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L-Glutamate is the major excitatory neurotransmitter in the mammalian CNS that can 
mechanistically contribute to either neuronal signaling or neuronal pathology.  
Consequently, its concentration in the CNS must be carefully regulated, a critical need 
that is met by the excitatory amino acid transporters (EAATs). The presence of at least 
five isoforms of EAATs raises interesting questions as to potential structural and 
functional differences among the subtypes. We have investigated possible differences in 
the ligand binding domains of the EAATs through the development of computationally 
based pharmacophore models. An EAAT2-specific model was created with four potent 
and selective ligands that act as non-substrate inhibitors: cis-5-methyl-L-trans-2,3-
pyrrolidine dicarboxylate, L-anti-endo-3,4-methano-pyrrolidine-3,4-dicarboxylate (L-
anti-endo-3,4-MPDC), (2S,3R,4S)-2-(carboxy-cyclopropyl) glycine (L-CCG-IV) and L-
β-threo-benzyloxy-aspartate (L-β-TBOA). This model predicts distinct regions that might 
influence the potency and selectivity of EAAT2 ligands, including: 1) a highly conserved 
positioning of the two carboxylate and the amino groups, 2) a nearby region that can 
accommodate selective modifications (e.g., cyclopropyl ring, CH3 groups, and O atoms), 
and 3) a region occupied by the benzyl ring of L-β-TBOA. This model was also used in 
conjunction with L-β−threo-benzyl aspartate (L-β-TBA), a recently characterized 
preferential inhibitor of EAAT3, to identify possible differences between EAAT2 and 
EAAT3. 
Functional studies on the EAATs also led to the identification of a putative modulatory 
mechanism that is specific for EAAT1.  Thus, a series of sulfated neuroactive steroids, 
including pregnenolone sulfate (PREGS), were found to selectively increase the ability of 
EAAT1 to transport atypical substrates like D-aspartate and L-cysteine, but not L-
glutamate. The effect was rapid, reversible, limited to a select group of sulfated steroids, 
and not observed with either EAAT2 or EAAT3.  Interestingly, the action of PREGS 
could be blocked by the simultaneous addition of arachidonic acid, a previously 
recognized inhibitory modulator of EAAT1.  The fact that this observed change in 
activity was produced by neurosteroids raises questions not only related to the regulatory 
mechanisms itself, but also to the possible role of neurosteroid in modulating glutamate 
transport.   
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Chapter 1: Background and Significance: 

The amino acid L-glutamate was first shown to excite spinal neurons in 1959 (Curtis et 

al., 1959). Since that time it has been shown to act in all the regions of the brain and is 

now accepted as the major excitatory amino acid neurotransmitter in mammalian CNS. 

Through activation of various ionotropic and metabotropic receptors in the CNS 

(Monaghan et al., 1989; Nakanishi et al., 1998; Cotman et al., 1987; Wollmuth and 

Sobolevsky, 2004), L-glutamate participates in most aspects of normal brain function 

including fast synaptic transmission, cognition, memory and learning (Fonnum, 1984; 

Collingridge and Lester, 1989; Hollmann and Heinemann, 1994; Mayer and Armstrong, 

2004). 

 

The concentration of L-glutamate in the brain is estimated to be 5-15 mmol per kg weight 

depending on the region (Schousboe, 1981; Krnjevic, 1970). However, the highest 

concentrations are found inside nerve terminals (~ 10 mM) (Ottersen et al., 1992; 

Ottersen et al., 1996) and the estimates of the concentration of glutamate in synaptic 

vesicles range from 60-210mM  (Nicholls and Attwell, 1990; Burger et al., 1989; Riveros 

et al., 1986). The concentrations in extracellular fluid and in the cerebrospinal fluid are 

typically reported to be between 3 and 10 µM (Hamberger and Nystrom, 1984; Lehmann 

et al., 1983). This means that the concentration gradient of glutamate across the plasma 

membranes is at least several thousand-fold (Storm-Mathisen et al., 1983; Ottersen et al., 

1992; Ottersen et al., 1996). Moreover, low micromolar concentrations of glutamate have 

the ability to activate both ionotropic receptors (Patneau and Mayer, 1990; Curras and 

Dingledine, 1992) and metabotropic receptors (Schoepp et al., 1999). The average 
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concentration of glutamate attained in the cleft following synaptic release has been 

estimated to be about 3mM (Clements, 1996; Diamond and Jahr, 1997; Harris and Sultan, 

1995) which is enough to saturate and activate postsynaptic receptors at hippocampal 

synapses (Clements et al., 1992). Excessive activation of glutamate receptors can be 

neurotoxic, a phenomenon termed excitotoxicity (Olney, 1990),  (Choi and Rothman, 

1990; Choi, 1992; Meldrum, 1993; Doble, 1999). Disruptions in glutamate homeostasis 

have been implicated in various pathologic conditions, including: epilepsy, ALS, 

dementia, ischemia, brain and spinal cord injuries and hypoglycemia (Doble, 1999). 

Given both the excitatory and excitotoxic properties of L-glutamate, it is not surprising 

that its concentration within the CNS must be carefully regulated. This activity is 

ascribed to glutamate transporters found on both the neurons and glia (Gegelashvili and 

Schousboe, 1997; Kanai and Hediger, 2003).  

 

Although glutamate is present in all cells, its release through exocytosis requires active 

transport into secretory vesicles. Three subtypes of vesicular glutamate transporters 

(VGLUTs) have been identified that concentrate glutamate into neurosecretory vesicles 

for regulated release. VGLUTs belong to SLC17A group (Reimer and Edwards, 2004) 

and includes VGLUT1 (SLC17A6), VGLUT2 (SLC17A7) and VGLUT3 (SLC17A8) 

(Bellocchio et al., 2000; Takamori et al., 2002;  Takamori et al., 2000;  Takamori et al., 

2001; Aihara et al., 2000; Fremeau et al., 2001; Kaneko and Fujiyama, 2002). These 

transmembrane proteins are thought to have 6-12 predicted transmembrane domains. 

VGLUT activity is coupled to the proton electrochemical gradient (∆µH+) generated by a 

vacuolar type H+-ATPase (Moriyama et al., 1992; Bellocchio et al., 2000; Forgac, 2000). 
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VGLUTs transport glutamate with an affinity (Km ~ 1mM) that is 100- to 1000-fold 

lower than that of the high affinity glutamate transporters present on the plasma 

membrane. Additionally, in contrast to the plasma membrane glutamate uptake, these 

vesicular counterparts do not transport aspartate. Vesicular transporters have a biphasic 

dependence on Cl-, such that low concentrations activate uptake while high 

concentrations are inhibitory (Reimer et al., 2001; Shigeri et al., 2004). 

 

Glutamate Receptors: 

Glutamate receptors can be broadly divided into two major classes, ionotropic and 

metabotropic. The ionotropic receptors (iGluRs), also called ligand-gated ion channels 

(LGIC), are intrinsic transmembrane ion channels that open in response to the binding of 

a chemical messenger (in this case, glutamate). They are responsible for rapid signaling 

and produce relatively large conductance changes. On the other hand, the metabotropic 

glutamate receptors (mGluRs) belong to G protein-coupled receptor (GPCR) family as 

their signal is produced via guanine nucleotide-binding protein (or G-protein) linked to 

second messenger systems. 

 

Ionotropic Glutamate Receptors: Three major subtypes of ionotropic glutamate 

receptors have been identified and named after the selective agonists that were used to 

pharmacologically distinguish them from one another (Monaghan et al., 1987; 

Collingridge et al., 1989). They include NMDA (N-methyl-D-aspartate), AMPA (α-

amino-3-hydroxy-5-methylisoxazole-4-propionic acid) and KA (kainate), receptors. The 

binding of glutamate to the ionotropic receptors produces an excitatory postsynaptic 
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potential as a consequence of the opening of glutamate-gated ion channels permeable to 

both Na+ and K+ (Nicholls and Attwell, 1990),  (Hosli et al., 1976). NMDA receptors are 

selectively blocked by the drug APV (2-amino-5-phosphonovaleric acid). The AMPA 

and kainate receptors are not affected by APV, but both are blocked by the 

dihydroquinoxaline derivatives like 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 

6,7-dinitroquinoxaline-2,3-dione (DNQX) (Kew and Kemp, 2005). Thus, the AMPA and 

kainate receptors have historically been referred to as non-NMDA receptors.  

The ionotropic glutamate receptors are complexes of four subunits. Each subunit has a 

ligand-binding domain and possesses four membrane-associated segments (3 

transmembrane and 1 reentrant loop). The channel-lining TM2 segment forms a loop and 

reexits into the cytoplasm (Wo and Oswald, 1995),  (Wood et al., 1995). 

  

NMDA receptor: NMDA-type channels open and close relatively slowly in response to 

glutamate and thereby contribute to the late phase of the EPSP (Hestrin et al., 1990). The 

NMDA receptor contains a cation channel that is permeable to Na+, Ca2+ and K+ (Hosli et 

al., 1976;  Dingledine et al., 1999;  Mayer and Armstrong, 2004). In particular, the Ca2+-

premeability for NMDA receptors appears to be much higher than that of non-NMDA 

glutamate receptor subtypes (McBain and Mayer, 1994) and other cation-selective 

receptors (Rogers and Dani, 1995).   

 

NMDA receptor channels are obligate heterotetramers requiring NR1 and NR2 subunits 

to form functional channels. NR3 might also form functional channels with NR1, but it 

most commonly co-assembles with NR1 and NR2 to form complexes with unique 
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properties and NR3 subunit substitutes for one of the NR2 subunits. At least eight splice 

variants have been identified for the NMDAR1 subunit and these variants produce 

differences in the properties of the expressed receptor (Hollmann and Heinemann, 1994). 

Four other members of the NMDA receptor family have been cloned (NMDAR2A-2D) 

and their deduced primary structures are highly related. These four NMDA receptor 

subunits do not form channels when expressed singly or in combination unless they are 

co expressed with NMDAR1. Apparently, NMDAR1 contributes to the formation of an 

essential functional pore by which activation of NMDA occurs, while NMDAR2 

receptors 2A-2D play important roles in modulating the receptor activity when mixed as 

heteromeric forms with NMDAR1 (Dingledine et al., 1999). 

 

Various pharmacologically distinct sites that alter the activity of NMDA receptors have 

been characterized. These include: 

1) a glutamate binding site that promotes the opening of a high-conductance 

channel that permits entry of Na+ and Ca2+ into target cells (Dingledine et al., 

1999; Mayer and Armstrong, 2004; Hosli et al., 1976). 

2) a strychnine-insensitive glycine-modulatory site. Activation of NMDA 

receptor channels requires binding of both L-glutamate and the co-agonist 

glycine. (Kleckner and Dingledine, 1988; Johnson and Ascher, 1987). 

Stoichiometrically, two molecules of NMDA and two molecules of glycine 

must bind to the NMDA receptor for activation of ion channel gating in in 

vitro, mouse hippocampal neurons (Benveniste and Mayer, 1991). Whereas, 

glycine appears to bind at distinct regions of the NR1 subunit, glutamate 
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binding resides in the homologous region of the NR2A and 2B subunits. Thus, 

agonist and coagonist binding sites are located on corresponding regions of 

distinct subunits of NMDA receptor channels. The crystal structure of the 

NMDA ligand-binding core of NR2A bound to glutamate and that of the 

NR1-NR2A heterodimer bound to glycine and glutamate confirms that these 

receptors are heteromeric ion channels that for activation require binding of 

glycine and glutamate to the NR1 and NR2 subunits respectively (Furukawa 

et al., 2005). 

3) use-dependent PCP (phencyclidine) site (also binds MK801, ketamine) which 

act most effectively when the receptor is activated (Lerma et al., 1991; 

MacDonald et al., 1991).  

4) voltage-dependent Mg2+-binding site. The opening of NMDA receptor 

channel depends on membrane voltage as well as transmitter (Nowak et al., 

1984; Mayer et al., 1984). 

5) an inhibitory Zn2+ site produces voltage-independent block (Christine and 

Choi, 1990; Legendre and Westbrook, 1990).  

6) polyamine-regulatory site whose activation by spermine and spermidine 

facilitates NMDA receptor-mediated transmission (Rock and MacDonald, 

1992). 

 

The significance of NMDA receptor is evident from its involvement in a wide range of 

neurophysiological and pathological processes such as memory acquisition, 

developmental plasticity, epilepsy and the neurotoxic effects of brain ischemia. Normal 
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levels of NMDA receptor activity are needed to promote survival and render neurons 

resistant to subsequent trauma (Hardingham and Bading, 2003). Excessive activation of 

NMDA receptors can lead to excitotoxic trauma and subsequently, neuronal death. The 

mechanism of cell death (apoptosis versus necrosis) is believed to depend on the severity 

of the insult. Rapid, necrotic cell death occurs after acutely excessive NMDA receptor 

activation. Slower apoptotic cell death occurs after a milder (although ultimately toxic) 

episode of NMDA receptor activation (Hardingham and Bading, 2003).  

 

AMPA receptor: AMPA receptors are composed of four members (GluR1-4) that are 

products of separate genes. Like NMDAR, AMPAR is a tetramer of independent subunits 

(Rosenmund et al., 1998). Four glutamate molecules bind to activate these receptors 

(Rosenmund et al., 1998; Wollmuth and Sobolevsky, 2004). The AMPA receptor 

subunits can form either functional homomeric or heteromeric channels. The GluR2 

subunit plays a critical role in determination of the permeability of heteromeric receptors 

to Ca2+. Thus, AMPA receptors that do not contain GluR2 are Ca2+ permeable (Hollmann 

and Heinemann, 1994; Washburn et al., 1997). AMPA and quisqualate are preferred 

agonists whereas 2,3-dihydro-6-nitro-7-sulfamoylbenzo quinoxaline (NBQX) (Kew and 

Kemp, 2005) and 2,3-benzodiazepine derivatives (e.g., GYKI-52466) (Bleakman et al., 

1996; Rogawski, 1993) appear to be selective antagonists at AMPA receptors. 

 

Kainate Receptors: Kainate receptors are composed of two related subunit families, 

GluR5-7 and KA1 and 2. KA1 and 2 combine in heteromeric assemblies with members 

of the GluR5-7 subfamily to form functional receptors. The KA1 and KA2 homomeric 
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complexes have been shown to be non-functional. However, GluR5, 6 and 7 subunits can 

form functional homomeric receptors. Kainate receptor forms a tetrameric complex and is 

activated following the binding of four glutamate molecules (Rosenmund et al., 1998; 

Wollmuth and Sobolevsky, 2004). With its nearly ubiquitous expression in the brain, the 

KA2 subunit is likely a constituent of most neuronal kainate receptors (Swanson et al., 

2002). Domoate and kainate are preferred agonists for these receptors. Topiramate, an 

anticonvulsant drug, has been shown to reduce seizures induced by kainic acid but not by 

AMPA (Perucca, 1997; Conti et al., 2002).  

 

Metabotropic Glutamate Receptors: 

The metabotropic glutamate receptors can be selectively activated by trans-(1S, 3R)-1-

amino-1,3-cyclopentane dicarboxylic acid (ACPD). The action of glutamate on the 

ionotropic receptors is always excitatory, while activation of the metabotropic receptors 

can produce either excitation or inhibition. The widespread distribution of metabotropic 

receptors in the CNS coupled with the prevalence of glutamate as a neurotransmitter 

indicates that this system is a major modulator of second messengers in the mammalian 

CNS (Kew and Kemp, 2005). 

 

The mGlu receptors are divided into three major groups on the basis of sequence 

homology, pharmacological profile, and second messenger coupling (Schoepp et al., 

1999),(Kew and Kemp, 2005). Molecular cloning studies have revealed the existence of 

at least eight different subtypes of mGluR, mGluR1-mGluR8, which have a common 
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structure of a large extracellular domain preceded by the seven-membrane spanning 

domains. 

 

Group I (mGluR1 and mGluR5) is coupled to stimulation of phosphotidylinositol 

hydrolysis/ Ca2+ signal transduction. Group II (mGluR2 and mGluR3) is negatively 

coupled through adenylyl cyclase to cyclic adenosine monophosphate formation. Group 

III (mGluR4, mGluR6-8) is also negatively linked to adenylyl cyclase activity but shows 

a different agonist preference from that of mGluR2 and 3. L-AP-4 (L-2-amino-4-

phosphonobutyrate) is a potent agonist of mGluR4, 6, 7 and 8 but has little effect on other 

receptor subtypes. These receptors are shown to be involved in physiological and 

pathological conditions such as synaptic plasticity (Endoh, 2004; Bonsi et al., 2005), 

neurotoxicity and neuroprotection (Baskys et al., 2005), and drug addiction (Robbe et al., 

2002). 

 

Glutamate Transporters: 

The excitatory signal is terminated by the high-affinity uptake of glutamate from the 

synapse by the glutamate transporters present in both astrocytes and neurons. In 

astrocytes, glutamate is taken up from the extracellular fluid and converted to glutamine 

by astrocyte-specific enzyme glutamine synthetase (GS) (Martinez-Hernandez et al., 

1977). Glutamine has been reported to be critical for the maintenance of a normal level of 

glutamate in nerve terminals (Laake et al., 1995). Glutamine is released in the 

extracellular fluid, taken up by neurons and reconverted to glutamate by the phosphate-

dependent mitochondrial enzyme glutaminase (Hertz et al., 1999; Magistretti et al., 1999; 
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Broer and Brookes, 2001; Kvamme et al., 2001). This metabolic pathway is referred to as 

‘glutamate-glutamine cycle’. 

 

Glutamate Transporter Family: High-affinity sodium dependent glutamate transporters 

belong to the solute carrier family 1 (SLC1) that includes five eukaryotic glutamate 

transporters and two eukaryotic neutral amino acid uptake systems (Kanai and Hediger, 

2003; Danbolt, 2001; Slotboom et al., 1999). The glutamate transporters contain between 

500 – 600 amino acid residues (~65 kDa). 

 

The neurotransmitter transporters are all ion-coupled carriers that mediate the 

accumulation of the neurotransmitter substrate using the movement of one or more ions 

down their concentration gradients. While these transporters are not directly coupled to 

the hydrolysis of ATP, they are indirectly coupled through the ion gradients generated by 

ion-pumping ATPases (Glynn and Karlish, 1975; Lingrel and Kuntzweiler, 1994). Thus, 

the plasma membrane transporters are indirectly driven by the Na+/K+ ATPase (Broer, 

2002; Palacin et al., 1998) that generates gradients of Na+ (out > in) and K+ (in > out) and 

in the process creates a membrane potential (∆ψ, inside negative).  

 

Initially, three glutamate transporters were identified by molecular cloning in 1992 in 

different laboratories at almost the same time. The L-glutamate/ L-aspartate transporter 

(GLAST) was isolated from the rat brain cDNA library (Storck et al., 1992). In situ 

hybridization revealed a high-density of GLAST mRNA in the Purkinje cell layer of 

cerebellum and less dense distribution throughout the cerebrum (Storck et al., 1992). 
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Glutamate transporter (GLT-1) was isolated from rat brain (Pines G, 1992). More 

recently, pharmacologically indistinguishable splice variants of GLT-1, referred to, as 

GLT-1b and GLT-1c have been isolated from rat forebrain and retina respectively (Chen 

et al., 2002; Rauen et al., 2004). EAAC1 was isolated from rabbit intestine using an 

expression cloning approach (Kanai, 1992). Subsequently, utilizing molecular cloning 

and functional expression, three homologous glutamate transporters, EAAT1 (GLAST / 

SLC1A3), EAAT3 (GLT-1 / SLC1A2) and EAAT3 (EAAC1 / SLC1A1), were isolated 

from human motor cortex (Arriza et al., 1994). Later, EAAT4 (SLC1A6) was isolated 

from the cerebellum and showed 65%, 41% and 48% amino-acid identity to the human 

glutamate transporters EAAT1, 2 and 3 respectively (Fairman, 1995). Screening a human 

retinal cDNA library has lead to the identification of EAAT5 (SLC1A7) (Arriza et al., 

1997). Additionally, the human counterparts of GLT-1b and GLT-1c have also been 

identified from human brain and retina respectively (Lauriat et al., 2007; Rauen et al., 

2004). The different EAAT subtypes exhibit 44-55% amino acid sequence identity with 

each other (Kanai and MA, 2003). For the purpose of clarity the EAAT nomenclature 

will be used throughout this dissertation. 

 

Among the five glutamate transporter subtypes, EAAT2 (GLT-1) has been shown to be 

the major transporter and is responsible for over 90% of glutamate uptake in the rat 

forebrain (Haugeto et al., 1996; Tanaka et al., 1997).  

 

EAAT Localization: EAAT2 (GLT-1) and EAAT1 (GLAST) are considered to be 

primarily localized to astroglia. The EAAT2 (GLT-1) protein has been found in 
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astrocytes in the normal adult rat brain and spinal cord (Rothstein et al., 1994; Chaudhry 

et al., 1995;  Lehre et al., 1995;  Ullensvang et al., 1997;  Berger and Hediger, 2000). 

Also, there are reports suggesting the expression of EAAT2 (GLT-1) in hippocampal 

neurons (Chen et al., 2004). While EAAT2 (GLT-1) is abundant in forebrain, particularly 

in hippocampus, lateral septum, cerebral cortex and striatum (Danbolt et al., 1992;  

Haugeto et al., 1996;  Tanaka et al., 1997), relatively lower levels are expressed in the 

cerebellum (Lehre et al., 1995). Using RT-PCR and northern blotting, EAAT2b (GLT1b) 

was shown to be expressed in various regions of the rat and human brain, including: 

amygdala, hippocampus, nucleus accumbens and prefrontal cortex (Lauriat et al., 2007). 

The third isoform, EAAT2c (GLT1c) and its human counterpart were found to be mostly 

expressed in retina (Rauen et al., 2004). 

 

EAAT1 (GLAST) is considered the major glutamate transporter in the cerebellum (Lehre 

and Danbolt, 1998), the inner ear (Furness and Lehre, 1997), the circumventricular 

organs (Berger and Hediger, 2000), and in the retina (Rauen, 2000). EAAT1 is most 

abundant in Bergmann glia in the brain cerebellar molecular layer, but is also present in 

the cortex, hippocampus and deep cerebellar nuclei. EAAT1 is expressed throughout the 

CNS, but in different amounts in different regions. EAAT1 is expressed primarily in 

astroglial cells (Rothstein et al., 1995; Chaudhry et al., 1995; Lehre et al., 1995; Schmitt 

et al., 1997).  EAAT1 (GLAST) and EAAT2 (GLT-1) have been shown to be expressed 

by the same astrocytes (Lehre et al., 1995; Haugeto et al., 1996) but in different 

proportions throughout the brain (Lehre et al., 1995) and coexist in the same astroglial 

cell membranes as separate homo-oligomeric complexes (Haugeto et al., 1996). 
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However, GLT and GLAST have also been observed in morphologically distinct 

astrocytes in primary hippocampal cultures (Perego et al., 2000).  

 

EAAT3 (EAAC1) is mostly expressed in neurons, such as large pyramidal cortical 

neurons and Purkinje cells, but does not appear to be necessarily selective for 

glutamatergic neurons. It is highly enriched in the cortex, hippocampus and caudate-

putamen and is confined to pre- and postsynaptic elements (Kanai, 1992; Rothstein et al., 

1994; Conti et al., 1998; Kugler and Schmitt, 1999). However, some astroglial expression 

has been reported (Conti et al., 1998; Kugler and Schmitt, 1999). 

 

EAAT4 is most abundant in the Purkinje cells of the cerebellar molecular layer in adult 

CNS of the rat (Nagao et al., 1997; Dehnes et al., 1998) and human (Fairman, 1995; 

Furuta et al., 1997; Bar-Peled et al., 1997; Otis and Jahr, 1998).  

 

While EAAT5 shows strong signal in retina, its expression in the brain has not been 

detected (Arriza et al., 1997; Eliasof et al., 1998a; Eliasof et al., 1998b).  

 

Stoichiometry: Glutamate transport across the plasma membrane is coupled with the 

movement of the inorganic ions, thus, utilizing the free energy stored in their 

electrochemical gradients. Three sodium  (Na+) ions and a proton are co-transported with 

each molecule of glutamate while one potassium (K+) ion is counter-transported for 

EAAT3 (Zerangue and Kavanaugh, 1996a), EAAT2 (Levy et al., 1998) and EAAT1 

(Owe et al., 2006). Thus, the thermodynamic estimates from these studies indicate that 
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EAATs could lower extracellular glutamate to a low nanomolar range (Zerangue and 

Kavanaugh, 1996a; Levy et al., 1998; Owe et al., 2006). The transporter also produces a 

chloride current that is activated by glutamate, but is not stoichiometrically coupled to 

glutamate transport. This anion flux follows its own transmembrane electrochemical 

potential gradient (Fairman, 1995; Wadiche et al., 1995; Eliasof and Jahr, 1996; Billups 

et al., 1996). The importance of the anion channel is beginning to be recognized and 

EAAT5 has been shown to exhibit autoreceptor properties caused by hyperpolarization 

by chloride ions in the retinal bipolar cells (Veruki et al., 2006). 

 

Mechanisms and Structure: Uptake through the EAATs is thought to proceed through 

an “alternate-access” mechanism (Jardetzky, 1966; DeFelice, 2004; Yernool et al., 2004; 

Boudker et al., 2007; Koch and Larsson, 2005). The binding of extracellular glutamate 

and required Na+ ions causes conformational change that exposes the substrate and ions 

to intracellular milieu where they are released. Subsequently, binding of intracellular K+ 

ion reverts the transporter back to extracellularly open state.  Accordingly, binding-sites 

for glutamate and ions alternately face extracellular or cytoplasmic compartments. Within 

this framework, coupling results from conformational changes induced by substrate and 

ions binding (Grunewald et al., 1998; Grunewald and Kanner, 2000; Slotboom et al., 

1999; Slotboom et al., 2001; Zarbiv et al., 1998; Seal and Amara, 1998; Seal et al., 2000). 

However, a clear distinction between the “rocker-switch” model (Abramson et al., 2003; 

Huang et al., 2003) and  “two-gated” channel model (Lester et al., 1996; Lester et al., 

1994; Cao et al., 1998; Larsson et al., 2004) has yet to be resolved. Based upon the 

cysteine-scanning accessibility studies of mammalian glutamate transporters as well as 
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from the 3.5Å crystal structure of archeael EAAT homologue GLTPH, it appears that 

these transporters possess eight transmembrane domains along with two oppositely 

oriented reentrant hairpin loops (HP1 and HP2) (Grunewald and Kanner, 2000; Yernool 

et al., 2004; Seal et al., 2000). Earlier suggestions that the binding of substrate and 

required Na+ ions causes conformational changes in glutamate transporters to result in 

transport of the substrate (Brocke et al., 2002; Slotboom et al., 1999) was reinforced by 

the recently available crystal structure (Boudker et al., 2007). The suggestion by Boudker 

et al.,  that the extracellularly accessible HP2 loop forms the extracellular gate is 

compelling. This model suggests that the binding of the substrate and Na+ ions leads to 

closing of HP2 loop and subsequent transport, while binding of non substrate like L-β-

TBOA prevents HP2 from closing and locks the transporter in an “open” state. 

 

EAAT glutamate transporters assemble as homotrimeric complexes (Koch and Larsson, 

2005; Gendreau et al., 2004; Yernool et al., 2004; Boudker et al., 2007; Haugeto et al., 

1996). Despite the multimeric nature of the complex, the subunits seem to act 

independently (Koch and Larsson, 2005; Koch et al., 2007; Leary et al., 2007; Grewer 

and Rauen, 2005). However, some results suggest that glutamate carriers may interact 

cooperatively during anion channel activation (Torres-Salazar and Fahlke, 2006). The 

significance of the multimeric nature of glutamate transporters is still unclear. It is likely 

that this assembly is important for the cell-surface expression of functional transporters. 

It has also been suggested that the hydrophilic surface of the bowl formed by the 

assembly of the subunits may aid in the transport of charged solute (Kavanaugh, 2004). 
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EAAT Pharmacology: The presence of five glutamate transporters raises an obvious 

question as to what specific physiological role each might play in defining the proper 

functioning of the brain. An especially fruitful strategy to establish the roles of different 

protein targets has been to pharmacologically block the corresponding proteins using 

selective inhibitors and analyze the resulting effects. This approach is dependent upon the 

development of subtype-selective inhibitors and substrate; which in turn, rely on a 

thorough understanding of the structure-activity relationships (SAR) that govern binding 

and uptake by the various EAATs. With this concept in mind, we have generated an 

EAAT2 binding site-specific pharmacophore model exploiting the various features of the 

diverse and relatively specific EAAT2 inhibitor profiles.  

 

Along with L-glutamate, numerous ligands have been identified as potent, competitive 

inhibitors of the EAATs (Bridges et al., 1999). Most of these identified ligands are found 

to be α-amino acids and possess the second carboxylate group that is located 2-3 carbon 

atoms away from the proximal carboxylate (Figure 1.1). The distance between the two 

carboxylates seems to be critical. For instance, L-α-aminoadipic acid (L-α-AA), which 

contains longer chain length, has been shown to be a poor inhibitor of glutamate uptake at 

EAAT1, 2 and 3 (Arriza et al., 1994). Both, L-aspartate and D-aspartate were found to be 

effective substrates in oocytes expressing individual glutamate transporters (Arriza et al., 

1994; Arriza et al., 1997; Fairman, 1995). However, D-glutamate was found to have 

negligible activity as an inhibitor of EAATs. Thus, the stereochemistry at the α-carbon of 

glutamate appears to be an important criterion for activity, although the requirement may 

vary among analogues.  



 17 

 

Among the simple modifications made in early SAR studies, some changes to the distal 

carboxylate seem to be acceptable. For example, the inhibitory activity is retained for 

compound like L-serine-O-sulfate, cysteic acid and cysteine sulfinic acid, in which the 

distal carboxylate of L-aspartate is replaced by sulfonate or sulfinic groups. However, the 

phosphonic acid analogue, AP4, has been reported to exhibit no activity at the EAATs 

(Bridges et al., 1999).  Whereas L-β-TBOA blocks all subtypes, compounds like 

dihydrokainate (DHK) and L-trans-2,3-PDC can selectively block EAAT2. A detailed 

pharmacology is presented in the introduction to Chapter 3 of this research report. The 

available structure-activity information is most advanced for EAAT2 ligands and 

therefore a more extensive study has been undertaken in the present research to predict 

the structural characteristics that define both the potency and specificity for this particular 

transporter subtype. This was done by utilizing four relatively EAAT2-specific inhibitors 

in the training set to build the pharmacophore model. The validity of this model was 

confirmed by analyzing three additional inhibitors. This robust model predicted the 

unique binding-site characteristics. Further, the relatively selective EAAT3 inhibitor, L-

β-threo-BA is aligned with this model to delineate the differences in the binding-sites for 

EAAT2 and EAAT3 (Esslinger et al., 2005).  A detailed account is presented in Chapter 

3 of this dissertation. 
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Figure 1.1. Simple glutamate analogues. 
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Glutamate Transporter Dysfunction: Functional losses of the glutamate uptake system 

can lead to cellular dysfunction and neurotoxicity either by direct action or participation 

in a cascade of disruptive cellular events (Maragakis and Rothstein, 2001; Maragakis and 

Rothstein, 2004). A number of pathophysiological conditions such as ALS (Rothstein et 

al., 1995; Rothstein et al., 1992; Van Den Bosch et al., 2006), Alzheimer’s disease  

(Masliah et al., 1996; Masliah et al., 2000), Huntington’s disease (Lievens et al., 2001), 

stroke/ischemia (Rossi et al., 2000), epilepsy (Rothstein, 1996;  Tanaka et al., 1997) and 

schizophrenia (Ohnuma et al., 2000) have been associated with abnormal functioning of 

glutamate transporters. 

 

Regulation of EAATs: Glutamate-mediated neurotransmission is believed to involve not 

only the synaptic but also extrasynaptic receptor activation. Synaptically released 

glutamate has the potential to diffuse into extrasynaptic space (Scanziani et al., 1997; 

Mitchell and Silver, 2000) as well as nearby synapses (DiGregorio et al., 2002). This 

“spillover” of glutamate contributes to neurotransmission by acting at mGluRs and 

iGluRs on both pre- and post-synaptic neurons (Brasnjo and Otis, 2001).  The spillover of 

glutamate has been shown to inhibit GABA release from Golgi cell terminals (Mitchell 

and Silver, 2000) as well as glutamate release at mossy fiber synapse (Scanziani et al., 

1997) by activating presynaptic mGluRs. Also, it has been shown to activate 

extrasynaptic NMDA receptors in mitral cells of olfactory bulb (Isaacson, 1999) and 

AMPA receptors present within adjacent synapses on the granule cells of the cerebellum 

(DiGregorio et al., 2002). The extent of extrasynaptic diffusion and the crosstalk between 

neighboring excitatory synapses may be markedly influenced by the location and activity 
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of glutamate transporters (Asztely et al., 1997). Therefore, strict regulation of glutamate 

concentration is of utmost importance for normal excitatory neurotransmission. 

 

Glutamate uptake can be regulated by a number of different pathways, including: 

transcription and translation (Rothstein et al., 2005; O'Shea et al., 2006), trafficking 

(Gonzalez and Robinson, 2004; Hughes et al., 2004) as well as allosteric modification of 

the binding site (Vandenberg et al., 2004). 

 

Transcription and Translation: Astrocytic EAAT2 (GLT-1) mRNA and protein are 

upregulated in astrocyte-neuron co-cultures via diffusible molecules secreted by neurons 

(Schlag et al., 1998). Dibutyryl cyclic adenosine monophosphate (dBcAMP) has been 

shown to elevate the EAAT2 (GLT-1) protein expression in both the membrane and 

cytoplasm of rat primary astrocytes (Swanson et al., 1997; Danbolt, 2001). The effects of 

dBcAMP on EAAT2 (GLT-1) expression in rat cortical astrocytes are mediated through 

protein kinase A and the MAP/Erk kinase pathway. Akt, also known as protein kinase B 

(PKB) induces the expression of EAAT2 (GLT-1) through increased transcription 

without affecting EAAT1 (GLAST) expression in astrocytes (Li et al., 2006). 

 

EAAT expression can be regulated at the level of protein synthesis either via increased 

transcription of glt1 gene (Su et al., 2003) or through increased translation of the EAAT2 

transcript (Tian et al., 2007). Increased expression of glt1 gene has been found with β-

lactam antibiotic, ceftriaxone (Rothstein et al., 2005), and many extracellular factors, 

such as EGF (Zelenaia et al., 2000), injury-induced growth factors (EGF, TGFα, FGF-2 
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and PDGF) (Figiel et al., 2003; Schlüter et al., 2002), lipopolysaccharide (O'Shea et al., 

2006). Additionally, several chemical entities, including corticosterone and retinol, have 

been identified that stimulate the translation of EAAT2 transcript (Tian et al., 2007). 

 

Trafficking: In astrocyte-neuron co-cultures and C6 glioma cells expressing EAAT2 

(GLT-1), activation of PKC by phorbol ester, phorbol 12-myristate 13-acetate (PMA 30′ 

pretreatment), causes a decrease in GLT-1 cell surface expression by interaction with the 

carboxyl-terminal domain (Kalandadze et al., 2002; Zhau and Sutherland, 2004).  

Unlike EAAT2 (GLT-1), EAAT3 (EAAC1) exists predominantly (>70%) in the 

intracellular compartment, but can be rapidly redistributed to the cell surface when 

stimulated by treatments such as platelet-derived growth factor or activation of PKC 

(Sims et al., 2000; Fournier et al., 2004; Davis et al., 1998). PMA treatment causes 80% 

increase in transporter activity within minutes in C6 glioma cells, which endogenously 

express only EAAT3 (EAAC1). Moreover, two different PKC isozymes increase 

EAAT3-mediated uptake by different mechanisms. PKCα seems to selectively increase 

transporter cell surface expression. This effect is associated with redistribution of EAAT3 

to the cell membrane and appears to be dependent in direct interaction of PKCα with 

EAAT3 protein (Gonzalez et al., 2003). PKCε regulates uptake by a trafficking-

independent mechanism, perhaps by increasing the intrinsic activity of the transporter in 

C6 glioma cells (Gonzalez et al., 2002). However, this modulation of EAAT3 (EAAC1) 

occurs in a cell-type specific fashion, since activation of PKC leads to opposite effects in 

EAAT3 (EAAC1) expressed in different culture models. It was shown that EAAT3 

(EAAC1) expressed in Xenopus oocytes is downregulated by activation of protein kinase 
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C (Trotti et al., 2001). This downregulation was found to be associated with decrease in 

the maximal transport rate (Vmax) and a movement of the transporter from the plasma 

membrane to the intracellular compartments, with no change in the affinity for glutamate. 

Another study also showed that activation of PKC induces a consistent decrease in the 

activity of EAAT3 expressed in the human astrocytoma cell line U373 (Dunlop et al., 

1999). Acute treatment with PMA has been shown to cause an ~20% increase in transport 

by increasing catalytic efficiency/turnover number of EAAT1 (GLAST) (Susarla et al., 

2004).  

 

Allosteric Modification: Several compounds have been discovered that differentially 

effect glutamate transporter activity by allosteric modulation. These include the effects of 

arachidonic acid (Zerangue et al., 1995), zinc (Mitrovic et al., 2001), polyunsaturated 

fatty acids (Fairman et al., 1998) and EAAT3 interacting protein, GTRAP3-18 (Lin et al., 

2001). Data presented in this work identify a putative modulatory site on EAAT1 that can 

increase activity. Interestingly, the compounds that revealed this potential regulatory site 

are all sulfated steroids. 

 

Neuroactive Steroids: “Neuroactive steroids” is the general term that encompasses all 

the steroids present in the brain. These compounds may be derived by in situ synthesis, 

obtained from the peripheral hormones, or converted by enzymatic activation into active 

metabolites (Paul and Purdy, 1992; Melcangi and Panzica, 2006). Moreover, neuroactive 

steroids, e.g., pregnenolone (PREG), dehydroepiandrosterone (DHEA) and their sulfate 
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and lipoidal esters are present in higher concentrations in tissue from the nervous system 

(brain and peripheral nerves) than in the plasma (Baulieu, 1997).  

 

In general, steroid effects can be divided into ‘genomic’ and ‘non-genomic’ mechanisms. 

The genomic effects are characterized by their delayed onset and prolonged duration 

while non-genomic effects are rapid in onset and short in duration (McEwen, 1994). In 

the latter case, steroids can produce immediate changes (within seconds) in neuronal 

excitability on a timescale that precludes a genomic locus of action. Progestins, 

estrogens, androgens, and corticosteroids are capable of modifying brain functions and 

behaviors by mechanisms that involve the classic genomic model for steroid action 

(McEwen et al., 1983).  

 

The non-genomic effects of neuroactive steroids are produced mainly via their action on 

membrane proteins. The most thoroughly characterized membrane targets have been 

GABAA, NMDA and σ receptors (Belelli and Lambert, 2005; Covey et al., 2001; Monnet 

and Maurice, 2006). In particular, progesterone derivatives like 3α-hydroxy-5α-pregnan-

20-one (allopregnanolone) and 3α-hydroxy-5β-pregnan-20-one (pregnanolone) are 

positive allosteric modulators of the γ-aminobutyric acid type A  (GABAA) receptor and 

negative modulators of NMDA receptors and are, therefore, considered inhibitory 

steroids (Belelli and Lambert, 2005; Lambert et al., 1995; Park-Chung et al., 1994; Park-

Chung et al., 1997). Pregnenolone sulfate (PREGS) and dehydroepiandrosterone sulfate 

(DHEAS) are negative modulators of the GABAA receptor and positive modulators of the 

N-methyl-D-aspartate (NMDA) receptor and are therefore, categorized as excitatory 
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neurosteroids (Covey et al., 2001; Majewska, 1992; Wu et al., 1990; Bowlby, 1993). 

Additionally, the behavioral effects of PREGS and DHEAS, on memory associated with 

the NMDA receptor activity appear to be influenced by their pharmacological action at σ1 

sites (Monnet and Maurice, 2006; DeCoster et al., 1995; Lockhart et al., 1995; Maurice et 

al., 1997). 

 

Pharmacotherapeutic potential of Neurosteroids: Changes in neurosteroid levels are 

associated with various physiological conditions, including: stress, pregnancy, neural 

development and ageing (Paul and Purdy, 1992; Schumacher et al., 2003). In addition to 

inducing anaesthesia, lower doses of steroid are found to produce anxiolytic, sedative and 

hypnotic effects (Gasior et al., 1999; Eser et al., 2006; Rupprecht, 2003; Goodchild et al., 

2001). Data from preclinical and clinical studies support the potential efficacy of 

neuroactive steroids as a novel class of drugs for the therapeutic management of epilepsy, 

insomnia and drug dependence (Gasior et al., 1999; Rupprecht, 1997; Rupprecht et al., 

1996; Gee et al., 1995).  

 

The potential that neuroactive steroids modulate different aspects of glutamatergic 

signaling is a current focus of our lab. For example, Wes Smith in our lab has recently 

characterized the competitive inhibition of VGLUTs by these steroids (Smith Ph.D. 

dissertation, University of Montana). In the present work, we identify and characterize 

the effect of some neuroactive steroids on the glutamate transporter EAAT1 using C17.2 

cells and rat primary astrocyte cultures. We find that neuroactive steroid such as 

pregnenolone sulfate (PREGS) can alter the transporter property of EAAT1. 
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SPECIFIC AIMS 

 

Specific Aim 1: What structural characteristics of the ligands determine the selectivity 

and potency for EAAT2 (Excitatory Amino Acid Transporter 2) as determined by 

molecular modeling? 

a. Generate and select the most promising pharmacophore models for EAAT2 

using non-transportable inhibitors by employing various superpositioning 

possibilities. 

b. Validate the pharmacophore models using the “leave-one-out” protocol. 

Superpositioning three additional non-transportable inhibitors of EAAT2 will 

test the robustness of the model. The acceptable model will generate 

satisfactory scoring function values for these superpositionings. 

c. Incorporate the substrate ligands into the model (from ‘a’) to elucidate the 

structural and spatial features that may determine the binding and transport of 

the ligands by EAAT2 

d. Superposition selective ligand for EAAT3 (viz., L-β-threo-benzyl aspartate) 

to delineate the points of divergence between EAAT2 and EAAT3. 

 

Specific Aim 2: To determine the specificity with which the neurosteroids alter the 

uptake of 3H-D-asparatate by EAATs 

a. To test if the neurosteroids alter the ability of different EAAT subtypes to 

sequester D-[3H]-aspartate. 
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b. To determine which other neurosteroids modulates the uptake of D-aspartate 

by EAAT1 

c. To test if PREGS affect the uptake of D-aspartate by EAAT1 in different cell 

systems namely, C17.2 cells, primary astrocytes, oocytes and HEK293T cells 

over-expressing EAAT1. 

 

Specific Aim 3: To investigate the mechanism by which PREGS alter the activity of 

EAAT1. The effect of the PREGS on the uptake of known substrates including L-

glutamate, L-aspartate and D-aspartate will be described. Whether there are changes in 

the uptake kinetic parameters (such as Km and Vmax) of these substrates will also be 

evaluated. 

 

Specific Aim 4: To determine the effect of PREGS on the ability of other EAAT1 

ligands (both alternative substrates and non-substrates) to inhibit the uptake of D-

aspartate and L-glutamate. Endogenous, as well as non-endogenous substrates and 

ligands of EAAT1 will be exploited. 
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Chapter 2: Methods and Materials 

Molecular Modeling: 

Computational work was performed on Silicon Graphics, Inc. (SGI) Octane workstations 

with R12,000 processors coupled to an SGI Origin 2000 server.  The software application 

suite Sybyl (versions 6.8-7.3), with the Advanced Computation module (Tripos;  St. 

Loius, MO), was used in adjunct with the industrially derived stochastic random search 

algorithm AESOP (Masek, 1998). In later versions of Sybyl (7.0 and up), Tripos 

dynamics was used instead of AESOP.  Molecular databases were prepared in Sybyl 

formats. Data extracted from the molecular spreadsheets were occasionally exported for 

sorting and other manipulations in PERL and C code format that were automated. 

Inspections of conformations and Multifit superpositions were performed in Sybyl 

stereoview with CrystalEyes viewers.  

 

The pharmacophore models were constructed as steric-strain, gas-phase derived 

compositions employing established comprehensive conformational analysis methods 

(Oprea et al., 1995; Marshall, 1995) with four EAAT2 inhibitor training set ligands, i.e. 

L-anti-endo-3,4-methanopyrrolidine-3,4-dicarboxylate (MPDC), cis-5-methyl-L-trans-

2,3-PDC (PDC), (2S,3R,4S)-2-(carboxy-cyclopropyl)glycine (CCG-IV) , and L-β-threo-

benzyloxy-aspartate (L-β-TBOA).  

 

Conformational space of the EAAT inhibitors in the training and test sets was 

comprehensively searched employing two computational protocols: random search 

(Tripos Sybyl) and the stochastic technique AESOP (Masek, 1998). Because of the 
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random changes, these methods are able to access completely different region of the 

conformational space from one iteration step to the next i.e., it allows ‘jumps’ into high-

energy region of the molecular hyperspace. This ensures a broad sampling of the 

conformational space. The random search procedure locates energy minima by randomly 

adjusting the selected bonds and minimizing the energy of the resulting geometry. Chiral 

centers, ring closure distances, and energy ranges were checked for consistency. This 

comparison was based on an RMS match between non-hydrogen atoms in the previously 

found conformers and the current conformer.  At least two searches were performed on 

each training set ligand and other test cases.  Data from the Sybyl random searches was 

deposited into a molecular database.  AESOP (An Energy and Structure Optimization 

Protocol) and Tripos dynamics are alternative stochastic derived programs used to search 

conformational space.  They apply high temperature to the molecule (which results in the 

molecule being torqued and tensed), and were set to capture a conformer snapshot every 

5 femtoseconds. As the temperature falls, states of lower energy become more probable 

according to the Boltzmann distribution. Temperatures and times were set between 1600-

1800 0K and 60-80K femtoseconds. Data from the AESOP and dynamics spreadsheets 

were deposited into the databases established earlier. Subsequently, all conformers from 

both search protocols were minimized to zero energy change defining their nearest 

energy well profile.  Conformer database entries were sorted as a function of conformer 

total energy and cases of degenerate energy profiles were crosschecked as plausible 

duplicates, based on select distances and angles defined in an exported Molfile 

spreadsheet.  Duplicate or nearly identical conformers (e.g., some non-essential rotamers 
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for L-β-TBOA) were eliminated. Some conformations would not have been found if only 

one conformer search routine had been used. 

 

An extended closed form analysis method, which used the conformational data, was 

developed to select one conformer of each of the four ligands to form the 3D 

superposition models.  To compare one conformation of one ligand to all conformations 

of each of the remaining three training set ligands, an all-combination comparison 

regimen was used by forming conformational comparison groups (shown as double 

headed arrows in Figure 2.1).  For each comparison group, six distinct measures were 

assessed between each ligand conformer, thus permitting an assessment of molecular 

similarity.  These six measures included the three distances and three angles between the 

proximal carboxylate carbon, C1;  amino nitrogen, N and distal carboxylate carbon, C2 

common to each training set ligand.  Thus, the molecular spreadsheets included 3 angles 

and 3 distances, along with the energy (in kcal/mol), for each conformer per training set 

ligand.  Additional molecular spreadsheets were also constructed in which i) the ether 

oxygen of L-β-TBOA and ii) the cyclopropyl centroid of L-CCG-IV were substituted for 

point C2 to consider alterative relative alignments. The resulting 3.4 X 106 

conformational comparison groups were analyzed for 3D molecular similarity using a 

relative difference scoring function (Figure 2.1), defined as a sum of the average of the 

four conformations (as per the all-combination regime and denoted as nconformers) using 

absolute value relative difference measurements (nmeasures).  Averaging precluded the use 

of weighting factors.  
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Figure 2.1. Computational paradigm used to generate the EAAT2 pharmacophore model. 

>2 Sybyl random searches
2000 iterations

>2 AESOP stochastic search
60-80 K fsec, 1600-1800˚ K

Conformers: merge, eliminate duplicates, set to zero energy change

Spreadsheet databases established for each ligand

1 cal spring constant multi-fit overlay  analysis
Select final conformer of each of the four ligands

Compare each comformer of 4 ligand data sets to each other.  
Measurements were assessed using the summed relative
difference Equation 1 to generate a scoring function for each
comparison of the alignment scenario under study. Four
alignment scenarios tested.

Plot scoring function values from Eqn.1 for each ligand 
and select low scoring group = same points in 3D space

Final multi-fit
overlay models

Training set ligands: MPDC, PDC, CCG-IV, and TBOA

Repeat process for other 
alignment scenarios

!
!    !|Vx - Vy|____

i=1    (Vx + Vy) / 2

nvar

nvar

nconfs

i=1

nconfs
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6

6
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6

 

For Eqn 1: V are 6 variable measures ( 3 distances and 3 angles) as compared for ligand x 

vs. ligand y; nvar = 6 (measures); nconfs = 6 as per comparison regime (double headed 

arrows). 
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The relative difference comparison measures between the conformers in a group (double 

headed arrows, Figure 2.1) included three distance and three angle values. The six 

conformer-to-conformer measurements were extracted from the molecular database 

spreadsheets and the calculations of the scoring functions were made. Conformer 

energies were not used in these calculations, thus making the scoring function energy 

independent. The comparison group that had a low scoring function value (least amount 

of differences amongst the six variable conformer measures in 3D space) was identified. 

Thus, the lower the score the more similar the conformers are to one another, 

representing molecular similarity of their space groupings.  The selected ligand 

conformer set was brought together with a 1 cal spring constant, and the superposition 

models were appraised in stereoview using CrystalEyes viewers. The predictability 

quality of the model was assessed using a leave-one-out protocol (Marshall, 1995). The 

molecular spreadsheets containing all the conformers of test set ligand were exported into 

MS Excel spreadsheet and the similarity calculated using equation 1. 

 

Modulation of EAATs by neuroactive steroids:  

Materials: General cell culture supplies were purchased from Becton Dickinson 

(Franklin Lakes, NJ), Corning (Corning, NY), and Life Technologies (Grand Island, 

NY). D-[3H]-Aspartic acid, L-[3H]-glutamic acid and L-[3H]-aspartic acid were 

purchased from Dupont NEN (Boston, MA). D,L-β-threo-Benzyloxy-aspartate was 

obtained from Tocris (Ballwin, MO). The steroids were purchased from Steraloids 

(Newport, RI). Remaining chemicals were obtained from Sigma (St. Louis, MO). 

FuGene 6 was purchased from Roche (Indianapolis, IN). 
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EAAT expression and cell culture: The glutamate transporter constructs for hEAAT1, 

hEAAT2 and hEAAT3 have been prepared and characterized by the other members of 

our lab previously (Esslinger et al., 2005). Briefly, EAAT1, and EAAT3 cDNA were 

PCR amplified from pBlueScript hEAAT1 and pBlueScript-hEAAT3 (provided by Dr M. 

Kavanaugh) using primer pairs (forward: 

5´ATAAGGATCCATGACTAAAAGCAACGGA3´ and reverse: 

5´TATTGATATCCTACATCTTGGTTTCACT3´) and (forward: 

5´ATAAGGATCCATGGGGAAACCGGCGAGG3´ and reverse: 

5´TATTGATATCCTAGAACTGTGAGGTCTG3´) respectively. Each primer pair 

introduced BamHI sites at the 5´ ends and EcoRV sites at the 3´ ends of each amplified 

fragment. The PCR fragments were then subcloned into the BamHI and EcoRV sites 

within the polylinker of the AAV vector pAM-CAG-WPRE (kindly provided by Dr 

Mathew During, University of Auckland, NZ) to create pAM-CAG-EAAT1-WPRE and 

pAM-CAG-EAAT3-WPRE. Final clones were confirmed by double stranded sequencing. 

A 1.9 kb EcoRI fragment containing the hEAAT2 cDNA clone was subcloned from 

pBlueScript-hEAAT2 (Dr M. Kavanaugh) into the EcoRI site of pAM-CAG-WPRE by 

standard molecular biology techniques to create pAM-CAG-EAAT2-WPRE. C17.2 cells 

(obtained from Dr Evan Snyder, Burnham Inst., La Jolla, CA) and HEK293T cells 

between passages 10 and 20 were seeded at 7×104 to 1×105 cells/well and 1.5×105 to 

2×105 respectively in 12-well plates and grown in complete DMEM supplemented with 

10% fetal bovine serum, 1mM sodium pyruvate, 0.1mM nonessential amino acids 

solution, and 0.05% penicillin / streptomycin (5000 units/ml) and gentamicin sulfate 
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(0.05 mg/ml). At 24 h after plating, cells were transfected using FuGene 6 or 

Lipofectamine 2000 Transfection Reagent (Invitrogen, Carlsbad, CA) in a ratio of 4 ml of 

Fugene 6 / Lipofectamine 2000 to 3 mg of purified plasmid DNA in accordance with the 

manufacturer’s instructions. After 24 h, the relative levels of functional D-[3H]-aspartate, 

L-[3H]-glutamate or L-[3H]-aspartate  uptake were determined by the method of Martin 

and Shain (1979) as described below. 

 

Primary astrocytes from rat cerebral cortex were prepared by following the protocol 

described by McCarthy et al (McCarthy, 1980). In brief, 2- to 4- day-old rat pups were 

decapitated and the cortices isolated in Ca2+-Mg2+-free buffer (CMF). CMF (in mM): 

HEPES 20, NaHCO3 4.2, Na+ pyruvate 1, 1X HBSS and bovine serum albumin 

(3mg/ml). After gentle triturition, the dissociated cells were stored in DMEM/F12 

medium supplemented with 15% FCS, 10mM HEPES, 14.28mM NaHCO3, 0.5mM Na 

pyruvate, 0.05% penicillin / streptomycin (5000 units/ml) and gentamicin sulfate (0.05 

mg/ml). After 24 hours, the media was changed to DMEM/F12 + 10% FCS. The cells in 

flasks were shaken for 24hrs on day 8 at 275rpm at 370C. Between days 11 and 15, the 

near-confluent cells were plated at a density of 3×104 to 5 × 104 cells/ well in 12-well 

plates. 

 

Capped cRNA was transcribed from the human brain glutamate transporter EAAT1 

cDNAs by Dr. Kavanaugh’s lab as described (Arriza et al., 1994). Transcripts were 

microinjected into Xenopus oocytes (50ng per oocyte) and uptake assay done 3-6 days 

later. 
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Transporter activity in C17.2 cells, HEK293T cells, primary astrocytes and oocytes: 

Transfected C17.2 and HEK293T cells in DMEM and primary astrocytes  in DMEM/F12 

containing 10% FCS were grown in a humid atmosphere of 5% CO2. Near-confluent 

cells were rinsed with a physiological buffer (138 mM NaCl, 11 mM D-glucose, 5.3 mM 

KCl, 0.4 mM KH2PO4, 0.3 mM Na2HPO4, 1.1 mM CaCl2, 0.7 mM MgSO4, 10 mM 

HEPES, pH 7.4) and allowed to preincubate at 370  C for 5 minutes. Uptake was initiated 

by replacing the pre-incubation buffer with buffer containing D-[3H]aspartate and 

inhibitors. Following a 5 minute incubation, the media was removed by rapid suction and 

the cells rinsed three times with ice-cold buffer. The cells were dissolved in 0.4 N NaOH 

for 24 h and analyzed for radioactivity by LSC and protein by the BCA (Pierce) method. 

Transport rates were corrected for background, i.e., radiolabel accumulation at 40  C. 

Initial studies confirmed that uptake quantified in this manner was linear with time and 

protein levels and that uptake in untransfected C17.2 cells was indistinguishable from 

background.  

 

Uptake was measured in control (uninjected) oocytes and in oocytes expressing EAAT1 

during a 10-min incubation in ND-96 buffer (96mM NaCl, 2mM KCL, 1.8mM CaCl2, 

1mM MgCl2, 5mM HEPES pH 7.4) containing D-[3H]-aspartate and 10µM unlabeled D-

aspartate. Uptake was terminated by three rapid washes in ice-cold buffer followed by 

lysis in 0.1% SDS and scintillation counting. 

 

Curve fitting and statistical analysis: Kinetic analyses of the substrates in different 
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conditions were carried out using Kaleidagraph 3.6 (Synergy Software) by non-linear 

curve-fitting to Michelis-Menton equation. EC50 values for the dose-response curves 

were generated using a four-parameter Hill function using equation: y = a + 

b*c/(d∧c+x∧c), where a = y min, b = range of transition (y max – y min), c = slope, d = 

EC50. When two groups were compared, a Student’s t test was used to compare the 

values. Multiple groups were compared by ANOVA with post hoc analysis. A p < 0.05 

was considered significant. 
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Chapter 3: Development and Validation of EAAT2 Binding-Site Pharmacophore 

Model 

Introduction: 

Glutamate is the major excitatory amino acid neurotransmitter in the mammalian CNS 

and is essential for normal functioning of the brain (Hollmann and Heinemann, 1994). A 

disruption in the control of glutamate homeostasis can lead to excitotoxicity (Olney, 

1990; Doble, 1999). Five glutamate transporter subtypes, EAAT1-5, have been 

discovered that are responsible for maintaining optimal extracellular concentrations of 

glutamate (Danbolt, 2001; Robinson, 1999; Kanai  and Hediger, 2003). However, the 

specific role that each individual EAAT subtype plays to maintain glutamate homeostasis 

is still being explored. One strategy to address this issue is through the development of 

subtype selective inhibitors. 

 

The flexibility in the structures of both the ligands and the binding site of the target 

protein accounts for the ability of disparate ligands to bind to different subtypes of 

transporters that share a common substrate. Identifying chemical ligands that 

preferentially interact with particular EAAT subtype can provide insights into structural 

differences between transporters. Additionally, those substrates and inhibitors that exhibit 

little or no cross-reactivity with ionotropic or metabotropic glutamate receptors can be 

utilized as functional probes in physiological preparations. 

 

EAAT PHARMACOLOGY: 
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The constant search for potent and selective EAAT inhibitors has led to the discovery of 

several different chemical classes of compounds (Bridges et al., 1999; Dunlop and 

Butera, 2006; Mennini et al., 2003). The analogues can be divided between those that are 

transported across the membrane (i.e., alternative substrates) and non-transportable 

inhibitors that bind the transporter without being translocated. Based upon chemical 

similarity and competitive mechanism of inhibition, these molecules are hypothesized to 

interact with the same general binding site on the glutamate transporters. EAAT 

inhibitors can be broadly divided into several chemical classes on the basis of their 

differential effects on the glutamate transporters. Apart from making direct changes to the 

functional groups of the parent compounds, a wide variety of analogues have been 

generated via modifications of the carbon backbone of the parent molecule. These 

alterations could be achieved by either the introduction of certain chemical groups to the 

carbon backbone or restricting the positions that the functional groups can assume in 

three dimensional (3D) space by introducing a ring system. The successful 

implementation of these strategies has lead to the development of an array of compounds 

that are not only better inhibitors in terms of potency but also have properties that may be 

used to probe the unique characteristics within the binding sites of different EAAT 

subtypes. 

 

β-Substituted aspartate derivatives: One of the earliest competitive inhibitors identified 

(Balcar and Johnston, 1972; Robinson et al., 1993), DL-β-threo-hydroxyaspartate (β-

THA) (Figure 3.1) has been shown to bind all EAAT subtypes with substrate-like activity 

at EAAT1-4 (Lebrun et al., 1997) and non-transportable inhibitor-like properties at 
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EAAT5 (Arriza et al., 1997). Initial studies have characterized a series of derivatives in 

which the β-hydroxyl group was esterified to yield threo-β-acetoxy (TAcOAsp), 

propionyloxy (TPnOAsp), benzoyloxy (TBzOAsp), (1-naphthoyl)oxy (T1NpOAsp) and 

(2-naphthoyl)oxy (T2NpOAsp) THA analogues (Lebrun et al., 1997). 

Electrophysiologically, TAcOAsp and TPnOAsp were found to elicit substrate-induced 

currents in EAAT1-expressing oocytes with Km values of 40µM and 64µM respectively. 

On the other hand, TBzOAsp and T1NpOAsp were shown to be non-transportable 

inhibitor with the Ki values of about 17µM and 52µM respectively at blocking L-

glutamate-induced currents in oocytes expressing EAAT1. 

 

More recently, further modifications of β-THA have led to development of some of the 

most potent, non-tranportable inhibitors available for the glutamate transporters 

(Shimamoto et al., 1998; Shimamoto et al., 2004). The most prominent analogues of this 

class are L-β-threo-benzyloxy aspartate (L-β-TBOA) (Shimamoto et al., 1998) and 

(2S,3S)-3-(3-[4-(trifluoromethyl)benzoylamino]benzyloxy)aspartate (TFB-TBOA) 

(Shimamoto et al., 2004). L-β-TBOA was found to be potent inhibitor of both EAAT1 

and 2 expressed in COS-1 cells and oocytes. The Ki values for this non-transportable 

inhibitor were found to be about 0.12µM and 9µM in oocytes expressing EAAT2 and 

EAAT1 respectively. Moreover, L-β-TBOA did not inhibit radiolabel binding at 

ionotropic and metabotropic glutamate receptors. Recently, this group has synthesized 

another very potent β-THA analogue, TFB-TBOA that exhibited IC50 values for EAAT1-

3 in the nanomolar range when tested for the inhibition of L-[14C]-glutamate uptake in 

COS-1 cells expressing individual EAAT subtypes (Shimamoto et al., 2004). It showed  



 39 

Figure 3.1. β-Substituted aspartate derivatives. 
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an ~15-fold preference for EAAT1 and EAAT2 over EAAT3. In the same study, TFB-

TBOA elicited no cross-reactivity with ionotropic glutamate receptors as determined by 

the radioligand binding assay on synaptic membranes or with metabotropic glutamate 

receptors when tested in transfected CHO cells. 

 

Based on the properties of L-β-TBOA, the Esslinger group replaced the benzyloxy group 

with the benzyl group yielding L-β-threo-benzylaspartate (L-β-TBA). Significantly, this 

analogue is among the first compounds to show ~10-fold preference for EAAT3 over 

EAAT1 and EAAT2 when tested in C17.2 cells and in oocytes (Esslinger et al., 2005). L-

β-TBA was found to be a competitive non-tranportable inhibitor with Ki values of 

10.2µM, 11.4µM and 1.2µM at EAAT1,2 and 3 respectively in oocytes. With both the β-

benzyl- and the β-benzyloxy- analogues, the threo- stereoisomer was found to be 

significantly more potent than the erythro- form (Esslinger et al., 2005), (Shimamoto et 

al., 2000). Taken together, these results suggest that the addition of bulky substituents to 

the β-carbon, convert a substrate to a non-transportable inhibitor. It has been suggested 

that these groups likely exhibit greater inhibitory activity because of their ability to 

participate in the hydrophobic interactions within the binding site of the glutamate 

transporters (Esslinger et al., 2005; Dunlop et al., 2005). 

 

3- and 4-Substituted glutamate derivatives: Similar to the substituted aspartate 

analogues, additions to the carbon backbone of glutamate have produced a series of 

important analogues (Figure 3.2). Methyl substitution at C-3 of glutamate converts it to a 

molecule that shows differential effects at EAAT subtypes (Vandenberg et al., 1997; 
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Eliasof et al., 2001). The studies on EAAT1-4 expressed in oocytes and MDCK cells 

revealed that threo-3-methylglutamate (T3MG) is a potent and competitive blocker of 

glutamate transport by EAAT2 and EAAT4, but only a weak inhibitor of EAAT1 and 

EAAT3 (Eliasof et al., 2001). Whereas, T3MG appears to be a non-transportable 

inhibitor of EAAT2 (Vandenberg et al., 1997; Eliasof et al., 2001), it interacts with the 

EAAT4 with substrate-like activity (Eliasof et al., 2001). The IC50 values for EAAT2 and 

EAAT4 were reported to be 90µM and 109µM respectively in oocytes (Eliasof et al., 

2001). T3MG also elicited weak NMDA agonist activity. The erythro-3-methylglutamate 

(E3MG) was shown to be inactive at EAAT1 and 2 when tested in oocytes (Vandenberg 

et al., 1997).  

 

Additionally, a number of studies have been done to characterize the effects of 

substitutions at C-4 of glutamate. Both, threo- and erythro- isomers of 4-

hydroxyglutamate (4HG) have been demonstrated to retain the substrate activity at 

EAAT1 and EAAT2 when tested in oocytes (Vandenberg et al., 1997). However, the L-

threo- isomer of 4HG was found to be much more potent (Km of 61µM and 48µM at 

EAAT1 and 2 respectively) than the erythro- form (Km ~1mM at EAAT1 and EAAT2). 

4-Methyl substitution of glutamate also yields molecules with differential activities 

(Vandenberg et al., 1997; Alaux et al., 2005). When studied in oocytes (2S, 4R)-4-

Methylglutamate ((2S, 4R)-4MG) was found to exhibit substrate properties at EAAT1 

with Km of 54µM and Imax of 80% relative to glutamate. However, it acts as a non-

transportable inhibitor of EAAT2 and EAAT3 (Alaux et al., 2005). Interestingly,  
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Figure 3.2. 3- and 4-Substituted glutamate derivatives. 
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extending the 4-substitution of glutamate from methyl to higher alkyl or benzyl group 

retains inhibitory activity, but converts them to non-transportable inhibitors at EAAT1, 2 

and 3 as characterized in FLIPR-based membrane potential (FMP) assay (Alaux et al., 

2005). In terms of cross-reactivity, 2S,4R-4MG shows potent agonist ability at kainate 

receptors and inhibits 3H-kainate binding to membranes prepared from CNS tissue (Gu et 

al., 1995; Brauner-Osborne et al., 1997). While it was shown to inhibit the binding of 3H-

CPP to NMDA receptors, it exhibited no activity at AMPA receptors.  

 

2-(Carboxycyclopropyl)- and 2-(carboxybutyl)- glycine analogues: These constrained 

analogues lock the β- and γ- positions of glutamate by introducing a ring into the 

structure, thereby limiting the number of conformations it can attain (Figure 3.3). The 

availability of these probes has proven to be beneficial for developing pharmacophores 

for glutamate transporters. Among the L-2-(2-carboxycyclopropyl)glycines (CCGs), the 

analogues: L-CCG-III (2S,3S,4R isomer) and L-CCG-IV (2S,3R,4S isomer), have proven 

to be particularly important. L-CCG-III has been reported to be the most potent analogue 

in terms of its activity at glutamate carriers. It was demonstrated to be a potent 

competitive inhibitor of L-[3H]-glutamate uptake in COS-1 cells expressing EAAT2 with 

IC50 values of 0.29µM (Yamashita et al., 1995). When studied for its activity at inhibiting 

L-[14C]-glutamate uptake in COS-1 cells, the Ki values for L-CCG-III were reported to be 

7.5µM and 2.5µM for EAAT1 and EAAT2 respectively (Shimamoto et al., 1998). In 

another study, L-CCG-III was reported to be effective at blocking L-[3H]-glutamate 

uptake in C6 glioma cells, which expresses EAAT3 but not EAAT1 or EAAT2 (Palos et 

al., 1996), and EAAT3 expressing oocytes with reported Ki values of 10µM and 13µM 
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Figure 3.3. 2-(Carboxycyclopropyl)- and 2-(carboxybutyl)- glycine analogues.  
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respectively (Dowd et al., 1996). Although not quiet as potent, L-CCG-IV was shown to 

inhibit the EAAT2-mediated L-[3H]-glutamate uptake in COS-1 cells with an IC50 value 

of 1.1µM (Yamashita et al., 1995). However, when another study tested L-CCG-IV in 

COS-1 cells, it exhibited competitive inhibitor activity of L-[14C]-glutamate uptake with 

IC50 values of 900µM and 673µM for EAAT1 and EAAT2 respectively (Shimamoto et 

al., 1998). Similarly, L-CCG-IV was reported to competitively block the L-[3H]-

glutamate uptake in oocytes with Ki value of 171µM at EAAT3 (Dowd et al., 1996). Both 

L-CCG-III and L-CCG-IV have been shown to bind ionotropic glutamate receptors. 

While L-CCG-III was shown to inhibit the binding of [3H]-kainate in forebrain synaptic 

membranes, it exhibited no activity at NMDA or AMPA receptors (Kawai et al., 1992). 

L-CCG-IV was reported to have potent depolarizing ability mediated primarily through 

interaction with NMDA receptors in isolated rat spinal cord (Shinozaki et al., 1989). 

Additionally, L-CCG-IV also inhibited the binding of [3H]-CPP, [3H]-kainate and [3H]-

AMPA to synaptic membranes of the rat brain (Kawai et al., 1992). 

 

Four stereoisomers of L-2-(2-carboxycyclobutyl)glycine (L-CBG): L-CBG-I 

(2S,1´S,2´S), L-CBG-II (2S,1´R,2´R), L-CBG-III (2S,1´S,2´R), and L-CBG-IV 

(2S,1´R,2´S), have been characterized in HEK293 cells transfected with EAAT1, 2 and 3 

by FLIPR membrane potential (FMP) assay (Faure et al., 2006). L-CBG-I and L-CBG-III 

appeared to be weak substrate and non-transportable inhibitors respectively at EAAT1, 2 

and 3. L-CBG-II showed differential activities at these transporters. While shown to act 

as a substrate at EAAT1 (Km = 96µM), L-CBG-II potently inhibited the uptake of L-

glutamate by EAAT2 and EAAT3 with Ki values of 22µM and 49µM respectively. In the 
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same study, L-CBG-IV was found to be a weak inhibitor at EAAT1 (Ki   200µM), but a 

moderately potent inhibitor at EAAT2 and EAAT3 (Ki 6.6µM and 10 µM). 

 

Pyrrolidine dicarboxylate (PDC) derivatives: This class represents compounds that are 

constrained analogues of aspartate or glutamate molecules (Figure 3.4). Introduction of 

pyrrolidine heterocycle limits the number of conformations that the compounds can 

assume, and has proven to be important in the development of transporter 

pharmacophores. 

 

Initial studies have recognized kainate and dihydrokainate to be non-transportable 

inhibitors of glutamate transport (Johnston et al., 1979; Bridges et al., 1999). Whereas, 

kainate is a proven agonist at KA receptors, its modification to DHK was shown to 

markedly reduce binding to KA and AMPA receptors while enhancing the uptake 

inhibitor activity. The isopropyl side chain of DHK appears to be an important 

determinant of its activity. 2-Carboxy-3-pyrrolidineacetate, in which the isopropyl group 

is absent, is a poor inhibitor of glutamate transport with enhanced binding capacity to 

KA, AMPA and NMDA receptors (Sonnenberg et al., 1996). Later, DHK was shown to 

be an extremely valuable ligand, as it selectively inhibits EAAT2, the most prevalent 

glutamate transporter in the brain (Arriza et al., 1997; Arriza et al., 1994; Fairman, 1995; 

Shimamoto et al., 1998; Vandenberg et al., 1997). 2,4-Pyrrolidine dicarboxylates 

represent constrained glutamate analogues. L-trans-2,4-PDC (2,4-PDC) has been shown 

to be the most potent isomer with respect to the inhibition of glutamate uptake (Garlin et 

al., 1995; Koch et al., 1999; Dowd et al., 1996; Griffiths et al., 1994) with reported Km  
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Figure 3.4. Pyrrolidine dicarboxylate (PDC) derivatives. 
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values comparable to that of glutamate at EAAT1 (28µM), EAAT2 (7µM), EAAT3 

(27µM) and EAAT4 (2.6µM) in oocytes (Arriza et al., 1994; Fairman, 1995). While it 

acts as a substrate at EAAT1-4, L-2,4-PDC was shown to be non-transportable inhibitor 

of EAAT5 when expressed in oocytes (Arriza et al., 1997). As regards cross-reactivity 

with glutamate receptors, L-2,4-PDC did not show binding to ionotropic EAA receptors 

in radioligand binding assay (Bridges et al., 1991). However, some cross-reactivity with 

metabotropic receptors has been reported in cultured astrocytes (Miller et al., 1994). 

More recent studies have evaluated the effects of modifications on L-2,4-PDC. Addition 

of a methyl group to form 2S,4R-4-methyl-PDC was shown to convert a substrate into a 

competitive, non-transportable inhibitor of D-[3H]-aspartate uptake when tested in rat 

forebrain synaptosomes (Esslinger et al., 2002). Methyl group addition can be assumed to 

invoke additional interaction with the binding site or confer steric hindrance within the 

molecule. 

 

The 2,3-pyrrolidine dicarboxylates contain an embedded aspartate template. Unlike L-

2,4-PDC, L-trans-2,3-PDC (L-2,3-PDC) has been shown to exhibit non-transportable 

inhibitor characteristics with a Ki of 23µM against D-[3H]-aspartate uptake in rat 

forebrain synaptosomes (Willis et al., 1996). Significantly, while the activity of L-2,3-

PDC was confirmed in oocytes (Ki = 10µM), it was reported to have little or no activity 

as an inhibitor at EAAT1 or EAAT3 (Bridges et al., 1999). Furthermore, the addition of a 

methyl susbstituent at the 5-position of L-trans-2,3-PDC has been shown to produce 

additional changes in activity at EAAT2. Whereas, the cis-5-methyl derivative retains the 

inhibitor activity without compromising the potency, the trans- addition abolishes its 
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activity (Willis et al., 1997). In terms of cross-reactivity, L-2,3-PDC has been shown to 

be an excitotoxin and is a potent NMDA receptor agonist. The radioligand binding assays 

have shown L-2,3-PDC to bind NMDA, KA and AMPA receptors in rat brain (Willis et 

al., 1996). 

 

The PDCs have further been constrained by introducing a methano-bridge between α- 

and γ- carbons or β- and γ- carbons to yield 2 important analogues: 2,4-

methanopyrrolidine-2,4-dicarboxylate (2,4-MPDC) and L-anti-endo-3,4-methano-

pyrrolidine-3,4-dicarboxylate (L-anti-endo-3,4-MPDC). The linking of the PDC 

backbone reduces the number of conformations that the molecule can assume, thus, 

making it possible to identify the “preferred” conformer at the binding site. Both 2,4-

MPDC and L-anti-endo-3,4-MPDC were shown to be potent competitive inhibitors of D-

[3H]-aspartate uptake into rat forebrain synaptosomes (Esslinger et al., 1998). 

Interestingly, while L-anti-endo-3,4-MPDC was identified as a potent non-transportable 

competitive inhibitor, 2,4-MPDC exhibited excellent substrate characteristics with 

slightly lower potency when tested in oocytes expressing EAAT2. 

 

Taken together, the above results can help highlight key interactions within the binding 

domains of individual glutamate transporter subtypes. Pharmacologically, more EAAT2-

preferring ligands have been identified than those exhibiting selectivity for other EAATs. 

DHK and L-2,3-PDC  were among the first compounds to elicit highly selective inhibitor 

activity at EAAT2 (Arriza et al., 1994; Arriza et al., 1997; Fairman, 1995; Shimamoto et 

al., 1998; Vandenberg et al., 1997). Although not quite as selective, compounds like L-
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anti-endo-MPDC (Esslinger et al., 1998), L-CCG-IV (Shimamoto et al., 1998; Yamashita 

et al., 1995), S-2-amino-3-(3-hydroxy-1,2,5-thiadiazol-4-yl) propionic acid ((S)-TDPA) 

(Brauner-Osborne et al., 2000), WAY213613 (Dunlop et al., 2005) and WAY855 

(Dunlop et al., 2003) show preference for binding EAAT2 over other EAATs (Figure 

3.5). In the instance of EAAT1 and EAAT3-5, only subtle distinguishing differences 

have emerged. EAAT1 show substrate-like activity for compounds like L-SOS (Arriza et 

al., 1994; Vandenberg et al., 1998b), (2S,4R)-4MG (Vandenberg et al., 1997) and LCBG-

II (L-2-(2-carboxycyclobutyl) glycine isomer) (Faure et al., 2006) and is more potently 

inhibited by 1-hydroxy-1,2,3-triazol-5yl  propionate (Stensbol et al., 2002). L-Cysteine 

and L-aspartate-β-hydroxamate has been shown to act at EAATs and exhibit preferential 

activity for EAAT3 compared to EAAT1 or EAAT2 (Zerangue and Kavanaugh, 1996b; 

Roberts and Watkins, 1975). While exhibiting substrate properties at other subtypes, L-

2,4-PDC and THA have been shown to be non-transportable inhibitors at EAAT5 (Arriza 

et al., 1997).  

 

Insight into the requirements necessary for a molecule to act as an inhibitor can be gained 

and visualized from comparing the commonalities and differences among the identified 

ligands by generating a pharmacophore model (Mason et al., 2001). A pharmacophore is 

the spatial mutual orientation of atom or groups of atoms assumed to be recognized by 

and interact with the particular binding site. Thus, a pharmacophore specifies the spatial 

relationships between the groups in 3D space. Pre-shaping the ligands to the geometry of 

the binding site for mutual molecular recognition in order to minimize the loss of 

conformational  
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Figure 3.5. Other EAAT ligands. 
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entropy upon binding and improving ligand protein interactions to obtain a favorable 

(negative) enthalpy change, are important factors that can lead to the improved binding 

affinity as well as reduce cross-reactivity (Velazquez-Campoy et al., 2001; D'Aquino et 

al., 2000).  

 

In this study, we have built an EAAT2-specific binding site pharmacophore model by 

mapping the functional groups on the specific training set ligands and calculating the 

structural similarities in 3D space (Dean and Perkins, 1998; Perkins and Dean, 1993; 

Martin, 1998). This model predicts distinct regions that might influence the potency and 

selectivity of the EAAT2 ligands, including: 1) a highly conserved positioning of the two 

carboxylate Cs and the amino N, 2) a nearby region that can accommodate selective 

modifications (e.g., cyclopropyl ring, CH3 groups, and O atoms), and 3) the region 

occupied by the benzyl ring of L-TBOA. Additionally, we have incorporated a novel 

EAAT3-preferring inhibitor L-β-threo-benzyl-aspartate (L-β-TBA) into our model in an 

attempt to identify certain plausible differences between the interactions within the 

EAAT2 and EAAT3 binding sites. Comparison of the superpositioned L-β-TBOA and L-

β-TBA in our model suggests that the selective activity at EAAT binding sites may reside 

in the location and relative orientation of an aromatic ring moiety, as well as the 

composition of the linking atoms attaching the aromatic ring to the aspartyl backbone of 

these ligands.  

 

Chapter 3: Results 
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Four EAAT2 inhibitor training set ligands, i.e. L-anti-endo-3,4-methanopyrrolidine-3,4-

dicarboxylate (MPDC), cis-5-methyl-L-trans-2,3-PDC (PDC; 2S,3R,4S)-2-(carboxy-

cyclopropyl)glycine (CCG-IV) , and β-threo-benzyloxy-aspartate (L-β-TBOA) were 

selected to build an EAAT2 binding-site pharmacophore model. Each of the significant 

EAAT2 inhibitor classes (Bridges et al., 1999) was carefully considered for inclusion in 

the training set (Table 3.1).  The major criteria were high potency, structural diversity 

amongst common moieties, and relatively high selectivity.  Importantly, only potent 

inhibitors with little or no substrate activity were selected to afford a pharmacophore 

model that may be used to define the key structural requirements for a compound to bind 

to the transporter and inhibit its activity. 

 

Most molecules can adapt more than one conformation of nearly equal energy by rotation 

around single bonds. These molecular geometries correspond to the global and, in most 

cases, various local minima on the multidimensional molecular energy surface (also 

called potential energy surface). The conformation with the global minimum energy 

seldom binds to the target protein (Nicklaus et al., 1995; Perola and Charifson, 2004). 

Moreover, the “preferred” conformation depends on the interactions of the molecule with 

its environment. In structure-based drug design, the so-called bioactive conformer (the 

preferred conformation in the receptor-bound state) of potential drug molecules is of 

special interest. The major aim of conformational analysis is to identify the preferred 

conformations of a molecule under specific conditions. Therefore, conformational search 

techniques (i. e., methods that locate the global and local energy minima of a structure) 

play a crucial role in conformational analysis. To ensure that the bioactive conformation 
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is included, a wide collection of conformations was used. Conformational space, i.e., the 

total number of possible conformations a molecule can assume, was rigorously searched 

using two stochastic methods (Saunders, 1987; Chang et al., 1989) e.g., random search 

(Tripos) and AESOP (Masek, 1998) rather than a systematic search that examines every 

possible configuration that a molecule can assume (Smellie et al., 1995b; Smellie et al., 

1995a). Separate conformational molecular databases for each training set ligand were 

formed that contained all the conformers from all the searches with the duplicates and 

nearly identical rotamers removed. The energy range and number of conformers for these 

four ligands are shown in Table 3.2. 

 

All conformers of all the ligands were compared to each other (combinatorial conformer 

approach) based on three distances and three angles. The requirement of a minimum of 

three points to overlay in three-dimensional (3D) space (Marshall, 1995) was met by 

three selected points of interest (N, C1 and C2) that were shared among the ligands 

(Figure 3.6). The six measures included three distances and three angles between these 

points (Figure 3.1 Table). In addition to the distal carboxylate carbon of all the ligands, 

the electron-rich benzyloxy ‘O’ of L-β-TBOA and the ‘centroid’ of LCCG-IV were 

considered as point C2 to generate four plausible pharmacophore models.  

 

While the proximal carboxylate carbon (C1) and amino nitrogen (N) were common in all 

models the distal carboxylate carbon (C2) (Model A) was replaced by either the 

benzyloxy ‘O’ of TBOA (Model B and D) or cyclopropyl ‘centroid’ of CCG-IV (Model 

C and D). The comparison of the ligands was scored (Dean and Perkins, 1998) for  
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Table 3.1. Criteria for the selection of training set. 
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Table 3.2. Number of unique conformers and energy range for each of the ligands in the 
training set. 
 
 L-anti-endo-

3,4-MPDC 
cis-5-Me-L-
trans-2,3-PDC 

L-CCG-IV L-β-TBOA 

# Conformers 100 107 440 208 
Energy Range 
(kcal/mol) 

107.158-157.484 10.006-91.617 103.637-189.635 1.635-1116.144 

 
Conformational space was searched using two stochastic techniques: random search and 
AESOP. These unique conformers were obtained after the removal of duplicates. 
 
 

 L-anti-endo-3,4-
MPDC 

cis-5-Me-L-trans-2,3-
PDC L-CCG-1V L-β-TBOA 

 
 

Ki 
(µM) 

 

Imax 
(% Glu) 

 

Ki 
(µM) 

 

Imax 
(% Glu) 

 

Ki 
(µM) 

 

Imax 
(% Glu) 

 

Ki 
(µM) 

 

Imax 
(% Glu) 

 

EAAT1 30 21 630 0 900* 94 9 0 

EAAT2 1.6 0 11 0 673* 20 0.12 0 

EAAT3 45 35 125 0 - - - - 

EAAT4 3.8 58 >3mM - - - - - 
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Figure 3.6. Training set with points-of-interest labeled. 
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The points-of-interest: amino nitrogen (N), proximal (α) carboxylate carbon (C1) and 
distal carboxylate carbon (C2), were selected that were shared among all the ligands in 
the training set. For each comparison group, six distinct measures (three distances and 
three angles) were defined between each ligand conformer for the assessment of 
molecular similarity. Additionally, the ether oxygen of L-β-TBOA and the cyclopropyl 
centroid of L-CCG-IV were substituted for point C2 to consider alternative relative 
alignments. 
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relative structural similarity in 3D space using Equation 1 (Figure 3.7). The selected 

ligand conformer set was brought together (multifit) with a 1 cal spring constant. The  

final superposition models (Figures 3.8-3.11) were selected on the basis of their scoring 

function values (Charts in Figures 3.8-3.11) and visual inspection using CrystalEyes 

viewers. The best superposition models exhibited low scoring function values as 

expected. 

 

Based upon the stringent alignment of the carboxylate groups, the amino moieties and the 

carbon backbone, model A was selected (Figure 3.8). The other models, which were 

based upon the superpositioning of the ether-O of L-β-TBOA at the C2 carboxylate 

position (Model B), the centroid of the cyclopropyl ring of L-CCG-IV at the C2 

carboxylate position (Model C), or both (Model D), were not considered further because 

each showed inappropriate positioning of the carbon backbone and/or relevant side 

chains.  For instance, in models C and D, the carbon backbone markedly deviated outside 

the bounds defined by the other analogues.  Figure 3.12 shows model A with critical 

distances and angles between the various functional groups listed in an inset along with 

the graphical representation in the x-y plane.  The generated model suggests some key 

interactions that may contribute to their activity as well as selectivity of this group of 

ligands. These include the almost planar arrangement of the α-C, β-C, amino-N and 

distal carboxylate-C atoms. The identical positioning of the two carboxylate carbon 

atoms among the inhibitors suggests a critical electrostatic interactions between these 

groups and corresponding residues in the binding site and / or cotransported ions.  
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Figure 3.7.  
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Equation 1: V are 6 variable measures (3 distances and 3 angle) as compared for ligand x 

versus ligand y. nvar = 6 (measures);  nconfs = 6 per comparison group regime (B). The 

relative difference comparison measures between the conformers in a group (double 

headed arrows) included three distances and three angles. 
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Figure 3.8. EAAT2 binding-site pharmacophore model A. 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The chart shows the distribution of different alignment groups based on the scoring 
function value. Only top 200 alignment groups are shown. The alignment group # 12 was 
chosen based on the visual inspection using CrystalEyes viewers. The points-of-interest 
are indicated in the color-coded images. Three views of the same model are shown. 
 
 
 
 

 



 60 

Figure 3.9. EAAT2 binding-site pharmacophore model B. 
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In model B, the distal carboxylate carbon of L-β-TBOA is substituted with the benzyloxy 
oxygen as point C2 . The chart shows top 200 alignment groups. The alignment group # 6 
was chosen on the basis of the assessment done using CrystalEyes viewers. The points-
of-interest are indicated in the color-coded images. Three views of the same model are 
shown. The table shows the measures used for the alignment of the training set ligands. 
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Figure 3.10. EAAT2 binding-site pharmacophore model C. 
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In model C, the distal carboxylate carbon of L-CCG-IV is replaced by the cyclopropyl 
centroid as point C2 (Table). The chart shows the distribution of different alignment 
groups based on the scoring function values. The points-of-interest are indicated in the 
color-coded images. Two views of the same model are shown. The table shows the 
measures used for the alignment of the training set ligands. 
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Figure 3.11. EAAT2 binding-site pharmacophore model D. 
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In model D, the distal carboxylate carbons of L-CCG-IV and L-β-TBOA are replaced by 
the cyclopropyl centroid and the benzyloxy oxygen as point C2 (Table). The chart shows 
the distribution of different alignment groups based on the scoring function values. The 
points-of-interest are indicated in the color-coded images. Two views of the same model 
are shown. The table shows the measures used for the alignment of the training set 
ligands. 
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Figure 3.12. Graphical representation of EAAT2 binding-site pharmacophore model A. 
 
 
 
 

 
 
 
 
 
 
This representation depicts the averaged position of structural features. The averaged 
specific angle and distance measurements are reported in the table. 
 
 
 
 
 
 
 
 

 Distance (Å) 
N – C1 2.5 ± 0.1 
N – C2 3.4 ± 0.2 
C1 – C2 3.4 ± 0.2 
 Angle 
N – C1 – C2 66 ± 0.4 
N – C2 – C1 43 ± 1.3 
C1 – N – C2 71 ± 1.3 
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Secondly, the possibility of lipophilic interaction between the phenyl ring and the 

hydrophobic residues within the binding site. Additionally, positioning of the cyclopropyl  

ring of L-anti-endo-3,4-MPDC suggest a possible Π bond-like interaction with the 

protein. 

 

Pharmacophore Validation: It is important that the generated pharmacophore be able to 

predict the potential activity of an unknown ligand. Therefore, to check the quality of the 

model, it was validated with three test ligands using a “leave-one-out protocol” 

(Marshall, 1995). Three potent non-substrate inhibitors e.g., dihydrokainate (DHK; 

2S,4R)-4MG and 4-Me-L-trans-2,4-PDC, were selected to generate a test set (Figure 

3.7). Similar to the training set, the criteria for the selection for the test ligands were high 

potency, relative selectivity, no substrate activity and structural diversity. Conformational 

space searching for each test ligand was done using randomsearch, and AESOP (or 

dynamics (Tripos) stochastic methods. Three more databases containing unique test set 

conformers with the required angles and measures were created. All the conformations of 

the test ligands were compared against the generated pharmacophore, model A (Figure 

3.2) and scored for relative structural similarity using Equation 1. The low scoring 

function values showed tight alignment of the test ligands against the pharmacophore 

thus confirming the robustness of the model (Figures 3.13-3.15).  

Our non-transportable inhibitor-based model was then used to define putative regions that 

may distinguish substrates from non-substrates. Three common substrates, L-glutamate, 

D- and L- aspartate (Table 3) were used in our modeling protocol to generate multifit 

models as shown in Figures 3.16. As can be seen, these substrates fit extremely well with 
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the pharmacophore model at low scoring function values. They appear to be virtually 

indiscernible within the pharmacophore, while the non-substrate bulk seems to protrude 

toward the periphery. This arrangement of excess bulk caused by the substituents, as well 

as cyclic carbons, may hinder effective transport as a result of unfavorable energy 

requirement to assume substrate-like conformation. Moreover, the direct interaction of 

the substituents with the binding site can influence their transport activity.  

 

Recently, Esslinger et al have synthesized an EAAT3 selective non-transportable 

inhibitor L-β-benzyl aspartate (L-β-BA). L-β-BA was characterized by the other 

members of our lab and by Michael Kavanaugh’s lab. L-β-BA shows approximately 10-

fold greater activity at EAAT3 than EAAT1 or EAAT2 in C17.2 cells and the 

electrophysiological recordings revealed that it acts as a competitive inhibitor (Esslinger 

et al., 2005). These findings have been summarized in Figure Table 3.4. Additionally, it 

should be noted that the erythro stereoisomers of both L-β-BOA and L-β-BA have been 

found to be significantly less potent than their threo counterparts (Esslinger et al., 2005; 

Shimamoto et al., 2000) (Table 3.4). Secondly, whereas L-β-TBOA is relatively more 

selective for EAAT2 (Shimamoto et al., 1998; Shimamoto et al., 2000), L-β-TBA is more 

selective for EAAT3 (Table 3.5). This suggests that certain stereospecific interactions 

may account for differences in the activities of the stereoisomers of L-β-threo-BA at 

EAAT2 and EAAT3. We exploited our EAAT2 specific model in an attempt to identify 

these differences. To see if any variations could be predicted between EAAT2 and 

EAAT3 binding sites, we incorporated L-β-threo-BA into our model as well as the 

erythro- stereoisomers of both L-β-BA and L-β-BOA. All three compounds were  
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Table 3.3. Inhibitory activity of test set ligands at EAAT1, EAAT2 and EAAT3.  
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Three EAAT2-preferring non-substrate inhibitors were selected in the test set. The 
indicated points-of-interest (N, C1, C2) are shared by all the ligands in both the training 
set and the test set. The number of unique conformers and the energy range are also 
shown in the table. 
 
 
 
 
 
 
 
 
 
 
 

TEST SET 
 

 
 

cis-4-CH3-L-trans-
2,4-PDC 

Dihydrokainate 
 

2S,4R-4-MG 
 

 Ki (µM) Imax (%) Ki (µM) Imax (%) Ki (µM) Imax (%) 
EAAT1 14.1 21 - - 32 71.8 
EAAT2 1.8 0 9.2 0 3.1 0 
EAAT3 16.6 0 0 0 34 66 

# Unique 
Conformers 

88 528 928 

Energy Range 
(kpm) 

8.309-13.401 10.202-25.588 1.741-13.155 
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Figure 3.13. Comparison of the test set ligand, 2S,4R-4MG, with the pharmacophore 
model A.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
2S,4R-4MG  superpositioned on the pharmacophore model A was selected based on the 
low scoring function value. The points-of-interest are labeled. Two views of the same 
alignment are shown. The scoring function values are shown for different alignments in 
the chart.    
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Figure 3.14. Comparison of the test set ligand, cis-4-methyl-L-trans-2,4-PDC, with the 
pharmacophore model A.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
DHK superpositioned on the pharmacophore model A. The alignment group was selected 
based on the low scoring function value. The points-of-interest are labeled. Two views of 
the same alignment are shown. The scoring function values are shown for different 
alignments in the chart.    
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Figure 3.15. Superpositioning of dihydrokainate (DHK) on the EAAT2 binding-site 
pharmacophore model A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Based on the low scoring function value, the above alignment was selected. The points-
of-interest are labeled. Notice the positioning  of the isopropyl group of DHK and the 
methyl group of cis-5-methyl-L-trans-2,3-PDC are oriented in the same region. 
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Figure 3.16. The superposition of L-glutamate, L-aspartate and D-aspartate with the 

EAAT2 binding site pharmacophore model. 

 

 

 
 
 
These substrates show almost identical alignment when superpositioned (1 cal spring 

constant) with the model. The alignment groups are selected based on their low scoring 

function values.  
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subjected to same rigorous space searching using stochastic methods mentioned above. 

The resultant molecular databases containing all the unique conformers were compared  

to the pharmacophore to generate the similarity score using equation 1 (Figure 3.17). The 

resultant multifit alignments shown in Figure 3.13 were selected on the basis of low 

scoring function value and visual inspection with CrystalEyes viewer (Figure 3.18).  

The similar positioning of the lipophilic phenyl ring of both L-β-TBOA and L-β-TBA 

suggests lipophilic interactions within the binding sites of the transporter and that the 

erythro- stereoisomers may render the phenyl rings inaccessible to this region. This 

lipophilic region may be common to both EAAT2 and EAAT3. However, subtle 

differences in the size, location and/or orientation of the aromatic ring with respect to the 

lipophilic residues in the transporters may exist. It seems likely that the ether ‘O’ of L-β-

TBOA may be participating in the electrostatic interaction within the EAAT2 binding site 

whereas this interaction may be substituted by a more lipophilic interaction within the 

EAAT3 binding site thus contributing to the differential effects produced by L-β-TBOA 

and L-β-TBA.  

 

Chapter 3: Discussion 

 

Taking advantage of the availability of selective ligands for EAAT2, we have built a non-

substrate inhibitor based EAAT2-specific binding site pharmacophore model (Figure 

3.8). The model was derived by calculating 3D structural similarities of multiple training 

set ligands (Martin, 1998; Perkins and Dean, 1993; Dean and Perkins, 1998). The 

inclusion of ligands in the training and test sets was based upon structural diversity,  
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Table 3.4. Inhibitory activity of β-substituted aspartate analogues is EAAT1, EAAT2 and 

EAAT3. 

 
 

COMPOUND 
 

CONC 
 

EAAT1 
3H-D-Asp 

Uptake 
(% of Control) 

 

EAAT2 
3H-D-Asp 

Uptake 
(% of Control) 

 

EAAT3 
3H-D-Asp Uptake 

(% of Control) 
 

L-Aspartate 
 

100µM 
 

4 
 

16 
 

15 
 

D,L-β-threo-
Benzyloxy-Asp 

 

100µM 
 

5 
 

2 
 

9 
 

L-β-threo-
Benzyl-Asp 

 

100µM 
 

8 
 

9 
 

1 
 

L-β-erythro-
Benzyl-Asp 

 

100µM 
 

59 
 

48 
 

14 
 

 
 
 

COOH

HOOC

NH2
COOH

HOOC

NH2

O

COOH

HOOC

NH2

 
 
 
L-β-threo-benzyl aspartate  L-β-erythro-BA  L-β-TBOA 
(L-β-TBA)    (L-β-EBA) 
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Table 3.5. The inhibitory activity of L-β-TBA and L-β-TBOA at EAAT1, EAAT2 and 

EAAT3. 

 
 

L-β-TBA D,L- β-TBOA 

 
 

Ki (µM) 
 

Ki (µM) 
 

EAAT1 8.7 9 
EAAT2 10.0 0.2 
EAAT3 0.8 - 

# Conformers 817 208 
Energy Range 

(KPM) 
1.0916-437 1.635-1116.14 

 
 
Figure 3.17. Charts showing the distribution of alignments groups for the L-β-TBA, L-β-

EBA and L-β-EBOA. 

 
A. L-β-TBA 
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B. L-β-EBA 
 

 
 
C. L-β-EBOA 
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Figure 3.18. Assessment of conformations and activities of L-β-TBOA, L-β-EBOA, L-β-

TBA and L-β-EBA against the EAAT2 binding-site pharmacophore. 

 
 
 
 
 

 

 

The pharmacophore model is shown in (A). The superposition (1 cal spring constant) of 

L-β-TBOA and L-β-TBA with the model (B) suggesting that possible points of 

divergence between the EAAT2 and EAAT3 pharmacophores may include subtle 

differences in the size, location and/or orientation of the aromatic ring or in the oxygen 

atom present in the linking group of L-β-TBOA, but not L-β-TBA. In (C) the 
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superposition of L-β-threo-  and L-β-erythro-BOA with the model illustrating the better 

fit of aspartyl backbone of the threo diastereomer with other aligned molecules, in 

addition to the distinct placements of the ether ‘O’ and the benzyl group that might 

influence the potency and selectivity for this inhibitor at EAAT2. A similar conclusion is 

reached regarding L-β-TBA, when the two diastereomers of the L-β-BA are compared. 
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potency and relative selectivity. Comparison of one conformer of one ligand to all the 

conformers of each of the three remaining ligands in the training set was based on six 

selected measures between the common functional groups, e.g., one amino and two 

carboxylate groups, shared by each ligand. The lower scoring function values for 

comparison groups represented the least amount of differences amongst the six variable 

conformer measures in 3D space. Based upon low scoring function values and visual 

appraisal in stereoview using CrystalEyes viewers, the final model was selected. The 

intent of this model is to predict structural requirements for the ligand to act as substrate 

or a non-substrate inhibitor, as well as identify putative points of difference between the 

EAAT subtypes. 

 

The planar arrangement of the two carboxyl groups and the amino group in 3D space 

suggests that these regions may identify a critical ligand triad that defines the initial 

recognition within the binding site. As was demonstrated, both the substrates and non-

transportable inhibitor aligned closely on these selected points-of-interest, suggesting that 

these functional groups may exhibit electrostatic interactions with the complementary 

residues found within the EAAT binding site and possibly with select ions. Subsequently, 

other critical ligand structural properties may influence important inhibitor behavior such 

as: substrate versus non-substrate ligand activity, potency, and EAAT subtype selectivity. 

Our model defines three additional regions distinct from the carboxyl and amino 

functionalities within the 3D model space.   
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One of these regions is occupied by the extended arm of the benzyl group of L-β-TBOA. 

The presence of amino acid residues near the initial recognition binding site moieties may 

offer lipophilic interaction with the benzyl group in this region. This idea is further 

supported by the newly identified ligand, WAY213613 (Dunlop et al., 2005). In the 

modeling studies by this group, WAY213613, was shown to project its aromatic side 

chain, which occupies a much larger volume, in the same direction as the benzyl group of 

L-β-TBOA. Additionally, the orientation of the benzyl group within the binding site may 

play a crucial role in determining this lipophilic interaction. When the less potent erythro 

stereoisomer L-β-EBOA (Shimamoto et al., 2000) was aligned with our pharmacophore 

model, the two benzyl groups occupied distinct positions within the binding site with 

respect to the amino acid and carboxylate triad discussed above (Figure 3.18). The 

positioning of the benzyl group of L-β-TBOA suggests that this model presents an 

orientation that is more favorable for complimentary interaction with the residues in the 

binding domain. It is plausible that the L-β-EBOA benzyl group lipophilic interaction is 

disrupted or it experiences steric hindrance or both within the binding site.  

 

The test set ligand, DHK, has been shown to be an  EAAT2-selective, non-tranportable 

inhibitor (Arriza et al., 1994). When superpositioned on our pharmacophore model as a 

validation step, DHK projected its isopropyl group in a distinct region. This isopropyl 

group has been shown to be an important determinant for activity at glutamate 

transporter, since 2-carboxy-3-pyrrolidineacetate, in which the isopropyl group is absent, 

is a weaker inhibitor of glutamate transport , even though it has enhanced binding 

capacity to KA, AMPA and NMDA receptors (Sonnenberg et al., 1996). The closely 
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related analogue, L-trans-2,3-PDC, has also been shown to be a preferential EAAT2 non-

substrate inhibitor (Bridges et al., 1999). The addition of a methyl susbstituent at 5- 

position of L-trans-2,3-PDC also has important consequences on its activity. Whereas, 

the cis-5-methyl addition retains the compound’s inhibitory capacity without 

compromising potency, the trans- addition abolishes its activity. Interestingly, in the 

superposition model, DHK projected its isopropyl side chain in the general vicinity of the 

methyl group of cis-5-methyl-L-trans-2,3-PDC. This unique placement of methyl and 

isopropyl groups suggests a stereospecific lipophilic interaction in this region. It remains 

less clear whether this area is a distinct lipophilic pocket associated with the EAAT 

protein.  

 

Another region, that may be important, is the distinct positioning of the cyclopropyl ring 

of L-anti-endo-3,4-MPDC in our model . This area may confer a Π-bond like character to 

this region and that modest structural ligand changes may be tolerated within the 

complementary binding area. Traditional substrates for EAATs have been mostly acyclic 

and devoid of steric bulk. It appears that the modification of parent substrate either by 

addition of substituents or the introduction of cyclic constraint, may hinder effective 

transport as a consequence of excess bulk and / or substituent-induced ligand 

conformational changes as demonstrated by 2,3-PDC and methyl glutamate analogues. 

However, constraining a molecule through the incorporation of cyclic structures can lead 

to both the substrate and the non-substrate inhibitors. For example, the highly restricted 

bicyclic analogues of PDC, L-anti-endo-3,4-MPDC and 2,4-MPDC, have been shown to 

inhibit glutamate transport in rat forebrain synaptosomes (Esslinger et al., 1998). 
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However, electrophysiological studies in oocytes revealed that whereas L-anti-endo-3,4-

MPDC is a non-substrate inhibitor,  2,4-MPDC exhibits excellent substrate acitivity at 

EAAT2 expressed in oocytes (Esslinger et al., 1998). Therefore, the obvious assumptions 

regarding the ability of ligands to transport based solely upon the degree of flexibility can 

be misleading.  

 

The inclusion of substrates into our model was done to identify the plausible properties 

that separate substrates from non-substrates. The general close fit of L-glutamate, L- and 

D- aspartates within the pharmacophore at low scoring function values confirms its 

predictive quality. The protrusion of substituents (e.g., (2S,4R)-4MG, cis-4-methyl-2,4-

PDC, L-β-TBOA) (Figure 3.16) as well as the cyclic rings (e.g., L-trans-2,3 PDC, DHK) 

(Figures 3.15), towards the periphery may invoke additional interactions with the binding 

site residues that may preclude the ability of the ligands to be effectively translocated. 

Thus, enhanced hydrophobic interactions within the binding site, by addition of the 

lipophilic substituents to the ligand, can increase potency while reducing the substrate 

activity of the inhibitor. 

 

The novel EAAT3-preferring inhibitor L-β-BA exhibits similar stereochemical trends as 

L-β-BOA. The threo- stereoisomer of L-β-BA is significantly more potent than the 

erythro form. When incorporated within our EAAT2-specific model, the benzyl group of 

L-β-TBA aligned well with that of L-β-TBOA (Figure 3.18 D). As expected from the 

analysis of L-β-BOA, the benzyl group of threo- and the erythro- stereoisomers of L-β-

BA occupy distinct regions in our model. Thus, both the EAAT2 and EAAT3 binding 
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sites may be thought to accommodate the benzyl groups to various extents and offer the 

lipophilic interaction with the amino acid residues conferring high potencies for 

respective threo stereoisomers. What separates the EAAT subtype-specific potencies of 

L-β-TBOA and L-β-TBA may be the linking of phenyl group to the aspartate backbone 

and the interaction with the binding site residues within this region. Additionally, 

differences in the orientation, size and location of the lipophilic groups can play 

significant role in determining the selectivity of the inhibitor. The oxygen atom of L-β-

TBOA may be involved in electrostatic interactions like hydrogen bonding within the 

EAAT2 binding site residues. It may be that the corresponding residues within the 

EAAT3 binding site prefer hydrophobic rather than electrostatic interactions. Hence, 

selectivity for one EAAT subtype relative to another may be driven by either favorable or 

unfavorable ligand-protein residue side chain interactions involving the ligand phenyl 

group and the linking region.  

 

Recently, John Gerdes’ research group has also developed an EAAT3 homology model 

using the coordinates from the crystal structure of Gltph sequence (Yernool et al., 2004). 

The studies were performed at the Molecular Computational Core Facility at the 

University of Montana.  The investigation utilized a Linux (Redhat Enterprise 3) 

workstation (dual 3.0 GHz processors, 2 GB memory) employing SYBYL 7.0 (Tripos, 

Inc.;  St. Louis, MO) and related Bioploymer and FlexX software suites. Submission of 

the alignment to SwissModel provided the homology model. The docking studies were 

subsequently done with the hEAAT3 homology model to define substrate space 

coordinates. Utilizing this model, we superpositioned our EAAT2 pharmacophore on the 
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defined substrate space coordinates in an attempt to compare the binding site interactions. 

The positioning of the benzyl group of  L-β-TBOA, as configured in our pharmacophore, 

suggested a possible steric clash with the EAAT3 transmembrane domain 7 (Figure 3.19). 

However, rotation of L-β-TBOA in our model by 1800, while maintaining the 3-point 

consistency of the functional groups, orients its benzyl group in the general direction of 

the HP2 loop. This later orientation of L-β-TBOA is more appropriate considering the 

lipophilic nature of the HP2 loop. Moreover, it has been reported that the HP2 loop can 

undergo a conformational change upon binding of ligands and thus, acts as an 

extracellular gate (Grunewald et al., 1998; Grunewald and Kanner, 2000; Slotboom et al., 

1999; Slotboom et al., 2001; Zarbiv et al., 1998; Seal and Amara, 1998; Seal et al., 2000). 

 

In the last few months, another set of high resolution crystal structures of EAAT bacterial 

homologue GLTPH were published with either the substrate, L-aspartate, or the non-

transportable inhibitor, L-β-TBOA, bound to the transporter (Boudker et al., 2007). This 

provided an opportunity to compare our pharmacophore with the L-β-TBOA from the 

crystal structure. The amino nitrogen, the distal and proximal carboxylate carbons, the 

benzyloxy oxygen, as well as the carbon backbone matched well with each other. The six 

measures (3 angle and 3 distances), as predicted from our model and the L-β-TBOA 

bound in the crystal structure, were found to be almost identical.  

 

In both instances, the benzyl groups of L-β-TBOA appears to project toward the HP2 

loop. The two configurations of L-β-TBOA did, however, differed from each other only 

with respect to the rotation of benzyl group about the ether oxygen atom (Figure 3.19). 
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The differences are likely attributable to the fact that in our model, L-β-TBOA was 

docked on the “closed” or the substrate-bound form rather than the “open” non-substrate 

bound form. The results suggest that the phenyl group of L-β-TBOA seems to interact 

with helical hairpin 2 (HP2) loop. The possibility of HP2 loop acting as an extracellular 

gate is compelling. Boudker et al propose that the binding of two sodium ions and L-

aspartate causes HP2 loop to close, thereby permitting the conformational change needed 

for the subsequent transport (Boudker et al., 2007). The binding of L-β-TBOA prevents 

HP2 from closing, thus locking the transporter in an ‘open’ state. 

 

Both, our pharmacophore model and the crystallographic data, suggest that the functional 

groups and the carbon backbone of the substrates occupy very similar, if not identical, 

regions. Thus, it is possible that subtype-selectivity and substrate activity resides in the 

subtle differences in the size and orientation of the lipophilic substitutions that can be 

allocated to the template. Exploiting these subtle differences among the binding sites of 

EAAT subtypes using these compounds’ templates can lead to development of ligands 

with highly selective binding profiles. With the development and refinement of specific 

models for each subtype, design of more selective substrates and non-transportable 

inhibitors is possible. Identifying and incorporating important functional domains of 

novel ligands into evolving models will significantly improve our understanding of the 

physiology and pathophysiology attributed to these transporters. 
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Figure 3.19. Positioning of L-β-TBA docked on the binding site of EAAT3 homology 
model. 
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A. The alignment of L-β-TBA (superpositioned with the pharmacophore model) with the 

defined substrate space coordinates within the EAAT3 homology model. The original 

positioning of the phenyl ring of L-β-TBA (green) suggests a possible steric clash with 

the EAAT3 transmembrane domain 7. However, rotation of L-β-TBA in our model by 

1800 (pink), while maintaining the 3-point consistency of the functional groups, orients 

its benzyl group in the general direction of the HP2 loop. B. The positioning of L-β-

TBOA as reported in the crystal structure by Boudker et al. 2007. 
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Chapter 4: Characterization of EAAT Modulation by Neuroactive Steroids 

 

Introduction: 

 

Modulation of EAATs: The glutamate transporter system is highly regulated and one 

that is modulated at different levels. For example at the genomic level, certain 

compounds, including: β-lactam antibiotics, injury-induced growth factors, retinol and 

corticosterone have been shown to alter transcription and translation of the transporters 

(Rothstein et al., 2005; Tian et al., 2007; Su et al., 2003; Figiel et al., 2003; Schlüter et 

al., 2002; O'Shea et al., 2006; Thorlin et al., 1998). EAATs can be also be regulated by 

changes in trafficking (Gonzalez and Robinson, 2004; Hughes et al., 2004; Duan et al., 

1999). In addition, certain molecules including EAAT interacting proteins (Jackson et al., 

2001; Lin et al., 2001), zinc (Mitrovic et al., 2001) and arachidonic acid (Zerangue et al., 

1995), appear to influence their function by allosteric modulation (Vandenberg et al., 

2004). A review on the modulation of these transporters by genomic and the trafficking 

mechanisms is presented in Chapter 1.  

 

Allosteric Modulation of glutamate transporters:  

Zinc: Zinc has been suggested to exhibit differential effects at the EAAT subtypes 

(Mitrovic et al., 2001; Vandenberg et al., 1998a). While Zn2+ was shown to modulate the 

activities of EAAT1 and EAAT4 expressed in Xenopus laevis oocytes, it appears to have 

no effects on EAAT2 or EAAT3. The binding of Zn2+ ion to EAAT1 inhibited the 

transport of glutamate in a non-competitive fashion. In the case of EAAT4, however, 
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arachidonic acid was shown to selectively inhibit the chloride conductance, with little 

effect on the transport of glutamate. The effects of zinc were found to be fully reversible 

and the Zn2+-binding sites have been identified in the glutamate transporters using site-

directed mutagenesis (Mitrovic et al., 2001; Vandenberg et al., 1998a). 

 

Polyunsaturated fatty acids (PUFAs): Another small molecule, arachidonic acid, has 

been shown to differentially modulate the activities of EAAT1, EAAT2 (Zerangue et al., 

1995) and EAAT4 (Fairman et al., 1998; Tzingounis et al., 1998; Poulsen and 

Vandenberg, 2001). While arachidonic acid, at micromolar concentrations, inhibited the 

EAAT1-mediated glutamate uptake by reducing the maximal transport rate by about 

30%, it increased the apparent affinity of glutamate for EAAT2 more than 2-fold when 

expressed in oocytes and HEK293 cells (Zerangue et al., 1995). In a similar vein, 

arachidonic acid was reported to reduce Vmax for glutamate uptake in salamander Müller 

cells, which expresses EAAT1 as the major transporter, by affecting membrane 

characteristics (Barbour et al., 1989). However, arachidonic acid was also reported to 

non-competitively inhibit EAAT2 (GLT1) in reconstituted system in which the purified 

transporter was incorporated into liposomes (Trotti et al., 1995). Taken together, these 

results suggest that the effects of arachidonic acid may be dependent upon the cell-type in 

which the transporter is expressed, and/or the make-up of lipids surrounding it.  

 

Studies on EAAT4 concluded that while there is no change in the uptake of glutamate in 

the presence of arachidonic acid, it was found to activate an uncoupled proton current 

associated with glutamate-bound EAAT4 (Fairman et al., 1998; Tzingounis et al., 1998; 
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Poulsen and Vandenberg, 2001). This effect was attributed to the binding of arachidonic 

acid directly to EAAT4. Additionally, the cyclo-oxygenase inhibitor, niflumic acid 

(Poulsen and Vandenberg, 2001) and other polyunsaturated fatty acids (PUFAs), e.g., 

docosahexaenoic acid (DHA) and linolenic acid (Fairman et al., 1998) resulted in similar 

activation of this proton current. In addition to the effects produced by simultaneous 

application, these compounds have the ability to differentially alter glutamate transport 

following longer times of exposure (Berry et al., 2005). For example, preincubation with 

DHA for 10-40 minutes was reported to modulate the activities GLT-1, GLAST and 

EAAC1 via different mechanisms in HEK cells. In the instance of GLT-1 and EAAC1, 

DHA (100-200µM) appears to stimulate D-[3H]aspartate uptake ~72% and 45% 

respectively via a mechanism requiring extracellular Ca2+ and involving CaM Kinase II 

and PKC, but not PKA. In contrast, the inhibitory effect (~40%) on GLAST does not 

require extracellular Ca2+ and does not involve CaM kinase II, PKC or PKA (Berry et al., 

2005).  

  

The differential regulation of EAATs supports the concept that the subtypes may play 

important individual roles in controlling extracellular glutamate concentrations needed 

for signaling. In the present work, we have identified and characterized a potentially 

novel site at which the EAATs may be differentially regulated. The compounds that were 

used to characterize this site were neuroactive steroids, including pregnenolone sulfate 

(PREGS).  
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Neuroactive Steroids: The nervous system is a target for two different pools of steroids, 

one coming from the peripheral glands (i.e., steroid hormones) and the second one 

originating directly in the nervous system (i.e., neurosteroids) (Agis-Balboa et al., 2006;  

Koenig et al., 1995;  Plassart-Schiess and Baulieu, 2001). Central and peripheral nervous 

systems have inherent enzymatic capacity to synthesize various neurosteroids from 

cholesterol or other steroidal precursors (Baulieu, 1998; Corpechot et al., 1981;  

Corpechot et al., 1983;  Corpechot et al., 1993; Liere et al., 2000). Furthermore, certain 

steroids remain in the nervous system long after adrenalectomy or gonadectomy 

(orchidectomy) (Corpechot et al., 1981;  Corpechot et al., 1983;  Corpechot et al., 1993; 

Liere et al., 2000). “Neuroactive steroids” is the general term that encompasses all the 

steroids present in the brain. They may be derived by in situ synthesis, obtained from the 

peripheral hormones, or converted by enzymatic activation in metabolites which are more 

active and in some cases utilize a different mechanism of action (Melcangi and Panzica, 

2006;  Paul and Purdy, 1992) [Paul et al 1992;  Melcangi et al 2006]. 

 

Neurosteroids are synthesized from cholesterol by a series of enzymatic reactions 

mediated both by P450 and non-P450 enzymes (Mellon and Griffin, 2002;  Mellon et al., 

2001; Robel and Baulieu, 1995). The biosynthesis of steroids and neurosteroids requires 

the movement of cholesterol from the outer to the inner mitochondrial membranes where 

cholesterol side-chain cleavage enzyme, cytochrome P450scc (CYP11A1), resides and 

converts cholesterol into pregnenolone, the precursor to other neurosteroids (Mellon and 

Griffin, 2002;  Mellon et al., 2001).  This dynamic process is modulated by both the 

control of the intrinsic enzymatic activity of P450scc and by substrate availability. For 
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this reason, cholesterol transport within the mitochondrion has emerged as the key 

regulation point for steroidogenesis. Peripheral-type benzodiazepine receptor (PBR), 

along with steroidogenic acute regulatory protein (StAR), facilitates the efficient 

production of steroid hormones by regulating the translocation of cholesterol across the 

mitochondrial membranes (Jefcoate, 2002; Papadopoulos, 2004; Papadopoulos et al., 

1997). The brain contains additional steroid metabolizing enzymes, including 

sulfonyltransferases and sulfohydroxylases, which convert classic hormones to a variety 

of sulfated neuroactive compounds. To maintain and regulate the effects of neuroactive 

steroids, the steroidogenic enzymes in the CNS and PNS are regulated during 

development. Moreover, their regulation is region and cell-specific.  

 

Neuroactive steroids exert their effects on the brain either through activation of 

intracellular steroid receptors (genomic pathway) or via non-genomic route (McEwen, 

1994;  Plassart-Schiess and Baulieu, 2001). The genomic effects are characterized by a 

delayed onset and prolonged in duration, while non-genomic effects are typically rapid in 

onset and shorter in duration (McEwen, 1994).  

 

Genomic Effects: Steroid hormones that are synthesized in the periphery can cross the 

blood-brain barrier, and can function at the genomic level to produce changes in mood 

and behavior. These effects develop relatively slowly (over minutes to hours), and can 

persist long after the disappearance of the steroid from the brain (McEwen, 1991c; 

McEwen, 1994).  
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These effects are mediated by the receptors distributed throughout the brain that are 

present on both neurons and glia (McEwen, 1991c; McEwen et al., 1986) (McEwen et al., 

1986; McEwen, 1991a; McEwen et al., 1983; O'Keefe and Handa, 1990). The steroid 

hormone receptor superfamily consists of a large number of genes. It includes receptors 

for the steroids, estrogen (ER), progesterone (PR), glucocorticoid (GR), 

mineralocorticoid (MR), and androgen (AR) as well as the receptors for thyroid hormone 

(TR), vitamin D (VDR), retinoic acid (RAR), and 9-cis retinoic acid (RXR), and 

ecdysone (EcR) (Tsai and O'Malley, 1994; Evans, 1988). This superfamily is 

characterized by a unique modular structure with receptors divided into several domains 

(Tsai and O'Malley, 1994; Beato, 1989; Evans, 1988; Fuller, 1991). They contain a 

conserved 66-residue DNA-binding domain and a conserved 240-residue hormone-

binding domain. The role of the hormone-binding domain in an intact receptor is to 

prevent the DNA-binding domain from interacting with DNA unless hormone is bound. 

The amino-terminal domain, which is conserved, enables a receptor to interact with other 

transcriptional regulators. 

 

Progestins, estrogens, androgens, and corticosteroids are capable of modifying brain 

functions and behaviors by mechanisms that involve the classic genomic model for 

steroid action (McEwen et al., 1983). In this model, steroid hormones must enter target 

cells to act. It is thought that, because of their lipophilic nature, free steroid hormones 

enter the target cells primarily by passive diffusion through the cell membrane. However, 

the evidence for the active transport via membrane transporters (Chen and Farese, 1999; 

Thompson, 1995) as well as receptor-mediated endocytotic mechanisms is accumulating 
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(Kralli et al., 1995; Nykjaer et al., 1999; Adams, 2005; Hammes et al., 2005). Hormones 

such as estradiol, progesterone, testosterone, and cortisol traverse the plasma membrane 

and bind first to specific receptor proteins in the cytosol. The hormone-receptor 

complexes (activated receptors) then migrate to the nucleus, where they bind to specific 

DNA sequences called hormone response elements (HREs) and regulate the expression 

of nearby genes. The expression of these genes is consequently altered resulting in 

promotion (or suppression) of transcription.  

 

Non-genomic effects: The rapid effects of steroids, which occur within seconds or a few 

minutes (Brann et al., 1995; McEwen, 1991c) are not compatible with slower genomic 

mechanisms involving transcription events (Beato, 1989). The non-genomic effects of 

neuroactive steroids are produced mainly via an action on membrane proteins. The most 

thoroughly characterized membrane targets have been GABAA and NMDA receptors. 

Pharmacological characterizations have demonstrated that both sulfated, as well as non-

sulfated neuroactive steroids, act upon these receptors (Gibbs et al., 2006). 

 

GABAA receptor modulation by neuroactive steroids: Whereas certain non-sulfated 

neuroactive steroids seem to potentiate the GABAA receptor function, their sulfated 

counterparts inhibit these receptors (Park-Chung et al., 1999). For example, 5α-pregnan-

3α-ol-20-one (3α,5α-THPROG or allopregnanolone) and 5β-pregnan-3α-ol-20-one 

(3α,5β-THPROG or pregnanolone) potently prolong the GABA-mediated inhibitory post-

synaptic currents at synapses between rat hippocampal neurons in cultures, oocyte 

expression system and primary chick spinal cord neurons (Park-Chung et al., 1999; 
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Harrison et al., 1987). In contrast, PREGS, DHEAS, as well as the 3α and 3β isomers of 

pregnanolone sulfate, inhibit the GABA-induced currents by allosteric modulation of 

GABAA receptors at micromolar concentrations (Majewska et al., 1990; Majewska et al., 

1988; Park-Chung et al., 1999). The endogenous progesterone metabolites 3α,5α-

THPROG and 3α,5β-THPROG and the deoxycortisone metabolite 5α-pregnan-3α-21-diol 

(3α,5α-THDOC) are potent stereoselective positive allosteric modulators of GABAA 

receptors (i.e., nanomolar concentrations) (“GABA modulatory effect”) (Callachan et al., 

1987; Peters et al., 1988; Lambert et al., 1995). At relatively higher concentrations 

(nanomolar to low micromolar) these steroids directly activate the GABAA receptor-

channel complex (“GABA mimetic effect”) (Callachan et al., 1987; Shu et al., 2004) at a 

distinct site from the GABA binding site (Ueno et al., 1997). However, the potency varies 

widely and is determined by the neuron-type, as well as by subunit composition of 

GABAA receptor (Harney et al., 2003; Vicini et al., 2002; Cooper et al., 1999; Brussaard 

et al., 1997; Koksma et al., 2003; Belelli et al., 2002). 

 

NMDA receptor modulation by neuroactive steroids: In the instance of NMDA 

receptors, sulfated neuroactive steroids appear to be more active than the non-sulfated 

ones. The sulfated neurosteroids, PREGS and DHEAS, have been shown to be positive 

modulators of NMDA receptors at micromolar concentrations (Wu and Chen, 1997;  Wu 

et al., 1991). On the other hand PREGS was shown to inhibit the responses to AMPA and 

kainate (Wu and Chen, 1997;  Wu et al., 1991). The analogs pregnanolone sulfate and 

epipregnanolone sulfate, which differs from PREGS primarily by the lack of a C-5 – C-6 

double bond, inhibit the NMDA response of chick spinal cord neurons. Surprisingly, the 
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pharmacological studies showed that PREGS and epipregnanolone sulfate do not 

compete for a common site (Park-Chung et al., 1997). The interactions of steroids with 

NMDA receptors have been suggested to be allosteric in mechanism (Bowlby, 1993). 

The non-sulfated neurosteroids, e.g., PREG and pregnanolone are without any 

modulatory activity at NMDA receptors, which suggests that the negative charge at the 

C-3 position may be important for ligand-receptor interaction (Weaver et al., 2000). 

 

Sigma1 receptor modulation by neuroactive steroids: In addition, the direct action on 

the activities on both NMDA and GABAA receptors, neuroactive steroids have been 

shown to indirectly modulate these receptors by their action on sigma1 (σ1) receptors 

(Monnet and Maurice, 2006). 

 

Pharmacotherapeutic potential of Neurosteroids: Based upon the widespread effects 

that the neuroactive steroids have on neurotransmission, it is not surprising that their 

regulation is associated with various physiological and pathophysiological conditions, 

including stress, pregnancy, neural development and ageing (Paul and Purdy, 1992; 

Schumacher et al., 2003). In addition to applications in anaesthesia, lower doses of 

steroids are found to produce anxiolytic, sedative and hypnotic effects (Eser et al., 2006; 

Gasior et al., 1999; Rupprecht, 2003; Goodchild et al., 2001). Data from preclinical and 

clinical studies also support the potential efficacy of neuroactive steroids as a novel class 

of drugs for the therapeutic management of epilepsy, insomnia and drug dependence 

(Gasior et al., 1999; Gee et al., 1995; Rupprecht, 1997; Rupprecht et al., 1996).  
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Effects of steroids on glutamate transporters: In addition to their action on receptors, 

certain steroids including gonadal steroids and corticosteroids have also been suggested 

to play a regulatory role on the glutamate transporters. These include the upregulation of 

both EAAT1 and EAAT2 mRNA, protein expression and activity in cultured primary 

astrocytes following the administration of estrogen for 72hours (Pawlak et al., 2005). 

This effect was sensitive to ICI 182,780 treatment suggesting estrogen action through 

nuclear estrogen receptor. The synthetic glucocorticoid, dexamethasone, also produced a 

marked increase of EAAT2 (GLT-1) transcription and protein levels in cortical 

astrocytes, whereas EAAT1 (GLAST) expression remained unaffected (Zschocke et al., 

2005). Up-regulation of GLT-1 expression was accompanied by an enhanced glutamate 

uptake, which could be blocked by the specific GLT-1 inhibitor dihydrokainate. The 

promoting effect of dexamethasone on GLT-1 gene expression and function was 

abolished by the GR antagonist mifepristone. The stress hormone, corticosterone, has 

also been reported to regulate GLT-1 expression in the rat hippocampus (Autry et al., 

2006). GLT-1 mRNA and protein are upregulated in the hippocampus of ADX, increases 

that were reversed with administration of physiological levels of GCs, suggesting that 

basal levels of GCs provide tonic inhibition of GLT-1 mRNA and protein expression. In 

the high-dose corticosterone paradigm, GLT-1 protein was increased throughout the 

hippocampus. It has been shown that glucocorticoids like corticosterone and 

dexamethasone, but not non-glucococorticoids, are capable of producing a rapid (within 

15 min), specific and transient (35-45 min) rise (~155-160%) in glutamate levels in 

hippocampus in vivo. These effects are attributed to non-genomic mechanism of action 

(Venero and Borrell, 1999).  
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In the present work, we report the specific modulation of the EAATs by certain sulfated 

neuroactive steroids using C17.2 cells overexpressing EAAT1 and rat primary astrocyte 

cultures. We find that simultaneous application of neuroactive steroid pregnenolone 

sulfate (PREGS) alters the ability of EAAT1 to transport atypical substrates like D-

aspartate and L-cysteine.  

 

Chapter 4: Results 

 

Pregnenolone sulfate (PREGS) increases the uptake of 3H-D-Asparate in C17.2 cells 

expressing EAAT1  

The uptake of D-[3H]-aspartate by C17.2 cells (Snyder et al., 1992;  Snyder et al., 1995) 

expressing pAM/CAG-hEAAT1 (Esslinger et al., 2005) 24-hour post-transfection is 

shown in Figure 4.1. D-Aspartate is routinely used to quantify EAAT activity, as it is a 

non-metabolizable substrate of the transporter. The control rates of uptake of D-aspartate 

at 10µM were 102±8 pmol/min/mg protein (mean ± s.e.m., n = 65). The C17.2 cells do 

not show any inherent Na+-dependent D-[3H]-aspartate uptake activity, as was illustrated 

by the untransfected cells. This uptake was predictably blocked by non-selective EAAT 

inhibitors like L-β-threo-benzyloxy aspartate (L-β-TBOA) (Shimamoto et al., 1998), L-

trans-2,4-pyrrolidine dicarboxylate (L-trans-2,4-PDC) (Arriza et al., 1997) but not by the 

EAAT2-selective inhibitor dihydrokainate (DHK) (Arriza et al., 1994). 

When pregnenolone sulfate (PREGS) at 100µM was similarly tested as a competitive 

inhibitor, it was found to increase rather than decrease the uptake of D-[3H]-aspartate. As  
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Figure 4.1. Effect of EAAT inhibitors on the uptake of D-[3H]-aspartate in C17.2 cells 

transfected with pAM/CAG-hEAAT1. 
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The uptake of  D-[3H]-aspartate was measured in C17.2 cells transfected with 

pAM/CAG-hEAAT1 in the presence and absence of known EAAT inhibitors. The 

untransfected cells do not show any Na+-dependent uptake (column 1). Control uptake 

for 10µM D-[3H]-aspartate was 102 ± 8 pmol/min/mg protein (mean ± S.E.M.). The 

inhibitor concentrations were 100µM for DL-TBOA and L-t-2,4-PDC, 250µM for DHK. 

The data are the mean ± S. E. M. of  n individual experiment each performed in 

duplicate. * p<0.0001. 
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reported in Figure 4.2, it increased the Na+-dependent uptake of 3H-D-aspartate to 161 ± 

3% of control (mean ± s.e.m., n = 63). Significantly, the PREGS (as well as all the 

inhibitors) were added simultaneously with D-aspartate. This uptake is EAAT1-mediated, 

as it is blocked by non-selective EAAT inhibitors like L-β-TBOA and (2S,4R)-4-methyl 

glutamate ((2S,4R)-4MG) (Vandenberg et al., 1997). Untransfected cells do not exhibit 

any uptake activity either in the presence or the absence of PREGS. 

 

Only selective sulfated neuroactive steroids stimulate the uptake of D-[3H]-aspartate 

by C17.2 cells expressing EAAT1 

To determine what other steroids may effect the uptake by EAAT1 in C17.2 cells, we 

screened a number of steroids in different salt forms. These steroids were selected based 

on their activities at different receptors present within the brain. Thus, DHEAS has been 

found to have positive modulatory effects on glutamate NMDA receptors and negative 

modulatory effects on GABA receptors (Wu et al., 1990; Wu et al., 1991; Belelli and 

Lambert, 2005). The closely related steroids 3α,5α-TH-PROGS (allopregnanolone 

sulfate) and 3α,5β-TH-PROGS (pregnanolone sulfate), on the other hand, exhibit 

inhibitory effects on NMDA receptors, as well as GABAA receptors (Park-Chung et al., 

1999;  Park-Chung et al., 1994;  Park-Chung et al., 1997). When tested on C17.2 cells 

expressing EAAT1, the structurally related steroids, 3α,5α-TH-PROGS (200±20 % 

control, n = 5) and 3α,5β-TH-PROGS (174±19 % control, n =5) produced similar effects 

on D-[3H]-aspartate uptake (Figure 4.3). Interestingly, only minimal changes in activity  
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Figure 4.2. Potentiation of EAAT1-mediated D-[3H]-aspartate by pregnenolone sulfate 

(PREGS) 
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The uptake of  D-[3H]-aspartate was measured in C17.2 cells transfected with 

pAM/CAG-hEAAT1 in the presence and absence of 100µM pregnenolone sulfate 

(PREGS). The untransfected cells do not show any Na+-dependent uptake in the presence 

of PREGS. Control uptake for 10µM D-[3H]-aspartate was 102 ± 8 pmol/min/mg protein 

(mean ± S.E.M.). The inhibitor concentrations were 100µM for DL-TBOA and 2S,4R-

4MG. * and # represent comparison to the control and PREGS treatment respectively. 

The numbers in brackets represent n.  p < 0.05. 

 

 



 103 

Figure 4.3. Potentiation of EAAT1-mediated D-[3H]-aspartate uptake by sulfated steroids 

in C17.2 cells. 
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The uptake of D-[3H]-aspartate in C17.2 cells transfected with pAM/CAG-hEAAT1 in 

the presence and absence of 100µM sulfated steroids. * represents statistically significant 

values (p < 0.05) as compared to the control. The numbers in brackets represent n.   
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were seen with the addition of dehydroepiendrosterone sulfate (DHEAS), a steroid 

having similar effects as PREGS on NMDA receptors, GABA receptors and VGLUTs. 

Other sulfated steroids like 1,3,5(10)-estratrien-3-ol-17-one sulfate (ESTS) failed to 

effect the uptake of D-[3H]-aspartate by EAAT1. Whereas all the sulfated steroids tested 

possess a sulfate group at C-3, they differ in the C-17 substitution and the degree of 

unsaturation (Figure 4.4). PREGS and pregnanolone analogs possess acyl group at C-17, 

while DHEAS and ESTS have oxygen atom at C-17. The more potent activity observed 

with PREGS, 3α,5α-TH-PROGS and 3α,5β-TH-PROGS suggests that the acyl side chain 

at C-17 of these steroids may be important for effective interaction with the target site. 

The negative charge at C-3 as well as the C-17 substitution have been identified to play 

critical roles in interaction of steroid with other proteins, including GABAA receptors 

(Hosie et al., 2006), estrogen receptors (Brzozowski et al., 1997), and sex hormone-

binding globulin (SHBG) protein (Grishkovshaya et al., 2000). The replacement of 

sulfate (SO4
2-) with another negatively charged group like hemisuccinate at C-3 position 

has been shown to retain the activity of the corresponding neuroactive steroids at NMDA 

(Weaver et al., 2000) and GABAA receptors (Park-Chung et al., 1999). The interaction at 

the C-3 position appears to also play an important role in EAAT1-expressing C17.2 cells. 

In this instance, however, the presence of a SO4
2- group, but not acetate, at C-3 appears to 

be required, as the non-sulfated steroids like PREG, PREGA, EST-hemisuccinate 

(ESTHem) (at 100µM) were found to have no effect on the uptake of D-aspartate by 

EAAT1 (Figure 4.5). The non-sulfated steroids, including: PREG and pregnanolone 

derivatives have also been shown to elicit no effect on NMDA-mediated currents or 

neurotoxicity in primary rat hippocampal neurons (Weaver et al., 2000). 
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Figure 4.4. Structures of common neurosteroids. 
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Figure 4.5. Effects of non-sulfated steroids on D-[3H]-aspartate uptake by EAAT1 in 

C17.2 cells. 
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The transport of D-[3H]-aspartate in C17.2 cells transfected with pAM/CAG-hEAAT1 in 

the presence and absence of 100µM non-sulfated steroids. The numbers in brackets 

represent n. The uptake values were found to be statistically non-significant as compared 

to control.   
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A wide variety of compounds that exhibit some structural characteristics of steroids were 

also tested for inhibitory activity, including: 5´-adenosine monophosphate (250µM), 5´-

guanosine monophosphate (250µM), anandamide (300µM), 5,6-naphthyl quinoline 

dicarboxylate (5,6-QDC) (250µM) and 3-nitro-L-tyrosine (100µM) (Figure 4.6). None of 

these compounds showed any effect on the uptake of D-[3H]-aspartate on C17.2 cells 

expressing EAAT1.  

 

The sulfated steroids exhibit the strongest effects on the uptake by EAAT1 

To test if PREGS alters the uptake of D-[3H]-aspartate by other EAATs, C17.2 cells were 

transfected with EAAT1, EAAT2 or EAAT3. As seen in figure 4.7, uptake into each of 

the transfected cells was sensitive to the inhibition by L-trans-2,4-PDC. In contrast to 

their effect on EAAT1, PREGS, 3α,5β-TH-PROGS and 3α,5α-TH-PROGS decreased the 

EAAT2-mediated D-[3H]-aspartate uptake to a small but statistically significant degree: 

69±6% (n = 6), 80±4% (n = 5) and 80±5% (n = 6) of control, respectively. In the instance 

of EAAT3, only PREGS produced a small potentiation that was statistically significant. 

ESTS at 100µM was ineffective at all the EAAT subtypes tested. Comparison of percent 

control values clearly suggests the most potent effect of the active steroids is on EAAT1-

mediated D-aspartate uptake. 

 

To confirm that the effect of PREGS on EAAT1 is reproducible in a more 

physiologically relevant system, rat primary astrocytes, which predominantly express 

EAAT1 (GLAST) (Swanson et al., 1997), were assayed in the presence and absence of 

PREGS.  
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Figure 4.6. Structures of the compounds tested for their activity at EAAT1-mediated 

uptake in C17.2 cells.    
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Figure 4.7. Effects of PREGS on the uptake of D-[3H]-aspartate by EAAT1, 2 and 3 in 

C17.2 cells. 
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The uptake of  D-[3H]-aspartate was measured in C17.2 cells transfected with hEAAT1, 

hEAAT2 or hEAAT3 in the presence and absence of 100µM sulfated steroids. The D-

[3H]-aspartate uptakes were blocked by 100µM L-t-2,4-PDC (non-selective EAAT 

inhibitor). The numbers in brackets represent n. * (p < 0.05) when compared to the 

corresponding control uptake values. 
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Figure 4.8. Effect of PREGS on the uptake of D-[3H]-aspartate by primary astrocyte cells 

in culture (PAC). 
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The uptake of  D-[3H]-aspartate was measured in primary astrocytes. Control uptake for 

10µM D-[3H]-aspartate was 165 ± 18 pmol/min/mg protein (mean ± S.E.M., n = 25). The 

steroids were used at 100µM. The concentrations of inhibitors were 100µM for DL-

TBOA and L-glutamate, 250µM for DHK. The data are the mean ± S. E. M. of n 

individual experiments each performed in duplicate. * p < 0.05. 
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EAAT1 (GLAST) and EAAT2 (GLT-1) are the two subtypes most commonly found on 

rat astrocytes (Danbolt, 2001). DHK was used as a negative control to exclude any effects 

attributable to EAAT2. As shown in Figure 4.8, the sodium dependent transport in the 

primary astrocytes was inhibited by the non-specific EAAT inhibitor, L-trans-2,4-PDC 

but not by the EAAT2-selective blocker, DHK. Consistent with our observations in 

C17.2 cells, PREGS and 3α, 5β-TH-PROGS, reproducibly stimulated the uptake of D-

[3H]-aspartate by the primary astrocytes to 153 ± 6% control (mean ± s.e.m., n = 19) and 

174 ± 6% control (mean ± s.e.m., n = 11) . It therefore appears that C17.2 cells may be 

used as an appropriate mimic of the endogenous system. Two other cell types, HEK293T 

cells and Xenopus laevis oocytes, were also examined (Figure 4.9). Surprisingly, PREGS 

did not exert any effects on EAAT1-mediated D-aspartate uptake in these cells. This 

suggests that the stimulatory acitivity is cell-type specific and that additional mechanisms 

and / or interactions may play a role in the observed effects. 

 

The concentration dependence of the activity of PREGS was then examined in greater 

detail. The dose-response curves shown in Figures 4.10 and 4.11 reveal that the effect of 

PREGS is saturable and exhibits the half-maximal (EC50) values of 8±2µM for C17.2 

expressing EAAT1 and 4±1µM for the primary astrocytes.  

 

PREGS effect D-aspartate uptake but not the uptake of other common substrates  

The initial studies on the activity of PREGS on EAAT1 were carried out with D-aspartate 

as a substrate. This analogue is commonly used in the uptake studies as it negates the 

metabolic complications associated with the use of either L-glutamate or L-aspartate.  
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Figure 4.9. Effect of PREGS on the uptake of D-[3H]-aspartate in HEK293T cells and 

oocytes expressing EAAT1. 
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The uptake of  D-[3H]-aspartate was measured in HEK293T cells and in oocytes 

expressing EAAT1. The concentration of D-aspartate used were 10µM for HEK293T 

cells and 100µM for oocytes. PREGS do not appear to alter the activity of EAAT1 for the 

uptake of D-[3H]-aspartate in these expression systems. N = 3. 

 

 

 

 



 113 

 

Figure 4.10. Dose-reponse curve showing potentiation of EAAT1-mediated D-[3H]-

aspartate uptake by PREGS in C17.2 cells. 
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Effects of various concentrations of PREGS on the uptake of 10µM D-aspartate uptake in 

C17.2 cells transfected with pAM/CAG-hEAAT1. EC50 values (shown in inset) from the 

dose-response curves were generated using a four-parameter Hill function. The data were 

fit to the equation: y = a + b*c/(d∧c+x∧c), where a = y min, b = range of transition (y max 

– y min), c = slope, d = EC50. 
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Figure 4.11. Dose-reponse curve showing potentiation of EAAT1-mediated D-[3H]-

aspartate uptake in primary astrocytes. 
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Effects of different concentrations of PREGS on the uptake of 10µM D-aspartate uptake 

in primary astrocytes. EC50 values (shown in inset) from the dose-response curves were 

generated using a four-parameter Hill function. The data were fit to the equation: y = a + 

b*c/(d∧c+x∧c), where a = y min, b = range of transition (y max – y min), c = slope, d = 

EC50. 
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Thus, C17.2 cells expressing EAAT1 were assayed for L-glutamate and L-aspartate 

uptake in the presence and absence of PREGS. Surprisingly, while PREGS stimulates the 

uptake of D-[3H]-aspartate, it minimally effected the uptake of L-[3H]-glutamate or L-

[3H]-aspartate by EAAT1 (Figure 4.12). The lack of an effect of PREGS on either L-

aspartate or L-glutamate uptake prompted us to question if the kinetic properties of the 

substrates at EAAT1 may influence the observed modulation. To examine this, we first 

compared the substrate activities of D-[3H]-aspartate, L-[3H]-aspartate and L-[3H]-

glutamate under identical conditions (10µM). As shown in Figure 4.13, the accumulation 

of L-[3H]-glutamate and L-[3H]-aspartate was greater than that observed with uptake of 

D-[3H]-aspartate potentially resulting from differences in either (or both) Km and Vmax 

values. Thus, about twice as much L-[3H]-glutamate is transported (217±11% of D-

aspartate, n = 19) as D-aspartate. The Imax value for D-aspartate uptake has been reported 

to be 0.43% relative to that of glutamate (Imax = 1) in oocytes expressing EAAT1 (Arriza 

et al., 1994). In the same study, the reported Km values were 48µM and 60µM for L-

glutamate and D-aspartate respectively at EAAT1 expressed in COS-1 cells. To further 

expand this relationship, the concentration dependence with which EAAT1 transports L-

glutamate and D-aspartate were examined in the presence and absence of PREGS. The 

kinetic analysis of L-glutamate and D-aspartate uptake illustrated in figures 4.14 and 4.15 

yielded a Km value for D-aspartate and L-glutamate of 41±3µM and 19±1µM, 

respectively, in C17.2 cells expressing EAAT1. Interestingly, when expressed in C17.2 

cells, the Vmax values for L-glutamate and D-aspartate were similar. Non-linear analysis 

of the curves reveal that while PREGS does not significantly alter the Vmax for either L-

glutamate or D-aspartate uptake, it reduces the Km (21 ± 2µM) for EAAT1-mediated  
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Figure 4.12. Effect of PREGS on the EAAT1-mediated uptake of D-[3H]-aspartate, L-

[3H]-glutamate and L-[3H]-aspartate. 
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The effect of 100µM PREGS on the uptake of D-[3H]-aspartate, L-[3H]-glutamate and L-

[3H]-aspartate, in C17.2 cells transfected with pAM/CAG-hEAAT1. The substrate 

concentrations were at 10µM. The control uptake rates for the substrates were (in 

pmol/min/mg): 102 ± 8 (mean ± S.E.M., n =65) for D-[3H]-aspartate, 177 ±15 (n = 39) 

for L-[3H]-glutamate and 170 ± 33 (n = 7) for L-[3H]-aspartate. The numbers in the 

brackets represent n for the PREGS treatment. * (p < 0.05) compared to the respective 

control uptake values. 
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Figure 4.13. Comparisons of uptake of different substrates in C17.2 cells expressing 

hEAAT1. 
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L-[3H]-aspartate. These substrates were used at 10µM concentrations in C17.2 cells 

transfected with hEAAT1. The numbers in the brackets represent n. * p < 0.05. 
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uptake of D-[3H]-aspartate . The effect on Km suggests potential allosteric modulation of 

the transporter by PREGS. The Km for L-glutamate transport did not change in the 

presence or absence of PREGS. 

 

PREGS appears to increase the uptake of D-[3H]-asparatate by direct interaction 

with EAAT1 

To further characterize the nature of interaction between PREGS and EAAT1-expressing 

C17.2 cells, pre-incubation studies were undertaken to examine the effects of variables 

such as exposure time and reversibility. As shown in Table 4.1, the 15´ pre-incubation 

with PREGS, followed by a 5´ washout, produced virtually no change on the uptake of 

D-aspartate. These findings suggest that the effects of PREGS are rapid and reversible. 

Moreover, subsequent treatment with PREGS after the washout produced an equivalent 

stimulation, further indicating it may be directly interacting with the transporter. 

 

Numerous examples exist that utilize second messenger-mediated mechanisms such as 

Ca2+ ions or nitric oxide molecules to regulate transporter activity (Berry et al., 2005; 

Duan et al., 1999; Mafra et al., 2002). To investigate if Ca2+ contributed to the observed 

changes in the EAAT1-mediated D-aspartate uptake, assays were conducted in Ca2+-free 

HBSS uptake buffer containing Ca2+ ion chelator EGTA. As shown in Table 4.2, while 

uptake was depressed a small amount in the Ca2+-free conditions, PREGS still increased 

the EAAT1-mediated uptake to about 150% of control. Similarly, 60′ preincubation with 

L-NAME (NO inhibitor) did not prevent the stimulating effect of PREGS on EAAT1 as  
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Figure 4.14. Michelis-Menton kinetics on the uptake of L-[3H]-glutamate in the presence 

and absence of PREGS by EAAT1-expressing C17.2 cell. 
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A representative plot of concentration dependence of L-[3H]-glutamate uptake in C17.2 

cells transfected with pAM/CAG-hEAAT1 in the presence and absence of 100µM 

PREGS. The data were analyzed by non-linear curve-fitting to Michelis-Menton 

equation, y = m1*x / (m2 + x) The inset shows the Vmax (m1) and Km (m2) values (mean 

± S.E.M., n = 6).  
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Figure 4.15. Michelis-Menton kinetics on the uptake of D-[3H]-aspartate in the presence 

and absence of PREGS by EAAT1-expressing C17.2 cell. 
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A representative plot of concentration dependence of L-[3H]-aspartate uptake in C17.2 

cells transfected with pAM/CAG-hEAAT1 in the presence and absence of 100µM 

PREGS. The data were analyzed by non-linear curve-fitting to Michelis-Menton 

equation, y = m1*x / (m2 + x) The inset shows the Vmax (m1) and Km (m2) values (mean 

± S.E.M., n = 7). * p < 0.05. 
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Table 4.1. Effect of 15-minute PREGS preincubation of D-[3H]-aspartate uptake by 

C17.2 cells expressing hEAAT1. 

 

Treatment Percent of control 

5´ D-[3H]-aspartate uptake 100 

5´ D-[3H]-aspartate uptake + PREGS 161 ± 3 ( n = 63) * 

15’ preincubation with 100µM PREGS 

+ 5´ D-[3H]-aspartate uptake  

100 

 

15’ preincubation with 100µM PREGS 

+ 5´ D-[3H]-aspartate uptake + PREGS 

143 ± 5 (n = 5) * 

 

C17.2 cell expressing EAAT1 were preincubated with 100µM PREGS for 15´ followed 

by a 5´ washout. The uptake of D-[3H]-aspartate was subsequently evaluated in the 

presence or absence of simultaneous application of 100µM PREGS for 5´ followed by the 

washout. No statistically significant results were obtained when the control uptake rates 

for D-[3H]-aspartate , in the preincubation condition (106 ± 4 %, ) and the non-

preincubation conditions, were compared. * (p < 0.05) denotes comparison to the 

respective controls. 
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Table 4.2. Effect of Ca2+-free conditions on the potentiating effect of PREGS on D-[3H]-

aspartate uptake by EAAT1-expressing C17.2 cells. 

 

 

Treatment Percent of control 

5´ D-[3H]-aspartate uptake  100 

5´ D-[3H]-aspartate uptake + PREGS 161 ± 3 ( n = 63) * 

5´ D-[3H]-aspartate uptake (Ca2+-free) 100 

5´ D-[3H]-aspartate uptake + PREGS (Ca2+-free) 152 ± 16 (n = 3) * 

 

The uptake of D-[3H]-aspartate was evaluated in normal and Ca2+-free conditions in the 

presence or absence of simultaneous application of 100µM PREGS for 5´. The control 

uptake rates for the C17.2 cells in the Ca2+-free conditions were statistically significant 

(72 ± 4%, n = 3, p < 0.05, n = 4) when compared to normal conditions. However, 100µM 

PREGS stimulated the uptake of D-[3H]-aspartate to the same extent under both 

conditions. * (p < 0.05) denotes comparison to the respective controls. 
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Table 4.3. Effect of L-NAME preincubation on the potentiating effect of PREGS on D-

[3H]-aspartate uptake by EAAT1-expressing C17.2 cells. 

 

 

 

Treatment Percent of control 

5´ D-[3H]-aspartate uptake  100 

5´ D-[3H]-aspartate uptake + PREGS 161 ± 3 ( n = 63) * 

5´ D-[3H]-aspartate uptake (L-NAME) 100 

5´ D-[3H]-aspartate uptake + PREGS (L-NAME) 205 ± 12 (n = 3) * 

 

C17.2 cells expressing hEAAT1 were preincubated with 100µM L-NAME (NO inhibitor) 

for 1 hour. After a 5´ washout, the uptake of D-[3H]-aspartate was evaluated in the  

presence or absence of 100µM PREGS for 5´. The control uptake rates for the C17.2 cells 

preincubated with L-NAME were statistically non-significant (109 ± 2%, n = 4) when 

compared to normal conditions. 100µM PREGS stimulated the uptake of D-[3H]-

aspartate significantly in both the preincubation and normal conditions. * (p < 0.05) 

denotes comparison to the respective controls. 
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illustrated in Table 4.3. These results, when combined with rapid and reversible action of 

PREGS, further suggest a direct allosteric activity at EAAT1. 

 

PREGS appears to preferentially alter the activity of relatively poor substrates. 

The finding that PREGS increased the uptake of D-[3H]-aspartate, but not L-[3H]-

glutamate suggests that however EAAT1 activity is being modulated, it represents a 

change that does not apply equally to all substrates. This led to the hypothesis that 

perhaps the action of PREGS on the EAAT1 activity may be dependent upon the 

individual kinetic properties of the transporter substrates. This would also be consistent 

with the change in Km observed for D-aspartate, but not for L-glutamate. Such a 

possibility is supported by the inhibitor data presented in Tables 4.4 and 4.5. Thus, there 

was only a minimal change in the level of inhibition produced by DL-β-TBOA on the 

uptake of L-[3H]-glutamate in the presence of PREGS. However, in agreement with a 

change in the Km for D-aspartate, the level of inhibition of D-[3H]-aspartate uptake 

produced by the same amount of DL-β-TBOA was reduced from 7 ± 1% of control (n = 

7) to 20 ± 2% of control (n = 7) when PREGS was present. Taken together, these assays 

suggest that D-aspartate became a better ligand (i.e., was less sensitive to inhibition by 

DL-β-TBOA) in the presence of PREGS. 

 

Another way to address this issue is to determine if the potency of weaker inhibitors also 

increase in the presence of PREGS. To investigate this possibility, a series of substrates 

were tested for their inhibitor activity against both D-aspartate and L-glutamate in the 

presence and absence of PREGS. These included L-serine-o-sulfate (L-SOS) (Arriza et 
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al., 1994; Vandenberg et al., 1998b), 2S,4R-4-methyl glutamate (4MG) (Vandenberg et 

al., 1997) and L-cysteine (Zerangue and Kavanaugh, 1996b). L-SOS and 4MG have been 

shown to act as substrates at EAAT1, but not at EAAT2. 4MG and L-SOS have also been 

reported to be substrates of EAAT1 expressed in oocytes with  Km value of 54µM and 

39µM, respectively. The same study yielded a lower Km value for L-glutamate (Km = 

20µM) (Vandenberg et al., 1997; Vandenberg et al., 1998a). The Km value for L-cysteine 

(Km = 1.8mM) transport at EAAT1 is much higher in comparison to EAAT2 (Km = 

1mM) or EAAT3 (Km = 191µM) in oocytes (Zerangue and Kavanaugh, 1996b). When 

these substrates were assayed for their inhibitory activity at EAAT1, each inhibited the 

uptake of L-[3H]-glutamate to a greater degree in the presence of PREGS (Tables 4.6, 

4.8, 4.10). For example, whereas 4MG at 250µM reduced the uptake of 10µM L-[3H]-

glutamate to 40 ± 1% of control (mean ± s.e.m., n = 3), it reduced the uptake to a greater 

degree (21 ± 2% of control, n = 3) in the presence of PREGS. In contrast, when the same 

compounds were tested against D-[3H]-aspartate uptake, the presence of PREGS 

produced little change in activity (Tables 4.7, 4.9 and 4.11). Thus, it can be hypothesized 

that PREGS had no effect on L-glutamate, but enhanced the binding of L-SOS, L-

cysteine and 4MG, thereby increasing their inhibitory activities. On the other hand, since 

PREGS also increased the activity of D-aspartate, all of the compounds were similarly 

effected and no change in inhibitory activity was observed.  

 

The ability of PREGS to alter the activity of L-cysteine is of particular interest, because it 

is found endogenously and serves as an important precursor for glutathione (GSH) 

synthesis (Dringen, 2000). Glutathione has been shown to prevent oxidative injury by  
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Table 4.4. Effect of DL-β-TBOA on the uptake of L-[3H]-glutamate in the presence and 

absence of PREGS in C17.2 cell expressing EAAT1. 

 

Treatment Percent of control 

L-[3H]-glutamate uptake  100 

L-[3H]-glutamate uptake + DL-TBOA 21 ± 1 (n = 9) * 

L-[3H]-glutamate + PREGS 100 

L-[3H]-glutamate uptake + PREGS + DL-TBOA 29 ± 2 (n = 8) * † 

 

EAAT1-mediated uptake of 10µM L-glutamate was significantly inhibited by 100µM 

DL-β-TBOA in the presence and absence of 100µM PREGS (* p < 0.05). The 

neurosteroid, by itself, slightly inhibited the uptake of L-[3H]-glutamate (88 ± 2, n = 33, p 

< 0.05). In the presence of PREGS, the ability of DL-β-TBOA to inhibit the uptake of L-

[3H]-glutamate is slightly, but significantly, reduced as compared to the uptake in the 

presence of DL-β-TBOA alone († p < 0.05).  
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Table 4.5. Effect of DL-β-TBOA on the uptake of D-[3H]-aspartate in the presence and 

absence of PREGS in C17.2 cell expressing EAAT1. 

 

 

Treatment Percent of control 

D-[3H]-aspartate uptake  100 

D-[3H]-aspartate uptake + DL-TBOA 7 ± 1 (n = 7) * 

D-[3H]-aspartate + PREGS 100 

D-[3H]-aspartate uptake + PREGS + DL-TBOA 20 ± 2 (n = 7) * † 

 

EAAT1-mediated uptake of 10µM D-glutamate was significantly inhibited by 100µM 

DL-β-TBOA in the presence and absence of 100µM PREGS (* p < 0.05). The 

neurosteroid, by itself, increased the uptake of D-[3H]-aspartate (161 ± 3, n = 63, p < 

0.05). In the presence of PREGS, the ability of DL-β-TBOA to inhibit the uptake of D-

[3H]-aspartate is significantly reduced as compared to the uptake in the presence of DL-β-

TBOA alone († p < 0.05).  
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several mechanisms (Bains and Shaw, 1997). Whether or not EAATs play a significant 

role in the uptake of L-cysteine as a precursor for GSH remains to be determined. To 

further investigate the effects of PREGS on L-cysteine activity, we examined whether 

there were any changes in the kinetic parameters of D-[3H]-aspartate  and L-[3H]-

glutamate  uptake when L-cysteine was included in the presence or absence of PREGS. 

As discussed earlier, PREGS decreased the Km for D-aspartate at EAAT1, while the Km 

for L-glutamate stayed unaffected (Figures 4.13 and 4.14). When assayed in the presence 

of 2mM L-cysteine, PREGS reduced the apparent affinity only for L-glutamate (Figures 

4.16 and 4.17). Thus, the Km,app for L-glutamate increased from 21±1µM in the presence 

of 2mM L-CSH to 31±1µM in the presence of both L-CSH and PREGS, while the 

corresponding Vmax did not significantly change (248±55pmol/min/mg protein to 

181±36pmol/min/mg protein). These effects suggest that L-CSH is more potently 

competing with L-glutamate in the presence of PREGS than in its absence. In the 

instance of D-aspartate, L-CSH (2mM) increased the Km,app from 41±3µM to 60±15µM 

at EAAT1, consistent with competitive inhibition. In contrast to what was observed with 

L-glutamate, no significant change in these Km,app values were observed in the presence 

of PREGS. This suggests that D-aspartate and L-CSH may be similarly effected by  the 

action of PREGS on EAAT1. 

 

Boudker et al. have identified a lipophilic-binding site in the Pyrococcus horikoshii 

glutamate transporter GLTPH  crystal structure (Boudker et al., 2007). They speculate that 

this may be a potential site of allosteric regulation by lipophilic compounds like 

arachidonic acid and other PUFAs including docosahexaenoic acid (DHA) and linolenic  
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Table 4.6. Effect of PREGS on the inhibition of L-[3H]-glutamate by 4-MG. 

 

Treatment Percent of control 

L-[3H]-glutamate uptake  100 

L-[3H]-glutamate uptake + 4-MG 40 ± 1 (n = 3) * 

L-[3H]-glutamate + PREGS 100 

L-[3H]-glutamate uptake + PREGS + 4-MG 21 ± 2 (n = 3) * † 

 

EAAT1-mediated uptake of 10µM L-glutamate was significantly inhibited by 100µM 4-

MG in the presence and absence of 100µM PREGS (* p < 0.05). The neurosteroid, by 

itself, slightly inhibited the uptake of L-[3H]-glutamate (88 ± 2, n = 33, p < 0.05). In the 

presence of PREGS, the ability of 4-MG to inhibit the uptake of L-[3H]-glutamate was 

significantly increased as compared to the uptake in the presence of 4-MG alone († p < 

0.05).  
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Table 4.7. Effect of PREGS on the inhibition of D-[3H]-aspartate by 4-MG. 

 

Treatment Percent of control 

D-[3H]-aspartate uptake  100 

D-[3H]-aspartate uptake + 4-MG 28 ± 1 (n = 3) * 

D-[3H]-aspartate + PREGS 100 

D-[3H]-aspartate uptake + PREGS + 4-MG 17 ± 2 (n = 3) * † 

 

EAAT1-mediated uptake of 10µM D-aspartate was significantly inhibited by 100µM 4-

MG in the presence and absence of 100µM PREGS (* p < 0.05). The neurosteroid, by 

itself, increased the uptake of D-[3H]-aspartate (161 ± 3, n = 63, p < 0.05). In the 

presence of PREGS, the ability of 4-MG to inhibit the uptake of D-[3H]-aspartate was 

slightly, but significantly, reduced as compared to the uptake in the presence of 4-MG 

alone († p < 0.05).  
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Table 4.8. Effect of PREGS on the inhibition of L-[3H]-glutamate by L-SOS in C17.2 

cells expressing hEAAT1. 

 

Treatment Percent of control 

L-[3H]-glutamate uptake  100 

L-[3H]-glutamate uptake + L-SOS 18 ± 2 (n = 3) * 

L-[3H]-glutamate + PREGS 100 

L-[3H]-glutamate uptake + PREGS + L-SOS 11 ± 1 (n = 3) * † 

 

250µM L-SOS significantly inhibited the uptake of 10µM L-glutamate in the presence or 

absence of 100µM PREGS (* p < 0.05). The neurosteroid, by itself, slightly inhibited the 

uptake of L-[3H]-glutamate (88 ± 2, n = 33, p < 0.05). L-SOS inhibited the uptake more 

strongly  in the presence of PREGS († p < 0.05).  
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4.9. Effect of PREGS on the inhibition of D-[3H]-aspartate by L-SOS. 

 

Treatment Percent of control 

D-[3H]-aspartate uptake  100 

D-[3H]-aspartate uptake + L-SOS 11 ± 2 (n = 3) * 

D-[3H]-aspartate + PREGS 100 

D-[3H]-aspartate uptake + PREGS + L-SOS 8 ± 2 (n = 3) * 

 

PREGS by itself has the ability to potentiate the activity of EAAT1 to transport D-[3H]-

aspartate (161 ± 3, n = 63, p < 0.05). The uptake of 10µM D-aspartate was significantly 

inhibited by 250µM L-SOS in the presence and absence of 100µM PREGS (* p < 0.05). 

However, PREGS exerted no effect on the ability of L-SOS to inhibit the uptake of D-

[3H]-aspartate.  
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Table 4.10. Effect of PREGS on the inhibition of L-[3H]-glutamate by L-cysteine (L-

CSH) in C17.2 cells expressing hEAAT1. 

 

Treatment Percent of control 

L-[3H]-glutamate uptake  100 

L-[3H]-glutamate uptake + L-cysteine 97 ± 4 (n = 3) 

L-[3H]-glutamate + PREGS 100 

L-[3H]-glutamate uptake + PREGS + L-cysteine 74 ± 2 (n = 3) * † 

 

The endogenous substrate, L-cysteine at 1mM, failed to inhibit the uptake of L-[3H]-

glutamate. PREGS exhibited a slight inhibitory effect on the ability of EAAT1 to 

translocated L-glutamate (88 ± .2 % of control, n = 33, p < 0.05). However, the same 

concentration of L-cysteine was able to inhibit the uptake in the presence of 100µM 

PREGS. This inhibition was statistically significant as compared to the uptake in the 

presence of L-cysteine alone (†, p < 0.05) or PREGS alone (*, p < 0.05).  
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Table 4.11. Effect of PREGS on the inhibition of D-[3H]-aspartate by L-cysteine (L-

CSH) in C17.2 cells transfected with hEAAT1. 

 

Treatment Percent of control 

D-[3H]-aspartate uptake  100 

D-[3H]-aspartate uptake + L-cysteine 89 ± 2 (n = 3) * 

D-[3H]-aspartate + PREGS 100 

D-[3H]-aspartate uptake + PREGS + L-cysteine 69 ± 3 (n = 3) *† 

 

PREGS by itself has the ability to potentiate the ability of EAAT1-mediated uptake of D-

[3H]-aspartate (161 ± 3, n = 63, p < 0.05). The uptake of 10µM D-aspartate was 

significantly inhibited by 1mM L-cysteine in the presence and absence of 100µM PREGS 

as compared to control (* p < 0.05). The inhibition of D-aspartate uptake by L-cysteine 

was significantly increased as compared to the transport of D-aspartate in the presence of  

L-cysteine alone.  
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Figure 4.16. Michelis-Menton kinetics on L-[3H]-glutamate uptake by EAAT1 in the 

presence of PREGS and L-cysteine (L-CSH)  
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A representative plot of concentration dependence of L-[3H]-glutamate uptake in C17.2 

cells transfected with pAM/CAG-hEAAT1. The data were analyzed by non-linear curve-

fitting to Michelis-Menton equation, y = m1*x / (m2 + x) The inset shows the Vmax (m1) 

and Km (m2) values (mean ± S.E.M.). 100µM PREGS or 2mM L-cysteine did not alter 



 136 

either the Km or the Vmax of L-[3H]-glutamate uptake in these cells. However, the Km 

significantly reduced (* p < 0.05) from 17 ± 1µM to 31 ± 1µM when the L-glutamate 

uptake was measured in the presence of both, PREGS and L-cysteine. The insets, 

showing the Km and Vmax values, are placed next to the respective curve.  
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Figure 4.17. Michelis-Menton kinetics on D-[3H]-Aspartate uptake by EAAT1 in the 

presence of PREGS and L-cysteine (L-CSH). 
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A representative plot of concentration dependence of D-[3H]-aspartate uptake in C17.2 

cells transfected with pAM/CAG-hEAAT1. The data were analyzed by non-linear curve-

fitting to Michelis-Menton equation, y = m1*x / (m2 + x) The insets, showing the Vmax 

(m1) and Km (m2) values (mean ± S.E.M.), are placed next to the respective curves. 

100µM PREGS significantly decreased (* p < 0.05), while 2mM L-cysteine significantly 

increased († p < 0.05) the Km for the D-[3H]-aspartate uptake in these cells. The presence 
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of PREGS significantly decreased the Km (# p < 0.05) as compared to the control. No 

changes were observed in the ability of L-cysteine to inhibit the uptake of D-aspartate in 

the presence of PREGS. 
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acid (Fairman et al., 1998; Zerangue et al., 1995; Tzingounis et al., 1998). Arachidonic 

acid inhibits EAAT1, stimulates EAAT2 and affects the channel properties of EAAT4  

 (Fairman et al., 1998; Zerangue et al., 1995; Tzingounis et al., 1998). The possibility that 

neuroactive steroids might interact with EAAT1 through the similar or related site as 

arachidonic acid was tested by using PREGS in the presence and absence of this known 

modulator. Whereas arachidonic acid by itself did not show any effect on the uptake of 

D-[3H]-aspartate by EAAT1 in C17.2 cells, it did prevent PREGS from stimulating the 

uptake of D-[3H]-aspartate when coadministered (Figure 4.18). One possible 

interpretation of these results is that arachidonic acid and PREGS may compete for the 

same modulatory site on EAAT1. 

 

Chapter 4: Discussion 

 

EAATs are highly regulated proteins. Their modulation has been shown to be mediated 

by different mechanisms, including: changes in transcription, translation (Rothstein et al., 

2005; Tian et al., 2007; Su et al., 2003; Figiel et al., 2003; Schlüter et al., 2002; O'Shea et 

al., 2006; Thorlin et al., 1998), trafficking (Gonzalez and Robinson, 2004; Hughes et al., 

2004) and allosteric regulation (Vandenberg et al., 2004). In the present work, we have 

identified a putative modulatory site on glutamate transporters that can differentially 

regulate the function of individual EAAT subtypes. More specifically, we have identified 

a series of compounds that alter the transport activity of EAAT1, but not EAAT2 or 

EAAT3. The fact that this observed change in activity was produced by neurosteroids 

raises questions not only related to the regulatory mechanisms itself, but also to the 
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Figure 4.18. Effect of co-presence of PREGS and arachidonic acid on EAAT1-mediated 

D-[3H]-aspartate uptake in C17.2 cells. 
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The uptake of D-[3H]-aspartate by EAAT1 is significantly increased in the presence of 

100µM PREGS in C17.2 cells (161 ± 3% of control, n = 63, * p < 0.05). This increase in 

uptake was blocked by the treatment with 300µM arachidonic acid. ** p < 0.05, as 

compared to the uptake in the presence of PREGS alone. 
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possible role of neurosteroid in modulating glutamate transport. With respect to the 

modulatory activity itself, much of the evidence indicating that the effects observed with 

the neurosteroids reflect a genuine regulatory mechanism is linked to the issue of 

specificity. Thus, a specificity of action was observed among the different EAAT 

subtypes, neurosteroids and EAAT substrates. 

 

The neurosteroid, PREGS, was found to significantly increase the uptake of D-[3H]-

aspartate in C17.2 cells transfected with hEAAT1. It slightly inhibited the uptake D-[3H]-

aspartate by EAAT2 while minimally affecting the activity of uptake by EAAT3. The 

differential modulation of EAATs has also been reported to occur through variety of 

other mechanisms. Polyunsaturated fatty acids (PUFAs), as well as Zn2+, have previously 

been shown to produce differing effects on the EAAT activities by allosteric mechanisms 

(Vandenberg et al., 1998a; Vandenberg et al., 2004). For example, Zn2+ has been shown 

to bind and modulate EAATs expressed in oocytes (Mitrovic et al., 2001). Whereas it has 

no effects on EAAT2 and EAAT3, Zn2+ was shown to modulate the activity of EAAT1 

and EAAT4. It was reported to reduce the glutamate transport by EAAT1 and selectively 

inhibit the chloride conductance of EAAT4 without affecting substrate currents.  

 

Evidence that the EAATs are individually regulated also comes from studies focusing on 

protein kinase C (PKC). Thus, PKC activation by phorbol ester, phorbol 12-myristate 13-

acetate (PMA) has been shown to decrease the cell surface expression of GLT-1 

(EAAT2) in C6 glioma cells and rat astrocyte-neuron co-cultures (Kalandadze et al., 
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2002; Zhau and Sutherland, 2004). In contrast, the activation of PKC has been reported to 

cause a significant increase in both, the cell surface expression and uptake of L-[3H]-

glutamate, in C6 glioma cells and astrocyte-neuron cocultures (Davis et al., 1998; 

Gonzalez et al., 2003;  Gonzalez et al., 2002). Importantly, the different PKC subtypes 

appear to regulate these transporters by distinct mechanisms. Whereas, PKCα appears to 

mediate the redistribution of EAAC1 to the cell membrane by direct interaction of with 

EAAC-1 protein (Gonzalez et al., 2003), PKCε seem to increase the intrinsic activity of 

this transporter in C6 glioma cells (Gonzalez et al., 2002). In the instance of GLAST 

(EAAT1), acute treatment with PMA has been shown to cause ~20% increase in transport 

by increasing catalytic efficiency/turnover number of GLAST (Susarla et al., 2004).  

Furthermore, EAATs are known to be differentially regulated at the level of protein 

synthesis. Several chemical entities, including corticosterone and  retinol, have been 

identified that stimulate the translation of EAAT2 transcript (Tian et al., 2007). 

Additionally, several treatments have been shown to increase the expression of glt1 gene. 

These include: treatment with β-lactam antibiotic, ceftriaxone (Rothstein et al., 2005), 

certain extracellular factors, such as EGF (Zelenaia et al., 2000), injury-induced growth 

factors (TGFα, FGF-2 and PDGF) (Figiel et al., 2003; Schlüter et al., 2002), and 

lipopolysaccharide (O'Shea et al., 2006). 

 

The effects of PREGS on the uptake activity of glutamate transporters were reproducibly 

observed with only a sub-group of structurally related sulfated steroids. Thus, 

pregnanolone sulfate (3α,5β-TH PROGS) and allopregnanolone sulfate (3α,5β-TH 

PROGS) also stimulated the uptake of D-[3H]-aspartate by EAAT1. These compounds 
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also exhibited an inhibitory effect on EAAT2 and no significant effect on EAAT3-

mediated transport. DHEAS only slightly potentiated the uptake of D-[3H]-aspartate by 

EAAT1 whereas ESTS had no effect. The non-sulfated steroids, including: PREG, 

PREGA and ESTH, do not appear to elicit any effect on the uptake activity of EAAT1. 

These results suggest that the acyl side chain present on C-17 of PREGS, 3α, 5α-TH-

PROGS and 3α, 5β-TH-PROGS and the presence of C-3 sulfate group may be important 

for interaction with the transporter. The introduction of sulfate group at C-3 of 

neurosteroids has been shown to have dramatic effects on their activity at GABAA  and 

NMDA receptors. Whereas, the non-sulfated neurosteroids, 3α, 5α-TH-PROG and 3α, 

5β-TH-PROG, are reported to activate the GABA-mediated currents at nanomolar 

concentrations (Belelli and Lambert, 2005), their sulfated counterparts are chiefly 

negative allosteric modulators of GABAA receptors at micromolar concentrations (Gibbs 

et al., 2006; Park-Chung et al., 1999). In the instance of NMDAR, only the sulfated, but 

not non-sulfated, steroids were reported to be active in micromolar range (Park-Chung et 

al., 1997; Gibbs et al., 2006). The C-17 side chain and C-3 sulfate group have been 

identified to be important for the binding of other steroids (Harrison et al., 1987) to a 

variety of proteins by means of hydrogen bonding with polar or charged residues within 

the protein, e.g., estrogen binding to estrogen receptors (Brzozowski et al., 1997), 5α-

dihydrotestosterone (5α DHT) binding to sex-hormone-binding globulin (SHBG) protein 

(Grishkovshaya et al., 2000) and pregnanolone binding to the GABAA receptors (Hosie et 

al., 2006).  
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Significantly, the effect of PREGS on EAAT1-mediated activity was also observed in rat 

primary astrocytes that endogenously express EAAT1 (GLAST) (Swanson et al., 1997). 

EAAT1 is differentially expressed throughout the mammalian brain (Lehre and Danbolt, 

1998; Rauen, 2000; Furness and Lehre, 1997; Berger and Hediger, 2000). It has been 

shown to be primarily present on astrocytes and is the major glutamate transporter in the 

cerebellum, the inner ear, the circumventricular organs and the retina. The disruption of 

GLAST transport activity, either by genetic deletion or antisense oligonucleotide 

techniques, has been shown to alter the functions of these systems (Maragakis and 

Rothstein, 2004). The GLAST knockout mice have been reported to exhibit motor 

incoordination and increased susceptibility to cerebellar cold-induced injury (Watase et 

al., 1998). Moreover, the intraventricular administration of GLAST antisense 

oligonucleotides before the induction of ischemia has been shown to result in an 

exacerbation of neuronal injury (Tao et al., 2001). Consistently, the knockdown of 

GLAST by the injection of antisense oligonucletide in mice brain has been demonstrated 

to produce elevated extracellular glutamate levels, neurodegeneration, and a progressive 

motor deficit (paralysis) (Rothstein et al., 1996). Similarly, the GLAST-knockout mice 

have shown to increase susceptibility to seizures (Watanabe et al., 1999), exacerbate 

hearing loss caused by the increased accumulation of glutamate after acoustic-

overstimulation (Hakuba et al., 2000) and increase ischemia-induced damage to the retina 

(Harada et al., 1998). Thus, the modulation of EAAT1 may play a critical role in the 

regulation of several important functions ascribed to these systems such as coordination 

and planning of movements, learning motor tasks, balance, hearing and vision (Ghez and 

Thach, 2000; Hudspeth, 2000; Tessier-Lavigne, 2000) . 
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While PREGS did increase EAAT1 activity in the C17.2 cells and primary astrocytes, it 

did not stimulate the activity of EAAT1 in every cell system examined. Thus, PREGS 

failed to alter the uptake of D-[3H]-aspartate in HEK293T cells or oocytes expressing 

EAAT1. Inherent differences in the lipid composition among cell membranes,  as well as 

variations in the presence or absence of interacting proteins (London and Brown, 2000; 

Simons and Ikonen, 1997) may contribute to different functional responses to PREGS 

and related neuroactive steroids (Moore, 2001). Consistent with such idea, the influence 

of cell-type on the modulation of EAAT3 by PKC is well documented. In contrast to the 

increased expression of EAAT3 in C6 cells and neuron-astrocytes co-cultures, the 

activation of PKC by PMA treatment has been reported to downregulate the EAAC1 

(EAAT3) surface expression in oocytes (Trotti et al., 2001) and human astrocytoma cell 

line U373 (Dunlop et al., 1999).  

 

Surprisingly, the effects of PREGS could not be extended to the uptake of well-

recognized substrates, L-glutamate and L-aspartate. This led us to the idea that 

neuroactive steroids may be acting at this site in a way that alters the transport properties 

of poor substrates, but has little or no effect on the uptake of good substrates. Previous 

studies have demonstrated that EAAT1 transports L-glutamate and L-aspartate with 

greater Imax values than that for D-aspartate (Arriza et al., 1994). In this study using C17.2 

cells expressing EAAT1, while the Vmax for both L-glutamate and D-aspartate were 

similar, the Km values differed significantly. Consistent with these results, the uptake 

rates for both L-[3H]-glutamate and L-[3H]-aspartate were higher that those observed for 

D-[3H]-aspartate in our experiments. Significantly, the increased transport of D-[3H]-
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aspartate uptake observed in the presence of PREGS could be ascribed to a significant 

decrease in the Km value. Importantly, to make sure the effect of PREGS was not limited 

to only D-aspartate, we tested a number of other substrates. Certain other ligands with 

substrate activity at EAAT1 appeared to be similarly effected when tested indirectly for a 

change in their ability to inhibit the uptake of L-[3H]-glutamate or D-[3H]-aspartate. 

Thus, PREGS increased the level of inhibition of L-[3H]-glutamate uptake produced by 

4MG, L-SOS and L-cysteine. However, it failed to alter the level of inhibition produced 

by these same substrates on the uptake of D-[3H]-aspartate. Furthermore, the presence of 

PREGS caused a significant decrease in the inhibition produced by a non-transportable 

inhibitor, DL-β-TBOA, on the uptake of D-[3H]-aspartate by EAAT1. Consistent with the 

inability of PREGS to alter the inhibitory activities of L-SOS, 4MG or L-cysteine when 

assessed against D-aspartate, the neurosteroid also failed to alter the Km,app by L-cysteine 

in a more detailed kinetic studies with D-[3H]-aspartate. In contrast, the presence of 

PREGS caused an increase in the Km,app value for L-[3H]-glutamate uptake when L-

cysteine was used as an inhibitor. This suggests that L-cysteine becomes a better 

competitive inhibitor of L-glutamate uptake by EAAT1 in the presence of PREGS.  

 

Consecutive preincubation with PREGS followed by a 5´ washout did not effect the D-

aspartate uptake in C17.2 cells expressing EAAT1. Only the simultaneous application of 

D-[3H]-aspartate and PREGS could produce  the observed increase in uptake. Taken 

together, these findings support the hypothesis that PREGS interacts directly at a 

modulatory site on glutamate transporter protein, EAAT1. As PREGS did not alter the 

uptake of L-glutamate, it is possible that the neurosteroid may be only partially active at 
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this site, whereas a full “agonist” would be expected to increase the uptake of the 

endogenous substrate. In this respect, the neurosteroid may have led to a discovery of a 

regulatory site, for which the true physiological ligands have yet to be identified. 

 

However, the fact that PREGS is a neurosteroid and is found endogenously lends another 

level of interest to the observed effects. PREGS and DHEAS are among the most 

abundant neurosteroids found in mammalian brain, a finding consistent with 

neuromodulation. In mammals, glial cells are considered to be a major site of 

neurosteroid formation and metabolism in the brain. Both oligodendrocytes and 

astrocytes have been identified as primary site for the synthesis of PREGS (Le 

Goascogne et al., 2007; Jung-Testas et al., 1989; Baulieu, 1997; Compagnone and 

Mellon, 2000). However, newer evidence suggests that neuronal cells may also 

participate in the biosynthesis of neurosteroids from cholesterol. For example, Purkinje 

cell, a cerebellar neuron, is an active neurosteroidogenic cell, which possesses requisite 

enzymes to produce PREG, PREGS and progesterone in several vertebrate species 

(Tsutsui et al., 2003). Considering that EAAT1 is the major glutamate transporter in the 

cerebellar Bergmann glia, the neurosteroidogenesis in the Purkinje cells is consistent with 

the idea that neurosteroids may modulate excitatory neurotransmission in the cerebellum 

through an action on EAAT1.  

 

It has been reported that the anterior rat brain contains about 38ng (~80nM) and 16ng 

(~35nM) of PREG and PREGS, respectively, per gram of tissue (Corpechot et al., 1983). 

This level is much higher than the 1ng/g concentrations reported to be present in plasma. 
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Similarly, DHEAS concentrations in the brain have been reported to be much higher in 

anterior and posterior rat brain (2ng/g and 5ng/g) as compared to plasma (0.2ng/g) 

(Corpechot et al., 1981). In the aged human brain, the concentrations of PREGS and 

DHEAS were reported to be about 2ng/g and 13ng/g tissue (Liere et al., 2004). It is 

readily acknowledged that these reported concentrations of PREGS are much lower than 

the micromolar concentrations found to be effective in the present study. Thus, the 

physiological significance of the putative modulatory activity on the EAATs is still 

unclear. The micromolar concentrations used in this study are, however, within the same 

range at which the sulfated steroids that have been shown to alter the activities of other 

targets, such as NMDA and GABAA receptors (Wu et al., 1991; Majewska, 1992; Gibbs 

et al., 2006). An issue that has made the concentration-dependence of all of these effects 

difficult to interpret, is the inherent problem of quantifying neurosteroids in the 

extracellular microenvironment. Thus, the concentration of the neurosteroid may reach 

the micromolar levels needed to act at the GABAA, NMDA and possibly the EAATs, if 

synthesized or released in local environment surrounding the protein targets.  

 

Interestingly, the effects of PREGS on EAAT1 and 2 are opposite to the effects reported 

with arachidonic acid (Zerangue et al., 1995; Fairman et al., 1998; Tzingounis et al., 

1998; Poulsen and Vandenberg, 2001). Micromolar levels of arachidonic acid were found 

to inhibit glutamate uptake mediated by EAAT1 by reducing the maximal transport rate 

approximately 30%. In contrast, arachidonic acid appears to increase the EAAT2 

apparent affinity for glutamate more than 2-fold in oocytes and HEK293 cells (Zerangue 

et al., 1995). There is no change in the uptake of glutamate by EAAT4 in the presence of 
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arachidonic acid, although it does influence the proton current associated with this 

transporter (Fairman et al., 1998; Tzingounis et al., 1998; Poulsen and Vandenberg, 

2001). In our experiments, arachidonic acid by itself did not produce any effect on the 

uptake of D-aspartate in C17.2 cells expressing EAAT1. However, its simultaneous 

application prevented PREGS from stimulating the uptake of 3H-D-aspartate. These 

results raise the possibility that arachidonic acid and PREGS may be acting at the same 

site. The most straightforward interpretation would suggest that PREGS is acting as an 

agonist to stimulate uptake, while arachidonic acid is acting as an antagonist to block its 

effect. Such an interpretation, however, does not take into account previous reports that 

arachidonic acid acts as an allosteric modulator to inhibit the uptake by EAAT1. In light 

of this, one could propose an alternate hypothesis in which arachidonic acid is an agonist 

acting to inhibit uptake, while PREGS acts as an antagonist that blocks the effect of 

arachidonic acid and restores EAAT1 activity to increased levels. In turn, this would 

suggest that arachidonic acid may be acting endogenously in the C17.2 cells and primary 

astrocyte cultures to constitutively reduce EAAT1 activity. In such a scenario, the 

addition of PREGS as an antagonist would produce the observed increase in activity. 

Similarly, if the arachidonic acid is already present, it would provide an explanation as to 

why the added arachidonic acid had no effects by itself. Unfortunately, neither of the 

mechanisms provides an explanation as to why the PREGS did not alter the uptake of L-

glutamate or L-aspartate. Further studies will take an electrophysiological approach and 

see if the effects of arachidonic acid on glutamate uptake can be influenced by PREGS. 

Initial studies in this proposal tested PREGS by itself on oocytes expressing EAAT1 and 
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found no change in activity. It remains to be seen if PREGS would block the inhibitory 

activity of arachidonic acid in this same paradigm. 

  

Lastly, in a recent article on the crystal structure of substrate-bound GLTPH, an archeael 

EAAT homologue Pyrococcus horikoshii (Boudker et al., 2007), a lipophilic binding site 

has been predicted. Curiously, this binding site was apparent in the substrate-bound state 

of the transporter but not in non-transportable inhibitor bound state. Given our results of 

PREGS on substrates, it is tempting to speculate this might be its site of action on the 

EAAT1 protein.  
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