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Dalton, Rachel, M.S., Fall 2017    Pharmaceutical Sciences 
 
A multifactorial cytochrome P450 2D6 genotype-phenotype prediction model to improve 
precision of clinical pharmacogenomic tests 
 
Chairperson: Erica Woodahl 
 
BACKGROUND: CYP2D6 is difficult to accurately genotype due to a large number of 
single nucleotide variants (SNVs), indels, and structural variation such as deletions, 
duplications, and CYP2D6/CYP2D7 hybrid genes. CYP2D6 targeted genotyping panels 
are of limited utility; clinically relevant variants that are not genotyped will be missed. 
Sequencing solves this problem but requires additional tools to address structural 
variation. The goal of our study was to determine the predictive power of Stargazer, a 
novel allele-calling program, which combines SNV/indel calls with structural variation 
identification.  
METHODS: In a panel of 309 human livers, CYP2D6 diplotypes and activity scores 
were initially assigned manually using PGRNSeq SNV/indel data and then reassigned 
after inclusion of Stargazer-derived structural variation data. We determined 
CYP2D6 activity in human liver microsomes with metoprolol and dextromethorphan as 
probe substrates. Then, we used linear regression to assess the relationship between 
activity and activity scores assigned using SNV/indel data alone versus SNV/indel + 
structural variation data.  
RESULTS: Without incorporating structural variation data, diplotypes were incorrectly 
assigned for 67 samples (22%); activity scores were incorrect for 26 samples (8.4%). 
Structural variants included 23 deletions, 47 duplications, and 39 hybrids. When 
diplotypes were assigned based on SNV/indel data alone, activity score explained 31% of 
the variation in CYP2D6 activity with metoprolol (R2 = 0.31, p < 0.001) and 36% with 
dextromethorphan (R2 = 0.36, p < 0.001). When reassigned with SNV/indel plus 
structural variation data, this increased to 36% for metoprolol (R2 = 0.36, p < 0.001) and 
41% for dextromethorphan (R2 = 0.41, p < 0.001).  
CONCLUSION: The accuracy of CYP2D6 phenotype prediction can be improved by 
using a next-generation sequencing approach coupled with a tool such as Stargazer to 
detect common and rare SNVs and indels as well as structural variation in CYP2D6. 
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1 Introduction 

1.1 Pharmacogenomics 
Pharmacogenomics is the study of how an individual’s genetics affect their 

response to drugs, in terms of efficacy and/or toxicity.1 Clinically, pharmacogenomics is 

used to optimize drug therapy by guiding the selection of a drug and dose that will 

maximize efficacy and minimize adverse effects. Pharmacogenetic tests may be used to 

assess genetic variation in drug-metabolizing enzymes or transporters, components of the 

immune system that may contribute to idiosyncratic adverse drug reactions, or genes 

involved in a drug’s mechanism of action. 2 

1.1.1 Translation from bench to bedside: an unmet need 

The publication of Arno Motulsky’s 1957 paper Drug reactions, enzymes, and 

biochemical genetics is generally regarded as the beginnings of pharmacogenomics as a 

discipline.3 In this paper, he discussed “how hereditary gene-controlled enzymatic factors 

determine why, with identical exposure, certain individuals become ‘sick,’ whereas 

others are not affected.” In 1959, two years after Motulsky’s publication, Friederich 

Vogel coined the term “pharmacogenetics.” The term “pharmacogenomics” has since 

been introduced and reflects advances in knowledge and technology that allows 

investigation of the entire genome. 1,3 

Despite a long history, the field of pharmacogenomics is only starting to move 

into the clinical setting. Both the United States Food and Drug Administration (FDA) and 

the National Institutes of Health (NIH) have recognized the potential behind precision 

medicine and have launched initiatives to support the necessary scientific and regulatory 
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structure.4 One mechanism used by the FDA is inclusion of pharmacogenetic data on 

drug labels. Specifically, this includes information that “has important implications for 

safe and effective use and the consequences of the genetic differences result in 

recommendations for restricted use, dosage adjustments, contraindications, or warning.”5 

Simply including this information on the label, however, may not be enough to encourage 

clinicians to use pharmacogenetic testing to guide clinical decision-making. In 2014, 

Wang et al. reviewed the FDA 199 drug labels that included pharmacogenetic data. Of 

these, only 43 (36.1%) provided convincing evidence of clinical validity. Additionally, 

only 61 (51.3%) of the labels made any recommendation about how to use the results of a 

pharmacogenetic test.6 This study highlights the prerequisite need to provide clear, 

evidence-based recommendations to clinicians if they are to use pharmacogenetic tests in 

practice. 

Studies investigating clinician’s attitudes towards the utility of 

pharmacogenomics in clinical practice further demonstrate the need to refine the way 

pharmacogenomics data is presented. A 2015 survey of 90 Mayo Clinic primary care 

physicians found that 52% of the clinicians did not expect or know whether they would 

use pharmacogenomics information for future prescribing. Furthermore, 53% reported 

that the pharmacogenomics Clinical Decision Support alerts integrated into the Mayo 

Clinic’s electronic health records software were, “confusing, irritating, frustrating, or 

difficult to use.” Of those who received a Clinical Decision Support alert, only 30% 

altered their original prescription.7 Even at a site such as the Mayo Clinic that has 

implemented a dedicated pharmacogenomics program, clinicians are often still not 

getting the information they need delivered in the right way. 
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Initial results from the University of Chicago’s 1200 Patients Project suggest that 

a more streamlined process may improve acceptance of pharmacogenomics 

recommendations among physicians. The 1200 Patients Project uses the Genomics 

Prescribing System (GPS) to provide alerts to physicians. When there is a 

pharmacogenomics alert for a specific patient, the prescriber will see a graphic of a 

stoplight with a red, yellow, or green light, indicating the severity of the results. Upon 

clicking on the stoplight, a summary that can be read in 30 seconds or less describes the 

drug/gene interaction. Initial results published after 812 patients had been enrolled 

indicated that physicians clicked on the red light alert 100% of the time, the yellow light 

alert 72% of the time, and the green light alert 20% of the time. When surveyed after an 

alert prompted a medication change, 10% agreed strongly with the GPS recommendation, 

76% agreed somewhat, 3% disagreed somewhat, and 10% disagreed strongly. 

Furthermore, 93% of respondents said that they were “very likely” to enroll more of their 

patients in the study.8 

To address issues involved with efficient delivery of usable information, groups 

composed of clinicians, academics, and industry representatives, such as the Clinical 

Pharmacogenomics Implementation Consortium (CPIC), have been formed to with the 

goal of developing clinical practice guidelines for pharmacogenomics test interpretation. 

Similar groups exist internationally such as the European Pharmacogenetics 

Implementation Consortium (Eu-PIC) and the Dutch Pharmacogenetics Working Group 

(DPWG). The primary activity of the CPIC is to publish “freely available, peer-reviewed, 

updatable, and detailed gene/drug clinical practice guidelines” that “enable the translation 

of genetic laboratory test results into actionable prescribing decisions for specific drugs.”9  
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As of January 2018, the CPIC has published guidelines for 36 different drug/gene 

combinations. Some of the guidelines are for a single drug/gene pair, such as codeine and 

CYP2D6, while others are for a drug and a combination of genes, such as warfarin and 

CYP2C9 and VKORC1.10 Each guideline conforms to a standardized format and system 

to grade levels of evidence and to score the strength of each prescribing recommendation. 

The guidelines contain a literature review, information on the gene of interest, a summary 

of available genetic tests, guidance on how to interpret genetic tests, information on the 

drug of interest, and specific recommendations for drug or dose changes based on genetic 

test results. Numerous citations in the literature as well as formal endorsement by the 

American Society of Health-System Pharmacists (ASHP) are favorable indications of 

CPIC guideline uptake.11  

1.1.2 Drug-metabolizing enzymes and transporters 

The absorption, distribution, metabolism, and elimination of drugs and other 

xenobiotics is mediated by drug-metabolizing enzymes and drug transporters. Drug-

metabolizing enzymes are responsible for phase I and phase II of drug metabolism. Phase 

I consists of oxidation, reduction, and hydrolysis reactions, 75% of the reactions 

catalyzed by cytochrome P450 enzymes. Phase II consists of the conjugation of 

endogenous hydrophilic moieties by transferase enzymes. Transporters are involved with 

absorption, distribution, and elimination of drugs and metabolites. 

Variability in drug response and toxicity is multifactorial, with sources such as 

genetics, age, environmental factors, disease states, and drug-drug interactions all playing 

a role. Of these factors, the genetics of drug-metabolizing enzymes and drug transporters 

make a large contribution. Studies have found that interindividual variability in function 
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for drug-metabolizing enzyme and transporter genes is higher than that in genes not 

related to drug metabolism or transport. In a study that examined protein expression 

levels in a cohort of 427 liver samples, a 641-fold difference was observed between the 

highest and lowest expression levels of CYP3A4, a phase I enzyme. For glutathione S 

transferase A1, a phase II enzyme, a 582-fold difference was observed.12 

Pharmacogenomics offers a means to explain these differences. 

1.1.2.1 Phase I Drug Metabolism  

Phase I drug metabolism occurs mostly in the liver, with most phase I enzymes 

located in hepatocyte endoplasmic reticulum membranes. Phase I reactions include 

oxidation, reduction, and hydrolysis, with oxidation being the most common. These 

reactions convert lipophilic drugs into more easily excreted hydrophilic compounds. The 

cytochrome P450 (CYP) family of drug-metabolizing enzymes is responsible for most 

phase I metabolism.13 

There are 57 functional human CYP enzymes, grouped into 18 families and 44 

subfamilies. Of these, about a dozen enzymes from families 1, 2, and 3 are responsible 

for the metabolism of 70-80% of all clinically used drugs. There is a wide range of 

variability in drug-metabolizing enzyme activity between individuals. This variability is 

often multi-factorial and dependent on factors such as age, sex, and disease state. For 

some CYP genes, genetic polymorphisms are a major determinant of variability. In the 

context of drug metabolism, loss-of-function variants can result in decreased drug 

clearance of the parent compound while gain-of-function variants can result in increased 

drug clearance.14 
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1.1.2.2 Phase II Drug Metabolism 

Phase II metabolism also occurs primarily in the liver. Some phase II enzymes are 

cytosolic while others are located in hepatocyte endoplasmic reticulum membranes. 

Phase II reactions are conjugation reactions that increase the hydrophilicity of the parent 

compound or primary metabolite. Enzymes include UDP-glucuronosyltransferases 

(UGTs), sulfotransferases (SULTs), N-acetyltransferases (NATs), glutathione S-

transferases (GSTs), and methyltransferases, primarily thiopurine S-methyl transferase 

(TPMT) and catechol O-methyl transferase (COMT).15 The most prominent phase II 

enzymes are the UGTs, which glucuronidate 40-70% of all clinically used drugs. Of the 

four UGT families identified in humans, UGT1 and UGT2 are involved in the 

glucuronidation of xenobiotics.15  

1.1.2.3  Drug Transport 

Compared to drug-metabolizing enzymes, there are fewer clear pharmacogenomic 

associations between genetic variation in drug transporter genes and drug efficacy and/or  

toxicity.16 Major families of drug transporters include ATP binding cassette (ABC) and 

solute carrier (SLC and SLCO) transporters. 

Key transporters in the ABC family are P-glycoprotein (MDR1/ABCB1), breast 

cancer resistance protein (BCRP/ABCG2), multidrug resistance proteins (MRPs/ABCCs). 

Of these transporters, clinical evidence is the best for BCRP pharmacogenetics. BCRP, 

encoded by ABCG2, is an efflux transporter expressed in the liver, intestine, the kidney, 

and in blood-tissue barriers. Over 180 variants have been identified in the ABCG2 gene 

but only a handful have been associated with variation in function, expression, mRNA 

stability, or clinical outcomes. The most studied variant, 421C>A affects transport rates 

of statins and possibly tyrosine kinase inhibitors. 17,18 ABCB1, the gene that encodes the 
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efflux transporter P-glycoprotein (P-gp), is highly polymorphic but there is conflicting 

evidence on whether ABCB1 genotype has any influence on drug plasma levels or clinical 

outcomes. 16,18 

SLC drug transporters include but are not limited to organic anion transporters 

(OATs), organic cation transporters (OCTs), peptide transporters (PEPTs) and organic 

anion transporting polypeptides (OATPs).17 A notable pharmacogenetic association exists 

for hepatic uptake transporter OATP1B1, encoded by gene SLCO1B1, and the lipid-

lowering agent simvastatin. Simvastatin is a major substrate of OATP1B1, and patients 

carrying an allele containing the 521T>C variant (*5, *15, or *17) are at higher risk of 

statin-related myopathy due to increased plasma and peripheral drug levels. A CPIC 

guideline has been published for SLCO1B1 with the recommendation to prescribe lower 

starting doses or alternative statins for individuals heterozygous or homozygous for 

decreased-function alleles. 19,20 

1.1.3 Applications 

Pharmacogenetics was initially implemented in the clinic via single-gene tests 

ordered if a physician was considering prescribing a drug with an actionable 

pharmacogenetic association or to guide therapy changes after treatment failure or 

unacceptable toxicity. This remains the most widespread method of pharmacogenetic 

testing.21 The FDA requires pharmacogenetic testing for certain drug/gene pairs and 

groups such as CPIC provide guidance documents on additional drugs or genes with 

pharmacogenetic indications. 

Some large medical institutions have implemented preemptive 

pharmacogenomics programs where genetic testing is done on multiple pharmacogenes 
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when a patient enters into a healthcare system. The data is placed in their electronic 

medical record and is available if they are ever prescribed a drug with an actionable 

pharmacogenetic association.22 

1.1.3.1 FDA-required pharmacogenetic tests 

The FDA currently requires genetic testing for 52 drugs and recommends it for 4 

more. A test is classified as “required” if the label states that a test “should be 

performed.” In some cases, an FDA-approved companion diagnostic test must be 

performed before a patient is initiated on a drug. In other cases, the requirement is up to 

the discretion of the provider. A test is classified as “recommended” if the label states 

that it “should be considered.” 23,24 

The majority of drugs with required genetic testing are kinase inhibitors and 

monoclonal antibodies used in oncology. Generally, the genetic tests are for determining 

whether tumor cells contain specific genetic mutations that make them sensitive or 

resistant to the drug. For example, erlotinib is kinase inhibitor used for treatment of 

patients with metastatic non-small cell lung cancer whose tumors have specific mutations 

in the epidermal growth factor receptor (EGFR) gene. Only patients who are positive for 

the mutations, as determined by an FDA-approved companion diagnostic test, may 

receive erlotinib.25 An example of a monoclonal antibody requiring genetic testing is 

trastuzumab. Trastuzumab is used in the treatment of HER2-overexpressing breast cancer 

and gastric cancer. Prior to initiating therapy, HER2 overexpression must be confirmed 

by an FDA-approved fluorescence in situ hybridization (FISH) assay to test gene 

amplification.26 
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Genetic tests may be required when certain genetic polymorphisms are associated 

with higher risks of adverse reactions. Two of these pharmacogenetic associations are 

related to mutations in the human leukocyte antigen B (HLA-B) gene. Abacavir, an 

antiretroviral drug used to treat HIV/AIDS, is associated with severe hypersensitivity 

reactions in patients with the HLA-B*5701 allele and testing for the allele is required 

prior to initiation.27 Carbamazepine, an anticonvulsant, has been associated with severe 

dermatologic reactions in patients with the HLA-B*1502 allele. This allele is most 

common in patients of Asian descent but mostly absent in other populations. Thus, the 

FDA states that patients of Asian descent should be screened for HLA-B*1502 prior to 

initiating treatment with carbamazepine.28 

CYP2D6 is the only CYP enzyme with FDA-recommended and –required testing. 

The FDA-required pharmacogenetic tests are used to guide dose selection for CYP2D6 

substrates tetrabenazine, eliglustat, and pimozide. The FDA recommends testing to 

determine the risk of adverse effects when treating with dextromethorphan/quinidine. For 

other CYP enzymes, the FDA provides information about pharmacogenetics but does not 

specifically recommend testing. For example, the clopidogrel drug label explains that 

efficacy is dependent on conversion to an active metabolite by CYP2C19 and that an 

alternative platelet inhibitor should be considered in those identified by genotyping as 

having low CYP2C19 activity.29  

1.1.3.2 Clinical Pharmacogenomics Implementation Consortium guidelines 

To date, the CPIC has published guidelines on 36 drug/gene combinations. Each 

guideline includes background information on the gene(s) and drug of interest, available 

genetic test options and how to interpret them, data on how genetic variability is linked to 
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drug-related phenotypes, and dosage recommendations.11 The CPIC has also begun 

providing resources for integration of pharmacogenomic test results into electronic health 

records.30 

The guidelines are primarily for drug-metabolizing enzymes, with the majority 

focused on CYPs. For CYP2C19, guidelines are available for SSRIs citalopram, 

escitalopram, and sertraline, the anti-platelet agent clopidogrel, and the anti-fungal 

voriconazole. For CYP2D6, guidelines are available for SSRIs paroxetine and 

fluvoxamine, tricyclic antidepressants nortriptyline and desipramine, opioid analgesic 

codeine, and anti-emetics odansetron and tropisetron. Some guidelines include 

recommendations based on the diplotypes for multiple genes. Guidelines that include 

both CYP2C19 and CYP2D6 are for tricyclic antidepressants amitriptyline, 

clomipramine, imipramine, trimipramine, and doxepin. Additional guidelines that include 

CYPs are published for tacrolimus and CYP3A5, phenytoin and CYP2C9 plus HLA-B, 

and warfarin and CYP2C9, CYP4F2, and VKORC1.31  

1.1.3.3 Preemptive pharmacogenomics programs 

Some healthcare systems have developed preemptive pharmacogenomic testing 

programs focused on drug/gene pairs with the strongest evidence. Preemptive 

pharmacogenomics involves genotyping a panel of genes related to drug metabolism and 

incorporating the data into patients’ electronic medical records. If an actionable drug is 

prescribed, the clinician will receive guidance on how to adjust the dose or choose 

another drug based on the patient’s diplotype. 21,32 

The Pharmacogenomics Research Network (PGRN) Translational 

Pharmacogenomics Program (TPP) represents a major effort to implement preemptive 
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pharmacogenomics programs in a variety of clinical sites. The sites that are part of TPP 

include Mayo Clinic, The Ohio State University, St. Jude Children’s Research Hospital, 

University of Florida, University of Maryland, Vanderbilt University Medical Center, 

University of Chicago, and Brigham and Women’s Hospital. Each site has developed 

programs relevant to the patient population it serves.32 

St. Jude Children’s Research Hospital has one of the largest preemptive 

pharmacogenetics programs. In 2011, an array-based genotyping test that interrogates 

1,936 variants in 230 genes was implemented as part of routine patient care. As new 

literature is published, a pharmacogenetics committee decides on which drug/gene pairs 

to include in the electronic health record (EHR) system. As of January 2014, genetic data 

was included in the EHR for a total of 1,106 patients. Of these patients, 792 (78%) have 

at least one actionable drug-metabolizing enzyme diplotype, meaning that a drug or dose 

change would be necessary. The drug/gene pairs that are included in the EHR represent 

some of the biggest “success stories” in pharmacogenetics: TMPT and thiopurines, 

CYP2D6 and codeine, CYP2C9+VKORC1 and warfarin, CYP2C19 and clopidogrel, and 

UGT1A1 and irinotecan.33 

Vanderbilt University Medical Center’s program, Pharmacogenomic Resource for 

Enhanced Decisions in Care and Treatment (PREDICT), was initially focused on 

antiplatelet medications in patients who were either anticipating the need for coronary 

artery stenting or who had cardiovascular risk scores that suggested they may need 

antiplatelets in the future. Since coronary artery stenting is often performed as an 

emergency procedure, having pharmacogenetic data available prior to the event expedites 

the process of choosing the most efficacious antiplatelet for each specific patient. 
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Similarly to the methods used at St Jude, genotyping data is stored outside of the EHR 

until a genetic result is deemed actionable by committee. The first diplotype included in 

the EHR was CYP2C19*2/*2, which is a poor metabolizer diplotype. Clopidogrel is a 

prodrug that must be metabolized by CYP2C19 to an active metabolite. Poor 

metabolizers do not produce enough of this active metabolite, resulting in significantly 

reduced platelet inhibition and an increased risk for adverse cardiovascular events. 

Patients who are CYP2C19 poor metabolizers should receive an alternative antiplatelet, 

such as prasugrel or ticagrelor, which is not a CYP2C19-dependent prodrug. 34As of 

2013, the PREDICT program has genotyped 10,000 patients and implemented the 

following drug/gene pairs in addition to CYP2C19 and clopidogrel:, SLCO1B1 and 

simvastatin, CYP2C9+VKORC1 and warfarin, CYP3A5 and tacrolimus, and TPMT and 

thiopurines.32 

1.2 Cytochromes P450 

1.2.1 CYPs responsible for drug metabolism 

Cytochrome P450 enzymes are a superfamily of mono-oxygenases responsible for 

the metabolism of 70 – 80% of all clinically used drugs. They are the primary contributor 

to phase I drug metabolism via the catalysis of oxidative biotransformation reactions.14 

CYPs are endoplasmic reticulum-associated membrane-bound enzymes located 

hepatically, and to a lesser extent, extrahepatically. There are 57 functional P450 genes 

grouped into 18 families and 44 subfamilies. Of these, families 1, 2, and 3 are responsible 

for the metabolism of drugs and other xenobiotics. The remaining families have a variety 

of functions including, but not limited to, the synthesis of steroid hormones, 

prostaglandins, and bile acids. Substrates include sterols, fatty acids, eicosanoids, and 
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vitamins. The predominant xenobiotic-metabolizing CYPs in the liver are CYPs 1A2, 

2C9, 2C8, 2E1, and 3A4 with 2A6, 2D6, 2B6, 2C19, and 3A5 found less abundantly. 14,35 

The CYP1 family contains CYP1A1, CYP1A2, and CYP1A3. Of the three, 

CYP1A2 is the most clinically relevant and is responsible for the metabolism for 8.9% of 

clinically used drugs. It represents ~4-16% of the total hepatic P450 pool while CYP1A1 

and CYP1B1 are expressed extrahepatically. Substrates of CYP1A2 include analgesics 

and antipyretics, antipsychotics, antidepressants, anti-inflammatories, and some 

cardiovascular drugs. Variation in CYP1A2 activity is primarily due to non-genetic 

factors such as enzyme induction via tobacco smoke, charred meat, or cruciferous 

vegetables.14 

The CYP2 family contains 16 genes physically organized in gene clusters. Genes 

relevant to drug metabolism are in families CYP2A-E and CYP2J. The CYP2A family, 

consisting of CYP2A6, CYP2A7, and CYP2A13, makes up ~4% of the hepatic P450 

pool. Of the three isoforms, CYP2A6 is the most relevant to drug metabolism and has 

clinically relevant pharmacogenetic implications. It is the primary enzyme responsible for 

the metabolism of nicotine into the inactive metabolite cotinine and individuals with low-

activity alleles have been shown to have higher plasma nicotine levels. The sole member 

of the CYP2B family is CYP2B6. It contributes an average of ~2-5% to the total hepatic 

P450 pool. The gene is highly polymorphic and CYP2B6 pharmacogenetics are relevant 

in the context of HIV treatment. CYP2B6 is the primary enzyme responsible for the 

metabolism of efavirenz. Higher plasma levels of efavirenz have been observed in 

patients with low-activity alleles, with higher drug exposures associated with 

neurotoxicity necessitating treatment discontinuation. The only gene in the CYP2E 
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family is CYP2E1. It is expressed at relatively high levels in adult livers and is 

responsible for the metabolism of ~3% of clinically used drugs. Genetic variation does 

not make a major contribution to CYP2E1 activity and is instead caused by enzyme 

induction, inflammation, and certain disease states such as diabetes and liver disease.14 

The CYP2C family contains CYP2C8, CYP2C9, CYP2C18, and CYP2C19. 

CYP2C9 is highly expressed in the liver and contributes ~20% of the total hepatic P450 

pool. CYP2C8 and CYP2C19 are expressed at 2- and 10-fold lower levels, respectively. 

Though it is highly expressed, CYP2C18 does not make large contribution to drug 

metabolism. While genetic variation in CYP2C9 and CYP2C19 is clinically relevant, the 

clinical impact of genetic variation in CYP2C8 is not clear. CYP2C9 is responsible for 

the metabolism of ~13% of clinically used drugs including substrates with narrow 

therapeutic indices, such as warfarin. Genetic variation in CYP2C9 and VKORC1 (the 

pharmacodynamic target of warfarin) can explain 50-60% of the variation in warfarin 

maintenance dose in Caucasian patients. CYP2C19 is responsible for the metabolism of 

6.8% of clinically used drugs and is particularly important in the metabolism of 

clopidogrel, an anti-platelet agent.14 

The CYP2D family consists of CYP2D6, which will be discussed separately in 

section 1.3. 

The CYP3 family consists of CYP3A4, CYP3A5, and CYP3A7. The most 

abundant isoform is CYP3A4. It contributes ~14-24% of the total hepatic P450 pool and 

is also the major P450 enzyme in intestinal enterocytes. CYP3A4 metabolizes a wide 

variety of substrates and is responsible for the metabolism of ~30% of clinically used 

drugs. For these reasons, CYP3A4 is a major contributor to the first-pass metabolism of 
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many orally administered drugs. Variability in CYP3A4 activity is influenced by multiple 

factors, such as transcriptional induction by xenobiotics, cytokine-mediated down-

regulation secondary to inflammatory responses, and genetic polymorphisms. Clinically, 

genetic variation in CYP3A4 has been demonstrated to be relevant to statin response and 

time to reach appropriate steady-state concentrations of tacrolimus and cyclosporine in 

transplant recipients.14 

CYP3A5 shares high sequence similarity with CYP3A4 and thus similar substrate 

selectivity. CYP3A5 is unlike other P450 isoforms in the sense that a non-functional allele 

is more common in some populations than the CYP3A5*1 allele. The most common loss 

of function allele, CYP3A5*3, is the found at a frequency of 0.88 – 097 in Caucasian 

populations and 0.66 – 0.75 in Asians and Hispanics. In people of African descent, the 

CYP3A5*3 allele is not as predominant and is found at a frequency of 0.12 – 0.35 in 

Africans and 0.37 in African Americans.14 

CYP3A7 is the fetal form of CYP3A and accounts for 50% of total P450 protein 

content in fetal livers. It has similar substrate specificity as CYP3A4 and CYP3A5. After 

birth, CYP3A expression shifts from CYP3A7 to CYP3A4, but some individuals express 

CYP3A7 into adulthood due to a mutation in the promoter region that increases 

transcription factor binding. The clinical significance of this polymorphism is not well 

known.14 

1.2.2 Biochemistry 

All cytochrome P450 enzymes are hemoproteins.  The presence of iron heme 

allows the enzyme to utilize oxygen and electrons to ultimately release a molecule of 

water and transfer an oxygen atom to a substrate.36 
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The overall CYP reaction can be represented as follows: 

 

S+ O! + 2!! + 2H! →  H!O+ SO 

 

Cytochrome P450 oxidoreductase (POR) and nicotinamide adenine dinucleotide 

phosphate (NADPH) are cofactors involved in transfer of electrons to CYPs. POR is a 

membrane-bound protein that is in the diflavin oxidoreductase enzyme family. In a single 

polypeptide, it contains one molecule of flavin adenine dinucleotide (FAD) and one 

molecule of flavin mononucleotide (FMN). NADPH transfers two electrons in the form 

of a hydride ion to FAD, which then transfers them one by one to FMN which in turn 

transfers electrons one by one to the heme in the P450 enzyme.37  

The P450 catalytic cycle begins when a substrate enters the active site and 

displaces the water molecule bound to the heme. Electron transfer from POR via NADPH 

causes the reduction of iron(III) to iron(II). Next, molecular oxygen binds to the iron to 

form a dioxygen adduct. One electron from the iron(II) center and one electron from the 

oxygen pair form the iron(III)-oxygen bond. The next reduction step, transfer of a second 

electron from POR via NADPH, is the rate-limiting step for many P450 enzymes. In this 

step, a negatively charged iron(III)-peroxo complex is formed as an intermediate. The 

peroxo group is then rapidly protonated to produce a nucleophilic iron(III)-hydroperoxo 

complex. A second protonation generates a molecule of water and an electrophilic 

iron(IV)-oxo species that then oxidizes the substrate. The substrate dissociates and the 

cycle can start over again.38  
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Differences in active site size and conformation confer substrate specificity. 

P450s in the CYP1A and CYP1B families have narrow, rigid active sites that 

accommodate planar molecules such as polynuclear aromatic hydrocarbons. CYP3A4 

metabolizes a much wider range of substrates and this is reflected in the differences in its 

active site. CYP3A4 has a large and open active site cavity that allows for more exposure 

to the heme surface. Also, its active site is not rigid and can expand and contract to 

accommodate substrates of different size. Of the enzymes in the CYP2 family, CYPs 

2E1, 2A6, and 2B6 have small active site cavities and CYPs 2C8, 2C9, 2C19, and 2D6 

have large active site cavities. The enzymes with larger active site cavities metabolize a 

wider range of substrates. Differences within enzyme families confer further substrate 

specificity. CYP2C19, for example, has two internal cavities. The first is positioned 

above the surface of the heme where reactive intermediates are formed and the second is 

an adjacent antechamber that may represent a substrate access channel. CYP2C8, on the 

other hand, contains only one large cavity. Most P450s have a single substrate-binding 

site but some can bind more than one substrate molecule, either in the active site or in an 

allosteric site. 39,40 

1.2.3 Principles of in vitro P450 reaction phenotyping 

The enzyme kinetic parameters Vmax, Km, and CLint can be determined using liver-

based in vitro P450 reaction assays. The data obtained from these assays can then be used 

to assess topics such as the clearance of investigational drugs, the effects of drug-drug 

interactions, and the effects of genetic polymorphisms on drug clearance.41 

Vmax refers to the theoretical maximum rate of an enzymatic reaction and occurs 

when the enzyme is saturated with substrate. The Michaelis constant, Km, represents the 
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substrate concentration that yields a reaction velocity that is one half of Vmax. An enzyme 

with high affinity for a substrate will have a low Km value, meaning that 50% of the 

enzyme molecules will be bound to substrate at a relatively low concentration. Vice 

versa, an enzyme with a low affinity for a substrate will have a high Km value. 41,42 

Values for Km and Vmax are determined experimentally by incubating enzyme 

with substrate at a range of concentrations. When the rate of the reaction (v) is plotted 

against the concentration of substrate ([S]), the result is a hyperbolic curve that can be 

described using the Michaelis-Menten equation.43 

 

𝑣 =  
𝑉!"# × [𝑆]
𝐾! + [𝑆]  

 

1.2.3.1 In vitro models of drug metabolism 

Numerous liver-based methods are used for in vitro investigation of hepatic drug 

metabolism. In vitro models include isolated perfused livers, liver slices, isolated or 

cultured hepatocytes, recombinant enzymes, and human liver microsomes (HLMs). Each 

model has its own particular advantages and disadvantages.44 HLMs are the most popular 

model for studying drug metabolism and thus will be discussed more in-depth in this 

section. 

The use of isolated perfused livers offer the best representation of in vivo 

conditions but use is limited to animal models due to the scarcity of whole human livers. 

Isolated perfused livers are not generally used to assay CYP-mediated drug metabolism. 

Due to the presence of functional bile canaliculi, they are most useful for transporter 

assays when the biliary excretion of a drug is being investigated. Liver slices offer similar 
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advantages to isolated perfused livers: the presence of drug-metabolizing enzymes, 

transporters, and functional bile canaliculi. However, it is more difficult to collect bile 

from liver slices and the presence of necrotic cells may limit drug transporter assays. 

Furthermore, liver slices are not always practical since CYP expression decreases >50% 

within 24 hours of preparation and tissue perfusion by the substrate is limited.44 

Isolated primary hepatocytes are easier to procure and use than whole livers or 

liver slices and offer a good representation of in vivo activity since they reflect natural 

heterogeneity in CYP expression. A disadvantage is that isolated primary hepatocytes are 

only viable for 2-4 hours. Cryopreserved human hepatocytes are available commercially 

and may be cultured for up to four weeks. However, CYP expression decreases with time 

and can introduce unwanted variability.44 

Recombinant systems use transgenic human cell lines, bacteria, or yeast to 

express recombinant CYP enzymes. These systems are advantageous over hepatocytes 

since the cells are easier to culture and can be designed to express a single CYP, which is 

useful if a model focused on a single enzyme is desired. A disadvantage is that data 

obtained from studies using recombinant systems may be difficult to extrapolate to in 

vivo conditions.44 

HLMs are vesicles of hepatocyte endoplasmic reticulum obtained by differential 

centrifugation of liver tissue or primary hepatocytes. HLMs contain CYP enzymes as 

well as other endoplasmic reticulum-associated drug-metabolizing enzymes such UGTs, 

flavin monooxygenases, carboxyl esterases, and epoxide hydrolase. Advantages to using 

HLMs for studying CYPs in vitro is that they are cheap, are relatively easy to use, can be 

frozen and stored for years, and allow study of inter-individual variability. A 
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disadvantage to using HLMs is that in vitro-in vivo extrapolation is limited by the fact 

that contributions from drug-metabolizing enzymes not present in the endoplasmic 

reticulum fraction are not accounted for. Furthermore, cytosolic cofactors involved in 

CYP reactions must be added to the system exogenously.44,45 

HLMs are available commercially as pooled preparations or through liver banks 

as single-donor preparations and the choice to use one or the other depends on the goals 

of a particular study. Pooled products are useful when the goal of a study is to reduce 

interindividual variability and assess how a population as a whole metabolizes a 

xenobiotic. HLM pools can be designed to be representative of a broad population, such 

as Americans as a whole, or subpopulations, such as African Americans. They can also 

be designed to include HLMs from, for example, only donors genotyped to be CYP2D6 

poor metabolizers. In the latter case, a more specific population is being studied, but 

pooling several donors theoretically results in a HLM product that is representative of the 

average. Single-donor HLMs are used when the goal of a study is to investigate 

interindividual variability in drug-metabolizing enzymes. In these types of studies, 

deviations in enzyme activity from average population levels are of particular interest so 

pooling several samples would be counterproductive. 45,46 

1.2.3.2 Human liver microsome incubations 

In vitro assays with HLMs involve incubating the HLMs with a probe substrate, 

NADPH, and a phosphate buffer at 37 °C for a specified amount of time in a shaking 

water bath. After stopping the reaction by adding a protein precipitating reagent such as 

ice cold acetonitrile, either metabolite formation or substrate depletion is quantified using 

methods such as LC-MS/MS.45  
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A number of methodological considerations must be made when carrying out 

HLM incubations. NADPH should not be a rate-limiting reagent and should be used at 

saturating concentrations of 0.5 – 1 mM. The incubation should be carried out in 

physiologically relevant conditions through the use of phosphate buffers at a 

concentration of 50 – 100 mM, a pH of 7.4, and a temperature of 37 °C.43 

The ability to calculate intrinsic clearance requires the reaction to be run under linear 

conditions. Methodological factors that determine linearity include enzyme 

concentration, substrate concentration, and incubation time. Enzyme concentrations must 

be much less than the substrate concentration to ensure that the reaction rate does not 

slow due to reduced substrate availability or through product inhibition. A generally 

accepted number is a 5% reduction in substrate during the course of the assay. At the 

same time, substrate concentration must be low enough to ensure that [S] << Km. 

Incubation time should be selected in a way that results in negligible product formation 

relative to substrate concentrations. Incubation time is of further concern since short 

incubations can be impractical and long incubation times can cause enzyme and substrate 

degradation.43 

When a Km value for a specific substrate can be obtained from the literature, 

optimization of incubation conditions is relatively simple. Ideally, 8-10 different substrate 

concentrations that span the range of one tenth to ten-fold of the Km value is ideal, though 

one fifth to five-fold is suitable if there are limitations related to solubility or analytical 

methods. While keeping the substrate concentrations constant, enzyme concentration and 

incubation time can be varied to fit the considerations discussed above. From these data 

points, the kinetic data can be plotted and the most appropriate substrate concentration, 
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enzyme concentration, and incubation time can be selected for further assays.43 

Two distinct experimental approaches, metabolite formation and substrate 

depletion, are used for kinetic experiments. Metabolite formation is the traditional 

approach used to determine CLint. This approach uses short incubation times and low 

enzyme concentrations to fulfill the assumption of minimal substrate consumption. The 

disadvantage to the metabolite formation approach is that the metabolic pathway must be 

known. When the metabolic pathway of a drug is not known, the substrate depletion 

approach may be useful. However, with this approach, at least 20% of the substrate must 

be metabolized, requiring longer incubation times and higher enzyme concentrations. 

This increases the likelihood of product inhibition and degradation of the substrate and/or 

enzyme. Furthermore, studies to determine linearity are not often performed so CLint 

values obtained using a substrate depletion approach may have poor in vivo predictive 

utility.47 

1.2.4 Allele nomenclature 

An allele is a variant form of a gene. Humans are diploid organisms, meaning 

they have two alleles at each genetic locus.48 Some alleles consist of a single nucleotide 

variant (SNV) occurring in either a coding (exonic) or non-coding (intronic) region of the 

gene. SNVs can also occur in the promoter region or in upstream or downstream 

untranslated regions flanking the gene. Alleles can be defined by the presence of 

insertions/deletions (indels), splicing variations, or structural variation like gene 

deletions, duplications, and recombinations. Alleles can also represent haplotypes, or a 

cluster of SNVs that are inherited together.49 
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Each P450 gene has its own allele nomenclature that is based off of historical 

naming conventions. The Pharmacogene Variation Consortium (PharmVar) has sought to 

standardize P450 naming with a star allele nomenclature system. In this system, a 

common allele conferring normal activity is defined as the reference allele for a particular 

CYP gene and is designated as the *1 allele (e.g. CYP2D6*1). Variant alleles are 

compared to the *1 allele and given their own star name (e.g. *2, *3, etc.) upon approval 

of the Human Cytochrome P450 (CYP) Allele Nomenclature Committee. Some alleles 

have one or more suballeles (e.g. *2A, *2B, *2C) if they share a common defining 

polymorphism, such as a SNV resulting in a loss of function, but vary in any additional 

polymorphisms that do not appreciably change protein function.50 

An individual’s diplotype represents both alleles at the gene locus of interest. An 

example of a diplotype would be *1/*2, which indicates that the individual has one copy 

of the *1 allele and one copy of the *2 allele.  

1.2.5 Translating CYP diplotype to phenotype 

A barrier to the wide-scale implementation of pharmacogenomics has been the 

ability to translate of genetic data into information that is clinically useful. Translational 

research is focused on the “bench-to-bedside” process of moving knowledge gained 

through basic science research into medical practice.51 With pharmacogenomics, this 

involves using genotyping data to make predictions about the way an individual will 

respond to a drug and selecting the drug and dose that is most appropriate for them.  

In the context of pharmacogenomics, “phenotype” generally refers to efficacy or 

toxicity and can be observed in multiple ways and defined qualitatively and 

quantitatively. For example, efficacy may be defined more qualitatively as clinical 
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response or quantitatively as a particular plasma drug level. Likewise, toxicity can be 

defined in more qualitative clinical terms or it may be defined using a quantitative 

measure such as platelet count.  

The link between genotype and phenotype is often most obvious with severe 

adverse drug reactions. One possible cause of an adverse drug reaction is genetic 

variation in drug-metabolizing enzymes or transporters. For example, statin-induced 

myopathy is 17x more likely to occur in individuals who are homozygous for a loss-of-

function variant in the SLCO1B1 drug transporter gene. Another cause is genetic 

variation in genes involved with immune response, such as the increased risk of severe 

dermatologic reactions to abacavir in those with the HLA-B*5701 allele. A third cause is 

variation in genes involved with the target or mechanism of a drug, such as increased risk 

of warfarin-induced skin necrosis in individuals with genetic protein C deficiency.2 

Efficacy or CYP enzyme activity are difficult phenotype to link directly to 

genotype because they are also affected by environmental factors, demographic factors 

such as age or sex, and interindividual variability in additional genes related to the drug’s 

metabolism or mechanism of action. Because phenotypes such as efficacy or activity are 

complex traits, the contribution of genetics is defined by the percentage of variation in 

phenotype predicted. Genetic variants that explain 20 – 40% of phenotypic variance are 

considered to have good discriminative power.2 

A classification system is used in which predicted CYP enzyme activity 

phenotype is described using the terms normal metabolizer, intermediate metabolizer, 

poor metabolizer, and ultrarapid metabolizer.52  
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Normal metabolizers (NMs) generally have a “normal” amount of enzyme 

activity due to two copies of a fully functional allele. Intermediate metabolizers (IMs) 

have reduced enzyme activity relative to normal metabolizers. This may be due to two 

copies of a partially defective allele, a combination of a normal allele and a partially 

defective or null allele, or a combination of a partially defective allele and null allele. 

Individuals who are poor metabolizers (PMs) have no or very little detectable enzyme 

activity due two copies of a non-functional allele. These non-functional alleles may be 

due to gene deletions, insertions/deletions, splicing defects, or other polymorphisms that 

inhibit gene translation or cause a loss of protein function. Ultrarapid metabolizers (UMs) 

have one or more duplications of functional genes resulting in higher enzyme activity 

levels than what is typically seen in NMs. 

While this system has provided some consistency in prescribing a phenotype to an 

individual from genetic data, there can still be large interindividual variability within 

each phenotype class. Furthermore, there may be overlap between phenotype classes. For 

example, an individual who is predicted to be a normal metabolizer may have lower 

activity of the CYP of interest than someone who is predicted to be an intermediate 

metabolizer. This may be due to confounding factors such as concomitant medication use 

or age- or sex-related differences in enzyme expression.14 Another possibility is that the 

NM individual may have an additional uncharacterized genetic polymorphism that results 

in a loss or gain of enzyme activity.  



 

 31 

1.3 CYP2D6 

1.3.1 Clinical relevance 

CYP2D6 is responsible for the metabolism of 25% of all clinically used drugs 

from a wide range of drug classes including antiarrhythmics, tricyclic antidepressants, 

selective serotonin reuptake inhibitors, antipsychotics, beta-blockers, selective estrogen 

receptor modulators, and opioid analgesics.14  

To date, the CPIC has published guidelines that involve 12 different CYP2D6 

substrates. Guidelines that focus solely on CYP2D6 are for codeine, anti-emetics 

tropisetron and ondansetron, tricyclic antidepressants (TCAs) desipramine and 

nortriptyline, and selective serotonin reuptake inhibitors (SSRIs) fluvoxamine and 

paroxetine. The guidelines for the TCAs amitriptyline, clomipramine, doxepin, 

imipramine, and trimipramine also consider the diplotypes of both CYP2D6 and 

CYP2C19 when making recommendations. 

While the CPIC guidelines highlight drug/gene pairs with strong pharmacogenetic 

associations, it is not always clear-cut. The utility of CYP2D6 pharmacogenetic testing 

was questioned when two large clinical studies reported that CYP2D6 diplotype did not 

predict clinical benefit in women with breast cancer being treated with tamoxifen. 53,54 

This was controversial because previous studies had found an association between 

CYP2D6 diplotype and plasma levels of endoxifen, an active metabolite formed by 

CYP2D6. Adding to the controversy were issues with DNA quality and genotyping. A 

major criticism of these studies was that the tumor sample DNA used for genotyping was 

inappropriate and that results suggested undetected CYP2D6 deletion due to loss of 

heterozygosity. 54,55 Another issue is that the authors only tested a limited number of 

CYP2D6 variants and did not assess copy number variation to detect deletions or 
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duplications. Despite these flaws, the studies have had widespread effects on clinical 

practice. For example, the National Comprehensive Cancer Network references the 

studies and states that they do not recommend CYP2D6 genotyping in patients treated 

with tamoxifen, due to “limited and conflicting evidence.”56 

1.3.1.1 Codeine 

Variation in codeine metabolism represents a classic example of the clinical 

relevance of CYP2D6 pharmacogenetics. Codeine is considered a prodrug; while codeine 

has mild analgesic effects, its active metabolite, morphine has a 200-fold greater affinity 

for the µ-opioid receptor. The formation of morphine is dependent upon the CYP2D6-

mediated O-demethylation of codeine. In poor metabolizers, the percentage of codeine 

that is metabolized to morphine is lower than what is observed in normal metabolizers. 

Studies have shown that poor metabolizers experience a decrease in analgesia as well as a 

decreased incidence of side effects such as constipation. In ultrarapid metabolizers, a 

higher percentage of codeine is metabolized into morphine than what is observed in 

normal metabolizers. This represents the potential for more severe adverse effects as 

increased morphine concentrations can result in respiratory depression or cardiac arrest.  

The potential for serious adverse effects was fully realized in 2005 with the death 

of a 13-day-old infant.57 His mother had been prescribed codeine for post-partum pain 

and took it while breastfeeding, consistent with the American Academy of Pediatrics 

listing codeine as being compatible with breastfeeding. Post-mortem analysis of the 

infant found a morphine serum concentration of 70 mg/mL, much higher than the typical 

value for breastfed infants of 0.2 – 2 ng/mL. Breastmilk that the mother had stored from 

postpartum day 10 had a morphine concentration of 87 ng/mL. Typical values observed 
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in breastmilk from women taking similar codeine doses range from 1.9 – 20.5 ng/mL. 

The mother was genotyped for CYP2D6 and was found to be an ultrarapid metabolizer, 

explaining the higher than normal concentration of morphine in her breastmilk.57 

Following this case report, the FDA changed the codeine product label to include 

a boxed warning cautioning against its use in children and information on the risks of 

opioid toxicity in infants breastfed by mothers who are CYP2D6 ultrarapid metabolizers. 

The label mentions that there is a pharmacogenetic test available but that they are not 

routinely performed.58 The CPIC has since issued a guideline on codeine and CYP2D6 

for use in the general population, recommending that codeine be avoided in ultrarapid 

metabolizers and poor metabolizers in favor of alternate analgesics such as morphine or 

non-opioid analgesics.59  

1.3.1.2 Tricyclic antidepressants 

Tricyclic antidepressants have largely fallen out of favor due to the high incidence 

of side effects but still have roles in the treatment of refractory depression and pain. 

Certain tricyclic antidepressants (amitriptyline, clomipramine, doxepin, imipramine, and 

trimipramine) are demethylated by CYP2C19 to active metabolites. CYP2D6 then 

hydroxylates them to less active metabolites. Desipramine and nortriptyline are not 

metabolized by CYP2C19 but are hydroxylated by CYP2D6 to less active metabolites. 

The CPIC guideline gives recommendations based on both CYP2C19 and CYP2D6 

diplotype, but only the CYP2D6 recommendations will be discussed presently. 

In CYP2D6 poor metabolizers, the metabolism of tricyclic antidepressants to less 

active metabolites is reduced relative to normal metabolizers. The risk for adverse effects 

is increased due to high plasma concentrations of more active metabolites of the drugs. 
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The CPIC recommendation is to avoid the use of TCAs in poor metabolizers. If a TCA 

must be used, the recommendation is to use a starting dose that is 50% lower than what is 

recommended in the drug label and then to use therapeutic drug monitoring to guide dose 

adjustments. In intermediate metabolizers, metabolism of TCAs is reduced, but not to the 

extent that is observed in poor metabolizers. The CPIC recommends a 25% reduction in 

starting dose and therapeutic drug monitoring. For ultrarapid metabolizers, the concern is 

that TCAs will be metabolized at an increased rate, resulting in a loss of therapeutic 

efficacy. In this case, the CPIC recommends avoiding TCAs or increasing the starting 

dose and using therapeutic drug monitoring to guide dose adjustments.60  

1.3.1.3 Selective serotonin reuptake inhibitors 

Selective serotonin reuptake inhibitors have supplanted tricyclic antidepressants 

as first-line therapy for the treatment of major depressive disorder. Like TCAs, SSRIs are 

metabolized by CYP2C19 and CYP2D6. The efficacy and safety of SSRIs vary among 

individuals; up to 50% will fail initial SSRI therapy and 25,000 patients visit emergency 

departments every year due to SSRI-related adverse events. Some of this variability in 

response is due to CYP2C19 and CYP2D6 pharmacogenetics.  

Paroxetine and fluvoxamine are metabolized to inactive metabolites by CYP2D6. 

Ultrarapid metabolizers are of the greatest concern, with multiple studies demonstrating 

there is at ultrarapid metabolizers have low plasma paroxetine concentrations, putting 

them at risk for treatment failure. The CPIC recommendation is that ultrarapid 

metabolizers be treated with an alternative drug that is not metabolized by CYP2D6. 

There is less evidence of treatment failure in ultrarapid metabolizers with fluvoxamine, 

so the CPIC does not make a specific recommendation. Similarly, even though 
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intermediate metabolizers would be expected to have decreased metabolism and thus 

increased risk for adverse effects, there is not enough evidence to make recommendations 

for adjustment to paroxetine or fluvoxamine therapy. Poor metabolizers have greater 

exposure to paroxetine and fluvoxamine, potentially increasing the risk for adverse 

effects. Per the FDA, the fluvoxamine drug label includes a precaution about use in 

CYP2D6 poor metabolizers. Based on data from pharmacokinetic modeling, the CPIC 

recommends a 50% reduction in starting dose for paroxetine and a 25-50% reduction for 

fluvoxamine.61  

1.3.1.4 Emerging areas 

The CPIC ranks drug/gene pairs based on the level of supporting evidence in the 

literature and prioritizes those with the highest level of evidence for new guidelines. 

Opioid analgesics oxycodone and tramadol and selective estrogen receptor modulator 

tamoxifen have an evidence rating of “A” and will likely be the next areas of focus for 

guideline publication. Drugs with an evidence level of B are considered next. These are 

primarily psychiatric drugs and include antipsychotics risperidone, brexpiprazole, 

aripiprazole, pimozide, and mirtazapine, and antidepressants sertraline, venlafaxine, and 

vortioxetine.62 

The combination of dextromethorphan and quinidine is marketed for the treatment 

of pseudobulbar affect, a condition characterized by involuntary laughing and/or crying. 

Dextromethorphan, a CYP2D6 substrate, is responsible for the therapeutic effect and 

quinidine, a CYP2D6 inhibitor, is used to increase dextromethorphan plasma levels. 

Quinidine has no effect on dextromethorphan levels in CYP2D6 poor metabolizers so 
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genotyping may spare patients from the potentially serious adverse effects associated 

with quinidine, such as thrombocytopenia and torsades de pointes.63 

1.3.2 CYP2D6 gene locus 

The CYP2D6 gene is located in a segment on chromosome 22q13.2 that also 

contains the pseudogenes CYP2D7 and CYP2D8.64 CYP2D6 itself is comprised of  

approximately 5350 bp. All of the genes contain nine exons. Both pseudogenes have 

similar nucleotide sequences to CYP2D6, with 92-97% homology across introns and 

exons.65 

CYP2D8 is downstream from CYP2D6 and does not encode a functional protein 

product due to several insertions, deletions, and sequence variations that code for stop 

codons. No mRNA has been observed in humans. The CYP2D7 pseudogene is 

downstream from CYP2D8. It contains a nucleotide insertion in the first exon that results 

frameshift responsible for a premature stop codon and thus a nonfunctional protein.66 

Several intronic and exonic regions of CYP2D7 are identical to CYP2D6, as well as the 

3’-ends and downstream repetitive regions. These similarities can result in gene 

rearrangements that produce deletions, duplications, and hybrids of CYP2D6 and 

CYP2D7.64  

1.3.3 CYP2D6 nomenclature 

The reference allele used to define the CYP2D6*1 sequence is GenBank entry 

AY545216, submitted in 2005 by Gaedigk et al.67 This sequence supersedes GenBank 

entry M33388, the first CYP2D6 sequence published in 1989 by Kimura et al.68 While 

AY545216 corrects sequencing errors found in the previous reference sequence, M33388 

is still used by convention to define nucleotide positions used in official allele definitions. 
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Numbering starts with 1 at the M33388 sequence ATG start codon and has been 

numbering guidelines have updated to reflect corrections to the original sequencing 

errors.64  

Currently, there are 113 primary star alleles defined for CYP2D6. Some of these 

alleles have multiple suballeles. For example, CYP2D6*4 is defined by the presence of 

1846G>A, a SNV that introduces an alternative splice site leading to nonfunctional 

truncated CYP2D6 protein.69 There are currently fifteen *4 suballeles defined in the 

nomenclature: CYP2D6*4A-*4P and CYP2D6*4X2, which represents a duplication of the 

CYP2D6*4 allele. All of these alleles have the 1846G>A SNV in common but vary in 

what additional SNVs they contain.70 The additional SNVs do not change the functional 

consequence; every CYP2D6*4 suballele results in nonfunctional CYP2D6 protein. 

Structural variants are not always obvious by their nomenclature. CYP2D6*5 

represents the deletion of the CYP2D6 gene. Hybrid alleles, which are combinations of 

CYP2D6 and CYP2D7, are given star designations, such as *13. Duplications are 

described by listing the allele that is duplicated and the number of copies present on one 

chromosome. The generic nomenclature for a duplicated allele has “xN” after a star 

allele, e.g. *1xN. If there were 4 copies of the *1 allele present, it would be designated as 

*1x4. Tandem alleles occur when two different alleles are found on the same 

chromosome and are described as allele 1 + allele 2, e.g. *68 + *4.  

1.3.4 Activity score 

The activity score system was introduced by Gaedigk et al. in 2008 as a way to 

simplify and standardize the clinical translation of CYP2D6 diplotype data.52 It has been 
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adopted by the Clinical Pharmacogenomics Implementation Consortium (CPIC) as the 

preferred method of translating diplotype into phenotype in CYP2D6 guidelines.64 

One of the more common ways to translate drug-metabolizing enzyme diplotype 

data into a phenotype prediction is with system that presents predicted phenotypes as 

poor metabolizers, intermediate metabolizers, normal metabolizers, or ultrarapid 

metabolizers. This method is challenging for CYP2D6 due to the large number of alleles 

and potential complexity of particular allele combinations.  

With the activity score system, a score of 0 is given to nonfunctional alleles, 0.5 

to reduced function alleles, or 1 to functional alleles with activity comparable to the 

CYP2D6*1 reference allele. Gene duplications are assigned a score that is a multiple of 

single gene score (e.g. a duplication of the *41 reduced function allele (*41x2) would 

have a score of 1 since *41 has an activity score of 0.5). Diplotype activity scores are 

thus the sum of the individual allele scores that comprise the diplotype. Possible 

diplotype scores are 0, 0.5, 1, 1.5, 2, and >2.64 The activity scores are then translated into 

predicted phenotypes of poor metabolizers, intermediate metabolizers, normal 

metabolizers, or ultrarapid metabolizers. Activity scores are qualitative and the scale does 

not imply that an allele with a score of 0.5 has 50% of the activity of an allele with an 

activity score of 1.   

1.3.5 Relevant CYP2D6 alleles 

CYP2D6*1 is the reference allele used to define a “wildtype” sequence that 

encodes a CYP2D6 enzyme with normal activity. An allele is designated as CYP2D6*1 if 

it does not include any of the other SNVs found in the alleles indexed by the CYP2D6 
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allele nomenclature database.70 CYP2D6*1 is usually the most common allele found in 

European and African populations. 

CYP2D6*1xN refers to the duplication of the *1 allele, with N indicating how 

many copies of CYP2D6*1 are present on a chromosome. Multiple copies of the *1 allele 

results in an ultrarapid metabolizer phenotype.71 

CYP2D6*2 is defined by the presence of two missense SNVs, 2850C>T and 

4180G>C, that cause amino acid changes R296C and S486T. Functionally, CYP2D6*2 

has slightly reduced activity compared to CYP2D6*1 but the difference is not considered 

to be significant, resulting in CYP2D6*2 having an NM designation.72  

CYP2D6*3 is defined by a deletion, 2549delA, that causes a frameshift mutation. 

The frameshift causes premature truncation of the CYP2D6 protein, resulting in a 

complete loss of function and a PM designation.73  

CYP2D6*4 is defined by the presence of the intronic SNV 1846G>A, which 

causes a disruption of the splice acceptor site in intron 3.74 CYP2D6*4 is nonfunctional 

and designated as a PM.  

CYP2D6*4xN refers to the duplication of the *4 alelle, with N indicating how 

many copies of CYP2D6*4 are present on a chromosome. Since *4 is nonfunctional, 

multiple copies do not result in increased CYP2D6 activity, so the allele is designated as 

a PM.71 

CYP2D6*4N+*4 consists of the hybrid allele *4N in tandem with *4N. Because 

both *4N and *4 are nonfunctional, it is a PM allele.75 

  CYP2D6*5 is the total deletion of the CYP2D6 gene caused by homologous 

recombination of the rep 7 and rep 6 regions and looping out of the gene.76 Since no 
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functional protein is produced from a deleted gene, CYP2D6*5 has the designation of 

PM. The current PGRNSeq platform is not designed to detect the CYP2D6*5 allele but a 

novel bioinformatics tool, Stargazer (discussed further in Chapter 2), has been developed 

to determine CYP2D6 copy number using PGRNSeq read depth data. 

CYP2D6*6 is defined by a deletion of a single nucleotide in exon 3, 1707delT, 

that causes a frameshift. The frameshift leads to the generation of a premature stop codon 

located one codon after the deletion. The truncated CYP2D6 protein is nonfunctional and 

results in a PM designation.77  

CYP2D6*9 is defined by the deletion of three nucleotides, 2615_2617delAAG, 

resulting in the deletion of a single amino acid, K281del. The CYP2D6*9 allele confers 

reduced function and in vitro studies suggest that this is due to reduced expression rather 

than changes in catalytic activity.78  

CYP2D6*10 is defined by the SNVs 100C>T, 1661G>C, and 4180G>C and has 

reduced function. The 100C>T variant causes a deleterious protein change, P24S, that has 

been associated with reduced CYP2D6 expression and catalytic activity. 79 

CYP2D6*17 is defined by the presence of four SNVS, 1023C>T, 1661G>C, 

2850C>T, and 4180G>C. CYP2D6*17 is a reduced function allele. This effect appears to 

be due to substrate-specific changes in Km. 80 

CYP2D6*20 contains an insertion, 1973_1974insG, that causes a frameshift, 

generating a premature stop codon. The truncated CYP2D6 protein is nonfunctional and 

results in a PM designation.81 

CYP2D6*29 is defined by the presence of the SNVs 1659G>A and 3183G>A, 

which cause protein changes V136I and V338M. The CYP2D6*29 allele encodes an 
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enzyme with reduced function, possibly due to changes in Km that are substrate-

specific.82 

CYP2D6*33 is defined by the presence of a single SNV, 2483G>T, which causes 

the protein change A237S. CYP2D6*33 has normal activity.70 

CYP2D6*35 is defined by the presence of SNVs 31G>A, 2850C>T, and 

4180G>C. The 31G>A SNV results in the protein change V11M. CYP2D6*35 confers 

normal protein activity.70 

CYP2D6*36+*10 is a hybrid tandem allele, meaning that two CYP2D6 alleles, 

*36 and *10, exist together on the same chromosome. *36 is nonfunctional but *10 has 

intermediate activity, so the overall allele is designated as an IM.71 

CYP2D6*39 is defined by the presence of 1661G>C and 4180G>C in the absence 

of 2850C>T. It has normal activity.70 

CYP2D6*41 is defined by the presence of intronic SNV 2988G>A, which causes 

a splicing defect, in combination with 1661G>C, 2850C>T, and 4180G>C. CYP2D6*41 

is a reduced function allele. The hypothesized mechanism is reduced protein expression 

secondary to the splicing defect.83 

CYP2D6*41x2 refers to the duplication of the *4 alelle, with two copies of *41 on 

the same chromosome. Since *41 has reduced function, two copies result in roughly 

normal CYP2D6 activity, designating it as an NM.71 

CYP2D6*43 is defined by the presence of a single SNV, 77G>A, which results in 

the protein change R26H. This allele confers normal function.70 

CYP2D6*59 is defined by the presence of the SNVs 2291G>A and 2939G>A in 

combination with 1661G>C, 2850C>T, and 4180G>C. CYP2D6*59 is a reduced function 
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allele. Of the SNVs unique to CYP2D6*59, 2291G>A is found in intron 4 and it is not 

clear if it contributes to the intermediate metabolizer phenotype. The second SNV, 

2939G>A, causes a synonymous change in exon 6. The mechanism has not been fully 

elucidated, but it is hypothesized that the 2939G>A SNV may cause splicing defects or 

that it may cause changes in secondary mRNA structure.84 

CYP2D6*68+*4 is a hybrid tandem allele, meaning that two CYP2D6 alleles, *68 

and *4, exist together on the same chromosome. Both alleles are nonfunctional, so the 

overall allele is designated as a PM.71 

1.3.6 Other sources of CYP2D6 variation 

1.3.6.1 Ethnicity  

CYP2D6 allele frequencies vary across world populations. Europeans have a 

relatively high frequency of individuals with a poor metabolizer phenotype. This is 

largely due to the loss of function *4 occurring at a frequency of 18% in people of 

European descent. It is lowest in East Asians with a frequency of 0.6% 

Intermediate metabolizer phenotypes are most common in East Asian, African, and 

Middle Eastern populations. The intermediate function allele, *10, is most common in 

East Asians and occurs at a frequency of 45%. The *17 and *29 alleles are most common 

in African populations and occur at frequencies of 20% and 9%, respectively. Hybrid 

genes appear to occur more often in Africans, as well. The *41 allele is most common in 

Middle Eastern populations, occurring at a frequency of 20%. Ultrarapid metabolizer 

phenotypes are found most often in Oceanian and Middle Eastern populations due to the 

high frequency of alleles containing gene duplications.85-87 
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1.3.6.2 Age and sex 

Data on the effect of age and sex on CYP2D6 activity are conflicting and vary 

depending on the probe substrate used.88  

1.3.6.3 Drug-drug interactions 

CYP2D6 is subject to inhibition by a variety of drugs, potentially resulting in 

drug-drug interactions. Strong inhibitors, which increase the AUC of a second CYP2D6-

metabolized substrate by ≥5-fold, include bupropion, fluoxetine, paroxetine, quinidine, 

and terbinafine. Moderate inhibitors, which increase the AUC of a second substrate by ≥2 

to <5-fold, include cimetidine, cinacalcet, duloxetine, fluvoxamine, and mirabegron.89 

Paroxetine and cimetidine are mechanism-based inhibitors and the others are reversible.71 

1.3.6.4 Liver disease 

The effects of liver disease on CYP2D6 activity vary with etiology. In general, 

CYP2D6 is not as sensitive to liver disease as other CYPs such as CYP1A2, 2C19, and 

3A4/5. Patients with chronic hepatitis C have been reported to have 2.6x less CYP2D6 

activity versus those without hepatitis C. Anti-CYP2D6 antibodies are present in those 

with autoimmune hepatitis and have been identified in some patients with chronic 

hepatitis C. In one study, patients who produced these antibodies had CYP2D6 activity 

levels 80% lower than those who did not produce antibodies.71 

1.3.6.5 Cytochrome P450 Oxidoreductase 

Cytochrome P450 oxidoreductase (POR) transfers electrons from NADPH to 

CYP enzymes, a rate-limiting step in CYP-mediated drug metabolism. The POR gene is 

polymorphic and certain variants cause a syndrome consisting of skeletal dysplasia, 

impaired steroidogenesis, and genital ambiguity. Other variants do not cause a disease 
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phenotype but have been associated with decreased CYP enzyme function. A POR 

variant may only affect the activity of certain CYP enzymes and the effect may be 

substrate-specific. Because POR is required for CYP enzyme function, genetic variation 

in the POR gene may explain some of the variability in CYP activity not explained by 

CYP genetics. A study examining the effects of various recombinant POR variants on 

CYP2D6 activity found that POR with common variant A503V decreased CYP2D6 

activity by 40-50% when using dextromethorphan and bufurolol as probes.90 

1.3.6.6 Aldo-keto reductase 1D1 

Aldo-keto reductase 1D1 (AKR1D1) is involved in the bile acid homeostasis and 

is hypothesized to regulate CYPs through activation of nuclear receptors that 

transcriptionally regulate CYP expression. Bile acids are ligands of nuclear receptors 

PXR and CAR, which induce the transcription of CYP3A4, CYP2C9, and CYP2C19. 

Since CYP2D6 is generally considered to be non-inducible, this mechanism of CYP 

regulation should not affect CYP2D6 activity. However, it is possible that there are 

additional pathways that have not yet been described.91 

1.3.7 CYP2D6 genotyping methods 

CYP2D6 is technically difficult to sequence due to a large number of variants, 

copy number variation, the presence of hybrid and tandem alleles, repeat regions, and 

high sequence homology with the CYP2D7 pseudogene.92 

Targeted genotyping is a method used to test for the presence of specific variants 

using methods such as TaqMan PCR assays. This method can be problematic for 

CYP2D6 because rare variants that alter enzyme activity will not be detected, nor will 

more common variants that were not included on the genotyping panel. When no variants 
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are detected, allele assignment “defaults” to CYP2D6*1 and individuals may erroneously 

be predicted to be normal metabolizers. Also, targeted genotyping will not provide 

information on copy number variation unless it is specifically assessed using quantitative 

real-time PCR. Results of this type of copy number variation assay may be ambiguous 

since it only reports a generic duplication signal. In diplotypes such as *1/*4, either allele 

may be duplicated with different effects on enzyme function. CYP2D6*1 is a functional 

allele, so a duplication would cause increased function; on the other hand, CYP2D6*4 is 

non-functional so a duplication would not change CYP2D6 phenotype.92 

Sequencing allows for the detection of uncommon or rare variants but has its own 

unique technological challenges. Short-read sequencing allows for read lengths of up to 

300 bp and is the most common sequencing method used commercially. Repetitive 

regions and pseudogenes are issues for short-read sequencing because the reads may not 

be long enough to distinguish between regions of the gene locus. Long-red sequencing 

platforms currently have average read lengths of approximately 10 kb, offering a large 

improvement over short-read sequencing.92 

Targeted exome sequencing of selected pharmacogenes, such as with the PGRNSeq 

platform, offers an approach that can be conducted for less time and money than whole 

genome or exome sequencing. By focusing on selected genes, targets can be sequenced 

with deep coverage at relatively high throughput.93 Furthermore, read depth data can be 

used to assess CYP2D6 copy number and for the presence complicated structures such as 

hybrid genes. 
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1.4 Specific aims 

Aim 1: Assign CYP2D6 haplotypes to human liver microsome samples from a 

panel of livers and determine expected CYP2D6 activity scores. Use sequencing data 

provided by the PGRNSeq platform to assign common CYP2D6 haplotypes and identify 

any novel or rare coding variants. 

Aim 2: Perform an in vitro probe study to determine CYP2D6 activity in 

human liver microsome samples. Identify SNVs that may explain phenotypic 

outliers. Use CYP2D6 probe drugs dextromethorphan and metoprolol in human liver 

microsome (HLM) incubations to estimate CYP2D6 activity.  

Aim 3: Incorporate Stargazer data on structural and copy number variation to 

evaluate the change in the percent variation in CYP2D6 activity predicted by 

activity score. Reassign diplotypes using Stargazer data and determine if correlation of 

CYP2D6 activity with activity score is improved.
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2 A multifactorial cytochrome P450 2D6 genotype-phenotype 
prediction model to improve precision of clinical 
pharmacogenomic tests 

2.1 Introduction 
Cytochrome P450 2D6 (CYP2D6) contributes to the metabolism of up to 25% of 

medications from widely-used classes such as beta-blockers, antiarrhythmics, selective 

serotonin reuptake inhibitors, tricyclic antidepressants, antipsychotics, and opioid 

analgesics.94 A high degree of interindividual variability in CYP2D6 activity has been 

observed and much of this can be attributed to variation in the highly polymorphic 

CYP2D6 gene.95  

The combination of a wide range of clinically-relevant substrates and a well-

studied link between genetics and activity has made CYP2D6 a logical candidate for 

clinical pharmacogenetic testing. Currently, information on CYP2D6 pharmacogenetics is 

included in the labeling for 52 FDA-approved drugs.96 To provide guidance on 

implementation of pharmacogenomics testing in the clinic, groups such as the Clinical 

Pharmacogenetics Implementation Consortium (CPIC) have published guidelines for 12 

gene-drug combinations from 4 therapeutic classes that are metabolized by CYP2D6.97  

The CYP2D6 gene is notoriously difficult to interrogate due to challenges 

imposed by the complexity of the CYP2D6 gene locus. To date, over 100 CYP2D6 alleles 

have been defined, many of which are comprised of multiple variants. Techniques such 

as targeted genotyping are of limited utility for CYP2D6 because logistics limit the 

number of many possible variants to test. Such strategies may miss clinically relevant 

variants that were present in an individual but not included in the platform. Because of 
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the way many CYP2D6 haplotypes build on a *1 or *2-like “background,” an individual 

may have a deleterious variant, but if it is not tested for, their diplotype will default to *1 

or *2, predicting normal CYP2D6 activity when it is actually reduced or absent. 64,92 This 

is particularly problematic in diverse populations, where data is lacked about relevant 

functional variation; if functional variants are missed in these populations, a default *1 or 

*2 variant would incorrectly assign individual phenotypes. 85,92 

In addition to sequence variation, structural variation is an important 

consideration in assigning CYP2D6 diplotypes. The CYP2D6 gene locus has a high 

degree of structural variation that results in not only copy number variation (CNV) like 

gene deletions and duplications, but also gene rearrangements between CYP2D6 and the 

adjacent pseudogene CYP2D7 with high homology to CYP2D6, which lead to CYP2D6-

CYP2D7 hybrids. Structural variation is not uncommon: the CYP2D6*5 allele, a deletion 

of the CYP2D6 gene, occurs at a frequency of 2 – 6% worldwide, while duplications that 

cause increased function, such as CYP2D6*1xN, occur at a frequency of 2 – 12%.92 If 

CYP2D6 pharmacogenetic tests do not assess structural variation, a relatively large 

number of people may be assigned an incorrect diplotype.  

The goal of this study was to compare the predictive power of CYP2D6 diplotype 

and activity score assignments based on single nucleotide variation (SNV) and small 

insertion or deletion (indel) data alone and assignments using Stargazer, a software tool 

for assigning alleles from next-generation sequencing data that combines SNV/indel calls 

with structural variation data to improve the predictive model. We assessed CYP2D6 

activity in a panel of 309 human livers using CYP2D6 probe substrates, metoprolol and 

dextromethorphan. Metoprolol is metabolized to α-hydroxymetoprolol and 
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dextromethorphan is metabolized to dextrorphan via CYP2D6. We then used PGRNSeq, 

a next generation sequencing platform, to assign CYP2D6 diplotypes; we compared 

assignments from SNV data alone and incorporation of structural variation identified 

from Stargazer. Finally, we compared the amount of variation in CYP2D6 activity 

predicted by activity score assignments from the two methods.  

2.2 Materials and methods 

2.2.1 Chemicals and reagents 

Dextromethorphan, metoprolol tartrate, NADPH, potassium phosphate, EDTA, 

and acetonitrile were purchased from Sigma-Aldrich (St Louis, MO, USA). Dextrorphan-

d3 was purchased from Cerilliant (Round Rock, TX, USA). Carvedilol-d3 was purchased 

from C/D/N Isotopes (Pointe-Claire, QC, CA).  

2.2.2 Human liver samples  

2.2.2.1 Human liver microsomes, total protein quantitation, cytochrome P450 

oxidoreductase protein quantitation, genomic DNA extraction 

Human liver samples (n = 347) were obtained from the University of Washington 

Human Liver Bank (n = 65) and the St. Jude Liver Resource at St. Jude Children’s 

Research Hospital (n = 282) as described previously. HLM preparation and total protein 

quantitation were previously described.98 A subset of 309 HLMs were used in this study, 

with 47 from the University of Washington and 262 from St. Jude liver banks.  

2.2.2.2 CYP2D6 and POR protein quantitation and CYP2D6, POR, and AKR1D1 
mRNA quantitation 

 
Microsomal CYP2D6 and POR protein content was quantitated using a surrogate 

peptide-based LC-MS/MS method that has been previously described. 98,99 Methods for 
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RNA isolation, TruSeq stranded mRNA preparation, read processing, and analysis have 

also been previously described.100 

2.2.2.3 DNA isolation, CYP2D6 sequencing, and CYP2D6 allele and activity score 
assignment 

 
The PGRNSeq platform was used to identify CYP2D6 genomic variation. All 

CYP2D6 exons as well as the regions 2 kb upstream and 1 kb downstream were 

sequenced using the PGRNseq platform, as previously described.93 Allele and subsequent 

star-allele diplotype assignments were first made manually using SNV and indel data 

only and based on criteria from the Pharmacogene Variation Consortium 

(https://www.pharmvar.org/gene/CYP2D6). The Stargazer algorithm (paper submitted) 

was then used to detect structural variation in the CYP2D6 gene in PGRNseq sequencing 

data and the star-allele diplotype assignments determined manually were corrected 

accordingly. Activity scores were assigned to each allele based on CPIC criteria.101  

2.2.2.4 Measurement of CYP2D6 metabolite formation rate in HLMs 
 

HLM incubations were conducted using a dextromethorphan concentration of 1.5 

µM and a metoprolol concentration of 4 µM. Optimization experiments confirmed that 

these concentrations were in the linear range of metabolite formation; additional 

optimization conditions confirmed that incubation time and total HLM protein content 

were also within linear conditions (data not shown). Incubations were performed in 

triplicate using 20 µg of total HLM protein per well diluted in pH 7.4 100 mM potassium 

phosphate and 1 mM EDTA buffer. HLMs were pre-incubated with substrate for 5 min at 

37°C. NADPH (final concentration 1 mM) was added to start the reaction and samples 
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were incubated for 20 min (metoprolol) and 30 min (dextromethorphan) at 37°C. 

Reactions were terminated by the addition of ice-cold acetonitrile.  

2.2.2.5 Metabolite and parent drug quantitation 
 

For metoprolol and α-hydroxymetoprolol, calibration standards were prepared 

over the range of 0.003 to 0.176 µM; carvedilol-d4 (1 ng/µl) was used as an internal 

standard.  Ions m/z 284.1 and 411.1 were monitored for α-hydroxyl-metoprolol and 

carvedilol-d4, respectively. The mobile phase was 10mM ammonium formate, pH 4, in 

water (A) and acetonitrile (B) using the following gradient: 0 min 15% B, 3.5 min 60%B, 

4.5 min 90%B, 5 min 90%B, 5.1 min 15%B, and 9.5 min 15%B.  

For dextromethorphan and dextrorphan, calibration standards were prepared over 

the range of 0.004 to 1 µM; dextrorphan-d3 (0.5 ng/µl) was used as an internal standard. 

Ions m/z 258.1 and 261.1 were monitored for dextrorphan and dextrorphan-d3, 

respectively. The mobile phase was 0.1% formic acid in water (A) and acetonitrile (B) 

using the following gradient: 0 min 20% B, 1 min 20% B, 5 min 40% B, 6 min 20% B, 

and 9 min 20% B.  

Quantitation of dextromethorphan dextrorphan, metoprolol, and α-

hydroxymetoprolol was performed on an Agilent Technologies G1956B mass 

spectrometer coupled to an Agilent 1200 series HPLC using a Zorbax SB-C18 2.1 mm x 

150 mm x 5 µm column (Agilent Technologies, Santa Clara, CA). For dextrorphan, the 

column was maintained at 30°C with a flow rate of 0.3 ml/min. For α-

hydroxymetoprolol, the column was maintained at 35°C with a flow rate of 0.25 ml/min. 
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2.2.2.6 Statistical analysis 
 

Samples were included for statistical analysis if both PGRNSeq and activity data 

for at least one probe substrate were available (n =309). All analyses were performed 

using RStudio 1.0.143 (Boston, MA). In all analyses, liver collection site was included as 

a covariate due to significant differences in mean enzyme activity between the sites as 

well as differences in POR mRNA and protein content and AKR1D1 mRNA content.  

Pairwise associations between donor demographics (e.g. sex, ethnicity, age), liver 

microsomal CYP2D6 and POR protein content, liver microsomal CYP2D6, POR, and 

AKR1D1 mRNA content, and liver microsomal CYP2D6 activity (dextrorphan and α-

hydroxymetoprolol formation rate) were tested with linear regression using robust 

standard errors. This approach was also used to test the association between activity score 

and CYP2D6 activity. A multivariate linear regression model with robust standard errors 

was used to assess the contribution of selected predictors to the variability observed in 

CYP2D6 activity. 

2.3 Results 

2.3.1 Liver donor demographics 
 

Liver donor demographics (n = 309) are presented in Table 1. Donors ranged 

from 0 to 87 years old, with an average age of 39.6 years. A majority of the donors were 

male (58.3%) and almost all were of European descent (95.5%). Liver tissue was 

collected from donors at two sites: the University of Washington in Seattle, WA (n = 47) 

and St. Jude Children’s Research Hospital in Memphis, TN (n = 262). Data on liver 

pathology and/or disease were not collected for all donors; similarly, medication lists are 

missing for some donors and possibly incomplete for others.  
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2.3.2 Effects of CYP2D6 mRNA and protein content on activity 
 

The rates of α-hydroxymetoprolol and dextrorphan formation, used as a measure 

of CYP2D6 activity, were both significantly correlated with CYP2D6 mRNA content 

(Figures 3A and 3B) and CYP2D6 protein content (Figures 4A and 4B). For association 

between metabolite formation rates and CYP2D6 mRNA content, R2 values were 0.231 

and 0.254 for α-hydroxymetoprolol and dextrorphan formation rates, respectively. 

CYP2D6 protein content had a much stronger association with CYP2D6 activity, as 

reflected in higher R2 values of 0.643for α-hydroxymetoprolol formation rate and 

0.751for dextrorphan formation rate. It should be noted that protein data were only 

available for 98 of the 309 samples analyzed, 10 of which were below the lower level of 

quantitation. With collection site included as a covariate, CYP2D6 mRNA content was 

not a significant predictor of CYP2D6 protein content. 

2.3.3 CYP2D6 allele and diplotype frequencies in the liver bank samples 
 

We identified 23 alleles in the liver bank samples using the Stargzer algorithm 

(Table 2) and 69 unique diplotypes (Table 3). Allele frequencies reflect the 

predominantly European descent of the liver bank samples. The three most common 

alleles were CYP2D6*1 (32%), CYP2D6*2 (14.7%), and CYP2D6*4 (13.8%), which is 

consistent with published reports for populations of European descent.85  

To summarize, a total of seven different alleles, including CYP2D6*1 and 

CYP2D6*2, were identified that confer normal enzyme function and a normal 

metabolizer (NM) phenotype (activity score of 1). The seven NM alleles occurred at an 

aggregate frequency of 54.2%. Six alleles were identified with reduced enzyme function 

and an intermediate metabolizer (IM) phenotype (activity score of 0.5). The most 
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common IM allele was CYP2D6*41 (11.2%), a splice variant allele found most 

commonly in European populations. The IM alleles occurred at an aggregate frequency 

of 18.9%. Seven loss of function alleles were identified conferring a poor metabolizer 

(PM) phenotype (activity score of 0), occurring at an aggregate frequency of 25.7%. The 

most common PM allele was CYP2D6*4 (13.8%). Two alleles associated with the 

ultrarapid metabolizer (UM) phenotype (activity score of 2) were identified, 

CYP2D6*1x2 (0.5%) and CYP2D6*2x2 (0.6%). 

2.3.4 Structural variation data is critical for correct diplotype assignment 
 

A total of 16 unique alleles were identified from SNV/indel data alone. The 

inclusion of data on structural variation allowed for the identification of 7 additional 

alleles with gene deletions, gene duplications, and hybrid tandem gene arrangements, 

bringing the total to 23 unique alleles (Table 2).  

Activity scores were assigned from diplotypes identified from SNV/indel data 

alone (16 alleles) and from diplotypes identified with the inclusion of structural variation 

data (23 alleles). When the samples were analyzed incorporating structural variation data, 

67 samples (22%) were incorrectly assigned with SNV/indel data alone. Importantly, 

inclusion of structural variation data changed the predicted activity score for 26 of those 

samples, representing approximately 8% of the liver bank donors. Figure 1 describes the 

diplotypes of the 67 samples with structural variation alleles that were identified with 

Stargazer as well as changes in activity score resulting from changes in predicted activity 

score. 

CYP2D6*5, a complete gene deletion, was identified in 23 samples, occurring at 

an allele frequency of 3.7%. The importance of including the *5 allele is evident as the 
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corrected diplotype calls decreased the activity score of 18 samples in this sample set 

(5.8%). The remaining five samples already had activity scores of 0 and thus could not be 

decreased further.  

A total of 8 duplicated alleles in the form of CYP2D6*xN were identified, 

consisting of CYP2D6*1x2, CYP2D6*2x2, and CYP2D6*41x2. As these are all 

duplications of functional alleles, they resulted in activity score increases for all of the 

samples they were identified in. 

Structural data were also used to detect the hybrid tandem alleles CYP2D6*4N+* 

4, CYP2D6*68+*4, and CYP2D6*36+*10. Inclusion of hybrid tandem alleles did not 

result in any activity score changes in our sample set. CYP2D6*68+*4 is a non-

functional allele identified in samples previously designated as *4 with SNV/indel data 

alone, and were already assigned an activity score of 0. CYP2D6*36+*10 was identified 

in samples previously designated *10, which both have an activity score of 0.5. Published 

data suggest that there is no significant difference in enzyme activity conferred by 

CYP2D6*36+*10 and *10 alone102; thus, the activity score did not change from 0.5.  

The inclusion of structural data in CYP2D6 significantly improved the predictive 

value of the activity score assignments for both probe substrates, metoprolol and 

dextromethorphan (Figure 2; Table 4). Using SNV/indel data alone, activity score 

predicted 31.5% and 36.4% of the variability in CYP2D6 activity when using metoprolol 

and dextromethorphan as probes, respectively (Table 4A). With structural variation data 

included from Stargazer, these numbers increased to 36.6% and 40.7% (Table 4B).  
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2.3.5 Liver collection site, POR protein content, and AKR1D1 mRNA content 
contribute to variability in CYP2D6 activity 

 
Liver collection site was highly predictive of CYP2D6 activity, consistent with 

our collaborators reports from these liver bank samples; therefore, collection site was 

included in all analyses as a covariate. 98,100 POR protein content, but not mRNA content, 

was significantly associated with metabolite formation rate for both α-hydroxymetoprolol 

(R2 = 0.198, p < 0.001) and dextrorphan formation rate (R2 = 0.219, p < 0.001) (Figure 

5). AKR1D1 mRNA content was also associated with CYP2D6 activity for both α-

hydroxymetoprolol (R2 = 0.16, p < 0.001) and dextrorphan formation rate (R2 = 0.208, p 

< 0.001) (Figure 6).  

2.3.6 Multivariate regression analysis of CYP2D6 activity 
 

A multivariate linear regression using robust standard errors was performed to 

determine which variables, in addition to activity score, explain some of the variability in 

CYP2D6 activity (Table 5). Donor age and sex were not included in the model due to a 

lack of significance in primary analysis, which is consistent with the literature.88 While 

ethnicity is known to make a large contribution to variation in CYP2D6 activity, we did 

not include it as a covariate in our model because the liver donors were almost entirely of 

European descent. We also excluded liver disease and concomitant CYP2D6 inhibitors 

because the data were incomplete for the majority of donors.  

The R2 for α-hydroxymetoprolol formation rate was 0.471, an improvement over 

the value of 0.364 obtained when just activity score and collection site were used as 

predictors. The R2 for dextrorphan formation rate was 0.505, also an improvement over 

the value of 0.407 obtained when just activity score and collection site were used as 

predictors. The covariates that contributed to these increases in R2 were POR protein 
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content and AKR1D1 mRNA content. Similar to what was observed in the model that 

included just activity score and collection site, activity scores of 2 and 3 were not 

significant predictors of CYP2D6 activity. 

2.4 Discussion 
 

We found that inclusion of structural variation data is essential to correctly 

assigning CYP2D6 activity scores and these data are more predictive of CYP2D6 activity 

than activity scores assigned based on SNV/indel data alone. Accurate identification of 

gene deletions, gene duplications, and hybrid alleles will maximize the clinical utility of 

CYP2D6 pharmacogenetic tests. We also found that POR protein content is correlated 

with CYP2D6 activity. As POR is a polymorphic gene, inclusion of POR 

pharmacogenetic data in the clinical setting may further improve CYP2D6 phenotype 

prediction.  

When diplotypes were assigned based on SNV/indel data alone, resultant activity 

scores explained about 31% of the variation in CYP2D6 activity when metoprolol was 

used as a probe and 36% of the variation when dextromethorphan was used. When 

diplotypes were reassigned based on the Stargazer algorithm that utilizes both SNV/indel 

and structural variation data, this number increased to approximately 36% for metoprolol 

and 41% for dextromethorphan. The diplotypes of 67 samples were reassigned, 

representing over 20% of the samples tested. Importantly, the activity score changed for 

26 samples, representing approximately 8% of the samples tested. The samples that had 

incorrect activity scores contained alleles that contribute to “extreme” phenotypes: the 

whole-gene deletion CYP2D6*5 or duplications of functional alleles CYP2D6*1, or *2. 

The hybrid alleles *4N, *36, and *68 are nonfunctional and thus did not affect activity 
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score assignments when in tandem arrangements with alleles identified via SNV/indel 

analysis (*4 or *10). These tandem hybrid alleles are still important to identify, though, 

since their presence is informative when resolving potentially ambiguous diplotypes. For 

example, many commercially available tests would detect a duplication in an individual 

with a *1/*4N + *4 diplotype but would be unable to determine if the duplication is on a 

*1 or *4 allele.  

Due to the lack of ethnic diversity in the liver bank donors, we were unable to 

assess for differences in CYP2D6 activity that may be attributable to ethnicity. Though 

very few liver donors were of non-European descent, however, their presence is reflected 

in some of the more uncommon alleles. The *17 allele occurs at a frequency <1% in 

European populations and an average of 18.2% in African Americans.85 In this study, the 

allele was present in four donors, two of them of known African descent. An African-

American donor also contributed the single *29 allele, which occurs at frequencies of 

<1% in those of European descent and 6.5% in those of African descent.85 In East Asian 

populations, the *10 allele is very common, occurring at an average frequency of 42.6%. 

The CYP2D6*10 allele is also found in tandem with the hybrid CYP2D6*36 allele as 

CYP2D6*36+*10, found most frequently in East Asian populations at an average 

frequency of 26.4%.85,103 These high frequency alleles were observed in the 

CYP2D6*10/*36+*10 diplotype of the only Asian donor included in this study. 

CYP2D6 activity was significantly correlated with both CYP2D6 mRNA and 

protein contents. The correlation with CYP2D6 mRNA was weaker, suggesting that 

mRNA content does not explain very much of the variability in CYP2D6 activity. The 

correlation with protein, on the other hand, was much stronger, which is unsurprising 
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since the CYP2D6 enzyme content is more proximal to metabolite formation rate than 

mRNA in the regulatory scheme. The correlation between CYP2D6 mRNA and protein 

was not significant, which fits a general, genome wide trend of low mRNA-protein 

correlations.104   

The correlation between CYP2D6 activity and POR protein content was 

significant for both substrates. Further investigation into POR diplotype for each sample 

would be worthwhile. Because POR is required for CYP enzyme function, genetic 

variation in the POR gene may explain some of the variability in CYP activity not 

explained by CYP genetics. Previous data supports a possible link between POR and 

CYP2D6. A study examining the effects of various recombinant POR variants on 

CYP2D6 activity found that the common POR variant A503V decreased CYP2D6 

activity by 40-50% when using dextromethorphan and bufurolol as probes.90 Thus, POR 

genotyping may provide additional information that can be used with CYP2D6 diplotype 

data in a clinical setting to improve CYP2D6 phenotype predictions.  

AKR1D1 mRNA content was very weakly correlated with CYP2D6 activity. 

AKR1D1 protein content data were not available for comparison. AKR1D1 is involved in 

bile acid homeostasis and is hypothesized to regulate CYPs through activation of nuclear 

receptors that transcriptionally regulate CYP expression. Bile acids are ligands of nuclear 

receptors PXR and CAR, which induce the transcription of CYP3A4, CYP2C9, and 

CYP2C19. Since CYP2D6 is generally considered to be non-inducible, this mechanism of 

CYP regulation should not affect CYP2D6 activity. It is possible, however, that there are 

additional regulatory pathways that have not yet been described.91 Interestingly, AKR1D1 

mRNA remained a significant predictor for both substrates, suggesting that AKR1D1 
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might affect CYP2D6 through the hypothesized mechanism or through a mechanism that 

has not yet been described. 

The liver procurement site explained a relatively large amount of variability in CYP2D6 

activity (7.8% for metoprolol, 12.8% for dextromethorphan) and was a significant 

predictor for both probe substrates. Other groups have noted similar differences when 

using the liver bank to study CYP2A6 and CYP2C19. 98,100 Factors such as liver tissue 

collection method and storage conditions are some of the many variables that may have 

contributed to the site difference.  

A multivariate linear regression model was used to assess the combined 

contributions of activity score, POR protein content, AKR1D1 mRNA content, and liver 

procurement site to variability in CYP2D6 activity. All of the covariates were significant 

predictors of CYP2D6 activity except for activity scores 2 and 3. Compared to the other 

activity score categories, there was a higher degree of variability in CYP2D6 activity for 

activity scores 2 and 3. Also, the metabolite formation rates for samples with an activity 

score of 3 were lower than expected and we are unable to explain this with the PGRNSeq 

data. Some of this may have been due to the small number of samples (n = 3) with an 

activity score of 3. These findings could also be due to genetic variation that has yet to be 

described, either in the CYP2D6 gene (although that is less likely with the methodology 

employed), regulatory regions, genes related to CYP2D6 function such as POR, or due to 

co-administration of CYP2D6 inhibitors not recorded in donor medication lists. 

Together, data on CYP2D6 activity score, POR protein content, AKR1D1 mRNA 

content, and liver procurement site explained 47% and 51% of the variability in CYP2D6 

activity when metoprolol and dextromethorphan were used as probes, respectively. 
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Limitations of this study include small sample sizes in the activity score 2.5 (n=2) 

and 3 (n=3) categories and a relatively large amount of variation in the activity score 2 

and 3 categories. One sample in particular, genotyped as a *1/*1x2 and assigned an 

activity score of 3, had very low CYP2D6 activity, consistent for both probe drugs. It’s 

unclear if this is due to unidentified genetic variation in CYP2D6, post-transcriptional 

regulation, unrecorded use of drugs that inhibit CYP2D6, or issues such as low HLM 

quality.  

Most currently available CYP2D6 pharmacogenetic tests are designed to detect a 

limited selection of alleles with SNVs and indels, the whole-gene deletion CYP2D6*5, 

and nonspecific duplication signals (*xN). Our approach of using Stargazer to analyze 

targeted exome sequencing data offers a solution to many of the problems with current 

tests. First, we can detect uncommon and rare alleles not included on targeted genotyping 

panels, solving the problem of defaulting to a call of CYP2D6*1 or CYP2D6*2 when a 

functional allele is present but not tested for. Second, our approach allows for 

identification of specific duplicated alleles rather than a potentially ambiguous 

nonspecific duplication signal. Third, the ability to identify hybrid genes in tandem 

arrangements with CYP2D6 solves the problem of incorrect duplication calls when using 

real-time PCR CYP2D6 copy number assays. Furthermore, identification of hybrid alleles 

that do not occur in tandem with CYP2D6 is an improvement over PCR-based 

genotyping methods that may over-amplify the non-hybrid allele, making the sample 

appear to be homozygous for the non-hybrid.75 

For a gene as complicated as CYP2D6, analysis of SNVs and indels alone is not 

sufficient for making accurate allele calls. If we are to strive for precision, structural 
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variation in the CYP2D6 gene must also be analyzed beyond CYP2D6*5 and nonspecific 

duplication signals.  
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2.5 Tables 
 

2.5.1 Table 1. Liver donor demographics (n = 309) 
Age 
Mean ± SD 39.6 ± 22.4 
Range 0 - 87 
Sex 
Male  180 (58.3%) 
Female 124 (40.1%) 
Unknown 5 (1.6%) 
Ethnic background 
European 295 (95.5%) 
African 9 (2.9%) 
Asian 1 (0.3%) 
Hispanic 1 (0.3%) 
Unknown 3 (1.0%) 
Liver disease 
No / not recorded 256 (82.8%) 
Yes 53 (17.2%) 
  Fatty liver 25 (47.2%) 
  Cancer 7 (13.2%) 
  Fibrosis 5 (9.4%) 
  Acute injury 4 (7.5%) 
  Cirrhosis 4 (7.5%) 
  Hepatitis 4 (7.5%) 
  Biliary atresia 4 (7.5%) 
CYP2D6 inhibitor 
No / not recorded 295 (95.5%) 
Yes 14 (26.4%) 

 Cimetidine 12 (85.7%) 
  Amiodarone 1 (7.1%) 
  Fluoxetine 1 (7.1%) 
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2.5.2 Table 2. CYP2D6 alleles (n = 618) identified in liver bank samples 

Allele n (%) Nucleotide Changes Effect 
Phenotype Activity 

Score Activity Class† 

Single nucleotide variants and indels 

*1 198 (32%) N/A N/A Normal NM 1 

*2 91 (14.7%) 2850C>T, 4180G>C R296C; S486T Normal NM 1 

*33 5 (0.8%) 2483G>T A237S Normal NM 1 

*35 37 (6%) 31G>A, 2850C>T, 
4180G>C 

V11M; R296C; 
S486T Normal NM 1 

*39 1 (0.2%) 1661G>C, 4180G>C S486T Normal NM 1 

*43 2 (0.3%) 77G>A R26H Normal NM 1 

*9 21 (3.4%) 2615_2617delAAG K281del Decreased IM 0.5 

*10 15 (2.4%) 100C>T, 4180G>C P34T; S486T Decreased IM 0.5 

*17 4 (0.6%) 1023C>T, 2850C>T, 
4180G>C 

T197I; R296C; 
S486T Decreased IM 0.5 

*29 1 (0.2%) 1659G>A, 2850C>T, 
3183G>A, 4180G>C 

V136I; R296C; 
V338M; S486T Decreased IM 0.5 

*41 69 (11.2%) 2850C>T, 2988G>A, 
4180G>C Splicing defect Decreased IM 0.5 

*59 5 (0.8%) 2291G>A, 2850C>T, 
2939G>A, 4180G>C 

Decreased mRNA 
expression; R296C; 
S486T 

Decreased IM 0.5 

*3 7 (1.1%) 2549delA Frameshift None PM 0 

*4 85 (13.8%) 100C>T, 1846G>A, 
4180G>C Splicing defect None PM 0 

*6 4 (0.6%) 1707delT Splicing defect None PM 0 

*20 3 (0.5%) 
1973_1974insG, 
1978C>T, 1979T>C, 
2850C>T, 4180G>C 

Frameshift None PM 0 

Structural variants 

*1x2 3 (0.5%) Duplication of 
CYP2D6*1 Two active genes Increased UM 2 

*2x2 4 (0.6%) Duplication of 
CYP2D6*2 Two active genes Increased UM 2 

*41x2 1 (0.2%) Duplication of 
CYP2D6*41 

Two decreased 
activity genes Normal NM 1 

*36+*10 2 (0.3%) 
*10 in tandem with 
CYP2D7/CYP2D6 hybrid 
gene 

One decreased 
activity and one 
inactive gene 

Decreased IM 0.5 

*4N+*4 4 (0.6%) 
*4 in tandem with 
CYP2D7/CYP2D6 hybrid 
gene 

Two inactive genes None PM 0 

*68+*4 33 (5.3%) 
*4 in tandem with 
CYP2D7/CYP2D6 hybrid 
gene 

Two inactive genes None PM 0 

*5 23 (3.7%) CYP2D6 deleted CYP2D6 deleted None PM 0 

 † UM: ultrarapid metabolizer, NM: normal metabolizer, IM: intermediate metabolizer, PM: poor metabolizer 
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2.5.3 Table 3. CYP2D6 diplotypes (n = 309) identified in liver bank samples 
 

Diplotype n Activity score Diplotype n Activity score 
1 / 1x2 1 3 1 / 5 8 1 
2 / 1x2 1 3 1 / 6 1 1 
35 / 2x2 1 3 1 / 20 1 1 
41 / 2x2 2 2.5 2 / 3 1 1 
1 / 33 2 2 2 / 4 13 1 
2 / 33 1 2 2 / 5 4 1 
1 / 35 12 2 2 / 6 1 1 
2 / 35 2 2 9 / 9 1 1 
1 / 1 29 2 1 / 4 + 68 12 1 
1 / 2 35 2 1 / 4N + 4 2 1 
2 / 2 5 2 10 / 10 + 36 1 1 
35 / 35 1 2 2 / 4 + 68 5 1 
4 / 1x2 1 2 20 / 35 1 1 
4 / 2x2 1 2 35 / 4 + 68 2 1 
10 / 35 4 1.5 41 / 41 1 1 
1 / 41 18 1.5 41 / 59 1 1 
2 / 41 14 1.5 4N + 4 / 33 1 1 
1 / 59 1 1.5 4 / 41 10 0.5 
2 / 59 3 1.5 5 / 41 3 0.5 
1 / 9 8 1.5 6 / 41 1 0.5 
1 / 10 8 1.5 4 / 9 3 0.5 
1 / 17 3 1.5 4 / 10 1 0.5 
2 / 9 1 1.5 4 / 17 1 0.5 
10 / 41x2 1 1.5 4 + 68 / 10 + 36 1 0.5 
29 / 39 1 1.5 41 / 4 + 68 3 0.5 
35 / 41 8 1.5 41 / 4N + 4 1 0.5 
4 / 33 1 1 9 / 4 + 68 1 0.5 
4 / 35 3 1 3 / 5 1 0 
5 / 35 1 1 4 / 4 7 0 
6 / 35 1 1 4 / 5 4 0 
9 / 41 6 1 4 / 20 1 0 
3 / 43 1 1 3 / 4 + 68 2 0 
4 / 43 1 1 4 / 4 + 68 5 0 
1 / 3 2 1 5 / 4 + 68 2 0 
1 / 4 26 1    
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2.5.4 Table 4. Multiple linear regression: comparison of association between 
CYP2D6 activity and activity score when activity score is assigned using 
SNV/indel data only (A) and SNV/indel plus structural variation data (B) 

 

A. Prediction of CYP2D6 activity using activity scores assigned based on SNV/indel data 
only 
  Metoprolol Dextromethorphan 
  β SE p β SE p 
Intercept 10.513 1.340 < 0.001 61.056 6.160 < 0.001 
AS 0 -10.778 1.230 < 0.001 -65.220 6.040 < 0.001 
AS 0.5 -9.582 1.290 < 0.001 -58.369 6.000 < 0.001 
AS 1 -6.234 1.160 < 0.001 -42.609 5.480 < 0.001 
AS 1.5 -3.420 1.370 0.013 -32.548 6.220 < 0.001 
AS 2 0.977 1.690 0.564 -11.587 7.540 0.1253 
Site: UW 5.252 1.340 < 0.001 30.554 6.160 < 0.001 
Degrees of freedom 285     302   

R2 / adj. 
R2 0.3149 / 0.3005 0.3643 / 0.3516 

 
B. Prediction of CYP2D6 activity using activity scores assigned with Stargazer, based on 

both SNV/indel and structural variation data 
  Metoprolol Dextromethorphan 
  β SE p β SE p 
Intercept 10.917 1.280 < 0.001 62.506 5.840 < 0.001 
AS 0 -11.074 1.180 < 0.001 -66.055 5.720 < 0.001 
AS 0.5 -9.957 1.230 < 0.001 -59.781 5.920 < 0.001 
AS 1 -6.154 1.150 < 0.001 -42.283 5.310 < 0.001 
AS 1.5 -4.357 1.260 < 0.001 -36.042 5.680 < 0.001 
AS 2 1.298 1.720 0.450 -9.978 7.580 0.190 
AS 2.5 12.840 1.210 < 0.001 30.092 8.060 < 0.001 
AS 3 -2.735 4.110 0.506 -15.124 26.430 0.570 
Site: UW 4.848 1.280 < 0.001 29.105 5.840 < 0.001 
Degrees of freedom 283     300   
R2 / adj. 
R2 0.3636 / 0.3456 0.407 / 0.3912 
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2.5.5 Table 5. Multiple linear regression: association between CYP2D6 activity 
and activity score, POR protein content, and AKR1D1 mRNA content 

  Metoprolol Dextromethorphan 
  β SE p β SE p 
Intercept 4.540 1.792 0.012 38.133 7.316 < 0.001 
AS 0 -11.162 1.452 < 0.001 -68.953 7.112 < 0.001 
AS 0.5 -9.147 1.393 < 0.001 -58.065 6.508 < 0.001 
AS 1 -5.277 1.090 < 0.001 -39.621 5.240 < 0.001 
AS 1.5 -3.993 1.299 0.002 -37.050 5.697 < 0.001 
AS 2 1.660 1.727 0.338 -9.388 7.694 0.224 
AS 2.5 12.219 0.593 < 0.001 41.358 2.468 < 0.001 
AS 3 -0.569 2.898 0.845 -7.004 22.916 0.760 
Site: UW 4.396 1.221 < 0.001 27.737 5.739 < 0.001 
POR protein 0.185 0.034 < 0.001 0.697 0.136 < 0.001 
AKR1D1 mRNA 0.038 0.012 0.002 0.218 0.053 < 0.001 
Degrees of 
freedom 223 237 
R2 / adj. R2 0.4712 / 0.4474 0.505 / 0.4941 
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2.6 Figures 
 

2.6.1 Figure 1. Comparison of diplotype and activity score changes assigned with 
SNV/indel data alone and with inclusion of structural variation data with 
Stargazer. 

SNV data alone SNV + structural variation data 
Diplotype AS n Diplotype AS n 

Deletion  
*1/*1 2 38 *1/*5 ê 1 8 
*2/*2 2 9 *2/*5 ê 1 4 
*35/*35 2 2 *5/*35 ê 1 1 
*41/*41 1 4 *5/*41 ê 0.5 3 
*4/*10 0.5 4 *4/*5 ê 0 2 
*3/*3 0 1 *3/*5 è 0 1 
*4/*4 0 16 *4/*5 è 0 2 

Duplication 
*1/*1 2 38 *1/*1x2 é 3 1 
*1/*2 2 36 *1x2/*2 é 3 1 
*2/*35 2 3 *2x2/*35 é 3 1 
*2/*41 1.5 16 *2x2/*41 é 2.5 2 
*1/*4 1 41 *1x2/*4 é 2 1 
*2/*4 1 19 *2x2/*4 é 2 1 
*10/*41 1 1 *10/*41x2 é 1.5 1 

Hybrid tandem 

*1/*4 1 41 
*1/*68 + *4 è 1 12 
*1/*4N + *4 è 1 2 

*2/*4 1 19 *2/*68 + *4 è 1 5 
*4/*35 1 5 *35/*68 + *4 è 1 2 
*4/*33 1 2 *4N + 4/*33 è 1 1 
*10/*10 1 1 *10/*36 + *10 è 1 1 
*4/*9 0.5 4 *9/*68 + *4 è 0.5 1 
*4/*10 0.5 4 *36 + *10/*68 + *4 è 0.5 1 

*4/*41 0.5 14  
*41/*68 + *4 è 0.5 3 
*4N + *4/41 è 0.5 1 

*3/*4 0 2 *3/*68 + *4 è 0 2 
*4/*4 0 16 *4/*68 + *4 è 0 5 

Deletion + hybrid tandem 
*4/*4 0 16 *5/*68 + *4 è 0 2 

Columns on the left show selected diplotypes and activity scores (AS) assigned using allele calls from SNV/indel-only 
data. Corrected diplotypes and activity scores, based on Stargazer allele assignments, are displayed in the columns on 
the right.  Activity scores are color-coded: 3 and 2.5 (dark green), 2 (green), 1 (yellow), 0.5 (orange), and 0 (red). 
Arrows indicate the direction of the change in activity score assignment with the incorporation of structural data: 
decrease (↓), increase (↑), and no change (→). 
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2.6.2 Figure 2. Association between CYP2D6 metabolite formation rate and 
CYP2D6 activity score. 

 
Panels A and B show alpha-hydroxymetoprolol formation rate by activity score assigned with SNV/indel data alone 
(panel A) and with Stargazer (panel B). Panels C and D show dextrorphan formation rate formation rate but activity 
score assigned with SNV/indel data alone (panel C) and with Stargazer (panel D). 
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2.6.3 Figure 3. Association between CYP2D6 metabolite formation rate and 
CYP2D6 mRNA and protein content. 

 
CYP2D6 metabolite formation rate was associated with CYP2D6 mRNA content quantitated by RNASeq: alpha-
hydroxymetoprolol formation rate (panel A) and dextrorphan formation rate (panel B); CYP2D6 metabolite formation 
rate was associated with CYP2D6 protein content quantitated by LC-MS/MS: alpha-hydroxymetoprolol formation rate 
(panel C) and dextrorphan formation rate (panel D). 

 
 

 



 

 71 

2.6.4 Figure 4. Association between CYP2D6 metabolite formation rate and POR 
protein and AKR1D1 mRNA content. 

 
CYP2D6 metabolite formation rate was associated with POR protein content quantitated by LC-MS/MS: alpha-
hydroxymetoprolol formation rate (panel A) and dextrorphan formation rate (panel B); CYP2D6 metabolite formation 
rate was associated with AKR1D1 mRNA content quantitated by RNASeq: alpha-hydroxymetoprolol formation rate 
(panel C) and dextrorphan formation rate (panel D). 
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3 Discussion 

3.1 Project summary 
 

The goal of my research was to identify rare coding and structural variation that 

affects CYP2D6 activity that is not yet routinely included in pharmacogenetic tests used 

in the clinic and demonstrate how the variants can improve the predictive ability of 

CYP2D6 activity score. To accomplish this goal, I used human liver microsomes and 

DNA sequencing data derived from a human liver bank to determine the correlation 

between activity score and CYP2D6 before and after incorporating structural and copy 

number variation data derived from the Stargazer platform. 

In Specific Aim 1, I used data from the PGRNseq platform to assign diplotypes to 

309 human liver bank donors. Part of this aim was to identify rare variants of functional 

consequence. While I did identify uncommon (<5% allele frequency) and rare (<1% 

allele frequency) variants, none of them appeared to cause a dramatic change in activity. 

The alleles that I identified in the liver bank samples occurred at frequencies that 

reflected the mostly-European demographics of the donors.  

In Specific Aim 2, I used human liver microsomes (HLMs) as an in vitro model to 

determine CYP2D6 activity. For probe drugs, I chose to use dextromethorphan because it 

is well established as a probe in the CYP2D6 literature and metoprolol because of its 

clinical relevance. Using the metabolite formation rates from the HLM incubations, I 

found that activity score explained 31% (using metoprolol) to 36% (using 

dextromethorphan) of the variability in CYP2D6 activity in the liver bank samples when 

diplotypes were assigned using SNV and indel data alone. 
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Specific Aim 3 was added after Specific Aims 1 and 2 were complete. I used 

structural and copy number variation data from the Stargazer algorithm to assign new 

diplotypes to samples that could not be identified as having structural variations based on 

SNVs and indels alone. Approximately 20% of the samples were assigned new 

diplotypes and 8% were assigned a new activity score as a result.  

After seeing these changes in activity score assignments, the next step was to assess 

whether activity score was actually more predictive of CYP2D6 function. When 

diplotypes were reassigned based on the Stargazer algorithm that utilizes both SNV/indel 

and structural variation data, this amount of variability in CYP2D6 activity explained by 

activity score increased to 36% for metoprolol and 41% for dextromethorphan. 

I then created a multiple linear regression model using the activity data generated in 

Specific Aim 2 and activity scores given to the Stargazer-updated diplotypes as well as 

additional data available for the liver samples: liver collection site, POR protein content, 

and AKR1D1 mRNA content. With the additional data, the model explained around 47% 

(using metoprolol) to 50% (using dextromethorphan) of the observed variation in 

CYP2D6 activity.  

There are two conclusions that stand out above the rest. The major conclusion is that 

the inclusion of structural and copy number variation in pharmacogenetic tests is 

extremely important. Incorporation of structural and copy number variation data with 

sequence data will help identify extreme phenotypes (e.g. poor and ultrarapid 

metabolizers) and will improve the predictive power of activity score. CYP2D6*5, the 

allele representing a deletion of the CYP2D6 gene, occurs at a frequency of 

approximately 6% in African populations, 5% in East Asian and Oceanian populations, 
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and around 2-3% in European, South/Central Asian, and Middle Eastern populations. At 

the low end of the range, a 2% allele frequency means that 4% of the population carries 

the *5 allele. At the high end, an allele frequency of 6%, around 11% of the population 

carries *5. This represents a large number of people that will be incorrectly genotyped if 

copy number variation is not included on a pharmacogenetic test. Incorrect classification 

of a poor metabolizer can have serious clinical ramifications. If, for example, a poor 

metabolizer is given a starting dose of a tricyclic antidepressant appropriate for an normal 

metabolizer, they are at higher risk of adverse effects such as confusion, muscle twitches, 

hypotension, and arrhythmias. 60,85,105 Ultrarapid metabolizer phenotypes are generally 

due to the presence of additional CYP2D6 gene copies. The *1xN allele is particularly 

common on Oceanian populations, occurring at a frequency of nearly 12%. Duplications 

are also relatively common Middle Eastern populations; *1xN occurs at a frequency of 

3.1% and *2xN at 3.9%. This translates to over 20% of Oceanian individuals carrying a 

*1xN allele and around 6 and 8% of Middle Eastern individuals carrying a *1xN and 

*2xN allele, respectively. If an ultrarapid metabolizer is misclassified and, for example, is 

prescribed codeine, they are at higher risk of experiencing adverse effects such as 

oversedation or respiratory depression. 85,101 

The second, more minor conclusion is that considering POR pharmacogenetics along 

with CYP2D6 pharmacogenetics may offer a way to improve the accuracy of CYP2D6 

activity predictions. With a clinical setting in mind, the logistics would be simple since 

samples could be collected for POR and CYP2D6 pharmacogenetic tests at the same time. 

Interpretation of how both POR and CYP2D6 diplotypes impact CYP2D6 activity would 

require further study. A starting point would be to investigate the impact of POR 
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pharmacogenetics on CYP2D6 activity using the liver bank samples. A study examining 

the effects of various recombinant POR variants on CYP2D6 activity found that POR 

with common variant A503V decreased CYP2D6 activity by 40-50% when using 

dextromethorphan and bufurolol as probes.90 The POR A503V variant, also known as 

POR*28, is common and is present at frequencies ranging from 19 – 37% across world 

populations.106 

In conclusion, CYP2D6 is a highly relevant, highly polymorphic, highly complicated 

gene. When using pharmacogenetic data to make predictions about CYP2D6 activity, 

analysis of SNVs and indels alone is not sufficient. The inclusion of structural variation 

data improves the precision of CYP2D6 pharmacogenetic tests and is key to avoiding 

adverse effects or treatment failure in poor and ultrarapid metabolizers. 

3.2 Emerging roles for pharmacists  

Pharmacists can play essential roles in the clinical implementation of 

pharmacogenetic testing. As members of the healthcare team, they are uniquely qualified 

to act as translators of pharmacogenetic test results into actionable treatment 

recommendations. 

3.2.1 Physician knowledge gaps 

A major barrier to the clinical implementation of pharmacogenomics is a lack of 

physician knowledge. In a 2014 survey of US-based primary care physicians, 

cardiologists, and psychiatrists, only 12.6% reported being extremely or very familiar 

with pharmacogenomics. Of the physicians who had never ordered a pharmacogenetic 

test, common reasons were not knowing what test to order (69.7%) and being unsure 

about the clinical value of testing (51.9%).107 A previous study reported similar results, 



 

 76 

with only 13% of surveyed physicians stating that they felt well-informed about the role 

of pharmacogenomic testing in therapeutic decision-making. 108 A reason for this 

knowledge deficit is a lack of training in pharmacogenomics; only 11% of the 

respondents in the 2014 survey reported that they had received formal training in the 

topic. 107  

Physicians who are active participants in the pharmacogenomics implementation 

program at the Vanderbilt University School of Medicine also reported these types of 

knowledge deficits. Of 15 clinicians interviewed, a common theme was that it is difficult 

for them to keep up on current pharmacogenetics evidence and recommendations. Some 

also expressed difficulty with explaining the rationale behind pharmacogenetic testing to 

patients and their families.109  

3.2.2 Pharmacist qualifications 

Schools of pharmacy have begun filling in the pharmacogenomics knowledge gap by 

expanding the pharmacogenetics content in their curricula; the percentage of schools with 

pharmacogenetics curriculum has increased from 39% in 2005 to 89% in 2010. The 

Accreditation Council for Pharmacy Education (ACPE) has since made 

pharmacogenetics a required curricular component for all accredited pharmacy schools, 

listing it in their 2016 blueprint as a factor that should be emphasized in “evidence-based 

clinical decision making, therapeutic treatment planning, and medication therapy 

management strategies.”110 Professional societies have also recognized the opportunity 

for pharmacist involvement with clinical pharmacogenomics. For example, the American 

Society of Health-System Pharmacists (ASHP) released an official position statement, 
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explaining that due to their “distinct knowledge, skills, and abilities,” pharmacists should 

“lead efforts to guide optimal drug selection and drug dosing based on those results.”111 

On a basic level, clinical pharmacists use patient-specific data to advise physicians 

on optimal drug therapy for a particular patient. In a 2013 survey of pharmacists working 

in United States hospitals, 98% of pharmacists provided formal recommendations on 

dose adjustments, 93% provided drug information, and 92% were responsible for 

pharmacokinetics monitoring.112 The interpretation of pharmacogenetic test results into 

treatment recommendations is just another variation on this theme and fits neatly into 

pharmacists’ preexisting workflows: if a patient’s creatinine clearance is below a certain 

level, decrease the dose of drug X. If their potassium level is too high, switch to drug Y. 

If they are a CYP2D6 poor metabolizer, avoid drug Z.  

The utility of pharmacists in specialized clinical roles has been well-established in 

areas such as anticoagulation, smoking cessation, transition of care medication review, 

and disease state management for chronic conditions like asthma, hypertension, 

hyperlipidemia, and diabetes. 112,113 These programs are effective at improving patient 

outcomes. As reported in a 2015 meta-analysis on the effectiveness of clinical pharmacy 

services, anticoagulation programs significantly reduced the risk of total bleeding events 

(RR 0.51, 95% CI 0.28 – 0.94), hypertension management programs resulted in systolic 

blood pressure reductions of 8 – 11 mmHg, diabetes management programs resulted in 

HbA1c reductions of 0.9 – 2.1%, and hyperlipidemia programs resulted in a mean total 

cholesterol reduction of 22 mg/dL.113  
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3.2.3 Pharmacist roles in existing pharmacogenomics programs 

Institutions such as St. Jude Children’s Research Hospital and University of Florida 

have designed pharmacogenomics implementation programs that rely on pharmacist 

input.  

At St. Jude Children’s Research Hospital, pharmacists have roles throughout the 

pharmacogenetic testing process.114 After diplotype results are available from the 

laboratory, a pharmacist manually reviews them for each patient and writes a consult note 

that includes a phenotype assignment, diplotype interpretation, dosing recommendations, 

activity score (if CYP2D6 was tested), and a link to online resources for more 

information. The pharmacist also performs a medication reconciliation to assess whether 

the patient is taking a medication with a relevant pharmacogenetic association. A second 

pharmacist reviews all information prior to inclusion in the electronic medical record. All 

new pharmacist hires at St. Jude receive training in pharmacogenetics as part of their 

initial required competencies and complete refresher courses every three years. In 

addition to training on test interpretation and dosing recommendations, pharmacists are 

also educated on how to discuss pharmacogenetic test results with patients and their 

families.114 

 University of Florida’s Personalized Medicine Program was developed and is run 

primarily by pharmacists in a wide range of roles.112 A unique aspect of this program is 

that whenever a prescriber encounters a point of care alert about a pharmacogenetic 

association, a clinical pharmacist is notified via an inbox message. This allows the 

pharmacist to coordinate care in-person with the prescriber or provide direct patient care, 

if needed. To keep abreast of current pharmacogenetics research, a dedicated pharmacist 
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is responsible for reviewing new literature, integrating relevant findings into practice, and 

providing ongoing clinical education. The program also has a PGY2 pharmacy resident 

who is responsible for monitoring medication safety trends and providing education, data 

management, and logistical support to prescribers.112 

3.2.4 Expansion beyond academic medical centers  

Currently, most pharmacogenomics implementation programs are based at large 

academic medical centers. In order to reach patients who don’t have access to these 

facilities, a reasonable next step is implementation in primary care settings. As 

approximately 80% of primary care visits result in drug prescriptions, pharmacogenetic 

testing has great potential for widespread benefit.115 Thus far, very few studies have 

evaluated the feasibility of using pharmacogenetics in primary care. Preliminary results, 

however, are promising. 

At two family practice offices on Vancouver Island and three family practices and 

one pharmacy in metropolitan Vancouver, British Columbia, 191 patients were enrolled 

in a study to assess the ability to obtain DNA samples, genotype them, and link the 

results to decision support software.116 Saliva samples were collected using the Oragene 

DNA collection kit and transported to a laboratory at the University of British Columbia 

by research staff, mail, or float plane. The DNA was extracted and genotyped using a 

custom TaqMan panel developed based on genetic variants with the highest levels of 

clinical evidence for use in primary care. Of the 191 total patients, 185 were successfully 

genotyped for all genes on the panel. Actionable diplotypes for drugs included in the 

decision support software were found in 179 (96.8%) of the patients, which is similar to a 

previous study that found actionable variants in 96% of a 5000 patient cohort. Results 
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were uploaded into dedicated medication decision support software (MDSS) and reports 

were distributed directly to each patient’s pharmacist or physician. Over a course of 3 

months, pharmacists and physicians accessed the software 236 times, most frequently to 

obtain therapy recommendations for hyperlipidemia (n = 53) and hypertension (n = 

52).116 This study is particularly interesting because it illustrates how the authors 

addressed the barriers associated with geographically remote clinic sites and electronic 

healthcare record fragmentation. Instead of excluding patients who lived on Vancouver 

Island, a system was established to transport samples via float plane. To overcome the 

informatics challenges of integrating pharmacogenetics data into electronic medical 

records, software that operates independently of the electronic medical record was 

developed. 

 In any setting, implementation of pharmacogenetics requires accurate genotyping 

data, leadership by knowledgeable healthcare professionals (best embodied by 

pharmacists), and some creative problem solving. We have all the pieces and now is the 

time to put them together.
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4 Appendix: optimization of human liver microsome 
incubations 

 
As discussed in section 1.3.2.1, optimization of human liver microsome incubations 

requires selection of appropriate drug concentration, HLM protein concentration, and 

incubation time. Since these parameters are interdependent, only one parameter can vary 

at a time while the others are held constant for optimization assays. For early 

optimization experiments, a matrix design was used to try several combinations of drug 

concentrations, protein concentration, and incubation times. Then, specific parameters 

were explored more in-depth if needed. Pooled human liver microsomes (Xenotech) were 

used for optimization assays. 

4.1 Selection of probe drugs and drug concentrations 
 

Dextromethorphan and metoprolol were selected for use as probe drugs. 

Dextromethorphan is a classic CYP2D6 probe substrate for in vitro assays and has been 

used as such since the late 1980s.117,118 CYP2D6 catalyzes the O-demethylation of 

dextromethorphan to dextrorphan and is responsible for 80% of total dextrorphan 

formation, with CYP3A4 also contributing when dextromethorphan concentrations are 

above 50 µM.119 Metoprolol is not as widely used as a CYP2D6 probe drug but was 

selected because of the clinical evidence in favor of a pharmacogenetic association. A 

meta-analysis of 11 clinical trials that included a total of 264 participants found a 5.3-fold 

difference in peak plasma metoprolol concentration between CYP2D6 poor metabolizers 

and ultrarapid metabolizers, as well as a 13-fold difference in area under the curve and a 
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15-fold difference in apparent oral clearance.120 CYP2D6 is exclusively responsible for 

the alpha-hydroxylation of metoprolol to alpha-hydroxymetoprolol.121 

 Because a metabolite formation assay approach was selected, probe drug 

concentrations were required to be below Km to ensure that the reaction stayed in the 

linear range of the Michaelis-Menten curve. The concentration cannot be too low, 

however, because an underlying assumption of the assay is that substrate concentrations 

must remain high relative to enzyme concentrations. Generally, this assumption holds 

true if no more than 10% of the substrate is depleted over the course of an incubation.122 

For each substrate, we searched the literature for the lowest published Km values, 

selected based on data compiled in the University of Washington Drug Interaction 

Database (https://didb.druginteractioninfo.org/). In initial assays, we chose a range of 

drug concentrations that bracketed these literature Km values of 2.8 µM for 

dextromethorphan and 21.6 µM for metoprolol. 

4.2 Selection of HLM protein concentrations and incubation times 
 
Typical HLM protein concentrations for incubation assays are in the range of 0.1 – 

0.5 mg/mL, but this was not feasible with our limited allocation of HLMs. Based on 

consultation with our collaborator who quantified the metabolites (section 2.2.2.5), we 

started with protein concentrations of 50 µg/reaction (0.05 mg/mL) using pooled HLMs 

and metoprolol at a range of concentrations that bracketed the literature Km of ~20 µM: 2 

µM (1/10 Km), 4 µM (1/5 Km), 10 µM (1/2 Km), 20 µM (Km), and 40 µM (2 Km).  

In general, incubation times of 5 – 10 minutes will result in linear reactions with 

detectable metabolites.123 Because we were limited by low HLM protein concentrations, 

we tried longer incubation times to ensure the production of sufficient detectable 
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metabolite. Longer incubations may result in enzyme or substrate degradation or 

inhibitory effects due to accumulation of metabolites, so we tried a range of incubation 

times to see if we saw any evidence of these effects at longer timepoints. For the initial 

metoprolol assay discussed above, incubation times were 5, 15, and 30 minutes. 

 The metabolite of interest, alpha-hydroxymetoprolol, was detected at every 

metoprolol concentration and timepoint. At all three timepoints, nonlinearity started to be 

observed around a metoprolol concentration of 20 µM. Substrate depletion was above 

10% for the incubations using 2 µM of metoprolol at 15 and 30 minutes. Thus, acceptable 

parameters were 2 µM metoprolol + 5 minutes; 4 µM + 5, 10, or 15 minutes; and 10 µM 

metoprolol + 5, 10, or 15 minutes. 

 Because we saw ample metabolite formation using 50 µg of pooled HLM protein, 

we did a similar assay to see if it was feasible to use 20 µg per reaction well. Metoprolol 

was used at 2 µM and 4 µM at incubation times of 15, 30, and 45 minutes. Longer 

incubations were tested to account for lower HLM protein concentrations. The rate of 

alpha-hydroxymetoprolol formation was linear with respect to substrate concentration 

and time. Substrate depletion remained below 10% for both substrate concentrations at all 

timepoints. The assay was repeated for confirmation and similar results were obtained.  

 From these optimization assays, we selected the following parameters to use with 

the liver bank samples: 20 µg HLM protein, 4 µM metoprolol, and 30 minute incubation 

time. These parameters produced a linear reaction with 1.14% of substrate depleted over 

the course of the incubation. 

 Optimization of incubations using dextromethorphan as a probe drugs were 

performed similarly. We selected a range of dextromethorphan concentrations that 
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bracketed the literature Km (2.8 µM, rounded up to 5 µM to simplify calculations). These 

concentrations were 0.5 µM (1/10 Km), 1.25 µM (1/4 Km), 2.5 µM (1/2 Km), 5 µM (Km), 

and 10 µM (2 Km). Incubation times were 10, 20, and 30 minutes and each reaction well 

used 20 µg HLM protein.  

 The metabolite formation curve appeared linear at metoprolol concentrations 

below 2.5 µM at every timepoint. The assay was repeated using dextromethorphan at 

concentrations of 0.5 µM, 1.25 µM, and 2.5 µM and incubation times of 10, 20, and 30 

minutes. Dextrorphan formation was linear over time when dextromethorphan was used 

at concentrations of 0.5 µM and 1.25 µM, but not 2.5 µM. 

 From these optimization assays, we selected the following parameters to use with 

the liver bank samples: 20 µg HLM protein, 1.5 µM dextromethorphan, and 20 minute 

incubation time. Approximately 7% of substrate was depleted over the incubation time 

with these parameters. Dextromethorphan was used at 1.5 µM rather than 1.25 µM 

because it was easier to accurately measure the volume of stock solution needed for the 

assay. A 20 minute incubation time was selected because a longer incubation was not 

needed to produce quantifiable metabolite.
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