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A B S T R A C T

Embryonic diapause in the European roe deer includes a period of five months from August to December in
which embryonic development is extremely decelerated. Following exit from diapause, the embryo rapidly
elongates and subsequently implants. In diapausing carnivores and marsupials, resumption of embryonic growth
is regulated by ovarian steroid hormones. In the roe deer, the role of steroid hormones is not known to date. In
the present study, progesterone (P4), estradiol-17β (E2) and total estrogens (Etot) were determined in blood
plasma and endometrium of roe deer shot in the course of regular huntings between September and December.
Steroid hormone concentrations were correlated to the corresponding size of the embryo derived from ex vivo
uterine flushing and to the date of sampling. The mean plasma concentrations of P4 (5.4 ± 0.2 ng/ml,
mean ± SE, N=87), E2 (24.3 ± 2.6 pg/ml, N=86) and Etot (21.7 ± 2.6 pg/ml, N= 78) remained constant
over the sampling period and were not correlated to embryonic size. Likewise, endometrial concentrations of P4
(66.1 ± 6.5 ng/ml), E2 (284.0 ± 24.43 pg/ml) and, Etot (440.9 ± 24.43 pg/ml) showed no changes over time.
Therefore, it was concluded that ovarian steroid hormones do not play a determining role in resumption of
embryonic growth following the period of diapause in the roe deer.

1. Introduction

The european roe deer is a monoestric ruminant species [1]. During
the rut in mid-July to mid-August, females (does) ovulate and mating
takes place [2,3]. Ovulation results in the formation of one corpus lu-
teum (CL) or several corpora lutea, which secrete progesterone (P4) for
the following five months [4], irrespective of the pregnancy status [5].
These five months after the rut season correspond to the time period
where the roe deer embryo undergoes an obligate diapause [3]. In
mammals, the term diapause is defined as a temporary delay or arrest of
developmental of the embryo in the blastocyst stage. During that period
the embryo persists in the uterus in a reversible quiescent state that
lasts from days to almost a year. The reproductive feature of diapause is
widespread and occurs among multiple mammalian taxa [6,7]. Its
presence or absence in congenic species [8–10] however leaves its
evolutionary development unsettled [11,12]. Interestingly, the roe deer
is the only known artiodactyl exhibiting diapause. During the period of

diapause in roe deer, embryonic growth is greatly diminished, although
mitotic activity is still present at a very low level [13]. To allow fawns
to be born in May-June, a normal growth velocity is resumed in De-
cember/January, resulting in rapid embryo elongation, subsequent
implantation and epitheliochorial placentation [3].

Embryo elongation is a common feature within the order
Artiodactyla and occurs prior to implantation. While the development
to the blastocyst stage seems to be rather autonomous and is possible
under in vitro conditions, the development beyond including embryo
elongation is not. It is a critical step in development which to date can
only be achieved by support of an appropriate maternal environment.
In many artiodactyls, embryo elongation coincides with the embryos
capacity to prevent the maternal return to cyclicity. Continued luteal
progestin production is critical for the maintenance of a growth pro-
moting uterine environment receptive for embryonic signals. The local
effect of steroid hormones is hereby transmitted by differential steroid
receptor expression of the endometrium [14–16].
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Embryonic signaling and maternal recognition of pregnancy are
therefore both decisive for the prolongation of the luteal function in
order to interrupt cyclicity and to maintain a progestational en-
dometrial state [17].

The endometrial receptivity for embryo implantation is only given
within a short period of time. Historically, this “window of implanta-
tion” has been described as the receptive state of the endometrium. In a
temporally specific process, the endometrium is primed by exposure to
both estradiol-17β (E2) and progesterone of ovarian origin [18]. Ade-
quate remodeling of the uterus also seems to be at least partly depen-
dent on embryo-maternal interactions during the pre-implantation
period [19,20]. Hereby, also paracrine actions of the steroid hormones
derived from the embryo and/or endometrium as described in pigs are
responsible for the modification of the uterine epithelium [21], which
finally allow attachment [22].

In Suidae, the elongated embryo secrets estrogens as anti-luteolysin
[23–25]. In ruminants, the best-known anti-luteolytic signaling factor
of embryonic origin is interferon-τ (IFNτ). Both compounds are dis-
cussed to promote embryo proliferation in an auto-/paracrine manner.
The roe deer is the only ruminant where neither a luteotropic nor an
anti-luteolytic signal, such as IFNτ, is known to date [26]. By displaying
a monoestric behaviour, the embryo does not seem to be in need to
overcome luteal regression. However, the mechanisms governing em-
bryo growth and developmental velocity in roe deer remain unclear to
date.

In diapausing carnivores and marsupials, the growth arrest of the
blastocyst is mediated by a non-functional CL and a quiescent uterus
[6,27,28]. In both species, a luteotropic signal secreted by the embryo
during the time of embryo reactivation is not known to exist. However,
it is only after the stimulation of the luteostatic CL by GnRH through the
hypothalamic-pituitary-ovarian-axis upon changes in photoperiod or
the lack of lactational prolactin inhibition that P4 rises and embryonic
development continues. Thereupon, the carnivore and marsupial em-
bryos attach to the endometrium and implant [29–31].

It is well known that luteal P4, the most common gestagen in
mammals, elicits the secretory state of the endometrial glands leading
to a favourable intrauterine environment [32]. In the pig, conceptus
derived estrogens additionally induce the release of secretory vesicles of
the endometrial epithelium [33,34]. While a direct effect of P4 on bo-
vine embryo elongation in vitro could not be observed, elevated per-
ipheral P4 concentrations induced changes of the endometrium that, in
turn, accounted for the advancement of embryo elongation [35]. In
particular, steroid hormones changed the quality and quantity of
uterine secretions [36,37]. In marsupials, the resumption of luteal
function likewise causes endometrial alterations that alter the uterine
milieu and determine embryo reactivation [38,39].

As in other diapausing species, the resumption of embryonic growth
in the roe deer is associated with increased glandular secretions
[40,41]. Various studies have shown that plasma P4 remained elevated
throughout the period of diapause, where the embryo is in the blas-
tocyst stage and does not elongate [42,43]. Hoffman et al., 1978 [5]
collected monthly plasma samples from 8 pregnant and 3 non-pregnant
captive does over the course of one year. According to their observa-
tion, plasma P4 levels in pregnant does reached a first peak in August
and a second elevation between December and June as compared to
non-pregnant does. Total estrogen (Etot) in pregnant animals was lower
during August - December compared to January – June. Due to the
study design, the corresponding developmental stages and sizes of the
embryos were unknown and could not be taken into account to dis-
criminate the period around elongation and implantation. A rise in
plasma progesterone levels was likewise detected by Sempéré (1977)
[43] in captured does in the presumed period of embryo elongation and
placentation (January to February, n= 21 samples) compared to the
presumed period of diapause (October to December, n= 25 samples).
Unfortunately again, plasma samples were not attributed to embryonic
size. In contrast, Lambert et al. (2001) [44] analysed plasma P4

concentrations of hunted does where the corresponding embryos were
collected by uterine flushing. The plasma P4 levels of the does with
blastocysts (n= 15), expanded blastocysts (n= 3), elongated embryos
(n= 2) and implanted embryos (n=8) did not differ between devel-
opmental stages [44].

Aitken (1974, 1981) [45,46] associated embryo elongation with a
significant increase in plasma estrogen. This finding was supported by
Lambert et al. (2001) [44], who reported consistently low estradiol
concentrations throughout diapause and expansion, but increased le-
vels at elongation, which remained high at implantation. Although the
administration of estrogen to pregnant roe deer during diapause led to
an increased blastocyst diameter compared to control animals, it did
not lead to elongation [46].

Taken together from the results published so far, the contribution of
steroid hormones on embryonic growth, reactivation and elongation in
roe deer are inconclusive. Therefore, the aim of the present study was to
investigate the role of P4, E2 and Etot during the period of diapause and
reactivation both on the systemic and local endometrial tissue level.

2. Materials and methods

2.1. Sample collection

Samples were collected during regular, authorized huntings in
north-eastern Switzerland and southern Bavaria between 09/2016-01/
2017 and 09/2017-01/2018. The majority of huntings was scheduled in
November, when weather conditions and visibility of the prey are most
favourable for the hunters. In December and January, huntings are far
less frequent, accounting for the unequal sampling distribution (n=5
samples in September, n= 10 samples in October, n= 55 samples in
November, n= 30 samples in December, n= 2 samples in January).
Samples were collected from sexually mature females above the age of
14 months which exhibited corpora lutea. From a total of 102 female
roe deer, we were able to collect blood samples from 87 and en-
dometrial tissue samples from 33 does in the studied period covering
diapause and reactivation. After a hunt had ended, the shot does were
brought to the gathering place for evisceration by the hunters, and the
reproductive tracts of female roe deer were removed. The body con-
dition of the does was assessed by visual inspection and recorded. Blood
was directly retrieved from the heart by cutting through the cranial part
of the sternum. The blood was collected in sterile tubes containing
EDTA (Monovette, Sarstedt, Germany), and kept on ice until cen-
trifugation at 2000 g at 4 °C for 20minutes. The plasma was stored at
−20 °C until further analysis. In some cases, depending on the location
where the bullets had penetrated and the way the animals were evis-
cerated by the hunters, it was not possible to obtain good quality blood
because of stomach content and/or faeces contamination. These blood
samples were excluded for the hormone analysis.

Further sample preparation was performed on site in a mobile la-
boratory van. The reproductive tract was dissected from the mesome-
trium and the oviducts together with the ovaries were cut off. For the
determination of the number of CL and follicles, the ovaries were cut
open lengthwise. The number and size of the follicles on the ovarian
surface (> 0.8mm) which were macroscopically visible without mag-
nification was evaluated under a white light. For embryo collection, the
uterus was flushed with 2.5 ml of phosphate buffered saline solution
(PBS: pH=7.4; NaCl, Na2HPO42H2O, KH2PO4, KCl from Merck KGaA
and water from Milli-Q® Integral Water Purification System for
Ultrapure Water, Merck KGaA). The uterine flushing was immediately
evaluated under a stereo microscope (SteREO Discovery Microscope V8,
1:8 Zoom rate, Zeiss) and a photograph of each embryo was taken
(Camera Olympus SC50). For embryos in the blastocyst stage, the
maximal diameter was recorded, while for elongated embryos the
maximal length was measured.

After uterine flushing, the uterus was opened longitudinally and
endometrial tissue of the intercaruncular area was carefully collected
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(approximately 400mg per animal). Tissue samples were snap frozen in
liquid nitrogen and stored at −20 °C until further analysis.

2.2. Determination of steroid hormone concentrations in plasma samples

The hormones P4, E2 and Etot (as simultaneously determined
through an antibody cross-reacting to estradiol-17β, estradiol-17α and
estrone by 100%, 70%, and 100%, respectively) were determined in
plasma as described earlier by Prakash et al. [47] and Meyer et al. [48].
A competitive enzyme-linked immunosorbent assay (ELISA) was used
for the analysis of P4 (antibody as kind courtesy by Franz Weber, LMU
Munich, Oberschleissheim, Germany, and 4-pregnen-3,20-dione-3-O-
carboxymethyloxime horseradish peroxidase as tracer), E2 (antibody
E2/2 Pool 1 and 17 beta-estradiol-6-carboxymethyloxime horseradish
peroxidase as tracer) and Etot (antibody E2/3 POOL 1 and estradiol-17-
hemisuccinate horseradish peroxidase as tracer). The antibodies were
kindly provided by Physiology Weihenstephan, Technische Universität
München, Germany.

In brief, the steroid hormones were extracted from the plasma with
5ml tert. butylmethylether/ petrol ether (30/70) (AppliChem, Panraec,
ITW Companies), which was added to 500 μl plasma in an extraction
glass prior to analysis. The ELISA was performed in a 96-well microtiter
plate reader (Cytation 3 cell imaging multi-mode reader, BioTek). The
tracer and antibody dilution, limit of quantification, inter-assay and,
intra-assay variation of the different assays are given in Table 1.

2.3. Determination of steroid concentrations in endometrial tissue samples

For the analysis of steroid hormone tissue concentrations, approxi-
mately 100mg of intercaruncular endometrium was placed into a
plastic tube containing approximately 1000mg of ceramic beads
(MagNa Lyser Green Beads, Roche) and 500 μl of 0.9% sodium chloride
(NaCl; Merck KGaAl) solution. Subsequently, the mixture was homo-
genized in a MagNa Lyser (Roche) by shaking for 1min at 7000. Then,
each tube was incubated at 4 °C for at least 1 h. The content of each tube
was transferred into an extraction glass. P4 and Etot from the tissue
mixture were determined following the same protocol as described for
extracted plasma.

The E2 ELISA performed poor specifically regarding accuracy.
Therefore, endometrial E2 was quantified by radioimmunoassay (RIA).
Exemplary plasma samples were measures with RIA and ELISA and
showed a good correlation (R=0.86), while the ELISA overestimated
the quantity by 10-fold. However, the absolute concentrations were
comparable to those reported earlier, which were determined by the
same ELISA [5].

For RIA, the dried extracts were re-dissolved in PBS 0.1% bovine
serum albumin and subjected to radioimmunological determination
performed by a sequential assay [49] as previously described [50,51].
The antiserum used was directed against E2-6-carboximethyloxim
(CMO)–BSA exhibiting a cross-reactivity of 1.3% for estrone and<
0.01% for the non-phenolic steroids tested. Intra- and inter-assay CV
were 7.1 and 17.6%, respectively. The minimum detectable con-
centration was 25 pg/g tissue.

2.4. Statistics

The log-transformed data of the hormone concentrations were used
for statistical analyses using SAS 9.4 (SAS Institute, Inc.,Cary). The data
were subjected to least-square analysis of variance using the Mixed
Models procedure including the day of sampling as random factor to
determine effects of the day of the year and size of the embryo, re-
spectively. The results from SAS are presented as mean ± SE. Graphs
were plotted using GraphPad Prism 7.03 (GraphPad Software). A loess
regression was performed in RStudio (Version 1.1.456) with ggplot2.
The loess regression type allows local fitting with the weighted least
squares method. A confidence interval of 95% is indicated by a gray
band.

3. Results

3.1. Corpora lutea and embryos recovered

Cyclic does presented between one and three CL. The majority of
does (87.9%) had two CL, while only 4.0% and 8.1% presented one and
three CL, respectively. The number of embryos recovered from each doe
was sometimes smaller than the number of CL. We obtained zero to
three embryos from the uterine flushings per doe. Table 2 shows the
number of CL and the respective number of collected embryos. The
embryos recovered displayed different sizes (Fig. 1a) and develop-
mental stages, ranging from round shaped blastocysts (Supplementary
Fig. 1) to different stages of elongation (Supplementary Fig. 2). The
diameter of the blastocysts ranged from 0.15 to 4.28mm
(1.2 ± 0.73mm on average). The length of the elongated embryos
ranged from 5mm to several centimetres (25.1 ± 23.0 mm on
average).

3.2. Plasma and endometrial progesterone

The average plasma P4 concentration (n= 87) was 5.4 ± 0.2 ng/
ml and ranged between 1.9 and 12.1 ng/ml showing a high inter-in-
dividual variance. In the endometrial tissue, concentrations of P4
(n= 21) were around ten times higher than in plasma
(Mean=66,1 ng/g, ranging from 21.5 to 138.8 ng/g). There was no
relationship between either plasma or endometrial progesterone con-
centrations and embryonic size (Fig. 1a, b, c), day of sampling (Fig. 1a,
b, c), number of CL (Fig. 2a), number of embryos recovered (Fig. 3a) or
number of follicles (Fig. 4a, b).

Table 1
Enzyme and antibody dilution, limit of quantification, quality control and intra-assay variation of the different steroid hormones measured by ELISA.

Steroid Hormone Tracer dilution Antibody dilution Limit of quantification Inter-assay variation Intra-assay
variation

Progesterone 1:11 000 1:210 000 0.09 ng/ml 11 % 7 %
Estradiol-17β 1:30 000 1:350 000 15.9 pg/ml 13 % 13 %
Total estrogens 1:19 000 1:400 000 7.7 pg/ml 14 % 11 %

Table 2
Number of corpora lutea and percentage of the embryos recovered.

n° of corpora lutea
per doe

n° of does in relation to the respective n° of recovered
embryos

0 embryos 1 embryo 2 embryos 3 embryos

1 (n=4) 1 (25 %) 3 (75 %) - -
2 (n=87) 17 (20 %) 20 (23 %) 50 (57 %) -
3 (n=8) 3 (37.5%) - 3 (37.5 %) 2 (25%)
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3.3. Plasma and endometrial estradiol-17β

Plasma E2 concentrations (n= 86) showed a vast variability be-
tween animals and ranged from 4.3 pg/ml to 135.6 pg/ml with a mean
of 24.3 ± 2.6 pg/ml. The variability was also evident between samples
collected at the same day (Fig. 1d, e) and between samples corre-
sponding to similar embryonic sizes (Fig. 1c, d). Intercaruncular en-
dometrial E2 (n=21) was around ten-fold higher than plasma E2,

ranging from 118.6 to 483.7 pg/g. There was no correlation between
the concentration of plasma or endometrial E2 and the date of sampling
(Fig. 1d, e), embryo size (Fig. 1a, d, e), number of CL (Fig. 2b), number
of recovered embryos (Fig. 3b) or number of follicles (Fig. 4c, d).

3.4. Plasma and endometrial total estrogens

The Etot concentrations (n=78) presented a high variability

Fig. 1. Relation between a) date of sampling and size of the embryo and relation between date of sampling and corresponding steroid hormone concentrations: b)
plasma P4, c) endometrial P4, d) plasma E2, e) endometrial E2, f) plasma Etot, g) endometrial Etot.
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ranging from 5.0 pg/ ml to 137.1 pg/ml in plasma and a mean value of
21.7 ± 2.6 pg/ml. Numerically, concentrations of Etot in the en-
dometrium (n=22) were around 200 times higher than in plasma with
a mean value of 440.9 ± 39.29 pg/g. The concentration of plasma and
endometrial Etot was neither affected by date of sampling (Fig. 1 f, g),

nor by size of the embryo (compare Fig. 1a), nor by the number of CL
(Fig. 2c), nor by the number of recovered embryos (Fig. 3c), nor by the
number of follicles (Fig. 4e, f).

Fig. 2. Plasma concentration of a) P4, b) E2 and, c) Etot related to the number of
CL. Mean values are represented by lines. There was no significant effect of the
number of CL on any plasma steroid hormone (p> 0.05).

Fig. 3. Plasma concentration of a) P4, b) E2 and, c) Etot and the number of
embryos recovered. Mean values are represented by lines. There was no sig-
nificant effect of the number of embryos on plasma steroid hormone (p>
0.05).
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4. Number of follicles

The mean number of follicles per doe was 23.5 follicles (of n=32
does), where the lowest observed number was 3 and the maximum 51
follicles per ovary. The number of follicles decreased slightly over the
sampling period (Fig. 5), corresponding to increased embryonic size
(compare Fig. 1a). Nevertheless, no significant differences were found.

5. Discussion

We did not detect any difference in the concentrations of neither
plasma nor endometrial P4, E2 and Etot related to embryonic size. We
therefore conclude that the constant concentration of P4 during dia-
pause provides a milieu for the blastocyst that enables slow but con-
tinuous growth. Thereafter, the resumption of normal growth velocity,

Fig. 4. Steroid hormone concentration in plasma (a, c, e) and endometrial tissue (b, d, and f) related to the number of follicles on both ovaries. There was no
significant effect of the number of follicles on neither plasma nor endometrial steroid hormone concentration (p> 0.05).
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that is associated with a pronounced increase in embryo size, finally
resulting in embryo elongation, is independent from a lasting change in
either P4, E2 or Etot. Maternal support of escape from diapause in roe
deer, if necessary at all, is thus not directly driven by ovarian P4.

Likewise, we did not observe the sampling date affecting P4 con-
centrations, which renders a photoperiod driven P4 stimulation of
embryonic growth velocity via the hypothalamic-pituitary-ovarian-axis
unlikely. Our findings are therefore in contrast to the control of embryo
activation after diapause in mustelids and marsupials, which is regu-
lated by photoperiod-induced changes of luteal function [29–31]. In the
tammar wallaby [52,53], the mink [54] and the badger [55,56] the
period of diapause was shortened due to a change in photoperiod,
concomitant with a highly synchronized birth. Here, the diapausing
embryo is maintained in a milieu obviously not suitable for further
development. P4 acting on the endometrium is then able to term em-
bryonic growth arrest [57–62]. The assumption that photoperiod does
not drive embryonic growth velocity in roe deer is further supported by
the great variability of developmental stages encountered around the
presumed period of growth resumption at the time of winter solstice on
December 21 st. Our observations are in line with the preliminary
findings of Lincoln and Guinness (1972) [63]. The latter tested in an
experimental approach if the exposure to an artificial light regime that
mimicked shorter day length would reduce the period of diapause in
roe deer and result in birth prior to the physiological fawning season.
For that purpose, two does with observed mating were enclosed in a
lightproof shed at defined times each day, thereby progressively redu-
cing the exposure to natural light from beginning to the end of October.
Thereafter, increasing daylight length was generated by exposure to
artificial light until beginning of December. Of the two does, only one
proved to be pregnant and gave birth during the natural fawning season
mid of May, indicating that the period of reduced growth had not
shortened in response to the artificially advanced winter solstice [63].

In our study, the number of CL explained neither plasma nor en-
dometrial P4 concentrations. Thus, there may be a threshold P4 con-
centration, being around>1 ng/ml in plasma, for maintaining preg-
nancy.

We observed a high individual variation in plasma and endometrial
estrogen concentrations being most pronounced in samples

corresponding to smaller embryos. A local temporary rise of en-
dometrial estrogens might thus still underlay the present data.
Estrogens synthesized by luteal cells during the luteal phase [64] could
accumulate due to increased endometrial receptor expression and act
locally in the endometrium without being elevated in circulating
plasma. However, the number of CL explained neither plasma E2 nor
Etot. An endometrial increase in estrogens might also be attributed to
hormone synthesis or metabolism by the endometrium itself
[34,65–68]

The granulose cells of the follicles are the main source of estrogens
and are related to follicular wave patterns. In our study the number of
follicles did not explain plasma estrogens. The high variability in fol-
licle numbers and plasma E2 concentrations is in accordance with ob-
servations in other species [69,70]. In general, follicular dynamics are
not well investigated in other ruminants than in cattle, which exhibit
ovarian cycles throughout the year. During anestrus, the ovary exhibits
periodic follicular waves without emergence of an ovulatory follicle.
Limited data from seasonal breeders such as wapiti (Cervus elaphus),
sheep (Ovis aries) and camel (Camelus dromedaries) show that ovarian
follicular waves with emergence of a dominant follicle undergoing re-
gression occur during the non-breeding season [71–73]. In contrast, the
horse does not display follicular waves in the non-breeding season [74].
For the roe deer it is not known whether follicular waves occur during
the long anestrus period, and if so, how long follicular development
takes. From our data, we cannot conclude if the observed follicles stem
from the same follicular wave or from different waves, nor can we
determine the growth phase of the potential follicular wave. Most fol-
licles were present during the presence of a blastocyst stage embryo,
mainly corresponding to the sampling period between November and
December. During this time, the ovaries exhibited more follicles than
later in the season. Follicular development to a certain stage seems to be
independent from a central, seasonal photoperiodic or nutritional clue
and can therefore be generally observed throughout the season [75]. On
the other hand, short days might inhibit follicular development to some
extent, which would explain the lower follicle number we observed
later in the season in roe deer. Further in depth studies are needed to
clarify the role of the resting follicles outside of the season. Since all
does in our study exhibited a very good body condition throughout the
sampling period, these interindividual differences are more likely to be
attributed to either individual differences in hormone synthesis or dif-
ferent stages of follicular development at the day of sampling than to
maternal nutritional status.

We observed 10- to 20-fold higher steroid concentrations in the
reproductive tissues than in the plasma. Similar observations have been
reported in cattle [76] and sheep [77] and can probably be attributed to
different matrix properties. In addition to a the local presence of steroid
hormone receptors, the direct blood supply by the ovarian vein and the
uterine artery could greatly increase the concentration of circulating
ovarian steroid hormones in the reproductive tract [78,79].

6. Conclusions

In summary, the results obtained from the endometrial as well as
from the plasma analyses do not show any indication that changes in
ovarian steroid hormones trigger embryonic reactivation and thus the
termination of diapause in the roe deer. Further investigations are ne-
cessary to explore the factors controlling the end of the diapause and
their sources.
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Fig. 5. Number of follicles over the sampling period corresponding to the time
of diapause and elongation. There was no significant effect of neither the date
of sampling nor the developmental stage on the number of follicles (p> 0.05).
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