and sonicated for at least 2 

min (550 watts at 20 kHz) by a cup-horn sonicator in a circulating water bath (Misonix, Inc. 

Farmingdale, NY, USA). Dispersion media consisted of PBS containing 0.6 mg/ml mouse serum 

albumin and 0.01 mg/ml 1,2-dipalmitoyl-sn-glycero-3-phosphocholine.  

2.3 Isolation and Culture of Bone Marrow Derived Macrophages 

Bone Marrow Derived Macrophages (BMDM) were generated as described previously 

(Migliaccio, Buford, Jessop, & Holian, 2008; Pfau et al., 2004). C57Bl/6 mice were sacrificed and 

the hind legs were removed. Complete media (RPMI, 10% FBS, Penicillin/Streptomycin) was 

washed through the femur and tibia to collect the bone marrow cells. Cells were incubated in T75 
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flasks at a density of 3.0x107 overnight at 37°C for stromal elimination by adherence. The next 

day, nonadherent cells are transferred to a new flask at a density of 1.5x107 cells per flask.  

Macrophage colony stimulating factor (M-CSF) (20 ng/mL R&D Systems) was added and cells 

were spiked with M-CSF (10 ng/ml R&D Systems) every 3-4 days. BMDM were used on day 10.  

2.4 In Vitro Toxicity Assays 

BMDM were platted in a flat-bottom, tissue culture- treated 96-well plates at 1×105 cells/well in 

100 µL of RPMI complete media and incubated with lipopolysaccharides (LPS) (20 ng/mL) for 

inflammasome priming. Cells were treated with 25 µM of hydroxychloroquine sulfate (Sigma-

Aldrich cat. H0915-5MG), 25 µM imipramine hydrochloride (Sigma-Aldrich cat. 10899-5G), or 

100 nM bafilomycin (EnzoLife Sciences cat. BML-CM110-0100) for 30 minutes prior to addition 

of cSiO2. Cells were exposed to various doses (0-50 µg/mL) of cSiO2 and plates were incubated 

in a 37°C water-jacketed CO2 incubator (ThermoForma, Houston, TX) for 24 hours. Toxicity 

induced by cSiO2 was determined by two complementary assays, a lactate dehydrogenase assay 

(Promega, cat. G1780) and a common colorimetric tetrazolium viability (MTS) assay (Promega, 

cat. G3580), and read on a plate reader (Molecular Devices SpectraMax M4 colorimetric 

microplate reader). In order to avoid artifacts in the optical density values, the MTS reaction was 

transferred to a clean plate to separate it from the cell/particle mixture adhered to the plate bottom. 

Data were normalized to a percent relative to the no particle, no HCQ control cells. NLRP3 

inflammasome activation was assayed by measuring the release of IL-1β by using a commercially 

available ELISA kit (R&D Systems, cat. DY201).  

2.5 In Vivo Treatments 

C57Bl/6 mice were treated with either hydroxychloroquine (Hydroxychloroquine Sulfate, 

Calbiochem cat. 509272) reconstituted in PBS (10 mg HCQ/kg/per day) or vehicle (PBS) by oral 
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gavage once a day for seven days. After the seven days, mice were instilled with 1 mg or 0.25 mg 

of cSiO2 through oropharyngeal aspiration. Prior to gavage and instillation of cSiO2, mice were 

briefly anesthetized by isoflurane. For instillation, the sedated mouse is positioned vertically while 

50 µL of dispersion media with or without cSiO2 was dispensed with a pipette to the back of the 

throat. By holding the tongue to the side, the mouse could not swallow and, therefore, aspirated 

the volume into the lungs.  Mice were sacrificed 24 hours after cSiO2 exposure for analysis by 

collecting whole lung lavage fluid. The lungs and heart were removed from the chest cavity, and 

1 mL of cold PBS was washed in and out of the lungs four times in order to collect concentrated 

lung fluid. Samples were centrifuged at 400 x g for 5 minutes and the supernatant was saved for 

analysis. The lungs were lavaged with an additional 4 mL of PBS in order to collect the maximum 

number of cells.  Lavage cells were counted using a Coulter Z2 particle counter (Beckman Coulter, 

Brea, CA, USA) and resuspended in RPMI 1640 culture media supplemented with 10% fetal 

bovine serum, sodium pyruvate, and an antibiotic-antimycotic solution (Mediatech, Manassas, 

VA) for differential analysis or flow cytometry. Cells were stained for differential analysis with a 

Wright-Geimsa stain in a Hematek 2000 autostainer (Miles-Bayer-Siemens Diagnostics, 

Deerfield, IL, USA).  

2.6 In Vivo Lung Injury and Inflammation Assays  

Toxicity was measured in the lung lavage fluid by assaying for LDH as above. Cytokines from 

lung lavage fluid were measured by a multiplex immunoassay (MSD U-PLEX, Meso Scale 

Diagnostics, U-PLEX, cat K15069L-2) because of the sensitivity and small sample size used. 

Seven cytokines IFN-g, IL-1b, IL-6, IL-10, IL-13, IL-33, and TNF-a were included in the 7-plex 

plate used for this experiment. Protein in the lung lavage fluid was assayed by the Pierce BCA 

Protein Assay Kit (ThermoFisher Scientific cat. 23225) following manufacturers specifications. 
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Extracellular cathepsin B release in the lavage fluid was analyzed as previously described by our 

laboratory (Sager et al., 2016). In a 96 well plate, 50 µL of whole lung lavage was combined with 

50 µL of a cathepsin B inhibitor (Calbiochem cat. 219385) or 50 µL PBS and incubated at room 

temperature for 15 min. Then the cathepsin substrate Z-LR-AMC (specific to cathepsin B, 

cathepsin L and cathepsin V; R&D systems cat. ES008) at 20 µL in PBS was added to 50 µL of 

whole lung lavage fluid in a total reaction volume of 150 µL. The assays were incubated at 37°C 

for 1 hour then fluorescence was measured using a plate reader at 380 nm excitation and 460 nm 

emission. The wells with the only the cathepsin substrate measured the total (cathepsin B, 

cathepsin L and cathepsin V) cathepsin activity in the lavage fluid while wells with the cathepsin 

B inhibitor measured the remaining cathepsin L and cathepsin V activity.  By subtracting the 

inhibitor wells from the total cathepsin well, the level of cathepsin B was calculated.  

2.7 Ex Vivo Culture for IL-1b Production 
 
Cells collected during the whole lung lavage of mice treated with 0.25 mg of cSiO2 in vivo were 

plated for ex vivo IL-1b culture. Lung lavage fluid was centrifuged and the supernatants saved for 

other analyses. Cells were resuspended in 250 µL of complete media, counted, and then 100 µL of 

cell suspension was plated in a 96 well plate. Cells were primed for inflammasome activity with 

LPS (20 ng/mL) and incubated for 24 hours at 37°C. After incubation, supernatants were collected 

and assayed with a commercial IL-1b kit (R&D Systems, cat. DY201). Data were normalized to 

IL-1b release per 1x105 AM using the total cell count and percent of macrophages in the whole 

lung lavage. 
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2.8 Flow Cytometry  

Flow cytometry was used to assess phagocytosis of cSiO2 particles and lysosomal uptake of 

LysoTracker dye both in BMDM and AM collected in the lung lavage of treated mice. 

Internalization of cSiO2 was determined by using a side-scatter technique previously described 

(Hamilton, Thakur, Mayfair, & Holian, 2006). BMDM or lung lavage cells were cultured or 

collected as described above. BMDM were treated with 25 µM HCQ for 30 minutes and then 

exposed to 50 µg/mL cSiO2 for 4 hours using 1.5 mL microfuge tubes and end over end tumbling 

(Lab Quaker Shaker, Thermo Forma). Lung lavage cells had no additional treatment of HCQ or 

cSiO2 after the in vivo exposures.  Both lung lavage cells and BMDM were treated with 

LysoTracker Red DND-99 (ex/em 577⁄590 nm, ThermoFisher Scientific cat. L7528) at 50 nM for 

30 min. The cells were centrifuged, resuspended in PAB, and transferred to filter-top flow 

cytometry tubes (BD Biosciences, San Jose, CA) for analysis. Phagocytosis and LysoTracker 

uptake data were expressed as mean fluorescent intensity. Cells were analyzed on a Life 

Technologies Attune NxT Acoustic Focusing Cytometer with the YL-1 585/16 nm laser.  

2.9 Lysosome Membrane Permeabilization Assay  

Lysosome membrane permeabilization (LMP) was assessed using methods modified from Aits et 

al. (Aits et al., 2015) and as described previously by our laboratory (Jessop, Hamilton, Rhoderick, 

Fletcher, & Holian, 2017). BMDM were plated in 24 well plates at a density of 2×105 cells per 

well. Cells were treated with or without HCQ (25 µM) and with or without cSiO2 (50 µg/mL). 

Cells were washed twice with PBS and placed on ice. BMDM were then incubated with 200 µL 

of cytosol extraction buffer, which consisted of 250 mM sucrose, 20 mM Hepes, 10 mM KCl, 1.5 

mM MgCl2, 1 mM EDTA, 1 mM EGTA, 0.5 mM pefabloc (Sigma-Aldrich cat. 76307-100mg), 

pH 7.5, and digitonin (15 µg/mL ) (Sigma-Aldrich cat. D141-100MG), for 15 min on ice with 
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rocking. The concentration of digitonin for optimal extraction of the cytosolic fraction was 

determined by titration. β-N-acetylglucosaminidase (NAG) activity was measured by adding 30 

µL cytosolic extract to 100 µL of NAG reaction buffer (0.2 M sodium citrate, pH 4.5 with 300 

µg/mL 4-methylumbelliferyl-2-acetamido-2-deoxy-β-D-glucopyranoside (Sigma-Aldrich cat. 

37067-30-4) and assessed on a plate reader (20 min; 45s intervals; 356 nm excitation; 444 nm 

emission). Extracted cytosolic LDH activity was measured as described above and used as a 

control to which the NAG activities were normalized.  

 

2.10 Statistical Analysis 

Depending on the data type, a parametric one or two-way analysis of variance (ANOVA), followed 

by post hoc mean comparison (Holms-Sidak etc.) was used throughout the research described. 

Statistical significance will be defined as a two-tailed probability of type I error at less than 5% (p 

< 0.05) unless otherwise stated. The minimum number of experimental replications was 3.  
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Chapter 3: Results 
 

3.1 HCQ decreases cSiO2 toxicity in vitro 
 
The ability of HCQ to decrease toxicity and cell death in vitro was assessed using C57Bl/6 BMDM. 

BMDM were primed for inflammasome activation with LPS (20 ng/mL) and then treated with 

either HCQ (25 µM), imipramine (IMP, 25 µM), or bafilomycin A1 (BAF, 100 nM) for 30 min 

prior to cSiO2 exposure. IMP and BAF were positive controls for blocking cSiO2-induced toxicity. 

Bafilomycin A1 (BAF) specifically inhibits vATPases to prevent lysosomal acidification, which 

previous studies have indicated is necessary for particle induced toxicity (Jessop et al., 2017). In 

biological systems small particles develop a protein shell called a protein corona. The protein 

corona is degraded in the acidic environment of the lysosomes which allows the particle to directly 

interact with the lipid membrane causing LMP. Preventing acidification is thought to prevent 

degradation of the protein corona and protect the lysosome from LMP (F. Wang et al., 2013).  

Imipramine, a tricyclic anti-depressant, was previously shown by our laboratory to block cSiO2-

induced toxicity; therefore, it was used as a comparison to HCQ (Biswas et al., 2017).  

 

Cells were exposed to 0, 50, or 100 µg/mL of cSiO2 and incubated for 24 hrs at 37° C. HCQ, IMP, 

and BAF were all found to block toxicity at both the 50 µg/mL and 100 µg/mL exposures of cSiO2 

as determined by the LDH assay and MTS assay (Fig. 3). No toxic effect from either HCQ or IMP 

alone was found in cells not exposed to cSiO2. Protective effects were more pronounced at the 50 

µg/mL cSiO2 exposure as there was significant cell death at the 100 µg/mL cSiO2 dose which could 

not be completely overcome by the HCQ, IMP, or BAF. Cell supernatants were assayed for IL-1β 

as a representative measure for NLRP3 inflammasome activation. IL-1β production was drastically 

decreased in exposed cells receiving HCQ, IMP, and BAF (Fig. 4).  
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Figure 3: HCQ decreases cSiO2-induced toxicity in BMDM.  

BMDM were treated with HCQ (25 µM), IMP (25 µM), or bafilomycin A1 (100 nM) and exposed 

to 0, 50, or 100 µg/mL of cSiO2. HCQ, IMP, and BAF caused statistically significant decrease in 

cSiO2 toxicity as determined by decreased LDH release and increased cell viability.  

(**** p < 0.0001, ** p < 0.01, * p < 0.05) n = 3-4 
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Figure 4: HCQ blocks the production of IL-1b in BMDM exposed to cSiO2.  

Cell supernatants were assayed for IL-1β as a representative measure for NLRP3 inflammasome 

activation. IL-1β production was blocked in exposed BMDM treated with HCQ (25 µM), IMP (25 

µM), or bafilomycin A1 (100 nM) at both 50 (** p < 0.01) and 100 µg/mL (**** p < 0.0001) cSiO2 

exposures. Symbols indicate significance between control and treated cells. n = 3-4 
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3.2 HCQ does not affect cSiO2 uptake in vitro 
 

In order to confirm that HCQ was not blocking cSiO2 toxicity by reducing phagocytosis of the 

cSiO2 particles, the amount of cSiO2 taken up by the BMDM was quantified by flow cytometry 

(Fig. 5).  BMDM which have taken up cSiO2 into their phagolysosomes have higher side-scatter 

(SSC) due to the deflection of laser light by the cSiO2 particles. BMDM exposed to cSiO2 (50 

µg/mL) with or without HCQ (25 µM) had significantly higher side scatter (****p < 0.0001) than 

BMDM not exposed to cSiO2. There was no difference between the SSC of control vs HCQ-treated 

cells nor cSiO2 vs HCQ + cSiO2 cells. This indicates that HCQ does not affect the ability of BMDM 

to take up cSiO2.  

 

Additionally, BMDM were also treated with LysoTracker Red DND-99 at 50 nM for 30 min (as 

per manufacturers recommendations) to assess the relative acidity of the lysosomes (Fig. 6). HCQ 

treatment caused a decrease in the amount of LysoTracker taken up by lysosomes. This finding 

suggests that HCQ is present in the lysosomes and may cause lysosomes to be less acidic. In turn, 

this may help protect the lysosomes from being permeabilized by cSiO2. Cells treated with HCQ 

or HCQ + cSiO2 had significantly less (*p < 0.05) LysoTracker uptake than control cells or cells 

exposed cSiO2 without HCQ treatment. Together, the in vitro results collected in these experiments 

are consistent with HCQ being able to reduce LMP after cSiO2 exposure. 
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Figure 5: HCQ does not affect uptake of cSiO2 in vitro.  
 
BMDM which have taken up cSiO2 into their phagolysosomes have higher side-scatter (SSC). 

BMDM exposed to cSiO2 ± HCQ had significantly higher side scatter (****p < 0.0001) than 

BMDM not exposed to cSiO2. There was no difference between the SSC of control vs HCQ-treated 

cells nor cSiO2 vs HCQ + cSiO2 cells; therefore, HCQ does not affect the ability of the BMDM to 

phagocytize cSiO2 particles. n = 3 
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Figure 6: HCQ reduces the uptake of LysoTracker in vitro.  
 
BMDM were treated with LysoTracker Red DND-99 at 50 nM for 30 min to assess the relative 

acidity of the lysosomes. HCQ treated cells showed less uptake of LysoTracker. Cells exposed to 

cSiO2 without HCQ treatment had significantly (*p < 0.05) more LysoTracker uptake than cells 

exposed to cSiO2 and treated with HCQ. n = 3 

 
  

Contro
l

cS
iO 2

HCQ

HCQ + 
cS

iO 2

0

50000

100000

150000

200000

250000

SS
C

 M
FI

SSC C57Bl/6 BMDM
(4 hr cSiO2 exposure)

n= 3

**** ****

Contro
l

cS
iO 2

HCQ

HCQ + 
cS

iO 2

0

5000

10000

15000

20000

25000

Ly
so

Tr
ac

ke
r M

FI

LysoTracker C57Bl/6 BMDM
(4 hr cSiO2 exposure)

n= 3

*



 22 

3.3 HCQ blocks LMP in vitro 
 

Direct quantification of the ability of HCQ to block LMP  in vitro was assessed through a method 

modified from Aits et al. which measures the release of β-N-acetyl-glucosaminidase (NAG) into 

the cytosol after cell permeabilization by the detergent digitonin (Aits et al., 2015). NAG is a 

lysosomal hydrolase which is not present in the cytosol unless the lysosomal membrane has been 

compromised. Using BMDM the level of digitonin is titrated so that the cell membrane is 

permeabilized while the lysosomal membrane remains intact. The lysosomal membrane contains 

less cholesterol than the cell membrane making the digitonin required to permeabilize the 

lysosomal membrane higher than that required for the cell membrane (Aits et al., 2015). BMDM 

were treated with or without HCQ (25 µM) and with or without cSiO2 (50 µg/mL) and incubated 

for 4 or 24 hours. Cytosolic LDH activity was measured as described above and used as a control 

to which the NAG activities were normalized. HCQ was able to significantly block the release of 

NAG from lysosomes after both 4 (*p < 0.05) and 24 (***p < 0.001) hours. This shows that HCQ 

blocks cSiO2-induced LMP in vitro. 
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Figure 7: HCQ blocks LMP in vitro. 
 
BMDM were treated with or without HCQ (25 µM) and with or without cSiO2 (50 µg/mL) and 

incubated for 4 or 24 hours. HCQ was able to significantly block the release of NAG from 

lysosomes after both 4 (*p < 0.05) and 24 (***p < 0.001) hour cSiO2 exposures. n = 3 
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3.4 Evaluation of HCQ on cSiO2 uptake in vivo 
 
 
The above in vitro studies demonstrated that HCQ accumulated in macrophages and blocked the 

ability of cSiO2 to cause LMP and downstream events including toxicity and NLRP3 

inflammasome activation as determined by IL-1b release. However, in vivo studies have not been 

previously conducted in order to determine whether the in vitro studies predict in vivo outcomes. 

Therefore, C57Bl/6 mice were treated with HCQ at 10 mg/kg/day or PBS by oral gavage for 7 

days. This dose of HCQ was chosen based on previous in vivo studies with HCQ (X. Chen et al., 

2017; Gómez-Guzmán et al., 2014). At the end of the 7-day pre-treatment period, mice were 

exposed to either 0.25 mg or 1 mg of cSiO2 by oropharyngeal instillation (in 50 µL of dispersion 

media). Control mice received only dispersion media. Mice were sacrificed 24 hours post cSiO2 

exposure. The 1 mg of cSiO2 exposure, has been commonly used in previous studies allowing 

comparison to previous results (Biswas et al., 2017). A lower dose of 0.25 mg was also evaluated. 

Naïve mice generally have around 3-4x105 AM residing in their lungs. Therefore, the 0.25 mg 

dosage more closely matches the in vitro dose used in this study of 50 µg/mL cSiO2 per 1x105 

BMDM. 

 

 In order to investigate whether HCQ was incorporated into the AM during the 7-day HCQ in vivo 

treatment, AM from whole lung lavage were treated with LysoTracker Red DND-99 and the cells 

analyzed by flow cytometry. As in the in vitro experiments, AM from mice treated with HCQ 

showed significantly less uptake of the LysoTracker dye. This finding suggests that in mice treated 

with HCQ at 10 mg/kg by oral gavage for 7 days did have HCQ sequestered into lysosomes of the 

AM (Fig. 8). Additionally, in order to rule out that HCQ was reducing toxicity due to changes in 

cSiO2 uptake by the AM in vivo, side scatter data of the whole lung lavage cells were collected by 
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flow cytometry. Side scatter was increased as expected in the cSiO2-treated mice and there was no 

difference between the control and HCQ-treated mice nor the cSiO2 and HCQ + cSiO2-treated 

mice. This matches the in vitro data showing that changes in cSiO2-induced toxicity in HCQ-

treated mice is not due to a change in the ability of the AM to phagocytize the cSiO2 (Fig. 9).    

 

 
 

Figure 8: HCQ accumulates in lysosomes of AM after treatment by oral gavage.  
 
AM from whole lung lavage of control or HCQ treated C57Bl/6 mice were incubated with 

LysoTracker Red DND-99 for 30 minutes prior to analysis by flow cytometry. In AM from mice 

treated with HCQ, there was significantly less uptake of the LysoTracker dye (*p < 0.05). This 

result is consistent with HCQ being sequestered into the lysosomes of the AM in vivo. n = 4 
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Figure 9: HCQ does not affect phagocytosis of cSiO2 by AM in vivo 
 
Whole lung lavage cells from mice treated in vivo ± HCQ and ± cSiO2.  Side scatter was increased 

as expected in the cSiO2-treated mice.  There was no difference between the control and HCQ-

treated mice nor the cSiO2 and HCQ + cSiO2-treated mice suggesting that a difference in the uptake 

of cSiO2 was not contributing to changes in toxicity. n = 4 
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3.5 Evaluation of HCQ on cSiO2-induced inflammation and toxicity in vivo 

 

Instillation of cSiO2 is known to cause lung inflammation and infiltration of immune cells. 

Therefore, differential cells counts were conducted on the whole lung lavage fluid (Fig. 10). At 

the 1 mg cSiO2 dose, there were no differences in the percentage of cells or the raw cell numbers 

between the HCQ treated mice and control mice ± cSiO2 exposure. Mice exposed to cSiO2 

displayed the expected neutrophilic infiltration. At the 0.25 mg cSiO2 dose, cSiO2-exposed mice 

which were treated with HCQ had a significant increase in the percentage of macrophages and a 

significant decrease in the percentage of neutrophils recruited to the lungs as compared to cSiO2 

exposed mice with no HCQ treatment. Additionally, cSiO2-exposed mice with HCQ treatment had 

a greater number of macrophages in their lungs 24 hours after cSiO2 exposure than did cSiO2 

exposed mice without HCQ treatment. This suggests that macrophages may be protected from 

cSiO2 induced pyroptosis with HCQ treatment.  

 

In order to evaluate lung injury following instillation of cSiO2, lavage supernatants were assayed 

for LDH release, total protein (bicinchoninic acid assay, BCA), relative total cathepsin, and 

relative cathepsin B levels (Fig. 11). Although not significant, LDH, total cathepsin, and cathepsin 

B release were all lower in HCQ treated mice at both the 0.25 mg and 1 mg cSiO2 exposures. Total 

area under the LDH curves for control and HCQ treated mice were 241.3 ± 100.6 and 165.1 ± 

52.58 respectively (Table 1). Surprisingly, LDH appeared to be higher in the 0.25 mg cSiO2 

exposed mice than the 1 mg cSiO2 exposed mice, relative to control mice. While data were 

normalized to control mice, the 0.25 mg cSiO2 exposure and the 1 mg cSiO2 experiments were 

conducted at different times and the LDH assays run on different days which could account for 

this apparent discrepancy. Total protein in the lung lavage supernatants, as measured by a BCA 
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assay, was used to assess lung injury. The BCA assay showed a slight decrease in the amount of 

protein in the lung lavage fluid at the 1 mg cSiO2 dose in HCQ-treated animals versus control. As 

expected the lung protein level increased as the cSiO2 dose increased in both control and HCQ-

treated mice.  

  



 29 

 
 
Figure 10: HCQ-treated mice retain more AM and have less infiltration of neutrophils. 
 
Differential cell counts for 0.25 mg and 1 mg cSiO2 treated mice. At 1 mg of cSiO2, there were no 

differences in the percentage of cells or the raw cell numbers between the HCQ-treated mice and 

control mice ± cSiO2 exposure. Mice exposed to cSiO2 showed neutrophilic infiltration. At the 

0.25 mg cSiO2 dose, HCQ + cSiO2 mice had a significant increase in the percentage of 

macrophages (*p < 0.05) and a significant decrease in the percentage of neutrophils (**p < 0.01) 

as compared to cSiO2-exposed mice with no HCQ treatment. HCQ + cSiO2 mice had significantly 

more macrophages in their lungs 24 hours after cSiO2 exposure than did cSiO2-exposed mice 

without HCQ treatment (*p < 0.05).  n = 4-5 
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Figure 11: HCQ reduces cSiO2 toxicity in vivo 
 
LDH, total cathepsin, and cathepsin B release were lower in HCQ-treated mice at both 0.25 mg 

and 1 mg cSiO2 exposures. The BCA assay showed a slight decrease in the amount of protein in 

the lung lavage fluid at the 1 mg cSiO2 dose in HCQ-treated animals versus control. As expected 

the protein level increased as the cSiO2 dose increased in both control and HCQ-treated mice. 

 n = 4-5. 

 

Table 1: Total Area Under the Curve for LDH Release 
 

Total Area Under the Curve for LDH Release 

 Control HCQ Treated 

Total Area 241.3 ± 100.6 165.1 ± 52.58 
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3.6 In vivo cytokine production after HCQ treatment. 

 

Cytokines from lung lavage supernatants were measured by a multiplex immunoassay (MSD U-

PLEX, Meso Scale Diagnostics) because of the sensitivity and small sample size used (Figs. 12 

and 13). Seven cytokines IFN-g, IL-1b, IL-6, IL-10, IL-13, IL-33, and TNF-a were included in 

the 7-plex plate used for this experiment. IL-10 and IL-13 levels were below detection levels for 

both 0.25 mg and 1 mg cSiO2-exposures and were not graphed. For mice exposed to 1 mg of cSiO2, 

IFN-g was only detectable in the cSiO2 exposed group suggesting that HCQ was able to reduce 

IFN-g after cSiO2 exposure (*p < 0.05). While not significant, there was a trend that IL-6, IL-33, 

and TNF-a appeared to be lower with HCQ treatment in the 1 mg cSiO2 exposed mice.  IL-1b did 

not appear to be blocked with HCQ treatment. For the 0.25 mg dose, IFN-g again appeared to be 

decreased by HCQ treatment, although in this case it was not statistically significant due to a large 

variance in the cSiO2-exposed group. As in the 1 mg dose group, there is was a trend that HCQ + 

cSiO2 mice seem to have lower levels of TNF-a as compared to cSiO2 only mice. In all graphs, no 

visible bar signifies that levels were below detection. 
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Figure 12: Cytokines after 1 mg SiO2 exposure 

Cytokines from lung lavage supernatants measured by a multiplex immunoassay. IFN-g was only 

detectable in the cSiO2-exposed group suggesting that HCQ was able to block IFN-g after cSiO2 

exposure (*p < 0.05). While not significant, the data suggest a trend toward HCQ decreasing 

production of IL-6, IL-33, and TNF-a. IL-1b did not appear to be blocked with HCQ treatment.  

 

Contro
l

cS
iO 2

HCQ

HCQ + 
cS

iO 2

0.0

0.2

0.4

0.6

0.8

IFN-γ
IF

N
-γ

 (p
g/

m
L)

*

Contro
l

cS
iO 2

HCQ

HCQ + 
cS

iO 2

0

200

400

600

800

IL-6

IL
-6

 (p
g/

m
L)

Contro
l

cS
iO 2

HCQ

HCQ + 
cS

iO 2

0

20

40

60

80

100

TNF-α

TN
F-
α

 (p
g/

m
l)

Contro
l

cS
iO 2

HCQ

HCQ + 
cS

iO 2

0

5

10

15

IL-1β

IL
-1
β 

(p
g/

m
L)

Contro
l

cS
iO 2

HCQ

HCQ + 
cS

iO 2

0

5

10

15

IL-33

IL
-3

3 
(p

g/
m

l)



 33 

 
 
Figure 13: Cytokines after 0.25 mg SiO2 exposure 

For the 0.25 mg dose, IFN-g appeared to be decreased by HCQ treatment, though not statistically 

significant due to a large variance in the cSiO2-exposed group. As in the 1 mg dose group, there is 

a trend that HCQ + cSiO2 mice seem to have lower levels of TNF-a as compared to cSiO2 only 

mice. n = 4-5 
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3.7 HCQ blocks IL-1b production in ex vivo culture 

 
Since HCQ was effective in blocking silica-induced IL-1b release from AM and the data showed 

that HCQ was taken up by lysosomes in AM, the AM from the mice were evaluated ex vivo. Cells 

collected during the whole lung lavage of mice treated with 0.25 mg of cSiO2 in vivo were plated 

for ex vivo IL-1b culture and primed with LPS. After incubation, supernatants were assayed for 

IL-1b by ELISA. Data were normalized to IL-1b release per 1x105 AM using the total cell count 

and percent of macrophages. Control and HCQ treated cells had very little IL-1b production as 

expected. Consistent with the in vitro data, cells from HCQ + cSiO2 treated mice had a significantly 

less IL-1b production when compared to cSiO2 exposed mice not treated with HCQ. These data 

are consistent with HCQ being able to prevent LMP after cSiO2 exposure in vivo.  

  



 35 

 
Figure 14: Ex Vivo Culture of C57Bl/6 AM  

Cells collected during the whole lung lavage of mice treated with 0.25 mg of cSiO2 in vivo were 

plated for ex vivo IL-1b culture. Data were normalized to IL-1b release per 1x105 AM using the 

total cell count and percent of macrophages. Control and HCQ-treated cells produced only trace 

amounts of IL-1b. Cells from HCQ + cSiO2 treated mice had significantly less IL-1b production 

when compared to cells from mice only exposed to cSiO2 (*p < 0.05). These data are consistent 

with HCQ being able to prevent LMP after cSiO2 exposure in vivo. n = 4-6 
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Chapter 4: Discussion 
 

Silicosis is a progressive, fibrotic pulmonary disease that occurs after exposure to inhaled cSiO2. 

The loss of pulmonary function resulting from silicosis causes significant morbidity and, in severe 

cases, mortality. Treatment options are limited to supporting respiratory function through 

supplemental oxygen and decreasing inflammation with corticosteroids (Leung et al., 2012). A 

growing body of evidence suggests that a key step in cSiO2-induced lung inflammation is 

activation of the NLRP3 inflammasome resulting in the release of pleiotropic cytokines such as 

IL-1b and IL-18. At this time there is limited information on possible pharmaceutical approaches 

to regulation of NLRP3 inflammasome activity.  However, it may be possible to regulate LMP, 

which has been proposed to precede NLRP3 inflammasome activation (Sayan & Mossman, 2016; 

Serrano-Puebla & Boya, 2016). When cSiO2 is phagocytized by resident AM in an attempt to clear 

the particles from the lungs, the cSiO2 compromises lysosomal membranes allowing lysosomal 

proteases to leak into the cytosol and induce NLRP3 inflammasome assembly (P Boya & Kroemer, 

2008; Bunderson-Schelvan et al., 2016; Jessop et al., 2017). Therefore, blocking LMP would 

attenuate NLRP3 inflammasome assembly and could be a key mechanism to target in order to treat 

cSiO2-induced inflammation. HCQ was chosen for this research because it is cationic amphiphilic 

drug (CAD) that is known to accumulate in lysosomes (Ben-Zvi et al., 2012; Patricia Boya et al., 

2003). CADs diffuse through membranes in an unprotonated state but become protonated in the 

acidic environment of lysosomes, losing their ability to diffuse back out through lipid membranes. 

HCQ is used extensively as an anti-malarial and also to treat autoimmune diseases such as systemic 

lupus erythematosus (SLE). However, the precise mechanism to explain its action in SLE is 

unclear (Ben-Zvi et al., 2012). 
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The in vitro work from this study strongly supports the hypothesis that HCQ is able to block cSiO2-

induced LMP. HCQ was able to rescue BMDM from cell death after exposure to 50 or 100 µg/mL 

of cSiO2 (Fig. 3).  HCQ also caused significant reduction in the production of IL-1β in BMDM 

after cSiO2 exposure (Fig. 4). These data are consistent with a 2017 paper by Chen et al. where 

they found that chloroquine (which differs from HCQ by one hydroxyl group) suppresses NLRP3 

inflammasome activation in a murine model of endotoxic shock (X. Chen et al., 2017). Chen et al. 

showed that chloroquine is able to decrease IL-1β and IL-18 release from BMDM stimulated with 

LPS. They also found that chloroquine inhibits transcription of Nlrp3 genes. Their research, 

however, did not examine the effect of HCQ on cSiO2-induced toxicity.  

 

Our research also directly measured the ability of HCQ to prevent LMP by measuring the release 

of β-N-acetyl-glucosaminidase (NAG) into the cytosol. HCQ was able to block NAG release in 

BMDM exposed to cSiO2 at both 4 and 24 hours (Fig. 5). This data conflicts with data published 

by Boya et al. in 2003 where they argue that HCQ induces LMP.  When cells were stained by 

immunofluorescence for cathepsin B, they saw that HCQ caused cathepsin B staining to change 

from being contained in lysosomes to being diffuse throughout the cell. They also concluded that 

HCQ causes mitochondrial membrane permeabilization and apoptosis.  Boya et al. conducted their 

research in HeLa cells and also used some concentrations of HCQ which were higher than the 

concentrations used in this study (up to 60 µg/ml). They also did not measure LMP through a 

digitonin lysosomal permeability assay measuring NAG, but instead used microscopy to determine 

if LMP was occurring; therefore, it is hard to make direct comparisons between their research and 

the research presented in this paper (Patricia Boya et al., 2003). 
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The above in vitro results were predicated on the assumption that HCQ was being taken up into 

lysosomes. In order to test whether HCQ was becoming sequestered into the lysosomes, BMDM 

and AM were treated with LysoTracker. HCQ treatment reduced the amount of LysoTracker in 

lysosomes of both BMDM in vitro and AM in vivo.  These results are consistent with HCQ 

sequestration into the lysosomes of these cells.  The most likely mechanism by which HCQ is 

preventing the uptake of LysoTracker is due to HCQ increasing the pH of the lysosomes. 

Additionally, flow cytometry side scatter data from in vitro and in vivo experiments also confirmed 

that HCQ was not affecting the ability of cells to phagocytize the cSiO2 particles; therefore, the 

toxicity results were not due to changes in cell interactions with particles.   

 

Mice treated with HCQ in vivo showed modest reductions in cSiO2-induced toxicity. Overall, 

LDH, total cathepsins, cathepsin B, IFN-g and TNF-a trended lower in HCQ treated mice (Fig. 

11-13). It was surprising that cSiO2-induced increase in IL-1b in lung lavage fluid was not blocked 

in vivo by HCQ treatment; however, ex vivo culture of the AM from these same studies did result 

in significantly less IL-1b release in mice treated with HCQ. Several factors could have been 

responsible for the fact that there was not as pronounced of an effect in vivo as there was in vitro. 

It is possible that the dosing strategy and exposure time were not sufficient. Additionally, twenty-

four hours may be too short of a time to see differences in the immune response. While these 

results could indicate that the dose of HCQ was simply too low, the ex vivo results suggest that 

there was enough HCQ sequestered into the lysosomes to block inflammasome formation and IL-

1b production. The results from the ex vivo experiment may be explained by two differences: 1) 

the AM were primed for inflammasome activation with LPS when they were plated and 2) they 

were incubated for 24 hours in culture after isolation following in vivo cSiO2 exposure. LPS 
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stimulates the NF-𝜅B pathway increasing formation of the pro-form of IL-1b and increases the 

expression of NLRP3 inflammasome proteins (Sayan & Mossman, 2016). Therefore, it could be 

proposed that HCQ blocked IL-1b release by acting on the NF-kB pathway as previously proposed 

(X. Chen et al., 2017). In their studies, they pre-treated BMDM with chloroquine before adding 

LPS and saw a reduction of phospho-NF-𝜅B p65 protein levels in chloroquine-treated cells. 

However, in the in vitro experiments in this study LPS was added prior to HCQ treatment thereby 

allowing activation of the NF-kB pathway by LPS to proceed prior to any potential inhibition by 

HCQ.  Since, there was still a reduction in IL-1b production, it supports the notion that the action 

of HCQ to block IL-1b is not at NF-kB but rather at blocking LMP.  

 

Previous research from our laboratory has shown that the tricyclic antidepressant, imipramine, was 

able to decrease cSiO2-induced toxicity in vitro and in vivo (Biswas et al., 2017). Because HCQ 

and IMP are both lysosomotropic drugs that sequester in lysosomes, we hypothesized that they 

would have a similar ability to protect lysosomes from cSiO2-induced LMP. The imipramine study 

showed similar results as HCQ in the ability to prevent IL-1β production in vitro and in an ex vivo 

culture.  IMP was also able to decrease IL-1b levels in the lavage fluid in vivo after a 24-hour 

cSiO2 exposure, which was not seen with HCQ.  In long-term exposure studies, IMP-treated mice 

had less lung pathology and hydroxyproline levels. It is unknown whether other CADs may have 

similar protective effects on lysosomal membrane stability after particle exposure and further work 

should be done to better understand the interactions between CAD and cSiO2 exposure. To our 

knowledge, no other work has been done linking a pharmaceutical intervention with the ability to 

block cSiO2-induced LMP.   
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Chapter 5: Conclusions and Further Directions 

 
The results of this study support the hypothesis that HCQ can prevent lysosomal membrane 

permeability from exposure to cSiO2. The in vitro data strongly suggests that HCQ attenuates 

activation of the NLRP3 inflammasome and is doing this, at least in part, by blocking LMP. Cell 

death after cSiO2 exposure was decreased with HCQ treatment in vitro. HCQ was able to block the 

production of IL-1β and the release of NAG into the cytosol in cSiO2-exposed BMDM indicating 

that LMP was being prevented. This was the first study to show that HCQ is able to block LMP. 

While the in vivo data is less definitive, it also indicates that HCQ may be protective against cSiO2 

toxicity in vivo. These studies were able to confirm that HCQ is accumulating in lysosomes of AM 

when mice are treated with HCQ by gavage for 7 days. Data also indicated that HCQ was not 

affecting AM’s ability to phagocytize cSiO2 particles. LDH, total cathepsins, and cathepsin B, IFN-

g, and TNF-a levels trended lower in HCQ-treated mice. Increasing the power of the study by 

including more mice would improve the reproducibility of the studies and clarify these differences. 

It was surprising that the increase in cSiO2-induced increase of IL-1b in the lung lavage fluid was 

not blocked in vivo by HCQ treatment; however, ex vivo culture of the AM did result in 

significantly less IL-1b release in mice that were treated with HCQ.  

 

This study was limited by the short time-frame for the in vivo studies. Mice in this study were 

sacrificed 24 hours after cSiO2 exposure in order to assess the acute inflammatory response; 

however, this time frame is too short to observe histological changes in the lungs. Future studies 

would benefit from longer-term exposures to discern if HCQ is able to block the development of 

fibrosis and cSiO2-induced pulmonary pathology. Additionally, the dosage and treatment 

schedules were determined based on previous literature; however, in order to see more profound 
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effects from HCQ, it could be beneficial to increase the dose or lengthen the treatment period (X. 

Chen et al., 2017; Gómez-Guzmán et al., 2014). Additionally, this study only assessed the ability 

of HCQ to block cSiO2 toxicity by pre-treating cells or mice with HCQ before exposure to cSiO2. 

While it is beneficial to have options for prophylactic treatment for individuals who know they 

will be exposed to cSiO2, such as military personnel deployed to arid regions, most treatments for 

cSiO2 inhalation occur after an exposure has occurred. Therefore, it would be important to conduct 

further studies that examine the ability of HCQ to block cSiO2-induced lung injury after exposure.  

 

A large number of workers are exposed to airborne cSiO2 which can contribute to the development 

of pulmonary and systemic disease. It is increasingly being recognized that lysosomes are 

important modulators of disease; however, there are virtually no pharmaceuticals directed at a 

lysosomal mechanism of disease. Many pharmaceuticals become sequestered in the lysosome 

through an ion-trapping mechanism, yet this has been considered an undesirable side-effect of the 

drugs. The data in this study show HCQ can prevent LMP induced by cSiO2 by accumulating in 

lysosomes.  It is unknown if other CAD have similar effects on lysosomal membrane stability, and 

examining the ways that these drugs interact with lysosomal membranes may provide insight into 

their ability to be used as treatments for inhaled particle exposures. Further work should be done 

to elucidate the how pharmaceuticals affecting lysosomes may be used to treat diseases caused by 

inhaled particles. 
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