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ABSTRACT 
 
Hong, Soram, M.S., Autumn 2012     Toxicology 
 
The effect of a cannabinoid receptor 2 (CB2) agonist on allergic airway inflammation in a mouse 
model of asthma 
 
Chairperson: Dr. Kevan Roberts 
 

Allergic asthma is a chronic inflammatory disease that affects approximately 300 million 
people worldwide. The health problem is compounded by the fact that the prevalence of the 
disease is increasing in the Western world. Thus, there is a continued need for new and improved 
therapies for the disease. Recently, it has become evident that cannabinoids have 
immunosuppressive properties and can be used as therapeutics for various inflammatory diseases. 
The main aim of this study was to explore the anti-inflammatory effects of CB2 agonists on 
allergic airway inflammation using a mouse model of asthma and resolve any mechanisms that 
underpin the immunosuppressive properties observed using in vitro assays. The murine model of 
allergic lung inflammation entailed transferring ovalbumin (OVA) specific CD4+ T cells into 
normal BALB/c mice which then inhaled OVA for 7 days. Mice were treated daily with either 
CB2 compound or vehicle, and the anti-inflammatory effect of the CB2 agonist was examined by 
monitoring the effect of the treatment on the level of inflammation and histological changes. 
Intra-nasal administration of CB2 analog suppressed the development of a pulmonary eosinophilia 
and the recruitment of allergen-specific CD4+ T cells into the airways. To assist in resolving the 
mode of action of these compounds the expression of CB2 receptors on Th2 cells was examined 
using a novel NBD-labeled CB2-selective compound. In additional experiments, cells were 
cultured with CB2-selective agonist and the effect on Th2 cytokine production was determined. 
Our data suggest that the attenuation of inflammation mediated by CB2 agonists is associated with 
the reduction of pro-inflammatory cytokines and the induction of anti-inflammatory cytokine.   
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CHAPTER 1 

INTRODUCTION 

 

Allergic asthma is a major public health burden, affecting some 300 million individuals 

worldwide. The prevalence of the disease has dramatically increased in the recent decades, and 

thus there is a continued need for new and improved therapies Allergic asthma is a chronic 

inflammatory airway disease characterized by pulmonary eosinophilia, increased mucus 

production by goblet cells, elevated IgE levels and structural remodeling of the airway wall, 

leading to airway obstruction and airway hyperreactivity (AHR) to nonspecific stimuli. Allergen-

specific CD4+ Th2 cells that produce IL-4, IL-5, IL-9 and IL-13 take primacy in driving the 

mucosal inflammation in asthma. In addition, there is abundant evidence pointing to an important 

role for structural cells in the pathogenesis of bronchial asthma, that include epithelial cells, 

endothelial cells, airway smooth muscle cells and fibroblasts. A prominent role in the 

inflammatory process is played by lung vascular endothelial cells that provide a gateway allowing 

the recruitment of leukocytes to the site of inflammation. 

 

The disease is characterized by bronchial inflammation and airway hyperreactivity (AHR). 

The inflammatory process is believed to result from allergens inducing the infiltration of CD4+ 

Th2 cells, eosinophils and other inflammatory cells. Th2 cells play an important role in the 

asthmatic response. These cells produce cytokines, such as IL-4, IL-5 and IL-13. These Th2 

cytokines are responsible for Th2 phenotype commitment, eosinophil development and 

recruitment. Although asthma is most commonly associated with an aberrant Th2 cell response, 

severe disease is characterized by additional increased production of the cytokine IL-17. However, 
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studies dissecting the role of IL-17 in mouse models of asthma have generated variable results 

and the exact role of this cytokine and the mechanisms that underlie its production remain poorly 

understood.  

 

 It is reported that approximately 10% of the population of the United States is affected by 

the disease. Thus, there is a continued need for new and improved therapies for the disease. 

Cannabinoid 2 (CB2) receptor is a receptor expressed by immune cells. Recently, there is 

increasing interest in cannabinoid-based compounds that selectively bind the CB2 receptor as 

targets for treating chronic inflammatory disease. Given the anti-inflammatory properties of the 

CB2 receptor, the aim is to examine the effect of the CB2 agonist in allergic asthma using a mouse 

model of the disease.  

 

1.1 Allergic Asthma 

 

Allergic asthma is a complex airway inflammatory condition characterized by increased 

levels of inflammatory cell infiltration into the airways, airway hyperreactivity (AHR),  IgE 

secretion, mucus production and airway remodeling (Robinson et al. 1992). These inflammatory 

effects lead to episodic shortness of breath and airway obstruction caused by the secretion of 

mucus and shedding of airway epithelial cells. Towards the severe end of the spectrum the 

smaller airways can become occluded by plugs of epithelial cells contained in mucous (Creola 

bodies). 
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1.1.1 Characteristics of Allergic Airway Inflammation 

Allergic asthma is a multi-cellular process involving mainly eosinophils, neutrophils, 

CD4+ Th2 cells and mast cells (Kay et al. 2005). CD4+ Th2 cells are responsible for driving the 

inflammatory response. Thus, in order to understand the pathogenesis in allergic asthma, it is 

important to understand how CD4+ Th2 cells mediate the inflammatory response. Figure 1 

illustrates a schematic representation of the inflammatory cascade in allergic asthma (Bradding et 

al. 2006).  Allergen sensitization is a prerequisite to development of the inflammatory cascade. 

Antigen-presenting cells (APC) uptake and process inhaled allergens (Bloemen et al. 2007; 

Verstraelen et al. 2008). The processed allergens are presented to naïve T cells. Then, mucosal T 

cells in the airways are polarized into Th2 cells and pro-inflammatory cytokines are expressed 

(Bloemen et al. 2007; Verstraelen et al. 2008). Through pro-inflammatory cytokine production, 

Th2 cells have the capacity recruit secondary effector cells such as macrophages, basophils and 

eosinophils into the inflammatory site where these cells become primed and activated for 

mediator secretion, (Bloemen et al. 2007; Verstraelen et al. 2008). IL-4, IL-5 and IL-13 are 

cytokines expressed by Th2 cells. IL-4 promotes IgE production and involves in growth and 

activation of mast cells (Bloemen et al. 2007; Verstraelen et al. 2008). IL-5 promotes eosinophil 

development, activation, and tissue recruitment. IL-13 stimulates mucus production and secretion. 
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Figure 1. Inflammatory cascade in allergic asthma (Bradding et al. 2006) 

 

 

1.1.2 Airway Hyperresponsiveness (AHR) during Allergic Lung Inflammation 

AHR is an exaggerated airway narrowing in response to a nonspecific stimulus. There is 

evidence suggests that the degree of airway inflammation is causally related to AHR (Jeffery et al. 

1989). The severity of AHR is associated with asthmatic conditions, which include reduced 

airway diameter, increased smooth muscle contractility and degree of epithelial injury, 

dysfunctional neuronal regulation, increased micro-vascular permeability and many inflammatory 

mediators eg IL-4 & IL-13 (Holgate 2008). These asthmatic conditions lead to episodic shortness 

of breath and airway obstruction.  
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1.1.3 Eosinophil Recruitment to the Airways during Allergic Lung Inflammation 

 Eosinophil infiltration in airways is a hallmark of allergic airway inflammation. IL-5 

promotes maturation of eosinophils from the bone marrow contributes to their activation n and 

recruitment to the airway. Eosinophils are a rich source of cytotoxic proteins, lipid mediators, 

oxygen free radicals and cytokines (Ricci et al. 1997). The contents of eosinophils are toxic for 

epithelial cells. De-granulation and release of toxic substances lead to damage on epithelial cells. 

Figure 2 illustrates role of eosinophils in asthmatic reaction (Filipovic et al. 2001). 

  

Figure 2. Role of eosinophils in the asthmatic reaction (Filipovic 2001) 

 

 

1.1.4 Involvement of CD4+ Th17 cells in allergic lung inflammation 

 Th2 cells are the primary cell type responsible for airway inflammation in allergic 

asthma. Th17, another CD4+ pro-inflammatory effector cells, are also known to involved in the 

chronic inflammatory response (Jaffar et al. 2011). Th17 cells produce IL-17 during infection 
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with specific pathogens and this cytokine has a role for pathogen clearance (Korn et al. 2009). IL-

17 is a pro-inflammatory cytokine that associated with the release of “airway remodeling” 

cytokines, IL-6 and IL-8 (Molet et. al. 2001). IL-6 and IL-8 are responsible for neutrophils 

accumulation in the airways (Laan et al. 1999). The role of IL-17 in asthma is an area of much 

current investigation. Asthmatic patients have elevated levels of IL-17A and IL-17F that correlate 

to disease severity, suggesting an important role for these cytokines in severe asthma. Indeed, IL-

17A enhances human airway smooth muscle contraction, and elevated IL-17A levels correlate to 

increased neutrophilic inflammation, a characteristic of severe and steroid-resistant asthma. 

Increased IL-17A has also been correlated to increased AHR in asthmatics. The cellular source of 

IL-17 in asthma is unclear, although a recent study has shown the presence of a significant 

number of CD4+ Th17 cells in asthmatic tissues. Interestingly, IL-17 expression by T cells was 

evident in allergic but not nonatopic asthma. These studies implicate IL-17 in asthma 

pathogenesis, particularly severe, neutrophilic form of the disease. In mice, there is increased IL-

17A levels in lung and IL-17R-/- mice displayed reduced OVA-induced airway eosinophilia, IgE, 

and Th2 cytokines. In addition, adenoviral expression of IL-17A was sufficient to induce AHR in 

mice, and overexpression of IL-23 in the lung was sufficient to enhance antigen-dependent 

eosinophilia, Th2 cytokines, IL-17 production, and AHR. In HDM model, AHR-susceptible mice 

have enhanced myeloid dendritic cell production of IL-23, which drives Th17 polarization and 

subsequent AHR. Importantly, studies showed that IL-17A and IL-22 production by Th17 cells 

was steroid insensitive in vitro. Glucocorticoid treatment in vivo did not abrogate Th17-driven 

responses but was effective in inhibiting Th2-mediated inflammation. Moreover, our lab and 

others have shown that transfer of OVA-specific Th17 cells into host mice resulted in 

neutrophilic airway inflammation, AHR, and mucus metaplasia following OVA challenge. In 
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summary, these data indicate a role for Th17 and IL-17 in promoting allergic airway 

inflammation and AHR. 

 

1.1.5 The anti-inflammatory effects of Foxp3+ Treg cells on allergic lung inflammation 

Tregs control reactivity of self-reactive T cells and are responsible for maintaining 

immunologic homeostasis. Several types of Tregs have been described on their basis of their 

origin, generation, and mechanism of action, with two principal subsets identified: naturally 

occurring Foxp3+ Tregs (referred to as nTregs) and inducible Tregs (iTregs). iTregs develop in 

the periphery from conventional CD4+ T cells after exposure to signals such as regulatory 

cytokines, immunosuppressive agents, or antigen-presenting cells, whereas nTregs are thymus-

derived natural CD4+ cells that express CD25, the alpha chain of IL-2 receptor and thus present 

in the host before pathogen exposure. Foxp3 is a key regulatory transcription factor required for 

the development of the T regulatory phenotype, Treg cells. T regulatory cells play an important 

role in maintaining immune homeostasis and produce anti-inflammatory cytokines eg  TGF-β . 

These anti-inflammatory cytokines help to regulate immune responses and inflammatory 

pathologies (Hawrylowicz 2005).  The expression of forkhead box P3 (Foxp3), a transcription 

factor that is critical for the development of Foxp3+ Tregs, can also be induced de novo in 

conventional CD4+ T cells, rendering the distinction between the two types of Tregs less obvious. 

The main iTregs populations include (i) TGF-β-producing Tregs; (ii) T regulatory 1 (Tr1) cells, 

which secrete IL-10; and (iii) inducible Foxp3+ Tregs. IL-4 inhibits TGF-β-induced iTregs and 

retinoic acid favors maturation of iTregs . Both nTregs and iTregs share similar phenotype and 

have a contact-dependent mechanism of action that is not fully understood. nTregs express 

CTLA-4 (cytotoxic T lymphocyte antigen), GITR (glucocorticoid-induced tumor necrosis antigen 
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4), CCR4 (chemokine receptor) and are generally previously activated (CD45RBlow in mice and 

CD45RO in human). IL-2 and TGF-β play important role in the maintenance and survival of both 

Treg subsets. However, nTregs and iTregs differ in their principal antigen-specificities and in T 

cell receptor signal strength and costimulatory requirements needed for their generation. 

Importantly, IL-6 can convert nTregs to Th17 cells, whereas iTregs, induced by IL-2 and TGF-β, 

are resistant to this cytokine and thereby may retain their suppressive function at inflammatory 

sites. This raises the possibility that nTregs and Tregs have separate functions in the adaptive 

immune response. 

 

1.1.6 The anti-inflammatory effects of IL-10 on allergic lung inflammation 

IL-10 is known as an important immunosuppressive cytokine. Several studies suggest that 

IL-10 inhibits the production of pro-inflammatory cytokines (Moore et al. 2001). During airway 

inflammation, Th2 cells produce inflammatory cytokines that involve in the development and 

recruitment of inflammatory cells.  IL-10 is able to suppress the development of eosinophils and 

inhibit the recruitment of eosinophils to the inflammatory site in the airways (Kosaka et al. 2011). 

T regulatory (Treg) cells are known to produce the large amounts of IL-10. The chronic activation 

of CD4+ cells in the presence of IL-10 in vitro significantly induces the development of Treg cells, 

which mainly produce IL-10 (Groux et al. 1997). Moreover, there is evidence that IL-10 

production is low in asthmatic individuals (Takanashi et al. 1999).  
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1.1.7 Arginase Activity and Allergic Lung Inflammation 

 L-arginine is a precursor in protein synthesis and a substrate for enzymes. Arginase is an 

enzyme involved in L-arginine metabolism since it plays a n important role in the urea cycle by 

generating urea from ornithine. As such it competes with NOS for L-arginine as a common 

substrate (Maarsingh et al. 2008; Morris et al. 2007). The arginase-mediated degradation of 

arginine reduces the level of this substrate available to NOS. This "substrate competition" may 

cause the inhibition of NOS activity. Many studies suggest that alterations in L-arginine and NO 

metabolic pathways in the lung contributes to asthma pathophysiology (Morris et al. 2004; Yang 

et al. 2006; Zimmermann et al. 2006). One study shows that the inhibition of NOS activity 

reduces allergen-induced airway hyperresponsiveness in mice model (Muijsers et al. 2001). In 

addition, the administration of exogenous L-arginine prevents the allergen-induced 

hyperresponsiveness after the early asthmatic reaction in ex vivo guinea pig model (Boer et al. 

1999).  

 

1.1.8 Current Treatments in use for Asthma 

Asthma remains a major public health problem that has increased in developed countries. 

Clearly asthma represents a major and worsening global health problem that despite new 

therapeutic approaches, many patient symptoms are not adequately controlled. Inhaled 

corticosteroids and long acting β2-agonists are currently the most effective treatment for asthma. 

However, some patients are corticosteroid resistant, and there is concern about side effects 

associated with long-term use of corticosteroids, particularly in children (Barnes 2004). This 

concern leads to a search for new approaches or improved therapies for asthma. 
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1.2 Cannabinoid Receptors and cannabinoids 

 

Cannabis sativa is an annual herbaceous plant, which is historically known for its 

medicinal properties against various diseases. In 1964, delta-9-tetrahydrocannabinol (THC) was 

identified as the major psychoactive of cannabis (Gaoni et al. 1971). A number of studies on 

synthetic cannabinoid analogs followed the discovery of THC. These cannabinoid analog studies 

eventually led to the search for specific receptors, effects and mode of action. 

 

1.2.1 Cannabinoid receptors 

 Cannabinoid 1 (CB1) receptor was identified in 1988 and cloned in 1990 (Devane et al. 

1988; Matsuda et al. 1990). The CB1 receptor is highly expressed in the central nervous system 

and mediates many of the neurobehavioral and psychotropic effects (Brown 2007). In 1993, 

cannabinoid 2 (CB2) receptor was discovered and cloned (Munro et al. 1993). Unlike the CB1 

receptor, the CB2 receptor is predominantly expressed by lymphoid tissues (Brown 2007). The 

CB1 and CB2 receptors are G protein-coupled receptors, the lipid receptors (Figure 3). 
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Figure 3. Cannbinoid receptors: CB1 and CB2  

 

1.2.2 Endocannabinoids 

Endocannabinoids are endogenous ligands for the cannabinoid receptors. N-

arachidonoylethanolamide, anandamide (AEA), is the first endocannabinoid identified in 1992. 

Subsequently, a second endocannabinoid, 2-arachidonoylyglycerol (2-AG), was discovered in 

1995 (Devane et al. 1992; Mechoulam et al. 1995). AEA, acts as a neurotransmitter, is selective 

for the CB1 receptor with a much lower affinity for the CB2 receptor (Cabral et al. 2009). 

Conversely, 2-AG has a great affinity for the CB2 receptor compared to the CB1 receptor (Cabral 

et al. 2009). It is suggested that 2-AG is the natural ligand for the CB2 receptors (Cabral et al. 

2009).   
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1.2.3 Exogenous cannabinoids 

 Exogenous cannabinoids are cannabinoids extracted from the cannabis sativa plant or 

synthetically formulated. Delta-9-tetrahydrocannabinol (THC), cannabinol (CBN) and 

cannabidiol (CBD) have been the most studied exogenous cannabinoids. 

 

1.3 Cannabinoids interaction with CB2 receptor 

 

 Cannabis plants, known as marijuana, have been used both for recreational and medicinal 

purposes for several centuries. Cannabinoids are the major active components found in the 

cannabis plant (Nocerino et al. 2000). Classical and recent studies suggest that cannabinoids are 

effective in the treatment of nausea and vomiting associated with cancer chemotherapy, anorexia 

and cachexia seen in HIV/AIDS patients, as well as neuropathic pain, and spasticity in multiple 

sclerosis (Nocerino et al. 2000). Recently, interest in the anti-inflammatory properties of 

cannabinoids has increased. Interestingly, several studies have reported that various cannabinoids 

have been shown to affect the functional activities of immune cells from rodents and humans, 

including B cells, T cells, macrophages and natural killer cells (Klein et al. 2003). 

 

 The mechanism of immunosuppression by cannabinoids has been investigated both in 

vitro and in vivo studies. There is little clear scientific evidence to fully understand the underlying 

mechanism how cannabinoid receptors are mediated by cannabinoids for exhibiting their 

immunosuppressive properties. However, recent cannabinoid studies indicate that cannabinoids 

clearly modulate immune responses during inflammatory processes (Croxford et al. 2005). Many 

in vitro experiments suggest that cannabinoid may exert their immunosuppressive properties in 
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four main ways: induction of apoptosis, inhibition of cell proliferation, inhibition of cytokine and 

chemokine production, and induction of regulatory T cells (Croxford et al. 2005). 

 

 Hegde et al. have done extensive experiments in order to demonstrate activation of 

cannabinoid receptors through administration of the cannabinoid THC (Figure 4) in mice (Hegde 

et al. 2010). In this study, THC activated both the CB1 and the CB2 receptors. Activation of both 

CB receptors led to induction of myeloid-derived suppressor cells (MDSC). MDSC are a 

heterogeneous cell population which include immature macrophages, granulocytes, DC and other 

myeloid cells, and mediate potent immunosuppressive properties (Gabrilovich et al. 2009). The 

THC - mediated induction of MDSCs reduced the proliferation of T cells and T cell- mediated 

inflammation, which may lead to immunosuppresion on inflammatory response. 

    

 

Figure 4. Structure of Delta-9-tetrahydrocannabinol (THC) 

 

1.4 Allergic Asthma and Cannabinoids as a Potent Therapeutic 

 

 The main drawback for using a cannabinoid agonist as a potential therapeutic agent for 

asthma treatment is the psychotropic effect mediated by activation of CB1 receptor. In order to 



 14	  

resolve the undesired CB1 effect, a cannabinoid agonist, specifically designed to target the CB2 

receptor, was developed and formulated by Dr. Philippe Diaz (CLNP, Department of Biomedical 

and Pharmaceutical Sciences at the University of Montana). Figure 5 presents the progressive 

discovery paradigm. As the result of his investigation, the CB2 agonist, NMP7, was formulated 

and provided to investigate its potential therapeutic for asthma.  

 

In asthma, the lung inflammation is elicited by CD4+ Th2 cells. Based on the 

immunosuppressive nature of the CB2 receptors and our CB2 agonist, we carried out in vivo 

experiments to evaluate anti-inflammatory effect of the agonist on a mouse model of asthma. In 

addition, in vitro experiments were carefully designed to investigate possible cellular mechanisms 

how the agonist exert its anti-inflammatory property.  

 

 

Figure 5. The progressive discovery paradigm with the descriptions of the key experiments with 

the advancing measures 
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CHAPTER 2 

MATERIAL AND METHODS 

 

2.1 Animals 

 BALB/c, C57BL6, DO11.10 and Foxp3-GFP transgenic mice were purchased from 

Jackson Laboratory, Bar Harbor ME. All mice were maintained in pathogen-free conditions in the 

animal facility at the University of Montana (Missoula, MT). All experiments were performed to 

the guidelines of the National Institutes of Health and approved by the University of Montana 

Institutional Animal Care and Use Committee (IACUC).  

 

2.2 Media 

 Cells were cultured in RPMI 1640 media supplemented with 10% fetal bovine serum, L-

glutamine (Life Technologies, Carlsbad CA), penicillin and streptomycin (Life Technologies), 

HEPES (Life Technologies), sodium pyruvate (Life Technologies), and 2-mercaptoethanol 

(Sigma-Aldrich, St. Louis, MO). 

 

2.3 Cannabinoid Agonist (NMP7) 

 Peripherally acting cannabinoid agonist, NMP7, was designed and provided by Dr. 

Philippe Diaz (Core Laboratory for Neuromolecular Production, Department of Biomedical and 

Pharmaceutical Sciences, University of Montana). 
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2.4 Mouse Model of Asthma 

 

2.4.1 Preparation of DO11.10 CD4+ Th2 cells 

 Peripheral lymph node cells (PLN) were obtained from DO11.10 mice. CD8+ cells were 

first depleted using MACS beads (Miltenyi Biotech, Auburn, CA). Cells (5X105/ml) were 

incubated in complete RPMI media for 4 d in the presence of OVA323-339 peptide (1 µg/ml, 

Mimotopes, San Diego, CA) and murine IL-4 (2 µg/ml; R&D Systems), plus mAb anti-IFN-

gamma (5 µg/mL R4-6A2, American Type Tissue Collection (ATCC), Manassas, VA). After 4 d 

of incubation, cells were re-stimulated using culture conditions identical to those previously used, 

but this time also in the presence of exogenous IL-2 (10 ng/mL R&D Systems) for a further 4 d. 

On d 8, the cells were depleted of class II+ cells by panning by incubating with anti-class II mAb 

(5 µg/ml M5/114; ATTC) for 30 min, then plated-bound mouse anti-rat IgG (10 µg/mL; Jackson 

ImmunoResearch, West Grove, PA) for 1 h. Non-adherent (Class II- cells) CD4+ Th2 cells were 

collected for subsequent culture.   

 

2.4.2 Adoptive Transfer of CD4+ Th2 cells into Mice and Ovalbumin Aerosol challenge 

 Eight-day polarized DO11.10 CD4+ Th2 cells (107 cells/mouse) were adoptively 

transferred into BALB/c animals by intravenous injection. Mice (four per group) were then intra-

nasally challenged by exposure in a chamber to aerosolized solutions of OVA (0.5%, Grade V; 

Sigma-Aldrich) for 20 min/day, over 7 consecutive days using a Wright’s nebulizer (Buxco). 

Control mice were exposed to OVA aerosols but did not received DO11.10 Th2 cells. 
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2.5 In Vivo Experiments 

 

2.5.1 Administration of NMP7 

Prior to OVA aerosol challenge, Mice were treated daily with the CB2 agonist (5 mg/kg of 

body weight) or vehicle by intra-nasal and intra-peritoneal injection.  

 

2.5.2 Cell Differential Count 

Cytospin preparations were performed on 5x104 cells followed by staining the cells using 

a Wright-Giemsa-protocol (Hema 3 Staining kit, Fisher Scientific, Houston, TX). Cell differential 

percentages were determined by light microscopic evaluation of stained and expressed as absolute 

cell numbers.  

 

2.5.3 Eosinophil Peroxidase (EPO) Assay 

The EPO activity in BAL cells was determined by colorimetric assay. 100 µl of PBS was 

added to each well in a 96 well flat-bottomed plate (Falcon). The cells from the BAL fluid were 

resuspended in PBS pH 7.0 in a final volume of 300 µl. In triplicate for each sample, 100 µl of the 

cell suspension was added to the top well and serial diluted through the 8th well. The substrate 

solution was prepared by crushing one tablet of orthophenylene diaminedihydrochloride, (OPD, 

Sigma) (final concentration of 0.1%) in 50 µM Tris-HCl (Sigma) containing 0.1% Triton X-100 

(Sigma) and 1 mM hydrogen peroxide (Sigma). 100 µl of the substrate solution was added to each 

well and the plates were then incubated at room temperature for 30 min or until sufficient color 

development has occurred at which time 50 µl or 0.3 M sulfuric acid (Sigma) was added to stop 

the reaction. The absorbance was measured using an automatic plate reader (Molecular Devices 
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VersaMax microplate reader) at 495 nm. The measurements taken were total and not released 

EPO, and were indicative of the number of eosinophils present in the BAL. 

 

2.5.4 Flow Cytometry Analysis on In Vivo Experiments 

Cells were stained and analyzed on a FACSAria cell sorter (BD Biosciences, San Joes, 

CA) using FACVSDiVa software to enumerate CD4+ T cells (APC-Cy7, BD Biosciences), OVA-

specific T cells (KJ1-26, APC, BD Biosciences), CD11c cells (APC, BioLegend) and Class II+ 

cells (APC, BioLegend). Flow cytometric analysis of CD4+ vs. KJ1-26+ and CD11c+ vs. ClassII+ 

were performed. 

 

2.6 In Vitro Experiments 

 

2.6.1 In Vitro Analysis of CB2 Agonist 

12-well culture plates were pre-coated with anti-CD3 (2µg/ml, 2C11; ATTC) and 

incubated 24 h. Cells were isolated from DO11.10 mouse spleens. Cells were cultured either in 

pre-coated anti-CD3 culture plate or in un-coated culture plate with soluble OVA-peptide (1µg/ml, 

Mimotopes, San Diego, CA) in the presence of different concentrations of the CB2 agonist, 

NMP7 (0, 0.1, 0.5, 2.5 µM) for 2 days. Supernatants were harvested and stored at -4oC for 

cytokine measurement. 

 

2.6.2 Measurement of cytokines 

IL-4 and IL-5 Measurement 

 The protocols used to assay cytokines IL-4 and IL-5 are as follows: 50 µl of anti-IL4 
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(5µg/ml generated from the 11B11hybridoma cultivated in our laboratory) and IL-5 (Pharmingen) 

capture antibodies [5.0 µg/mL final], diluted in PBS, were pipetted into a 96 well plate and stored 

at 4oC overnight followed by 2 washes on an automated plate washer (Thermo Electron Well 

wash 5 MK2 Plate washer, Fisher Scientific) with ELISA wash buffer (WB) (PBS & 

0.5%Tween). Plates were blocked by adding 200 µl of blocking buffer (1% bovine serum 

albumin (BSA) (Sigma) in 1 mM carbonate/bicarbonate buffer, pH 9.6) was added and incubated 

at room temperature for a minimum of 2 h; the excess was then washed off with WB x 3. 

Standards and samples were added (50 µl/well) and incubated over night at 4oC. The plates were 

washed 3X with WB. Biotin-conjugated detection antibodies (anti-IL-4 (Pharmingen), IL-5 

(Pharmingen) were diluted to 2.5 µg/mL in blocking buffer and 50 µl was added to each well and 

allowed to incubate at room temperature for 45 min followed by washing 3X with WB. 

Streptavidin-conjugated horseradish-peroxidase (SA-HRP) (Jackson ImmunoResearch 

Laboratories Westgrove , PA) was diluted 1:4000 in blocking buffer.100 µl of SA-HRP was 

added to each well and incubated for 30 min at room temperature. The plates were washed 5X 

with WB and blotted dry. 100µl of 3,3’,5,5’ Tetramethylbenzidine (TMB) (Sigma) substrate was 

added to each well, incubated up to 30 min at room temperature at which point the reaction is 

stopped with 100 µl of 0.3 M H2SO4 (Sigma). The absorbance was read at 495 nm. 

 

IL-10 Measurement 

The R&D systems (Minneapolis, MN) IL-10 ELISA kit was used to quantify this cytokine. 

The protocol was similar to IL-4 and IL-5 protocol with the exception of the following: The 

capture antibody was diluted 1:200 in 0.2 M sodium phosphate buffer (pH 6.5) and 100 µl added 

per well in a 96 well plate. The plates were sealed and incubated at 4oC overnight. The plates 
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were washed 3X with WB . 200 µl of blocking buffer (1% BSA in PBS) was added to each well 

and the plates were incubated for 1 h at room temperature. The plates were washed 3X with WB . 

100 µl of samples or standards (diluted in blocking buffer) were added to the appropriate well and 

incubated 2 h at room temperature. The plates were washed 3X with WB. 100 µl of detection 

antibody (1:200) was added per each well and the plates were incubated for 2 h at room 

temperature. The plates were washed 3X with WB . 100 µl of Avidin-HRP solution (1:1000) was 

added to each well and incubated for 30 min at room temperature in the dark. The plates were 

washed 3X with WB . 100 µl of TMB was added to each well and the plate was incubated in the 

dark for up to 30 min. The reaction was stopped with 0.3M H2SO4. The absorbance was measured 

at 450nm on the plate reader. 

 

IL-17 Measurement 

The R&D systems (Minneapolis, MN) IL-17 ELISA kit was used to quantify this cytokine. 

The protocol was similar to IL-10 protocol with the exception of the following: The capture 

antibody was diluted to 2 µg/ml in PBS and 100µl was added per each well in a 96 well plate. The 

detection antibody was diluted to 400 ng/ml. SA-HRP solution was diluted to 1 ng/ml. After 

addition of SA-HRP, the plates were incubated for 20 min at room temperature in the dark. After 

addition of TMB, the plates were incubated in the dark for up to 20 min.  

 

2.6.3 Determining Expression of Foxp3+ in CB2 Culture 

 12-well culture plates were pre-coated with anti-CD3 (2µg/ml, 2C11; ATTC) and 

incubated 24 h. Cells were isolated from Foxp3-GFP mouse spleens and cultured in pre-coated 
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plates with various doses of NMP7 (0, 0.1, 0.5, 2.5 µM) for 2 days. Cells were harvested and 

analyzed by flow cytometry. 

 

2.6.4 Determining the effect of CB2 agonists on Treg numbers using Foxp3-GFP mice and 

intra-cellular Foxp3 staining. 

Foxp3 - GFP mice (B6.Cg-Foxp3tm2Tch/J, Jackson Laboratories) were used to enumerate 

Treg cell numbers in cultures treated with anti-CD3 and CB2 agonists. GFP expression was 

determined by flow cytometry in conjunction with labeled secondary antibodies to CD4 & CD8.  

 

2.6.5 Arginase Activity Assay 

 This assay was used for measuring arginase activity of the cells. The conversion of L-

arginine to L-ornithine was measured. 2x106 peritoneal cells from CB2 treated or control mice 

were cultured with or without lipopolysaccharide (LPS, 1 µl/ml, brand) and incubated 24 h. After 

24 h, cells were harvested and lysated with cell lysis buffer containing protease inhibitor cocktail. 

The cell lysates were activated for the activation of arginase in the lysate. 25 µl of 10 mM/L 

MnCl2 was added to 25 µl of cell lysate in the tube and incubated at 55C for 20 min. 150µl of 

carbonate buffer (100 mM/L, pH10, brand) was added to the tube containing cell lysate for the 

initiation of arginase reaction. 50µl of 100mM/L L-arginine was added to the tube and incubated 

at 37 oC for 1.5 h. 750 µl of glacial acetic acid was added to stop the reaction. Standards were 

prepared with known amount of L-ornithine (8 mM to 250 mM, brand) and treated the same as 

the samples. 250 µl of ninhydrin reagent (2.5 g of ninhydrin in 40 ml of 6 M phosphoric acid and 

60 ml of glacial acetic acid) was added to samples and standards. Samples and standards were 
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boiled at 90-100 oC for 1h. The absorbance was measured at 515 nm on the plate reader 

(Molecular Devices VersaMax microplate reader).  

 

2.7 CB2 receptor expression 

 

2.7.1 Intracellular cannabinoid receptor staining 

 CB2 receptor binding by CD4+ Th2 cells using NBD-labeled CB2 ligand by confocal 

microscopy. Th2 cells, with or without blocking with cold CB2 agonist, were stained with PE-

conjugated anti-CD4 antibody (red) and the NBD-labeled CB2-selective compound at 5 µM, on 

ice for 30 min (green) and then visualized by confocal microscopy (40x). The cells with cold CB2 

agonist were pre-incubated with the agonist prior to staining. 

 

2.7.2 Expression of CB2 receptor activated B and dendritic cells 

 Lung mononuclear and spleen cells from C57BL6 mice (1X106 cells/ml) were initially 

stimulated with LPS (10 µg/ml) for 48h. The stimulated cells were Fc blocked and stained with 

NBD-labeled CB2 ligand (5 µM) and allophycocyanin-labeled anti-CD11c or anti CD45 B220 

mononuclear antibody in the absence or presence of unlabeled (cold) CB2 agonist (100 µM, as 

competitive ligand) for 30 min. Expression of CB2 receptors (FITC channel) on the activated cells 

were analyzed by FACS. 

 

2.8 Statistical Analysis 

Data are expressed as means SEM. Data obtained from in vitro experiments comparing two 

variables, were analyzed using the students t test. In vivo experiments comparing variables were 
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analyzed using the Mann-Whitney U test. Differences with p values <0.05 were considered 

statistically significant. To determine statistical significance of groups, two-way ANOVA tests 

were used for analysis. The Prism software package was used in all cases. 
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CHAPTER 3 

 

RESULTS 

3.0 Specific Aims 

The overall goal of this study was to examine whether treatment with CB2 agonist reduced 

the airway inflammation in a mouse model of asthma. The treatment of mice with CB2 agonists 

was expected to have minimal psychotropic effects while suppressing allergic airway 

inflammation. 

 

Specific Aim 1: Effect of treatment of mice with CB2 agonists on allergic lung inflammation. 

To evaluate whether the CB2 agonist attenuated airway inflammation mice were treated intra-

nasally with the agent. The effect on the following responses was evaluated: 

(i) Pulmonary inflammation 

(ii) Cytokines present in bronchoalveolar lavage fluid (BALF) 

 

Specific Aim 2: What is the effect of CB2 agonists on T cells in vitro - effect on cytokine 

production, Treg numbers and arginase activity. 

To test whether our CB2 agonist will modulate Th2 cytokine production, immunosuppressive 

cytokine production and arginase activity, in vivo experiments were carried out. This aim was to 

determine CB2 mode of action using cells isolated from mouse spleens cultured with the agonist.   

(i) Effect on Th2 cytokines: IL4- and IL-5 

(ii) Effect on IL-10 and IL-17 

(iii) Effect on Foxp3+ cell expansion 
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(iv) Effect on arginase activity 

Specific Aim 3: Monitor CB2 receptor expression by immune cells using NBD labeled agonists. 

To examine the expression of CB2 receptors on the immune cells, cells were isolated and stained 

with NBD-labeled CB2 ligand. This approach was developed to examine the cellular expression 

of the receptor during allergic airway inflammation and cell activation and possible action site of 

our CB2 agonist. Th2 cells and activated immune cells were stained with NBD-labeled CB2 ligand. 

The unlabeled agonist, NMP7, was added prior to the cell staining to observe binding activity. 

(i) Monitor CB2 expression on Th2 cells 

(ii) Monitor CB2 expression on activated B and dendritic cells (DC) 
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3.1 In Vivo Experiments 

Recent research suggests that the CB2 agonist indicated anti-inflammatory properties. 

Given the anti-inflammatory properties of the CB2 receptor, in vivo experiments were designed to 

test if our CB2 agonist can attenuate airway inflammation in a mouse model of asthma.  

 

3.1.1 OVA-specific CD4+ cells and CD11c+ClassII+ antigen presenting cells  

OVA-specific CD4+ cells and CD11c+ClassII+ APCs are responsible for initiating the 

inflammatory cascade in a mouse model of asthma. Inhibition of these cells is evidence for the 

attenuation of airway inflammation.  To evaluate whether CB2 agonist inhibits inflammatory 

phenotype, BALF cells and lung mononuclear cells were stained for flow analysis. Figure 6 

illustrates that the agonist treated mice demonstrated reduction in numbers of OVA-specific CD4+ 

cells and CD11c+ClassII+ APCs (approximately 50% for both) compared to vehicle mice.  
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Figure 6. CB2 agonist inhibits numbers of antigen-specific CD4+ cells and antigen presenting 

cell. Clonotypic CD4+KJ1-26+ (OVA-specific CD4+) cells in the BALF and CD11c+ClassII+ 

cells in lung mononuclear cell (LMC) were enumerated by FACS analysis.  
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3.1.2 Absolute inflammatory cell number 

During the inflammatory process, infiltration of inflammatory cells occurs in airways. In 

order to evaluate whether our CB2 agonist attenuates airway inflammation, absolute cell numbers 

in BALF were determined. Figure 7 demonstrates that in the agonist treated mice, a 5-fold 

decrease in lymphocyte cell number and a 3-fold decrease in eosinophil cell number is seen, 

compared to vehicle mice. No significant reduction in cell numbers for macrophages and 

neutrophils were observed.  

 

 

 

Figure 7. CB2 agonist reduces recruitment of inflammatory cells in airway. Cell differential 

counts in the BALF were determined by light microscopic evaluation. Results are expressed as 

total  numbers (per mouse) of lymphocytes (Lym), macrophages (Mac), eosinophils (Eos), and 

neutrophils (Neu). Data are means ± SEM n=3. * indicates P values < 0.05 compare to vehicle 

group. 
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3.1.3 Eosinophil peroxidase (EPO) level 

Eosinophil infiltration in airways is a hallmark of airway inflammation. Eosinophils 

produce eosinophils peroxidase (EPO), which is a good indicator of airway inflammation.  Cell-

associated EPO levels were present in BALF collected from control, vehicle, low dose agonist 

and high dose agonist treated mice. Figure 8 demonstrates that low dose and high dose agonist 

treated mice, had a 2-fold and 4-fold decrease in EPO levels, compared to vehicle mice. The 

agonist significantly reduced EPO levels in BALF in a dose-dependent manner.  

 

 

 

Figure 8. CB2 agonist reduces Eosinophil peroxidase (EPO) levels in the BALF. EPO levels in 

the BALF assessed by colorimetric analysis. Data are means ± SEM n=3. * indicates P values < 

0.05 compare to vehicle group. 
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3.1.4. Lung tissue staining 

 Excessive mucus secretion and the formation of pockets of inflammation around airways 

occur during the inflammatory process. Lung tissues from asthmatic mice, CB2 treated group and 

vehicle group, were collected. The collected tissues were stained using PAS and H&E. PAS 

staining indicates mucus secretion of airways (Figure 9A and 9B). It is showing that non-treated 

group secretes mucus in airways (9A), which is significantly inhibited by CB2 agonist (9B). H&E 

staining indicates pockets of inflammation around airways (Figure 9C and 9D). In non-treated 

group, pockets of inflammation are observed significantly around airways (9C). These 

inflammatory pockets were significantly inhibited by CB2 agonist (9D).  
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PANEL A      PANEL B 

 

PANEL C      PANEL D 

 

Figure 9.  PAS and H&E staining of lung tissue. Lung tissue was prepared from Aerosol 

Challenged + CB2 agonist treated mice (A & C) or Aerosol Challenged + no CB2 treatment (B 

& D). Tissues were stained using PAS (A & B) or H& E (C & D). 
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3.1.5 The Effect of CB2 agonist on IL-10 

To test whether our CB2 agonist promotes IL-10 production in airway to suppress the 

inflammatory process, IL-10 levels in BALF was measured by ELISA. The agonist promoted IL-

10 production. Figure 10 demonstrates that the agonist treated mice, a 4-fold increase in IL-10 

production, compared to vehicle mice.  

 

 

 

Figure 10. CB2 agonist promotes IL-10 in vivo model. IL-10 levels in BALF of control and Th2 

recipients treated with either agonist or vehicle, measured by ELISA. Data are means ± SEM n=3. 

* indicates P values < 0.05 compare to vehicle group. 
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3.2 In Vitro Experiments 

CB2 receptors are highly expressed on immune cells. Synthetic cannabinoid agonists can 

mediate their effect by activating cannabinoid receptors. Recent studies suggest that cannabinoids 

have anti-inflammatory properties and could potentially be used as a new class of anti-

inflammatory agents against immune inflammatory disease. However, it is not clearly known how 

cannabinoids express their immunosuppressive properties. In vitro experiments were designed to 

investigate possible mechanisms.   

 

3.2.1 The Effect of CB2 Agonist on IL-10 production 

IL-10 is an immunosuppressive cytokine that can attenuate inflammation. Induction of IL-

10 could be a possible mechanism for down-regulating the expression and production of 

inflammatory cells and cytokines (Moore et al. 2001). To determine the effect of the CB2 agonist 

on IL-10 production, cells were isolated from DO11.10 mouse spleens and were stimulated with 

anti-CD3 (Figure 11, white bars) or OVA-peptide (Figure 8, black bars) in the presence of 

different concentrations of the agonist for 2 days. IL-10 was measured by ELISA as described in 

the methods and materials. Figure 8 shows that the agonist promoted IL-10 production of the cells. 

Cultures treated with the agonist were compared with the control cultures (no CB2 agonist). Both 

anti-CD3 and OVA-peptide cultures showed statistically significance increment of IL-10 

production.  
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Figure 11. CB2 agonist promotes anti-inflammatory cytokine IL-10. Cells, isolated from 

DO11.10 mouse spleen, were stimulated with anti-CD3 (white bars) or OVA-peptide (black bars) 

in the presence of different concentrations of the CB2 agonist for 2 days. Supernatants were 

harvested and anti-inflammatory cytokine, IL-10, was measured by ELISA. Data are means ± 

SEM n=3. * indicates P values < 0.05. ** indicates P values < 0.01 compared to no CB2. 
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3.2.2 The Effect of CB2 Agonist on IL-17 production 

Another cytokine, IL-17 is produced during infection with specific pathogens. Th17 cells 

produce IL-17 in respond to specific pathogens for pathogen clearance (Korn et al. 2009). It is 

suggested that IL-17 expression is associated with allergic response (Jaffar et al. 2011). IL-17 

may serve a potentially important role in the mediation of dysregulated Th2 response, which 

causes allergic airway inflammation (Laan et al. 1999). To determine the effect of tour CB2 

agonist on IL-17 production, cells were isolated from DO11.10 mouse spleens and stimulated 

with anti-CD3 (Figure 12, white bars) or OVA-peptide (Figure 12, black bars) in the presence of 

different concentrations of the agonist for 2 days. IL-17 was measured by ELISA. Cultures 

treated with the agonist were compared with control cultures (no CB2 agonist).  Our CB2 agonist 

did not inhibit IL-17 production in anti-CD3 cultures. However, in OVA-peptide cultures, the 

agonist significantly inhibited IL-17 production.  
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Figure 12. CB2 agonist inhibits Th17 cytokine IL-17. Cells, isolated fromDO11.10 mouse spleen 

were stimulated with anti-CD3 (white bars) or OVA-peptide (black bars) in the presence of 

different concentrations of the CB2 agonist for 2 days. Supernatants were harvested and anti-

inflammatory cytokine, IL-10, measured by ELISA. Data are means ± SEM n=3. ** indicates P 

values < 0.01 compared to no CB2 . 
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3.2.3 The Effect of CB2 Agonist on pro-inflammatory cytokines, IL-4 and IL-5 

IL-4 and IL-5 are key pro-inflammatory cytokines in airway inflammation. To determine 

the effect of our CB2 agonist on IL4 and IL-5 production, cells were isolated from DO11.10 

mouse spleens and stimulated with anti-CD3 (Figure 13, white bars) or OVA-peptide (Figure 13, 

black bars) in the presence of different concentrations of the agonist for 2 days. The cytokine 

levels were measured by ELISA. Cultures treated with the agonist were compared with control 

cultures (no CB2 agonist). Our CB2 agonist effectively inhibited IL-4 production. Also, IL-5 

production was significantly inhibited for anti-CD3 cultures. 
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Figure 13. CB2 agonist inhibits pro-inflammatory cytokines IL-4 and IL-5. Cells, isolated from 

DO11.10 mouse spleen, were stimulated with anti-CD3 (white bars) or OVA-peptide (black bars) 

in the presence of different concentrations of the CB2 agonist for 2 days. Supernatants were 

harvested and anti-inflammatory cytokine, IL-10, measured by ELISA. Data are means ± SEM 

n=3. * indicates P values < 0.05. ** indicates P values < 0.01 compared to no CB2 . 
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3.2.4 The Effect of CB2 Agonist on Expression of Foxp3+ 

Foxp3 is a key regulatory transcription factor required for the development of the T 

regulatory phenotype. T regulatory cells produce anti-inflammatory cytokines (TGF-β or IL-10), 

which helps to prevent inflammation. In order to test if our CB2 agonist induces the expression of 

Foxp3+, cells were isolated from Foxp3-GFP mouse spleens and cultured with the agonist for 2 

days. Foxp3 expressions in different types of immune cells were analyzed. Foxp3 expressions on 

four different types of immune cells (B cells, CD4+ T cells, macrophages and CD25+ T cells) 

were analyzed by flow cytometry (Figure 14). Our CB2 agonists did not induce Foxp3 expression; 

Foxp3+ population remained similarly for CB2 or no CB2 groups. 
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Figure 14. Foxp3 expression by various cells in the cultures were enumerated by FACS 

analysis. Each row represents cell types B cells (B220), CD4+T cells (CD4), macrophages 

(CD11b) and CD25+ cells (CD25). Each column represents different doses of the CB2 agonist (0, 

0.1, 0.5 and 2.5 µM) added to cultures. 
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3.2.5 The Effect of CB2 Agonist on Arginase Activity 

L-arginine metabolism is a key characteristic of myeloid-derived suppressor cells 

(MDSC). MDSC has been shown to express immunosuppressive properties. High levels of THC 

has been shown to elicit a response by myeloid-derived suppressor cells. In order to test if our 

CB2 agonist activates MDSC for expressing anti-inflammatory effect, mice were treated with or 

without the agonist. Cells were isolated from spleen and stimulated with or without LPS for 24 

hours. After 24 hours both cells and supernatants were harvested to evaluate arginase activity. 

Arginase activity was determined by spectrophotometric assay based on the principle of 

conversion of substrate L-arginine to L-ornithine (Hegde et al. 2010). No significant difference 

was observed for arginase activity of CB2 and no CB2 groups (Figure 15).  The results suggest 

that our CB2 agonist is less likely to exert its anti-inflammatory effect through the activation of 

MDSC. 
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Figure 15. No CB2 effect on arginase activity. Peritoneal cells (macrophages) were isolated 

from either CB2 treated (black bars) or control mice (white bars). Cells were stimulated with or 

without LPS for 24 h. Cells and supernatants were harvested, arginase activity was measured. 

Data are means ± SEM n=4.  
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3.3 CB2 receptor expression  

3.3.1 Intracellular Cannabinoid Receptor Staining 

In order to examine whether T cells express the CB2 receptors during allergic 

inflammation, Th2 cells were stained using the NBD-labeled CB2 ligand. Cells were stained with 

green (marker for CB2 receptors) and red (marker for CD4+ T cells) stains (Figure 16A). These 

fluorescent markers demonstrated that CB2 receptors were expressed on Th2 cells. To confirm 

whether CB2 receptor expression on Th2 cells is blocked by an unlabeled CB2 agonist, cells were 

pre-incubated with the unlabeled agonist prior to the receptor staining. Figure 16B illustrates that 

the cold agonist effectively blocked CB2 receptors. This result suggests that CB2 receptor is 

expressed on Th2 cells and the expressed receptors on Th2 cells might be possible action site of 

CB2 agonist.   
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Figure 16. CB2 receptor binding by CD4+ T cells using NBD-labeled CB2 ligand  

CB2 receptor binding by CD4+ Th2 cells using NBD-labeled CB2 ligand by confocal microscopy 

(40x). (A) Th2 cells were stained with PE-conjugated anti-CD4 antibody (red) and the NBD-

labeled CB2-selective compound at 5 µM, on ice for 30 min (green), (B) cells were pre-incubated 

with un-labeled agonist. The stained cells were visualized by confocal microscopy (Petrov et al. 

2011). 
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3.3.2 Expression of CB2 receptor activated B and dendritic cells 

The expression of CB2 receptors on immune cells was examined by flow cytometric 

analysis. Mouse lung and spleen cells were collected. The collected cells were initially stimulated 

with LPS for B and DC activation. Then, cells were stained with NBD-labeled CB2 ligand. CB2 

receptors were highly expressed by activated lung B cells and DC (Figure 17, LMC).  

Additionally, spleen B cells and DC also expressed the receptors (Figure 17, Spleen). In order to 

determine whether our CB2 agonist specifically binds to the expressed receptors on the activated 

cells, the cold agonist was added prior to staining. The addition of the cold agonist effectively 

blocked CB2 expression by activated cells (Figure 17, LMC + cold ago). This result suggests that 

the activated immune cells express CB2 receptors, and the expressed receptors could be possible 

action site of CB2 agonist.  
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Figure 17. CB2 receptor expression by lung mononuclear cell (LMC) and splenic B cells and 

dendritic cell (DC) using NBD-labeled CB2 ligand.  Each column represents cell types lung 

mononuclear cells (LMC), lung mononuclear cells treated with the cold agonist (LMC + cold 

agonist) and spleen cells. FACS was performed to determine the expression of CB2 receptors on 

activated B cell (B220+) and DC (CD11c+) by LMC or Spleen. 
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CHAPTER 4 

DISCUSSION 

 

Cannabinoids are known for their psychoactive properties and have been used frequently 

for recreational and sometimes for therapeutic purposes. The effects of both synthetic and 

endogenous cannabinoids on the immune system have gained great interest in recent years 

because of their potential use as a new class of anti-inflammatory agents against a number of 

chronic immune inflammatory diseases. Currently, the therapeutic use of cannabis is gaining 

mainstream clinical and political acceptance. The main drawback for targeting cannabinoid 

compounds as potential therapeutic agents is the psychotropic effect primarily mediated by 

activation of CB1 receptors. However, there are a number of novel approaches that are being 

undertaken to circumvent this problem including development of selective CB2 agonists and 

peripherally restricted CB1/CB2 dual agonists. Currently, cannabinoids are used clinically for the 

treatment of chemotherapy-induced nausea and vomiting (anti-emetics) and to stimulate appetite.  

 

It has become increasingly evident that cannabinoids exert a major influence on the 

immune system. They modulate immune responses during inflammatory processes and their anti-

inflammatory effects have been studied in a number of diseases including rheumatoid arthritis, 

diabetes, and multiple sclerosis. Moreover, the endogenous cannabinoid AEA, by acting on CB2 

receptors, inhibited IL-12 and IL-23 production but enhanced production the anti-inflammatory 

cytokine IL-10 by microglial cells. In addition, the immunosuppressive activities of AEA have 

been attributed to inhibiting proliferative responses of human T cells and IL-17 production, which 
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is mediated via CB2 receptors. Generation of the peripheral cannabinoid receptor knockout mice 

(CB2 -/- mice) has led to important studies implicating the involvement of CB2 receptors in 

diverse events including immune cell function and development, autoimmune inflammation, 

allergic dermatitis, atherosclerosis, apoptosis and chemotaxis.  

 

The anti-inflammatory properties of cannabinoids, and CB2 ligands in particular, could 

provide the basis of a new therapeutic approach for allergic asthma. In this study, a CB2 agonist 

was designed specifically to bind to the CB2 but not the CB1 receptor. The main goal of this 

approach was to evaluate effect of CB2 agonist in a mouse model of asthma. In vivo experiments 

were performed to determine if the CB2 agonist attenuates airway inflammation. To complement 

this approach in vitro experiments were designed to elucidate possible mechanisms operative that 

may underlie the attenuation of airway inflammation. The therapeutic potential of CB2 agonist on 

airway inflammation was determined by comparing levels of inflammatory cells and both pro- 

and anti-inflammatory cytokines in treated and non-treated groups.  

 

The activation of antigen presenting cells (APCs) and antigen-specific CD4+ Th2 cells are 

an important initiating event in driving inflammatory responses in allergic asthma. Comparison 

was made between non-treated and CB2 treated groups. The numbers of APCs and CD4+ Th2 

cells in vehicle group is significantly induced. This induction is significantly inhibited by CB2 

agonist. CB2 agonist group showed a significant reduction in the number of OVA-specific CD4+ 

cells recruited to the lung, as well as a marked reduction in the number of CD11c+ClassII+ APCs 

(Figure 6). The reduction in APCs and antigen-specific Th2 cells suggests that CB2 agonist has 

capacity to inhibit early stage of allergic inflammation. 
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Infiltration of inflammatory cells into the airway is another key feature in airway 

inflammation. The total cell numbers could be a good indicator of ongoing inflammation. During 

airway inflammation, pro-inflammatory cytokines are secreted from Th2 cells (IL-2, IL-5 and IL-

13). The pro-inflammatory cytokines elicit the development and recruitment of inflammatory 

effector cells (basophils, eosinophils, macrophages, mast cells and neutrophils). Our primary 

interest was to assess whether the CB2 agonist suppressed the mucosal inflammation. To this end 

the inflammatory cells numbers present in the BAL were counted (eosinophils, lymphocytes, 

macrophages and neutrophils). In figure 7, the total numbers of eosinophils and lymphocytes in 

vehicle group are significantly induced. These induced inflammatory cells are effectively 

inhibited by CB2 agonist. This significant inhibition of inflammatory cells suggests that CB2 

agonist reduces inflammatory cell infiltration in airways. Consistent with figure 7, eosinophil 

peroxidase (EPO) level, a good indicator of eosinophil, CB2 treatment group exhibited a 

significantly lower level of EPO activity compared to non-treated group (Figure 8). Intrestingly, 

this reduction is observed in dose-dependent manner. The higher dose group (5mg/Kg) showed a 

more pronounced eosinophil suppression than lower dose group (1mg/Kg) (Figure 8). 

 

IL-10 is an anti-inflammatory cytokine with an important role in preventing inflammatory 

and autoimmune diseases. Findings from Borish study show that Th2 cells and the production of 

Th2 cytokines are downregulated by IL-10 (Borish 1999). Kosaka et al. also reported that the 

production of IL-4 and IL-13 and the resulting eosinophil count, in the BALF in OVA-specific 

eosinophilic airway inflammation model, are inhibited effectively by the administration of 

exogenous IL-10 (Kosaka 2011). To consider the anti-inflammatory function of IL-10 in allergic 

inflammation from previous studies, we determined whether the induction of IL-10 production is 
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involved in the attenuation by the CB2 agonist. Consistent with this possibility the level of IL-10 

was greatly increased in CB2 group compared to non-treated group (Figure 10).   

 

According to our in vivo experiments, CB2 treatment shows noticeable inhibition in 

infiltration of Th2 cells and secondary inflammatory cells (especially eosinophils) in airway. In 

addition, it was indicated that the agonist has capability of inducing production of anti-

inflammatory cytokine, IL-10.  

 

To elucidate how the CB2 agonist exerts an anti-inflammatory effect, in vitro experiments 

were performed. We addressed the possibility that the CB2 agonist attenuates airway 

inflammation by the following mechanisms: 

1.  Inhibiting Th2 and/or Th17 cytokines release 

2.  Promoting the production of IL-10 and/or expansion of IL-10 producing cells. 

3.  Elicit an increase in the number of Foxp3+ regulatory cells. 

4.  Promoting expression of arginase.  

Our experimental approaches enabled us to make the following conclusions. 

 

1.  Inhibiting Th2 and/or Th17 cytokines release: CD4+ Th2 cells play a crucial role in 

orchestrating inflammatory process in allergic airway inflammation.  In addition, Th17 cells have 

also been shown to contribute to the inflammatory process in asthma. In the first instance we 

examined whether the CB2 agonist down-regulates Th2 and/or Th17 cytokine production. Cells 

were isolated from mouse spleens, and the collected cells were activated and cultured in presence 

of different concentrations of the agonist. We measured the levels of IL-4 and IL-5 (Th2 
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cytokines) and IL-17 (Th17 cytokine) in the supernatants of cultured T cells. Our results show 

that IL-4, IL-5 and IL-17 were inhibited in the presence of the CB2 agonist (Figure 12, Figure 13). 

In the case of IL-4 and IL-5 a dose-dependent inhibition was not observed since different 

concentrations of CB2 agonist exhibited similar degrees of inhibition. However, in IL-17, dose-

dependent inhibition was observed.   

 

2.  Promoting the production of IL-10 and/or expansion of IL-10 producing cells: In vivo 

experiments, our CB2 agonist promoted the production of IL-10. Consistently, in vitro 

experiments, higher level of IL-10 was observed in cultures where CB2 the agonist had been 

added (Figure. 11).  

 

3.  Elicit an increase in the number of Foxp3+ regulatory cells: Foxp3 expressing T cells (Tregs) 

are known to suppress T cell responses and maintain immune homeostasis.  Foxp3 is a key 

transcription factor for Treg development. We investigated the possibility that the culture of T 

cells in the presence CB2 agonist may favor the selective expansion of Treg cells with the 

resultant depression in allergic inflammation. To address this we used the Foxp3-GFP mouse, 

which has been used to monitor nTreg responses since Foxp3 expression is a marker for Treg cell 

numbers. Our result showed no significant difference in Foxp3 expression between CB2 and non-

treated groups (Figure 14). This result implied that the CB2 agonist does not involve promote the 

development or induction of Treg cells.  

 

4.  Promoting expression of arginase: Hegde et al. demonstrated that activation of CB2 receptor 

by THC induces MDSC (Hegde et al. 2010). MDSC are a suppressor cell population, which have 
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been shown to suppress T cell proliferation and possess immunosuppressive properties 

(Kusmartsev et al. 2000). Induction of arginase activity is known as a major mechanism 

associated with immunosuppression by MDSC (Gabrilovich et al. 2009). In contrast, it is reported 

that insufficient L-arginine in airway is associated with asthma pathopysiology (Maarsingh et al. 

2008). Louis et al. suggests that Th2 cytokines induces arginase activity (Louis et al. 1999). Boer 

et al. shows that the administration of exogenous L-arginine alleviates allergen-induced 

hyperresponsiveness in guinea pig model (Boer et al. 1999). In asthmatic patients, arginase 

activity in serum was increased, whereas the bioavailability of L-arginine declined (Morris et al., 

2004). Based on these studies, we evaluated whether the agonist exerts its immune modulatory 

effects by promoting arginase activity. We found no significant difference in arginase activity 

between CB2 and non-treated group was observed (Figure 15) strongly suggesting the attenuation 

of the immune response is not associated with change in arginase activity and/or MDSC-mediated. 

 

Our in vitro findings reveal that CB2 agonist might exerts its anti-inflammatory effect via 

inhibiting Th2 (pro-inflammatory) and Th17 cytokines. Our data are supportive of the possibility 

that the CB2 agonist mediates this effect by inducing anti-inflammatory cytokine, IL-10, though 

we were not able to identify the cellular source of the IL-10. No change in arginase activity or 

number of Foxp3+ was observed making it unlikely MDSC or Treg cells play a role in CB2 - 

mediated effects. 

  

 To understand the mechanisms that underpin CB2 agonist mediated attenuation, it is 

crucial to determine cellular expression of CB2 receptors. CB2 receptors are known to be 

expressed by immune cells. In order examine the cellular expression of CB2 receptors we stained 
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Th2 cells, B cells and DC with a NBD-labeled CB2 ligand. We observed CB2 expression by Th2, 

B cells and DC (Figure 16A, 17). To confirm the specificity of any binding we monitored staining 

in the presence of an excess of un-labeled CB2 agonist. The un-labeled agonist effectively 

blocked the receptor binding (Figure 16B, 17). Unfortunately several cell types, which included 

Th2, B cells and DC specifically bound the NBD-labeled material. This makes it difficult to 

further delineate the point of action of CB2 agonist and raises the possibility it acts on several cell 

types.  
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

The main goal of this thesis was to examine and understand the effect of the CB2 agonist 

in allergic asthma using a mouse model of the disease. To summarize, our CB2 agonist, NMP7, 

was shown to attenuate allergen-induced airway inflammation. The hallmark of airway 

inflammation (infiltration of inflammatory cells Th2 cells, allergen-specific APC and eosinophils) 

was noticeably declined in the CB2 treatment group. We observed that the agonist inhibited the 

expression of the pro-inflammatory cytokines IL-4, IL-5 and IL-10. Conversely, we also noticed 

the CB2 agonist induced expression of the anti-inflammatory cytokine (IL-10). Foxp3+ Treg cell 

appeared not to play a role in the immune suppression mediated by CB2 agonists.  In addition, the 

agonist did not augment arginase activity suggesting the anti-inflammatory of this agent is not 

dependent on MDSC. We observed that CB2 receptors are expressed during the inflammatory 

response, however, the expression of the receptors was not limited to a specific immune cell type. 

This implies that the agonist may exert immunosuppression by acting on any of these cells. To 

conclude, the CB2 agonist was effective at inhibiting airway inflammation in allergic asthma 

model most likely by promoting IL-10 expression. Further studies are needed to expand our 

knowledge in important therapeutic value, particularly in allergic inflammation, of cannabinoid 

agonist. Our future study will elucidate more precise CB2 agonist mechanism, as well as 

addressing any possible side effects of CB2 agonist. We will need to examine whether IL-10 is 

involved in anti-inflammatory effect of CB2 agonist by using co-adminstration of a neutralizing 

antibody to IL-10 with CB2 agonist Furthermore, we need to do: 1) comparison between CB1 and 

CB2 receptor knockouts to examine if CB2 receptors are crucial for anti-inflammatory effect of 
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CB2 agonist, 2) evaluation on which cell type is crucial for CB2 mediated immune suppression, 

and 3) investigation on any undesirable side-effects. The elucidation of precise mechanism and 

side effects will suggest cannabinoids as effective asthma treatment, a cure for asthma. 
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