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Smith, Wesley, Ph.D., January 2007     Biomedical Sciences 
 
Elucidation of the Specificity of Neuroactive Steroids and Related Compounds at the at the 
Vesicular Glutamate Transporter 
 
Chairperson:  Dr. Richard J. Bridges  
 
  As the primary excitatory amino acid, glutamate is essential to proper functioning of the 
mammalian CNS. Proper regulation of the synaptic release of glutamate, potentially 
regulated by synaptic vesicle content, is one of many critical aspects to normal excitatory 
functioning. In particular, the vesicular glutamate transporters (VGLUTs), which load 
synaptic vesicles with glutamate prior to presynaptic release of neurotransmitter, are 
distinct from that of the plasma membrane excitatory amino acid transporters (EAAT).  
The development of a library of compounds which selectively inhibit the uptake of [3H]-L-
glutamate into the VGLUTs, has revealed importance of particular structural motifs.  
Among these structural motifs, one of the most important is that of the “embedded 
glutamate” which mimics the endogenous substrate of the transporter.  With respect to 
potency, the substitution of a lipophilic moiety at the C6 position seems to be the most 
important to date, as illustrated by 5,6-napthyl quinoline dicarboxylic acid (5,6-QDC).  
The structure of this compound strongly resembles that of a steroid molecule.  In light of 
recent research suggesting steroids act within the CNS in a non-genomic manner, this 
observation prompted the testing of a panel of steroid molecules at VGLUT.  These 
compounds, known as “neuroactive steroids” have been shown to be synthesized, 
modified, and/or active within the brain.  Research from our lab, as well as from the 
Thompson lab, shows that certain sulfated neuroactive steroids are potent inhibitors of 
[3H]-L-glutamate uptake into synaptic vesicles.  This work identifies pregnenolone sulfate, 
along with 5,6-QDC, as competitive inhibitors of VGLUT (Ki values of 107 and 228 µM, 
respectively). These two molecules display specificity for VGLUT, with respect to other 
sites on the synaptic vesicle (i.e., electrochemical gradient), and among other vesicular 
neurotransmitter transporters (i.e., VGAT, VMAT).  Two molecules, 5,6-QDC and Congo 
Red Fragment (CRF) were aligned to the VGLUT Pharmacophore to illustrate the SAR of 
these compounds.  Biochemical studies have also been conducted to delineate substrate 
activity of neuroactive steroids and related compounds at VGLUT.  The specificity of 
certain sulfated neuroactive steroids suggest that they could be endogenous regulators of 
vesicular glutamate uptake. 
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CHAPTER 1:  BACKGROUND AND SIGNIFICANCE 

 

Glutamate is widely accepted as the primary excitatory neurotransmitter in the 

mammalian central nervous system (CNS).  As such, the maintenance of correct 

extracellular concentrations of glutamate is essential to the appropriate functioning of the 

brain and spinal cord.  When properly regulated, glutamate contributes to a wide array of 

processes that range from fast excitatory signaling to higher-order processing (e.g., 

memory, learning, plasticity) (Balazas et al., 2005).  In contrast to its physiological roles, 

excessive extracellular levels of L-glutamate can also contribute to the pathological 

damage observed in a variety of neurological insults and diseases, including acute trauma 

(i.e., seizures, stroke, traumatic brain injury, etc.), as well as chronic neurodegenerative 

diseases, such as ALS, Alzheimer’s, and Huntington’s disease (Mattson, 2003; Olney, 

2003).   

 

Multiple proteins, located at distinct subcellular locations, are important for glutamatergic 

signaling (Fig. 1.1).  Receptors, present both pre- and postsynaptically, are necessary for 

transmission of the chemical signal across the synapse.  Glutamate transporters present 

on the plasma membrane are involved with the regulation of extracellular glutamate.  

Additionally, vesicular glutamate transporters, present in the axon terminal of the 

presynaptic neuron, aid in sequestering the neurotransmitter into synaptic vesicles in 

preparation for release from the terminal. 
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Figure  1.1.  Excitatory amino acid synapse 

 
This image depicts a stereotypical excitatory synapse.  After L-glutamate is released into 

the synapse, it binds to ionotropic (iGluR) and metabotropic (mGluR) glutamate 

receptors.  The glutamate is then removed from the synapse into astrocytes by the 

excitatory amino acid transporters (EAATs).  Glutamine synthetase, present in astrocytes, 

converts L-glutamate to glutamine.  The glutamine is then transported back to the 

presynaptic neuron, where it is converted to L-glutamate via glutaminase.  The vesicular 

glutamate transporter (VGLUT) sequesters glutamate into synaptic vesicles prior to 

release. 

 

 

 

Presynaptic 
neuron 

Astrocyte Postsynaptic 
neuron 
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Glutamate Receptors 

 

Historically, the characterization of glutamate receptors was an important component in 

the establishment of glutamate as a CNS neurotransmitter.  Glutamatergic receptors are 

divided into two groups, ionotropic (iGluR), which are directly associated with ion 

channels, and metabotropic (mGluR), which are linked to second messenger systems.  

The iGluRs are composed of three subtypes:  N-methyl-D-aspartate (NMDA), α-amino-

3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), and kainic acid (KA), while the 

metabotropic receptor classes are classified as Group I, II, and III receptors (Balazas et 

al., 2005).  Glutamate ionotropic receptors, which were initially named after selective 

agonists, gate various ionic currents (Na+, K+, and Ca2+), and share approximately 20-

30% homology. AMPA receptors (AMPAR) are composed of GluR1-GluR4 subunits 

that are presumed to be functional in a tetrameric form (Rosenmund et al., 1998). Similar 

to AMPAR, the KA receptors (KAR) most likely form tetramers composed of GluR5-

GluR7 and KA1-KA2 subunits, with the requirement that a GluR5-GluR7 subunit is 

present for a functional ion channel.  Both AMPAR and KAR are involved in fast 

synaptic signaling.  

 

Certain factors, unique to the NMDAR, confer the ability of being both ligand- and 

voltage-gated, which in turn, underlies its role in long-term potentiation (LTP) (Balazas 

et al., 2005).   Functioning of the NMDA receptor requires the binding of glutamate and 

membrane depolarization, typically mediated by AMPAR and KAR, to remove the ion 

channel block created by Mg2+.  With the release of the Mg2+ block, Ca2+ can enter via 
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the channel into the cell, activating downstream effectors involved in LTP.  In addition to 

the binding of glutamate, the NMDA receptor also requires glycine as a coagonist.  The 

NMDA receptors are composed of three subunit types; all receptors contain the NR1 

subunit, which includes the primary glycine-binding site.  The NR2A-NR2D combine 

with NR1 to form the majority of NMDA receptors found in the human brain.  Additional 

glycine binding-sites are presumed to be present on NR3A and NR3B subunits.  

 

The mGluRs make up the second major group of the glutamatergic receptors in the 

mammalian brain (Balazas et al., 2005).  These receptors are coupled to different forms 

of the guanosine nucleotide-binding protein (G-protein) and belong to the seven 

transmembrane (7-TMS) superfamily of receptors.  The mGluRs share approximately 

70% homology within groups and about 40% homology between groups (Schoepp, 

2001).  Three subtypes make up this class:  Group I receptors, comprised of mGluR1 and 

mGluR5, are ultimately coupled to the downstream effector phospholipase C via Gq.  The 

Group II receptor class includes mGlu2 and mGlu3, while Group III consists of mGlu4, 

mGlu5, and mGlu6.  Both Group II and III inhibit stimulated 3’-5’-cyclic adenosine 

monophosphate (cAMP) formation through Gi (Conn and Pin, 1997; Schoepp et al., 

1998).   

 

Excitatory Amino Acid Transporters (EAATs) 

 

The glutamatergic synapse, unlike cholinergic synapses, lacks a degradative enzyme, to 

remove neurotransmitter from the synaptic cleft.  To account for this, glutamate plasma 
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membrane transporters are present to aid in the regulation of extracellular glutamate 

levels.  Five transporters have been identified within the high-affinity, sodium-dependent 

transporter class:  the excitatory amino acid transporters (EAATs1-5).  The EAATs are 

primarily found in the CNS, with additional expression in the heart, liver, kidney and 

intestine (Gegelashvili and Schousboe, 1998).  EAAT3 and 4 are generally considered the 

neuronal transporters, whereas EAAT1 and 2 are primarily located on glial cells (Chen et 

al., 2002; Furuta et al., 1997; Schmitt et al., 2002). EAAT2 is thought to be the primary 

transporter involved in clearing glutamate from the synaptic cleft (Koch et al., 1999).  

The localization of EAAT3 to GABAergic neurons suggests that it may also serve as the 

manner by which glutamate is transported into GABAergic neurons as a precursor of 

GABA (Sepkuty et al., 2002).  EAAT4 is primarily localized to the cerebellum (Lin et al., 

1998).  EAAT5 expression is limited to neurons and Muller cells in the retina (Eliasof et 

al., 1998).  

 

Vesicular Glutamate Transporters (VGLUTs) 

 

In addition to EAATs, which aid in the regulation of extracellular glutamate 

concentrations, transporters present on synaptic vesicles within the presynaptic axon are 

necessary to load vesicles with L-glutamate prior to its release during excitatory 

transmission. The VGLUTs are classified within the SLC-17/type I class of phosphate 

transporters, which were initially characterized as phosphate carriers.  In fact, these 

proteins, which are involved in processes ranging from degradation of glycoproteins to 

the sequestration of neurotransmitters into synaptic vesicles, are broadly defined as 
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organic anion transporters.  Proteins from the SLC-17 family are typically found on 

synaptic vesicles, lysosomes, and plasma membranes and are predicted to contain 6-12 

membrane-spanning domains (Reimer and Edwards, 2004).  VGLUT1 was originally 

classified as the brain-specific Na+-dependent phosphate transporter (BNPI), which was 

discovered in a screen for cDNAs upregulated in response to subtoxic levels of NMDA in 

cerebellar granule cells (Ni et al., 1994).  The nucleotide sequence of BNPI predicts a 

protein with 6-8 putative transmembrane loops with approximately 32 percent sequence 

identity to the rabbit kidney Na+-dependent, PI-transporter.   Similarly, VGLUT2 was 

previously classified as the differentiation-associated, Na+-dependent phosphate 

transporter (DNPI).  DNPI was identified in an experiment screening for cDNAs 

upregulated during differentiation of rat pancreatic AR42J cells to a neuroendocrine 

phenotype (Aihara et al., 2000). Additionally, a third vesicular glutamate transporter, 

which localizes to cholinergic and serotonergic neurons, has also been identified 

(Fremeau Jr. et al., 2002; Gras et al., 2002; Schafer et al., 2002).  The membrane 

spanning domains of the three isoforms of VGLUT are highly homologous (~90% 

homology); however, N- and C- terminal domains differ from one another. 

 

VGLUT1 and VGLUT2 have a complementary distribution in the brain, with VGLUT1 

enriched in areas that have a low probability of release, such as the cerebral cortex, 

cerebellar cortex, and hippocampus; while VGLUT2 localizes to areas of higher 

probability of release, such as the diencephalon and rhombencephalon (Fremeau Jr. et al., 

2004; Fremeau Jr. et al., 2001; Varoqui et al., 2002).  In contrast to VGLUT1 and 

VGLUT2, VGLUT3 colocalizes with other phenotypic markers, such as tryptophan 
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hydroxylase, glutamic acid decarboxylase (GAD), and choline acetyl transferase (ChAT) 

(Fremeau Jr. et al., 2002; Herzog et al., 2004; Schafer et al., 2002).  This colocalization 

suggests that these neurons may be capable of co-releasing glutamate and the respective 

neurotransmitter, as has been shown by Takamori and coworkers (Takamori et al., 2000).  

 

Two important characteristics describe the chemical signal that is transferred across the 

synapse:  (1) quantal content and (2) quantal size.  The number of synaptic vesicles 

released from the presynaptic terminal determines quantal content.  Evidence suggests 

that the amount of vesicular neurotransmitter transporter expression may influence 

quantal content.  For example, overexpression of VAChT (Song et al., 1997), VMAT 

(Colliver et al., 2000; Gong et al., 2003), and VGLUT1 (Wojcik et al., 2004) has been 

shown to increase quantal content in various cell culture systems.  It is generally 

presumed that the amount of neurotransmitter in each synaptic vesicle is at steady-state 

conditions; and hence, altering these steady-state conditions with the overexpression of 

vesicular transporters may increase quantal content.  On the other hand, quantal size is a 

functional measure of postsynaptic signal.  The wide diversity of glutamate receptor 

subtype organization allows for an extensive range of function. 

 

Although, the VGLUTs are hypothesized to function primarily as glutamate transporters, 

it is possible that they may also serve as phosphate transporters (Takamori, 2006).  If the 

VGLUTs transport phosphate (as has been shown in Xenopus oocytes in vivo (Ni et al., 

1994), then it is possible that they may play an additional role in synaptic functioning.  

The transport of phosphate into the presynaptic terminal could increase the activity of 
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phosphate-activated glutaminase (PAG).  The increased activity of PAG could increase 

the amount of glutamate available for uptake into synaptic vesicles.  Recent evidence has 

shown that VGLUT proteins are present on the presynaptic membrane (Hagiwara et al., 

2005).  Additionally, ammonia, which is a byproduct of glutamate synthesis via PAG, 

could cause a shift of the electrochemical gradient.  In turn, this shift would cause an 

increase in glutamate sequestration via VGLUT. 

 

In contrast to the EAATs, which rely on sodium and potassium gradients, the VGLUTs 

rely on a proton gradient to transport glutamate from the cytosolic space to the vesicular 

lumen.  Vesicular glutamate sequestration in the brain is facilitated by an electrochemical 

gradient (Δµ), generated by a vacuolar-type Mg2+-dependent ATPase.  Recent evidence 

suggests that ATP, supplied by a membrane-bound complex of glyceraldehyde phosphate 

dehydrogenase (GAPDH) and 3-phosphoglycerate kinase (3-PGK), is sufficient to supply 

enough energy for vesicular glutamate uptake (Ikemoto et al., 2003). The transport of 

protons into the vesicular lumen by the ATPase serves to establish a pH gradient (ΔpH) 

between the vesicle lumen (~pH 6.8) and the cytosolic space (~pH 7.4).  The increased 

concentration of positive charges due to the uptake of protons also creates an electrical 

gradient (ΔΨ) in the vesicle lumen as compared to the slightly more negative charge 

character of the cytosolic space.  The majority of evidence suggests that ΔΨ is the 

primary driving force for glutamate sequestration (Maycox et al., 1988).  However, there 

is evidence to suggest that ΔpH may play a role under certain conditions (Tabb et al., 

1992). While there is some debate as to the specific extent to which glutamate 
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sequestration is dependent upon ΔΨ and/or ΔpH, it is widely agreed upon that Cl- also 

plays a role in glutamate uptake. 

 

The chloride-dependence of vesicular glutamate uptake shows a biphasic curve, with the 

optimal concentration found at about 4 mM.  The rate of glutamate sequestration 

decreases with either higher or lower concentrations.  Glutamate transport is thought to 

involve an anion-binding site, which is distinct from the substrate-binding site.  While the 

exact location of the anion binding-site is not yet clear, evidence suggests that an anion 

binding-site must be accessible to the cytosolic space.  The potent anion channel inhibitor 

4,4’-diisothiocyanotostilbene-2,2’-disulfonic acid (DIDS) has been used to inhibit 

glutamate uptake with an IC50 of 0.7 µM or less.  High concentrations of Cl- (100 mM), 

but not glutamate or other anions, were able to restore ATP-dependent levels of L-

glutamate uptake. While it is possible that chloride could be co-transported with 

glutamate, it would not be electrochemically favorable to do so due to the energy barrier 

(Hartinger and Jahn, 1993).  The chloride dependence has been shown to be regulated by 

the αο2 subunit of the trimeric G-protein (Gαο2).  In turn, Gαο2 indirectly lowers 

glutamate uptake by interacting with the putative Cl- binding site (Winter et al., 2005).  

 

Our understanding of VGLUT pharmacology has developed substantially over the past 

two decades from the first characterization of glutamate uptake into synaptic vesicles 

(Maycox et al., 1988; Naito and Ueda, 1983; Naito and Ueda, 1985) to the development 

of a preliminary VGLUT pharmacophore model (Thomspon et al., 2005).  Unlike the 

EAATs, VGLUT has a relatively low affinity for glutamate (KM = 1-3 mM).  



   

 10 

Accordingly, the majority of potent inhibitors of this system exhibit affinities in the µM 

range, with the most potent in the mid nM range.  Since the original characterization of 

the presence of glutamate in synaptic vesicles, a variety of competitive inhibitor classes 

have emerged:  (1) glutamate derivatives, (2) naphthalene sulfonic acids (3) ergots, and 

(4) inhibitory protein factors.  Classic inhibitors and substrates of the EAATs, such as D- 

and L-aspartate, show little or no inhibition of vesicular glutamate uptake (Fykse and 

Fonnum, 1991; Tabb and Ueda, 1991).  Accordingly, few glutamate derivatives, which 

are active at the EAATs, are also active at VGLUT.  Trans-1-aminocyclopentane-1,3-

dicarboxylic acid (trans-ACPD) and erythro-4-methyl-L-glutamic acid (MGlu) are 

among the more potent glutamate derivatives with Ki values of 0.44 mM and 0.73 mM, 

respectively, while 4-methylene-L-glutamate had moderate activity with a Ki value of 

approximately 3mM (Winter and Ueda, 1993).  EAAT substrates and inhibitors, which 

are also active at the VGLUTs, contain a carbon backbone at least as long as that of 

glutamate. While the glutamate derivatives enjoy modest potency, the most potent 

competitive inhibitors are derivatives of 1,3-naphthalenedisulfonic acid (also classified as 

naphthalene disulfonic acids), which have Ki values in the nanomolar range.  Evans blue 

(EB) and Chicago sky blue (CSB) were the first dyes to be characterized with Ki values 

of 40 and 190 nM, respectively (Roseth et al., 1995).   A larger number of 1,3- 

naphthalene disulfonic acid derivatives were further characterized; however, with the 

exception of trypan blue and napthol blue black, most inhibitors were not as potent as the 

previously characterized dyes, EB and CSB.  Trypan blue and napthol blue black were 

shown to have Ki values of 50 nM and 200 nM, respectively (Roseth et al., 1998). 

Bromocriptine is another competitive, inhibitor considered atypical, due to its lack of an 



   

 11 

Figure 1.2.  Previously identified VGLUT inhibitors 
 
A)      B) 

 
 
C) 

 
D) 

 
E) 

 
Molecules are depicted with equal bond lengths to illustrate the relative size differences 

of various VGLUT inhibitor classes.  Molecules depicted are as follows:  A) 4-methyl-L-

glutamate, B) trans-ACPD, C) trypan blue, D) Evans blue, and E) bromocriptine. 
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obvious glutamate motif.  With an IC50 of 22 µM, it is one of the more potent competitive 

inhibitors to date (Carlson et al., 1989).  Lastly, a structurally diverse class of inhibitors, 

the inhibitory protein factors (IPFs) proved to be exceptionally potent, relative to other 

VGLUT inhibitors, with an IC50 value of 26 nM (Ozkan et al., 1997). 

 

Kynurenate, also known to be an antagonist at the iGluRs, has been shown to be active at 

the VGLUTs as a competitive inhibitor (Fykse et al., 1992).  Two kynurenate derivatives, 

xanthurenate and 7-chloro-kynurenate, have been shown to possess Ki values of 0.19 mM 

and 0.59 mM, respectively (Bartlett et al., 1998).  The lack of inhibitory activity with 

various monocyclic pyridine derivatives suggests the importance of the bicyclic structure 

of xanthurenate and 7-chloro-kynurenate, both quinoline-based molecules.  The bicyclic 

core, along with the electronegative regions corresponding with the carboxylates of 

glutamate, prompted further development of a novel class of inhibitors:  the quinoline 

dicarboxylic acids (QDC).  The potential development of the QDCs as a template for 

inhibitors was supported by:  (1) the structural resemblance to the quinoline 2-carboxylic 

acids, (2) the obvious embedded glutamate backbone, and (3) potential for selectivity at 

the VGLUTs (Fig. 1.3).  The most potent VGLUT inhibitor to emerge from this synthetic 

effort was that of 6-[4’-biphenyl] QDC with a Ki value of 41 µM (Carrigan et al., 2002; 

Carrigan et al., 1999).  As will be discussed below, the structural motif of the QDC led to 

the hypothesis that the steroids might also act as inhibitors of VGLUT. 
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Figure 1.3.  Commonalities of various VGLUT inhibitors 

 

Development of the QDCs.  The “embedded” glutamate is the most obvious common 

structural feature between these molecules.  The addition of a bicyclic core, evident in 

QDC and 6-(4’)-QDC, increases potency.  The largest increase in potency has been due 

to lipophilic additions, such as the biphenyl group in the 6- position of the basic QDC 

structure. 
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Neuroactive steroids 

 

Hans Seyle first reported the anesthetic effects of steroids in 1941 (Selye, 1941). 

The word, “neurosteroid,” was first used by Baulieu to describe the actions of the 

DHEAS, found in the brain after gonadectemy and adrenalectemy (Baulieu, 1981).  More 

recently, the term, “neuroactive steroid,” has been introduced to account for two classes 

of steroids active in the CNS:  those (1) steroids synthesized in the brain, and those (2) 

steroids (or precursors) produced peripherally and then modified in the brain (Paul, 

1992).  For this work, the term “neuroactive steroid” will be used to refer to any steroid 

molecule active in the CNS in a nongenomic manner.  Currently, there is a great deal of 

interest in this area; however, conflicting reports still exist in the literature.  Evidence of 

neuroactive steroids began with two observations: first, studies demonstrated that certain 

steroids could modulate GABAA receptor function, and secondly, Baulieu’s group 

showed that steroids remained in the brain after gonadectomy or adrenalectomy 

(Corpechot et al., 1981; Corpechot et al., 1983; Harrison and Simmonds, 1984).   

 

As previously mentioned, while some neuroactive steroids, such as pregnenolone 

(PREG), are produced in the brain, the endocrine system can provide additional 

precursors that are modified in the brain.  Therefore, there are a number of issues 

regarding neuroactive steroid concentrations that need to be resolved in order to better 

understand their potential roles in neurophysiology.  First, the origin of neuroactive 

steroid precursors may aid in elucidating whether a specific effect is humoral or local.  

The quantitation of neuroactive steroids has been difficult due to environmental and 
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methodological issues.  To overcome the environmental issues, pharmacological and 

physiological experiments have been performed under strictly defined conditions.  

Methodological issues have prevented a robust quantitation of neuroactive steroid levels 

in various brain regions.  This makes it problematic to understand the relative 

contribution of neuroactive steroid effects in and between different areas (Baulieu et al., 

1999).  Nevertheless, steroid concentrations measured from cadavers have been shown to 

be in the low nanomolar range (Corpechot et al., 1981; Corpechot et al., 1983; Harrison 

and Simmonds, 1984; Lacroix et al., 1987; Lanthier and Patwardhan, 1986).  DHEA 

(conjugated and unconjugated) was shown to be present in the adult male rat brain at 

about 2.5 ng (10 pmol)/g, while in the human brain, it was present at about 5.6 ng/g.  

Similarly, PREG levels (conjugated and unconjugated forms) were present in the rat 

brain at 35 ng (100 pmol)/g, and 38.2 ng/g in the human brain (Baulieu et al., 1999). The 

establishment of allopregnanolone (3α,5α-TH PROG) concentrations has been more 

difficult.  Estimations of 3α,5α-TH PROG levels range from undetectable to 1.3 ng/g 

(Cheney et al., 1995; Corpechot et al., 1993; Leblhuber et al., 1990; Purdy et al., 1991).  

While the concentrations of neuroactive steroids are generally in the nM range, previous 

evaluation of these amounts are limited in the respect that they do not assess 

concentrations at the level of cellular microenvironment.  

 

Despite some of the difficulties with quantitating neuroactive steroid levels, there is an 

evolving body of literature describing both the involvement of these molecules in 

neuropathology and neurophysiology on a systemic level, as well as a biochemical level. 
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Research regarding neuroactive steroids has not progressed to the point to which a 

coherent mechanistic understanding exists.  Studies which describe the effects of 

neuroactive steroids, tend to be at isolated levels of investigation (physiological, 

biochemical, etc.).  Despite the current state of the literature, there appear to be two 

distinct patterns of neurological modulation being elicited by two different groups of 

neuroactive steroids.  These two distinct patterns are produced by compounds which have 

a large degree of structural similarity.  Steroid molecules, neuroactive steroids included,  

are composed of four fused rings as shown in Figure 1.2.  The steroid nucleus is derived 

from cholesterol molecules.  Neuroactive steroids are typically substituted at the 3-, 18-, 

and 20- positions. One particular group of neuroactive steroids that appear to be involved 

with these distinct actions are the pregnenolone derivatives, DHEAS and PREGS, also 

known as the excitatory neuroactive steroids (Fig. 1.3).  These neuroactive steroids 

appear to be responsible for a positive modulation of excitatory transmission (i.e. 

glutamate stimulation, GABA inhibition).  In contrast, the 3α-hydroxy ring A-reduced 

pregnane neuroactive steroids, 3α,5α-TH PROGS and 3α,5β-TH PROGS (inhibitory 

neuroactive steroids) result in a negative modulation of the inhibitory neurotransmission 

(i.e. glutamate inhibition, GABA stimulation) (Monnet and Maurice, 2006).  It is notable 

that these are generalized patterns and may not occur in all areas of the brain. 

 

The systemic effects of DHEAS and PREGS are dependent on the concentration at their 

local sites of action in the brain.  Although data in humans is somewhat contradictory, 

PREGS has been shown to enhance memory in rodent models (Vallee et al., 2001).  As  
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Figure 1.4.  Depiction of a steroid nucleus 

 

 
 
 
Neuroactive steroids share the basic structure pictured above.  The majority of 

neuroactive steroids discussed in this work are substituted at the 3, 18, and 20 positions.   
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one of the main components of certain types of synaptic plasticity processes related to 

memory, NMDA receptors are involved in some forms of long-term potentiation 

(Collingridge, 1987).  PREGS has also been shown to enhance NMDA receptor function, 

while not affecting GABAA field potentials (fEPSPs) (Park-Chung et al., 1994; Park-

Chung et al., 1997; Sliwinski et al., 2004) 

 

While this evidence suggests that PREGS does not affect GABAA fEPSPs, other studies 

indicate direct effect of PREGS acting as an allosteric inhibitor at GABAA (Majewska et 

al., 1988).  Under certain circumstances, however, PREGS has been shown to potentiate 

GABAA, as well as induce cell toxicity in retinal cells (Guarneri et al., 1998).  In contrast, 

the same study showed that DHEAS (25 µM) reduces the degree of PREGS stimulated 

cell death. 

 

DHEAS, which is synthesized from pregnenolone, is much less active at the NMDA 

receptor than PREGS, but it is more strongly correlated with memory enhancement than 

PREGS.   DHEAS plays a role in memory enhancement of the developing and adult 

rodent brains (Baulieu, 1998).  In humans, a correlation has been noted between cognitive 

performance and circulating levels of DHEAS (Barrett-Conner and Edelstein, 1994). 

Moreover, patients with Alzheimer’s disease tend to have lower levels of DHEAS 

(Leblhuber et al., 1990; Nasman et al., 1991).  In mice, DHEAS reduces alternation 

behavior deficits in memory and learning, which is a measure of spatial working memory 

(Urani et al., 1998).  Along with a positive correlation with memory enhancement, 

DHEAS is also a neuroprotectant under certain circumstances  
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Figure 1.5.  Structures of inhibitory and excitatory neuroactive steroids  

 
 
A)      B) 

 
C)      D) 

 

These images depict the two dimensional structures of excitatory (A) DHEAS and B) 

PREGS) and inhibitory (C) 3α, 5α-TH PROGS, and D) 3α, 5β-TH PROGS) 

neuroactive steroids 

 

 

 

 

 

H

H

H

O

SO3H

 

SO3H

H

H

O

 

H

H

H

O

SO3H

 

6 
SO3H

H

H
O

 

B A 
C D 

17 

3 5 



   

 20 

(Lapchak and Araujo, 2001).  A separate pair of neuroactive steroids, pregnanolone 

sulfate and allopregnanolone, have been shown to potentiate inhibitory mechanisms 

within the CNS.  For example, both pregnanolone sulfate and allopregnanolone have 

been shown to inhibit NMDA receptor response (Park-Chung et al., 1997). 

Allopregnanolone has also been shown to prolong GABA-mediated inhibitory 

postsynaptic currents in cultured rat hippocampal neurons (Harrison et al., 1987).  

 

During the course of these studies, we found certain sulfated neuroactive steroids 

inhibited vesicular glutamate uptake, whereas the non-sulfated varieties did not.  Of the 

neuroactive steroids tested, four showed the greatest activity against VGLUT:  PREGS, 

DHEAS, 3α,5β-TH PROGS, and 3α,5α TH PROGS.  To further characterize the 

specificity of potent neuroactive steroids, a detailed kinetic analysis was performed on 

PREGS.  The potent sulfated neuroactive steroids and related compounds were also 

assayed for activity as alternative substrates at VGLUT.  In addition, PREGS was 

assayed for its effect on the electrical and chemical components of the ATPase-dependent 

gradients.  The sulfated neuroactive steroids, shown to be potent inhibitors of vesicular 

glutamate uptake, were also tested for their cross-reactivity with additional vesicular 

transporters (i.e. VMAT, VGAT) to determine the specificity with respect to other 

vesicular neurotransmitter systems.   
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CHAPTER 2:  MATERIALS AND METHODS 

 

Materials 

 

Male Sprague-Dawley Rats (200-220 g) were used in all studies.  L-[3H]-Glutamic acid 

(42.90 Ci/mmol) and γ-[2,3-3H(N)]-aminobutyric acid (GABA) (33.70 Ci/mmol) were 

purchased from NEN (USA).  5-Hydroxy-[3H]-tryptamine trifluoroacetate (108 Ci/mmol) 

was purchased from GE Healthcare/Life Sciences.  Millipore filters (0.45 µm) were 

purchased from Sigma-Aldrich.  All other reagents were purchased from Sigma-Aldrich. 

 

Preparation of Synaptic Vesicles 

 

Synaptic vesicles were isolated according to the method described by Kish and Ueda  

(Kish and Ueda, 1989) and modified accordingly (Bartlett, 1999).  Sprague-Dawley rats 

(200-220 g) were sacrificed by decapitation.  After which, the brains were removed and 

minced in ice cold buffer containing 0.32 M sucrose, 1.0 mM NaHCO3, 1.0 mM 

magnesium acetate, and 0.5 mM calcium acetate (pH 7.2).  The minced cerebrums were 

homogenized (motorized Potter-Elvejham, Teflon/glass; Wheaton) and centrifuged for 15 

min at 12,000 g (4°C, Sorvall SS-34 rotor, Du Pont, Newton, CT).   The resulting pellets 

were resuspended in an ice-cold lysing solution (6 mM Tris-maleate, pH 8.1) for 45 min; 

and subsequently, centrifuged at 43,000 g for 15 min.  Supernatants were then 

centrifuged for 55 min at 222,000 g (Beckman Ti 70 rotor; Beckman Instrumentation, 

Fullerton, CA).  The final pellets were resuspended by homogenization in 0.32 M 
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sucrose, 1.0 mM NaHCO3, and 1.0 mM dithiothreitol (pH 7.2).  The final synaptic 

vesicles were stored at -80°C.   When assayed as described below, the stored vesicles 

retained activity for at least 8 weeks. 

 

Assay for Vesicular Uptake of Neurotransmitters 

 

Vesicular uptake of L-glutamate was performed as described previously ((Bartlett et al., 

1998).  Synaptic vesicles were suspended in a buffer containing 5.0 mM MgCl2, 375 mM 

sucrose, and 5.0 mM N-[2-hydroxyethyl]piperazine-N’-[ethanesulfonic acid] (HEPES; 

pH 7.4) and maintained at 4°C.  Duplicate aliquots (1.0 mg protein/mL) of vesicles were 

preincubated for 5 min at 30°C.  The uptake was initiated with the addition of a 

concentrated stock solution (20 µL, 30°C) which yielded a final assay mixture of 0.250 

mM glutamate, 2.0 mM ATP, 4.0 mM MgCl2, 4.0 mM KCl, 300 mM sucrose, and 5.0 

mM HEPES (pH 7.4).  The final mixtures (100 µL) were incubated for 1.5 min and 

terminated by the addition of 3.0 mL of ice cold 150 mM KCl.  Termination of uptake 

was followed by filtration through Millipore Hawp (25 mm diameter; 0.45 µm pore size).  

The filters were washed twice more with 3.0 mL of the 150 mM KCl.  The filters were 

transferred to 5 mL glass scintillation fluids.  Liquiscint scintillation fluid (3.5 mL; 

National Diagnostics) was added to the vials.  Radioactivity was quantified using a liquid 

scintillation counter (LSC, Beckman LS6500).  Residual radioactivity (filters without 

ATP) was subtracted to account for non-specific binding.  Kinetic analysis was done with 

glutamate concentrations of 0.25 - 8.0 mM, and inhibitor concentrations were typically 

3x-5x above and below the calculated Ki.  Nonspecific signal was quantified and 
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accounted for by measuring 3H-L-glutamate signal in the absence of ATP, and subtracted 

from all vials.  Nonspecific values were generally less than 20% of the signal, except in 

the case of 3H-GABA binding (typically 30-50%).  This high level of background was 

also noted by R. Jahn’s group (Hell and Jahn, 1998).  Initial experiments of 3H-GABA 

and 3H-serotonin uptake determined that uptake was linear with respect to time and 

protein under assay conditions employed (data not shown).  The linearity of uptake with 

respect to time and protein was previously established for 3H-L-glutamate uptake.   

Sigmoidal dose-response analysis and IC50 values were determined from nonlinear 

regression analysis of a one-site competition model (PRISM, GraphPad Software, Inc.).  

Estimated Ki values were calculated in accordance with the Cheng-Prusoff relationship 

from IC50 values (Cheng-Prusoff, 1973). Lineweaver-Burke analyses were completed by 

computer analysis utilizing Michaelis-Menten kinetics (PRISM, GraphPad Software, 

Inc). Protein concentrations of the assays were quantified via the Pierce BCA assay 

(bicinchonic acid; (Smith et al., 1985)). 

 

Assay for Measurement of L-Glutamate Efflux 

 

Vesicular glutamate efflux was measured as described by Bartlett (Bartlett et al., 1998).  

Synaptic vesicles were first incubated in the presence of 3H-L-glutamate as previously 

described.  After 5 min of incubation, 100 µl of suspended vesicles were diluted 20-fold 

with incubation buffer with L-glutamate and/or inhibitor at an indicated concentration, in 

the absence of ATP.  The samples were then allowed to incubate for the specified times 

and efflux was terminated by the addition of 150 mM KCl (0°C) three times, with 
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vacuum filtration between rinses.  Radioactivity present in the vesicle and collected on 

the filters was quantified by LSC. 

 

Assay for Measurement of ΔpH and ΔΨ by Fluorescence Quenching 

 

The quenching of the fluorescent signal generated by either acridine orange or oxonol V 

was used to monitor changes in pH or electrical gradient in the isolated synaptic vesicles, 

respectively (Tabb, 1992; Maycox, 1988).  Experiments were carried out in sucrose 

buffer containing (0.320 mM Sucrose, 10 mM HEPES/KOH (pH 7.4), 4 mM KCl, 4 mM 

MgSO4) or a KCl buffer (10 mM HEPES/KOH (pH 7.4), 4 mM KCl, 4 mM MgSO4).  

Approximately 100-150 µg of protein was included in each assay.  After initiating the 

experiment at 0 sec, ATP was added at 180 sec.  Drugs were added at either 60 sec 

(pretreatment) or 480 sec (treatment). The protonophore, carbonyl cyanide 3-

chlorophenylhydrazone (CCCP) was added to each assay at 480 sec to terminate the 

experiment.  Fluorescence quenching experiments were measured with an excitation of 

492 nm and an emission of 520 nm for acridine orange (2 µM) on a Hitachi F2000 

Spectrofluorimeter.  Similarly, fluorescence quenching experiments with oxonol V (10 

µM) were run with an excitation of 617 nm and an emission of 643 nm.  Interactions 

between inhibitors and fluorescent dyes were assessed with absorbance, excitation, and 

emission scans. 
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Molecular modeling 

 

In silico modeling was done on Silicon Graphics, Inc. (SGI) Octane workstations with 

R12000 processors coupled to an SGI Origin 2000server.  The Sybyl software suite 

(versions 6.8-7.0) with the Advanced Computation Module (Tripos:  St. Louis, MO), was 

utilized for conformational searching.  Additionally, the industrially derived stochastic 

random search algorithm AESOP was used to ensure a thorough search of the 

conformational space.  Molecular databases were prepared in Sybyl formats. 

 

 Pharmacophore alignments were constructed as steric-strain, gas-phase derived 

conformations compositions employing established comprehensive conformational 

analysis methods (Marshall, 1995; Opera et al., 1995) with three VGLUT inhibitor 

ligands, 5,6-fused-quinoline dicarboxylic acid (5,6-QDC) and Congo red fragment (CRF) 

(for comparative pharmacological properties, (Bartlett, 1999)).  Conformational space of 

the VGLUT inhibitors was comprehensively searched by employing two computational 

protocols:  Randomsearch (Tripos Sybyl) and the stochastic technique AESOP (Masek, 

1998).  The random search procedure locates energy minima by randomly adjusting the 

selected bonds and minimizing the energy of the resulting geometry.  Chiral centers, ring 

closure distances, and energy ranges were checked for consistency.  This comparison was 

based on an RMS match between non-hydrogen atoms in the previously found 

conformers and the current conformer.  Two random searches (or more) were performed 

on each training set ligand and other test cases.  Data from the Sybyl random searches 

were deposited into a molecular database.  AESOP is an alternative stochastic derived 



   

 26 

program used to search conformational space.  It applies high temperature to the 

molecule (which results in the molecule being torqued and tensed), and was set to capture 

a conformer snapshot every 5 fs.  Temperatures and times were set between 1600 and 

1800 K and 60 and 80 fs.  Data from the AESOP spreadsheets were deposited in the 

databases established earlier.  Subsequently, all conformers from both search protocols 

were minimized to zero energy change defining the nearest energy well profile.  

Conformer database entries were sorted as a function of total energy and cases of 

degenerate energy profiles were crosschecked as plausible duplicates, based on select 

distances and angles defined in an exported Molfile spreadsheet.  Duplicate or nearly 

duplicate conformers (e.g., certain rotamers) were eliminated.  Some conformations 

would not have been found only if one conformer search routine had been used. 
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CHAPTER 3:  RESULTS 

 

Section I:  Specificity of inhibition elicited by sulfated neuroactive steroids, substituted 
QDCs, and derivatives of naphthalene sulfonic acids at VGLUT 

 

Introduction 

 

Competitive inhibitors of vesicular glutamate uptake vary widely in their basic structures, 

from glutamate derivatives, which share obvious similarities with the endogenous 

substrate, to those of the ergopeptides with less obvious structural commonalities.  

Among those compounds which are clear homologues of glutamate, trans-1-

aminocyclopentane-1,3-dicarboxylic acid (trans-ACPD) and erythro-4-methyl-L-

glutamic acid (MGlu) appear to be the most potent inhibitors, with Ki values of 0.44 mM 

and 0.73 mM, respectively (Winter and Ueda, 1993).  It is important to keep in mind that 

VGLUT exhibits a KM of 1-3 mM for L-glutamate, unlike that of the high-affinity, Na+-

dependent transporters, which have KM values of 5-50 µM.  The naphthalene sulfonic 

acids are much larger molecules that still retain some structural similarities with L-

glutamate.  Evans blue and Chicago sky blue are the most potent compounds within this 

class of inhibitors, initially characterized with Ki values of 40 nM and 90 nM, 

respectively (Roseth et al., 1995).  Previous work in our lab described another 

naphthalene sulfonic acid, Congo red (CR), as a competitive inhibitor with a Ki value of 

0.840 µM (Bartlett, 1999).    
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Although the naphthalene sulfonic acids are one of the most potent groups of compounds 

to date, they are difficult to obtain in sufficient purity and have cross-reactivity with other  

sites within the glutamatergic system.  In conjunction with the laboratory of Charles 

Thompson (C.N. Carrigan), another inhibitor series has been developed to address these 

limitations.  The utilization of QDC as a template for this inhibitor series was based on 

three criteria: (1) an embedded glutamate molecule with a coplanar arrangement, (2) a 

bicyclic aromatic system, and (3) activity at VGLUT (Carrigan et al., 1999).   The 

coplanar arrangement of an embedded glutamate was decided upon based on the 

desirable properties of the kynurenate analogues.  Two of them, 7-Cl-kynurenate and 

xanthurenate were shown to exhibit Ki values of 0.59 mM and 0.19 mM, respectively 

(Bartlett et al., 1998). Further, it was noted that compounds containing bicyclic ring 

system were more effective inhibitors than those with monocyclic ring systems.  This 

observation led to the decision to include bicyclic ring systems into the inhibitor design 

template.  With respect to specificity for VGLUT, the potent kynurenate analogues 

mentioned previously, displayed little, if any, activity at the EAATs and minimal activity 

at glutamatergic receptors. Consistent with the criteria used in the design of these 

molecules, the development and subsequent testing of 6-(4’-biphenyl)-QDC yielded a 

molecule with an enhanced inhibitory activity (Ki = 0.041 mM).  This increase in potency 

was hypothesized to be due to the addition of a lipophilic moiety in the form of an aryl or 

aryl-linked group at the 6- or 7- position.  

 

Another inhibitor, 5,6-napthyl-QDC (5,6-QDC), designed from this template, was also 

shown to have activity at VGLUT uptake (Carrigan, 2000).  Interestingly, the structure of 



   

 29 

this compound resembled the basic structure of a steroid molecule (Fig. 1.2; Fig. 1.4).  

Specifically, the bicyclic core and lipophilic addition suggested that certain steroids may 

be active at VGLUT.  Moreover, modeling studies, discussed in section 2 of this work, 

indicate that neuroactive steroids might also be accommodated in the binding-site.  

Additional credence for this possibility is found in recent evidence that neuroactive 

steroids act at distinct sites within the glutamatergic system, i.e. NMDA receptors.  These 

sites have been shown to be responsive to PREGS and 3α,5β-TH PROG in positive and 

negative modulatory roles, respectively (Park-Chung et al., 1997).  To further explore this 

observation, a panel of neuroactive steroids that most resemble QDCs was initially tested 

by Holly Cox, for their ability to block vesicular uptake of glutamate (Table 3.I.1).  

Interestingly, only the sulfated neuroactive steroids were active inhibitors of vesicular 

glutamate uptake, as opposed to nonsulfated compounds such as estradiol 3-benzoate, 

estrone hemisuccinate, PREG-3-acetoxy, and PREG.  Neuroactive steroids, which 

displayed the greatest degree of activity, were then characterized with a dose-response 

analysis at VGLUT (Figure 3.I.1; Table 3.I.1).  Of these compounds (DHEAS, PREGS, 

3α,5α TH PROGS, and 3α,5β TH PROGS), 3α,5β TH PROGS was the most active with 

an estimated Ki value of 26.2 µM.  

  

To confirm the specificity of inhibition at the biochemical level, this work presents a 

more detailed kinetic analysis of PREGS.  For comparative purposes, 5,6-QDC was also 

kinetically characterized in parallel with the PREGS.  The results of this work are 

potentially significant in that the SAR data may provide a link between a synthetically 

derived compound and a new endogenous ligand.   Further, the characterization of these  
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Figure 3.I.1.  Concentration-response analysis of potent sulfated-neuroactive steroids at 

VGLUT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dose-response analysis of neuroactive steroid inhibition of VGLUT.   Glutamate (3H-L-) 

uptake was performed as described in Chapter 2.  Neuroactive steroids were tested 

against vesicular glutamate uptake at six concentrations (10, 25, 50, 100, 250, 500 µM).  

A variable slope plot was utilized due to poor aqueous solubility of neuroactive steroids.  

Data courtesy of H. Cox, unpublished results. 
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Table 3.I.1.  Inhibition of VGLUT by sulfated neuroactive steroids 
 
Compound 
 

Percent of Control 
(250 µM) 
 

Ki 
(µM) 
 

DHEAS 23 ± 3 
 

54 ± 5 
 Pregnenolone 

 
100 ± 4 
 

 
 

Pregnenolone 3-acetoxy 
 

86 ± 5 
 

 
 

Pregnenolone Sulfate 
 

31 ± 3 
 

63 ± 5 
 

Pregnanolone Sulfate 
 

15 ± 4 
 

26 ± 2 
 

Allopregnanolone Sulfate 
 

8 ± 3 
 

40 ± 7 
 

Estradiol 3-benzoate 
 

111 ± 3 
 

 
 

Estrone Sulfate 
 

52 ± 8 
 

 
 

Estrone hemisuccinate 
 

109 ± 20 
 

 
 

 
Pharmacological data for neuroactive steroid inhibition of 3H-L-glutamate uptake into 

isolated synaptic vesicles. Data are reported as % of control values and represent the 

mean ± SEM (n≥3).  Control values were 1500 ± 110 pmol/min/mg protein.  Ki values 

were calculated using the Cheng-Prusoff equation (GraphPad Prism software) in at least 

three independent experiments. Ki values were only determined for active compounds.  

Sulfated neuroactive steroids were shown to be the more potent inhibitors.  Unpublished 

data courtesy of H. Cox. 
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compounds as competitive inhibitors make them useful in the development and 

refinement of the VGLUT pharmacophore model. 

 

Results 

 

PREGS was assayed at three concentrations (50 µM, 150 µM, and 250 µM) against a 

range of glutamate concentrations (0.250-8.0 mM).  The data was analyzed using 

GraphPad PRISM Software utilizing a nonlinear regression approach.  The results of a 

replot of data derived from nonlinear regression to the form of a double-reciprocal plot 

were consistent with PREGS being a competitive inhibitor (Ki =107 µM) that exhibits a 

KM and Vmax of 1.81 ± 0.37 mM and 36.2 ± 4.2 nmol/min/mg, respectively for glutamate 

uptake (Fig. 3.I.2).  A similar analysis was performed with 5,6-QDC at concentrations of 

10 µM, 50 µM, and 150 µM. Similar to PREGS, nonlinear regression analysis reveals 

that 5,6-QDC is a competitive inhibitor (Ki = 228 µM) with a KM = 1.21 ± 0.22 mM and 

a Vmax = 27.6 ± 2.7 nmol/min/mg for glutamate uptake (Fig. 3.I.3).  

 

These results suggest that binding of PREGS and 5,6-QDC are mutually exclusive at the 

substrate-binding site. This does not, however, rule out the possibility that these 

molecules are binding to the substrate site in different manners.  For instance, the 

differences in overall length of conformations of these competitive inhibitors may result 

in the occupation of the substrate-binding site in slightly different ways.  Thus, VGLUT 

inhibitors with a longer overall length may occupy subdomains in addition to those 

required for the binding of L-glutamate.  Alternatively, a VGLUT inhibitor may not only  
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occupy subdomains through which L-glutamate is transported, but also bind to distinct 

site(s) that disrupt the conformational changes necessary for the transport of L-glutamate.  

The classification of these compounds as competitive inhibitors designates that [3H]-L-

glutamate will not bind to VGLUT while in the presence of the inhibitor. 

  

In summary, these results confirm that previously identified structural features (i.e., 

lipophilic moiety, bicyclic core) that are important for inhibitor activity at VGLUT (Fig. 

3.I.4).  Moreover, the conclusion that 5,6-QDC is a competitive inhibitor provides further 

support for selectivity of the QDC template.  The classification of PREGS as a 

competitive inhibitor at VGLUT adds another binding site for neuroactive steroids within 

the CNS.  The Ki values observed for these compounds exhibit a 10-fold higher affinity 

for VGLUT than the endogenous substrate; whereas, the azo- dyes are 1000-fold more 

potent than L-glutamate.   
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 Figure 3.I.2.  Demonstration of the competitive inhibition of PREGS on 3H-L-glutamate 

the uptake into synaptic vesicles.  

 

Nonlinear regression plot (n = 3) of the effect PREGS (50, 150, 250 µM) has on the 

uptake of 3H-L-glutamate (0.25-8.0 mM) into synaptic vesicles.  Nonlinear regression 

yields a KM = 1.81 ± 0.37 mM, a Vmax = 36.2 ± 4.2 nmol/min/mg for glutamate uptake, 

and a Ki = 0.107 ± 0.021 mM.  Inset shows a replot of the nonlinear regression in the 

form of a double-reciprocal plot. 
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Figure 3.I.3.  Demonstration of the competitive inhibition of 5,6-QDC on the uptake of 

3H-L-glutamate into synaptic vesicles. 

Nonlinear regression plot (n = 3) of the effect 5,6-QDC (50, 150, 250 µM) has on the 

uptake of 3H-L-glutamate (0.25-8.0 mM) into synaptic vesicles.  Nonlinear regression 

yields a KM = 1.21 ± 0.22 mM, a Vmax = 27.6 ± 2.7 nmol/min/mg, and a Ki = 0.228 ± 

0.075 mM for glutamate uptake.  Inset shows a replot of the nonlinear regression 

superimposed on a double-reciprocal graph of the data. 
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Figure 3.I.4.  Structures of identified competitive inhibitors 
 
(a)      (b) 
 

 
(c) 

 
 
The structures of identified inhibitors:  (a) 5,6-napthyl-QDC, (b) PREGS, and (c) Congo 

red 
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Section II:  Development of a VGLUT pharmacophore model and alignments with 
identified, competitive inhibitors 

 

Introduction 

 

As more compounds are characterized as competitive inhibitors of the vesicular 

glutamate system, it becomes possible to visualize the three-dimensional (3D) space 

necessary to understand the structural requirements needed for binding.  One of the most 

effective methods to achieve this is through the construction of a 3D, ligand-based 

pharmacophore model, which essentially defines the structural characteristics of active 

molecules.  As computational power has increased, the development of three-dimensional 

models is generally more valuable than two-dimensional (2D) ones.  The basic 

assumption underlying the model is that the compounds used to generate the 

pharmacophore model are binding to the protein in a similar manner; this assumption is 

consistent with the nature of inhibition elicited by competitive inhibitors (Leach, 2001).   

 

Previous work in our lab initially sought to develop a ligand-based pharmacophore model 

for VGLUT using a best-fit, three-point analysis of L-glutamate, xanthurenate, and 

(1R,3S )-ACPD.  This analysis was intended to identify the maximum overlap of 

identified groups.  In this instance, the groups selected were α-nitrogens, α-carboxylates, 

and electron densities of distal carboxylates and aromatic groups.  Two models emerged 

from these efforts; the first of which predicted a high degree of overlap between 

glutamate and xanthurenate, while the second model predicted a “cupped” conformation 

of (1R,3S )-ACPD.  Interestingly, this “cupped” conformation was proposed as an active 
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conformation at mGluRs, which could be problematic in the effort to develop inhibitors 

that are specific for VGLUT and do not crossreact with mGluRs (Bartlett et al., 1998).   

 

This pharmacophore model was subsequently refined, in collaboration with C.M. 

Thompson and coworkers, through development and characterization of the quinoline 

dicarboxylic acids QDCs.  The QDC template was essentially a composite of structural 

characteristics from L-glutamate, kynurenate and the naphthalene sulfonic acids, as 

depicted in Chapter 1 of this work (Fig. 1.3).  The resulting SAR data illuminated the 

structural requirements necessary for activity at VGLUT (Carrigan et al., 2002).  First, a 

bicyclic aromatic core, present in the QDCs and naphthalene sulfonic acids, represented 

the most basic structural moiety of the model. Secondly, an embedded glutamate 

structure, present in the previous pharmacophore model and incorporated into this design, 

was proposed to facilitate binding.  This “embedded glutamate” includes the two 

carboxylic acids and an amine group in a coplanar arrangement, with specificity at 

VGLUT.  Finally, the presence of a lipophilic functional group was included in the QDC 

template due to associated increases in potency.  The lipophilic moiety, present in the 

form of biphenyl or naphthyl groups, improved Ki values two-fold or greater (200 µM to 

100 µM) (Carrigan et al., 2002). 

 

In collaboration with the laboratories of J.M. Gerdes and C.M. Thompson, the most 

recent iteration of this pharmacophore model was constructed (E. Bolstad, unpublished 

results) with more advanced computational modeling methods (Esslinger et al., 2005) 

(Fig. 3.II.1).  This pharmacophore model offers a more thorough understanding of the 
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important functional groups and their relationship in 3D space (Fig.  3.II.2).  This model 

was created by the superposition of a diverse set of three molecules chosen based on 

structural diversity and potency (Ki in the micromolar range).  The three molecules 

chosen, Chicago sky blue monomer (CSB), bromocriptine (BCT), and 6-(4’-biphenyl) 

QDC (6-(4’)-QDC), underwent conformational analysis to elucidate common binding 

moieties.  Conformationally-constricted molecules are particularly valuable in this type 

of analysis.  To begin with, conformational constraints limit the number of conformers 

reasonably obtainable by the analogues.  One analogue, by itself, is not especially 

problematic; however, among the three molecules used to generate the conformer, 2806 

conformers were found.   Conformer groups, used in the analysis of the molecules 

employed in the pharmacophore model, totaled 419,475,368 (Table 3.II.1).  Also, these 

molecules define conformational space in a known manner, which aids in the orientation 

of these molecules when aligned amongst each other.  Four regions and 6 measures were 

determined for the refined pharmacophore model.  Two aryl ring moieties, designated by 

ring 1 and 2, are similar to the bicyclic core and lipophilic moiety present in the previous 

pharmacophore model (Fig. 3.II.2).  Two regions of electronegativity/electron density, 

designated as region 1 and 2, correspond to the (γ)-distal carboxylate isosteres also 

present in the preliminary pharmacophore model (Fig. 3.II.2).  These measures represent 

the averages (represented in Fig. 3.II.2) 

 

Based on its structural qualities, pregnenolone sulfate (PREGS) was chosen as novel 

inhibitor to verify this pharmacophore model using a “leave-one-out” procedure (in 

collaboration with E. Bolstad, unpublished results). 
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Figure 3.II.1.  Illustration of the superposition of CSB, BCT, and  6-(4’)-QDC)  

 
Image depicting VGLUT pharmacophore model shows the superposition of 6-(4’)-QDC 

(aqua blue), Bromocriptine (grey), and Chicago sky blue Monomer (green). 

Electronegative regions are distinguished by the oxygen groups (marked in red).  The 

centroids of identified rings are represented by pink (E. Bolstad, unpublished results).  

The training set molecular conformations were brought together with a 1 cal spring 

constant.  Top panel shows common ring lipophilic regions and correlated 

electronegative groups (top panel, right).  The bottom panel emphasizes the planar quality 

of the superposition pharmacophore model.  
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Figure 3.II.2.  Identified regions and intraregion measures of the VGLUT Pharmacophore 

model 
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Measurements of the VGLUT pharmacophore model.  Four regions and six measures 

were determined for the refined pharmacophore. Two aryl ring moieties, designated by 

ring 1 and 2, are similar to the aryl ring and bicyclic core present in the previous 

pharmacophore.  Two regions of electronegativity/electron density, designated as region 1 

and 2, correspond to the (γ)-distal carboxylate isosteres also present in the preliminary 

pharmacophore.  The measurements compared are as follows:  A. 12.3 Å; B. 9.8  

Å; C. 9.7 Å; D. 3.3 Å; E. 2.9 Å; F. 4.9 Å (E. Bolstad, unpublished results) 

 



   

 42 

This protocol, which also provided my initial training in modeling, is a method for 

validation of the pharmacophore model, in which a potent competitive inhibitor is not 

included in the model construction training molecular set.  Ideally, the test molecule 

chosen exhibits certain distinct characteristics, which makes it valuable as a test case, i.e. 

a planar conformation with select functional groups, to clearly challenge the model fit 

qualities.  The alignment of a PREGS conformation, with a minimized conformer energy 

of 22.54 Kcal/mol, produced a good fit using an all-combinational analysis technique 

(Fig. 3.II.3).  The neuroactive steroid (orange) was easily superpositioned within the 

pharmacophore model (silver), thereby demonstrating the model’s robust qualities.  The 

centroids of the aryl ring moieties of each molecule are colored pink.  Electronegative 

regions are shown in yellow (sulfur), and silver (carbon) with red (oxygen) ends.  The 

VGLUT pharmacophore model predicts that competitive inhibitors would have a planar 

structure with two electronegative areas and a lipophilic moiety.  

 

The model conformer energies (Table 3.II.1) were often higher than of the global minima 

conformer energy (lowest energy listed in the strain energy range).  A conformer energy, 

which is higher than the conformer energy minima, can be explained since the most 

energetically favored conformations do not always represent the biologically active ones.  

This energy difference can be explained by the energy involved in ligand-receptor 

interactions (Rupp et al., 1994).  The neuroactive steroid selected was PREGS which then 

was pharmacologically characterized at VGLUT, amongst other proteins as described in 

the previous section of this dissertation. 
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Figure 3.II.3.  Alignment of VGLUT pharmacophore model with PREGS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Alignment of the VGLUT pharmacophore model and PREGS (orange) performed as 

described in the text.  Conformational space searching resulted in 78 conformers.  The 

strain energy range of the conformers was 21.78-41.65 (Kcal/mol).  The strain energy of 

the conformer used in the alignment was 22.54 (Kcal/mol) (E. Bolstad, unpublished 

results).  The conformers are brought together with a minimal 1 cal spring constant.  The 

planar qualities of PREGS are shown in the top panel.  The bottom panel reveals the 

overlap of the PREGS 3-position sulfonate group with one of the model electronegative 

groups (lower right). 
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At the time the VGLUT pharmacophore model began, we decided to select one 

sulfonated neuroactive steroid as a representative example of the molecular class.  The 

neurosteroid selected was PREGS, which then was pharmacologically characterized at 

VGLUT, amongst other proteins as described in other sections of this dissertation.  

 

To further utilize the pharmacophore model, the alignments of identified competitive 

inhibitors, 5,6-QDC and Congo red, were also performed.  These molecules were not 

used in a leave-one-out protocol, due to the potential bias that compounds from the same 

inhibitor classes (6-[4’-biphenyl]-QDC, QDCs; Chicago sky blue, naphthalene sulfonic 

acids) being used in the development of the pharmacophore model.  In combination, 

these approaches can serve to synergistically increase the visual understanding of the 

VGLUT binding domain by providing rigorous computational models that are verified 

and refined thorough kinetic analysis.  
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VGLUT Ligand 
 
 

Ki (VGLUT) Total Number 
of Conformers 

Strain energy 
range of 

conformer set 
(Kcal/mol) 

 

Model 
conformer 

energy 
(Kcal/mol) 

 

Structures 

6-[4’]-QDC 95 µM 274 7.88-10.9 7.91 

 

Chicago sky blue 
(Monomer) 190 nM 1,534 30.3-35.1 30.3 

SO3H

SO3H

NH2OH

N

N

OCH3

2  

Bromocriptine 22 µM 998 37.7-58.4 46.9 

 

N CO2H

CO2H

 

N

N

O
H
NO

H

HO

O

O

N

HN

Br

H

Table 3.II.1.  Training set ligands used in the generation and testing of the VGLUT pharmacophore model and related test cases. 
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PREGS 107 µM 78 21.78-41.65 22.54 

 

Congo red 
(Fragment) 27 µM* 243 10.96-12.95 11.88 (A1) and 

11.84 (A2) 

SO3H

N

N

NH2

 

5,6-QDC 228 µM 17 10.36-12.92 11.18 

 
Ligands used in the generation and testing of the VGLUT pharmacophore model demonstrate the structural diversity of these 

molecules.  One criterion of this data set is the selection of molecules with a Ki for VGLUT in the micromolar range.  

N

CO2H

CO2H

 

SO3H

H

H

O
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Results 

 

To generate an alignment with Congo red fragment (CRF), the distance between the 

defined groups of the pharmacophore model and corresponding defined groups of the 

conformers were measured and recorded.  An average of the differences of these 

measures was plotted against an arbitrarily assigned conformer group number.  Although 

a lower score is generally indicative of a better 3D alignment, a range of alignments with 

the lowest scores was examined for a realistic superposition, as they may vary somewhat.  

As the molecular modeling software only aligns designated points, it is possible for a 

ligand superposition with a low score to have a variable pharmacophore model fit.  A 

group of conformers with a score in the lower range of the scale was chosen and visually 

inspected.  For example, one alignment showed a grossly out-of-plane aromatic ring and 

azo- linker (Fig. 3.II.6).  The sulfonate group on CRF was aligned with Region 1 of the 

defined pharmacophore model regions (Fig. 3.II.4).  The conformer used in this 

alignment had an energy of 11.88 Kcal/mol and had a strain energy range of 10.96-12.95 

Kcal/mol.  The alignment graph (Fig. 3.II.5) demonstrates various plateaus in the fit 

scored differences between the superposition possibilities.  Conformers from the lower 

plateaus were chosen for visual inspections.  To further explore alignment possibilities, 

another point-oriented fit was generated.  In this alignment the sulfonate group of CRF 

was aligned with Region 2 of the pharmacophore model (Fig. 3.II.7).  The second 

alignment (conformer energy of 11.84 Kcal/mol) yields a more consistent overall 

superposition fit across all the ligand conformers (Fig. 3.II.9).  The relative alignment  
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Figure 3.II.4.  Diagram of CRF alignment with VGLUT pharmacophore model (A1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CRF was superpositioned on the VGLUT pharmacophore model.  The sulfonate group of 

CRF was aligned with Region 1 of the pharmacophore model shown in Fig. 3.II.2. 
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Figure 3.II.5.  Demonstration of pharmacophore model alignment (A1) versus conformer 

number 

 
The alignment (A1) of CRF was described in section 2.  This graph depicts the score of 

the alignment versus an arbitrarily assigned conformer number.  The score is the average 

of the relative difference measured distances of defined points of CRF from the defined 

points of the training set pharmacophore model.  
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Figure 3.II.6.  Alignment 1 (A1) VGLUT pharmacophore model with CRF 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Alignment 1 (A1) of VGLUT pharmacophore model and CRF (orange) performed as 

described in the text.  Conformational space searching resulted in 243 CRF conformers.  

The strain energy range of conformers was 10.96-12.95 Kcal/mol.  The strain energy of 

the conformer used in the alignment was 11.88 Kcal/mol.  The top view emphasizes the 

overall planar quality of the model.  The bottom view reveals the common alignment of 

the electronegative group (lower right).  Ligand conformers were brought together using 

a 1 cal spring constant.  Certain alignments, such as this one, can result in an unfavorable 

fit.   
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scores were much lower on average in the second alignment (A2) than the first alignment 

(A1). The QDC, 5,6-QDC, much like that of PREGS exists in primarily a planar 

conformation (Fig. 3.II.11).  The fit of 5,6-QDC appears similar to PREGS.  However, 

the arrangement of the bicyclic core and napthyl groups of 5,6-QDC makes it appear 

shorter in overall length than that of PREGS (Fig. 3.II.11).  This may explain the slight 

difference in Ki values of 107.1 µM and 203.8 µM for PREG and 5,6-QDC, respectively.  

5,6-QDC had a narrow energy strain range of 10.36-12.92 Kcal/mole, much like that of 

6-4’-QDC due to the conformational constriction inherent to its molecular structure.  The 

energy of the conformer used in the alignment was 11.18 Kcal/mole. 

 

In summary, a correlation between kinetic results and pharmacophore model fits are 

indicative that the Figure 3.II.3 model displays consistent superposition properties.  Most 

of the potent compounds contain a bicyclic core, electronegative region(s), and a 

lipophilic substituent.  While the fit of 5,6-QDC and CRF, albeit good, are potentially 

biased due to the inclusion of analogues from their respective classes, PREGS offers 

validation of the pharmacophore model derived with the training set ligands.  

Structurally, PREGS contains all of the groups identified by earlier design efforts further 

confirming the effectiveness of the QDC template.  While these results are encouraging, 

much more work utilizing the pharmacophore model is planned.  Future docking 

experiments with protein models based upon crystal structures such as Gouaux’s 

structure of the glutamate transporter homologue from P. horikoshii (Yernool et al., 

2004) are underway and promise insights along with interesting debates (Yernool et al., 

2004) 
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Figure 3.II.7.  Diagram of CRF alignment with VGLUT pharmacophore model (A2) 
 

 
CRF was superpositioned on the VGLUT pharmacophore model.  The amino group of 

CRF was aligned with Region 1 of the pharmacophore model.  The numbers 1,2, and 3 

correspond with the measures used in the alignment against the training set 

pharmacophore model shown in Fig. 3.II.3. 
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Figure 3.II.8.  Demonstration of 3D similarity for (A2) versus the conformer group 

number 

 

 
The alignment (A2) of CRF was described in section 2.  This graph depicts the score of 

the alignment versus an arbitrarily assigned conformer number.  The score is the average 

distance of defined points on CRF from the defined points of the pharmacophore model.  
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Figure  3.II.9.  Alignment (A2) of the pharmacophore model with CRF 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Alignment of the VGLUT pharmacophore model and CRF (orange) performed as 

described in the text.  Conformational space searching resulted in 243 CRF conformers.  

The strain energy range of CRF conformers was 10.96-12.95 Kcal/mol.  The strain 

energy of the conformer used in the alignment was 11.837 Kcal/mol.  The ligand 

conformers were superpositioned with a 1 cal spring constant.  Differences between this 

CRF A2 alignment may be compared to the A1 alignment shown in Fig. 3.II.6. 
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Figure 3.II.10.  Alignment of 5,6-QDC with pharmacophore model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A schematic depicting how 5,6-QDC was aligned to the pharmacophore model.   

Alignment of 5,6-QDC was straightforward with all four identified areas corresponding 

with defined regions of the pharmacophore model shown in Fig 3.II.3. 

 

 

 

 

 

 

 

 

N

C

C

OH

O

O
OH

Region
111  11 

Region 
2 

Ring 1 

Ring 2 



 56 

Figure 3.II.11.  Alignment of VGLUT pharmacophore model with 5,6-QDC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Alignment of VGLUT pharmacophore model and 5,6-QDC (orange) performed as 

described in the text.  Conformational space searching resulted in 17 5,6-QDC 

conformers.  The strain energy range of conformer was 10.36-12.92 Kcal/mol.  The strain 

energy of the conformer used in the alignment was 11.18 Kcal/mol.  The ligand 

conformers were superpositioned with a 1 cal spring constant. 
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With respect to ligand-binding interactions, the development of a substrate-binding 

pharmacophore model may be helpful in discerning structural elements necessary for 

transport.  A larger set of diverse known substrates is needed before the development of a 

substrate pharmacophore model may be implemented. 
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Section III:  Influence of neuroactive steroids and related compounds on 3H-L-glutamate 
efflux from synaptic vesicles 

 

Introduction 

 

Synaptic vesicles isolated by variable speed centrifugation and gel filtration contained 

lower levels of L-glutamate than would be expected in an organelle involved in classical 

Ca2+-dependent neurotransmitter presynaptic release (De Belleroche and Bradford, 1973).  

While these low levels of glutamate observed led to the suggestion that the amino acid 

could be released from cytosolic stores, it was not appreciated at the time that the low 

levels actually represented loss of glutamate from synaptic vesicles.  The issue of whether 

glutamate was released from synaptic vesicles or cytosolic pools was resolved when 

transmission electron microscopy (TEM) images showing immunolabeled L-glutamate in 

synaptic vesicles were reported (Storm-Mathisen et al., 1983).  Further, numerous studies 

had shown that the accumulation of glutamate into synaptic vesicles occurred in the 

presence of ATP (Maycox et al., 1988; Naito and Ueda, 1983; Naito and Ueda, 1985).  

As previously discussed, ATP is necessary to generate the electrochemical gradient 

which promotes the accumulation of glutamate into synaptic vesicles.  The 

electrochemical gradient established by ATP for the uptake of glutamate may also be 

necessary for the retention of glutamate in the synaptic vesicles, thus the lack of ATP in 

the synaptic vesicle isolations proved to be the reason for the low levels of glutamate.  

Consistent with this conclusion, the addition of ATP to synaptic vesicle isolation buffer 

prevented the loss of the amino acid.  The same effect could be achieved by the addition 
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of N-ethylmaleimide (NEM)(Burger et al., 1989), presumably by interfering with a 

sulfhydryl group on the protein. 

 

In addition to the dependence on the electrochemical gradient, vesicular glutamate uptake 

is also affected by the concentration gradient between the intra- and extravesicular space.  

When synaptic vesicles equilibrated with 3H-L-glutamate are diluted into a volume large 

enough to prevent reuptake of the radiolabel to an insignificant level, a net efflux of the 

tritiated amino acid was observed (Carlson and Ueda, 1990; Wang and Floor, 1994).  

This net efflux was presumed to be transporter mediated, because it could be attenuated 

by either low temperature or the addition of NEM.  If the assumption that both uptake 

and efflux occur through the same transporter in a bidirectional manner is in fact true, it 

is possible that the presence of nonradiolabled of L-glutamate in the dilution buffer could 

result in an apparent increase in the amounts of glutamate exiting the vesicles via the 

process of trans-stimulation.  The phenomena of trans-stimulation has been previously 

shown to occur in other transport systems, including synaptic vesicles loaded with 

[3H]dopamine (DA) (Christensen, 1975).  Trans-stimulation is a process (to be more 

thoroughly explained later in the discussion), which involves the exchange of substrates, 

rather than the net movement in one direction.   

 

Previous work in our lab suggested that a similar effect might also be observed with 

glutamatergic synaptic vesicles (Fig. 3.III.1).   The addition of 20 mM L-glutamate (at 

10x KM) to synaptic vesicles previously equilibrated with 3H-L-glutamate increased the 

rate of efflux beyond the levels that occur in the absence of added glutamate, indicating 
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the occurrence of trans-stimulation.  It is possible to block efflux by including CR 

(previously identified as a non-substrate inhibitor by R. Bartlett, (Bartlett, 1999)) at 10x 

Ki with 20 mM glutamate.  Efflux of 3H-L-glutamate was also blocked at 0°C, consistent 

with a carrier-mediated event.  Given these two effects, this assay can serve to rapidly 

screen competitive inhibitors for their activity as either alternative substrates or 

nonsubstrate inhibitors.  Thus, nonsubstrate inhibitors bind to the transporter, lock the 

"alternative access" binding site in the external position and prevent efflux.  On the other 

hand, alternative substrates still allow efflux to occur, albeit at possible slower rates than 

observed with L-glutamate.  Compounds to be evaluated in this manner are added at a 

concentration that is 10 times the Ki value at VGLUT to ensure at least 90% occupancy 

of the transporter binding-site.  

 

The findings reported in the previous two chapters indicate that PREGS, and 5,6-QDC 

are both competitive inhibitors.  Assuming that these compounds bind as is typical of 

competitive inhibitors, raises the possibility that the analogues may also act as alternative 

substrates of VGLUT.  To address this possibility, these compounds were tested for their 

effect on the efflux of 3H-L-glutamate from synaptic vesicles. A time-course of [3H]-L-

glutamate efflux, in the presence and absence of 3α, 5β-TH PROGS, was also conducted 

to more thoroughly characterize the effects of this molecule on efflux over time. 

Additionally, a mathematical model of efflux based on Michaelis-Menten kinetics was 

developed to aid in distinguishing between nonsubstrate inhibitors and partial substrates. 
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Figure 3.III.1.  Effect of a nonsubstrate inhibitor and demonstration of trans-stimulation 

on vesicular 3H-L-glutamate efflux 

 

   
Experiments were carried out by loading synaptic vesicles with 3H-L-glutamate for 5 

min.  Loaded vesicles were then diluted 20x with buffer for 5 min, including: 20 µM 

Congo red and 20 mM L-glutamate (▽), 2 µM Congo red (▲), control (), 20 mM L-

glutamate (◇), and terminated at the indicated times (150 mM KCl).   Results represent 

the mean ± SEM for n = 6 determinations.  Total uptake values were determined after the  

5 min preloading with 3H-L-glutamate, but prior to dilution.  Competitive inhibitors are 

included in dilution buffer at 10x Ki (when indicated) to insure similar levels of binding 

occupancy at the transporter.   Results from R. Bartlett (Bartlett, 1999). 
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Results 

 

In addition to PREGS and 5,6-QDC, other potent neuroactive steroids were included in 

the dilution assay to test for their ability to act as alternative substrates at VGLUT.  As  

previously described for uptake, synaptic vesicles were pre-incubated for 5 min for 

temperature equilibration.  Subsequently, 3H-L-glutamate [250 µM] was added to the 

vesicular mixture and uptake was allowed to proceed for 5 minutes prior to a 20-fold 

(0.100 ml: 2.000 ml) dilution in assay buffer.  Where indicated, an identified competitive 

inhibitor was included in the dilution with the assay buffer at a concentration 10x its 

estimated Ki value.  This was done to ensure a similar level of binding occupancy at 

about 90%.  The assay was terminated 5 minutes later, after which the radiolabel 

remaining in the vesicles was determined in the same manner as uptake assays. 

 

Consistent with the time-course, the inclusion of CR (2 µM) essentially abolished the 

efflux of [3H]-L-glutamate from the synaptic vesicles when measured at 3 min (Fig. 

3.III,1).  The amount retained in the synaptic vesicles, in the presence of CR, was not 

significantly different from the efflux quantified at 0° C (Bartlett, 1999).  In contrast, 

when the known VGLUT substrate, trans-ACPD, was included in the dilution buffer, 

[3H]-L-glutamate efflux proceeded to a much greater degree, with only 35% of the 

radiolabel retained in the vesicles after 3 minutes.  When the other compounds of interest 

were tested in this manner, the level of efflux fell between that of Congo red and trans-

ACPD.  More specifically, the amount of radiolabel that remained in vesicles in the 

presence CSB, DHEAS, PREGS, pregnanolone sulfat e (3α,5β-TH PROGS), and  5,6-
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QDC was 62.3%, 68.9%, 57.0%, 56.2%, and 43.3% respectively (Fig. 3.III.2).   

Interestingly, levels of radiolabeled L-glutamate, present in vesicles, when 5,6-QDC was 

being assayed were close to those of trans-ACPD.  Previous research has directly shown 

trans-ACPD to be a substrate of VGLUT (Winter, 1993).  While the structure of 5,6-

QDC and that of trans-ACPD differ, their similar effects on glutamate efflux would 

suggest that 5,6-QDC is also a partial substrate.    

 

To further investigate the data generated at a single time point, a more detailed time-

course was carried out to examine L-glutamate efflux in the presence of 3α,5β-TH 

PROGS (Fig. 3.III.3).  Over the ten minute time course, 3α,5β-TH PROGS produced an 

efflux of glutamate that was slower (more [3H]-L-glutamate retained in the vesicles) than 

in the absence of the inhibitor, but still faster than levels of efflux observed in the 

presence of a nonsubstrate inhibitor or at 0° C.  Examination of the time course revealed 

that the efflux was not linear and that the difference between CR and 3α,5β-TH PROGS 

was greater at the 1.5, 3 and 5 min time points.  An additional analysis was also made 

based upon the rate of efflux during the first 30 sec, with the expectation that this might 

best represent the initial rate of efflux.  The rates of CR and 3α,5β-TH PROGS were, 

however, not significantly different, potentially due dilution artifacts at this time point 

(e.g., broken vesicles). 

 

To further analyze this data, a simulation, based on Michaelis-Menten kinetics, was 

conducted in collaboration with Dr. Emily Stone (Fig. 3.III.4). This simulation was based 

on a fit describing the curve of 3H-L-glutamate efflux over time. 
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Figure 3.III.2.  Demonstration of the effect of VGLUT inhibitors on 3H-L-glutamate 

efflux from synaptic vesicles 
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Efflux levels may be indicative of substrate activity  (A) Control; (B) 20 mM L-

glutamate; (C) 5 µM Congo red; (D) 2 µM Chicago sky blue (CSB); (E) 2 mM 

xanthurenic acid; (F) 5 mM trans-ACPD; (G) 670 µM 5,6-naphthyl-QDC; (H) 262 µM 

pregnanolone sulfate; (I) 627 µM pregnenolone sulfate; (J) 540 µM DHEAS.  Results 

represent the mean ± SEM for n = 3 determinations.  Total uptake values (7.34 ± 0.08) 

were determined after 5 min of preloading, but before dilution.  Efflux was terminated at 

3 min.  Statistical tests were performed with a one-way ANOVA followed by Tukey’s 

multiple comparison.  * and ** represent p < 0.05 for differences from total uptake and 

control, respectively. 
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Figure 3.III.3.  Effect of a partial substrate on vesicular 3H-L-glutamate efflux 
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Experiments were carried out by loading synaptic vesicles with 3H-L-glutamate for 5 

min.  Loaded vesicles were then diluted 20x with buffer for 5 min, including: 262 µM 

3α, 5β-TH PROGS (▽), 2 µM Congo red (▲), control (), 20 mM L-glutamate (◇), 

and terminated at the indicated times (150 mM KCl).   Results represent the mean ± SEM 

for n = 6 determinations.  Total uptake values (3.73 ± 0.2) nmol/mg protein) were 

determined after the 5 min preloading with 3H-L-glutamate, but prior to dilution.  

Competitive inhibitors are included in dilution buffer at 10x Ki (when indicated) to insure 

similar levels of binding occupancy at the transporter. 
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Figure 3.III.4.  Mathematical simulation of L-glutamate efflux from synaptic vesicles 

 
A simulation of L-glutamate efflux from synaptic vesicles was developed utilizing 

Michaelis-Menten kinetics in collaboration with Dr. E. Stone.  Rate constants were 

approximated as KON, 107 sec-1 M-1, KOFF, 2000 sec-1, and transport, 2000 sec-1.  It was 

assumed that there were 2000 molecules of glutamate per transporter.  
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Hypothetical microconstants of the simulation were as follows:  KON, 107 sec-1 M-1; KOFF, 

2000 sec-1; transport, 2000 sec-1; transporter: glutamate, 1:2000.  As these values are not 

known for glutamate, KON, KOFF, and transport numbers were estimated from EAAT3 

calculated constants (M. Kavanaugh, personal communication).  Similarly, the ratio of 

transporter to glutamate molecule was estimated assuming one transporter per vesicle and 

a vesicular content of approximately 2000 glutamate molecules (Daniels et al., 2006). 

The simulated curves were similar to experimentally derived ones.  A curve generated to 

theoretically replicate efflux with 90% of available transporters blocked was also similar 

to the experimentally derived curve in the presence of CR (Fig 3.III.3).  Curves 

simulating a block of 25% and 50% of available transporters were also generated. A 

compound, which influences efflux in such a way that the resulting vesicular content is 

lower than the simulation (with 90% of the transporters are blocked), would be presumed 

to be a partial substrate.  The curve with 3α,5β-TH PROGS was different than predicted 

of a straight-forward nonsubstrate inhibitor, and consistent with the uptake of this 

compound. 

 

While this simulation suggests that 3α,5β-TH PROGS and similar compounds can act as 

partial substrates at VGLUT, it remains to be directly confirmed.  Utilizing radiolabeled 

compounds is the gold standard for this type of analysis; however, it is cost- and time-

intensive.  This exchange protocol, however, provides an efficient initial screen for 

potential alternative substrates.  Upon identification of alternative substrates, compounds 

would be confirmed through direct tests, i.e. radiolabeled compounds.  Furthering our 

understanding of the characteristics necessary for transport through the VGLUTs holds 

Glutamate efflux studies. Experiments are carried out by loading synaptic vesicles with L-[3H]-glutamate 
for 5 min.  Loaded vesicles are then diluted 20X with buffer for 5 min, including (when specified): 20 mM 
L-Glutamate; 2 µM Chicago sky blue (CSB); 262 µM Pregnanolone Sulfate; 627 µM Pregnenolone Sulfate; 
540 µM DHEAS. Results represent the mean ± SEM for n = 3 determinations. Total uptake values were 
determined after the 5 min preloading with 3H-L-glutamate, but prior to dilution.  Competitive inhibitors are 
included in dilution buffer at 10 x Ki (when indicated) to insure similar levels of binding occupancy at the 
transporter. Statistical tests were performed with a one-way ANOVA followed by Tukey’s multiple 
comparison.  * and ** represent p < 0.05 for differences from total uptake and control, respectively.   
 

Glutamate efflux studies. Experiments are carried out by loading synaptic vesicles with L-[3H]-glutamate 
for 5 min.  Loaded vesicles are then diluted 20X with buffer for 5 min, including (when specified): 20 mM 
L-Glutamate; 2 µM Chicago sky blue (CSB); 262 µM Pregnanolone Sulfate; 627 µM Pregnenolone Sulfate; 
540 µM DHEAS. Results represent the mean ± SEM for n = 3 determinations. Total uptake values were 
determined after the 5 min preloading with 3H-L-glutamate, but prior to dilution.  Competitive inhibitors are 
included in dilution buffer at 10X Ki (when indicated) to insure similar levels of binding occupancy at the 
transporter. Statistical tests were performed with a one-way ANOVA followed by Tukey’s multiple 
comparison.  * and ** represent p < 0.05 for differences from total uptake and control, respectively.   
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particular allure, because of the potential to identify molecules that could then be 

delivered to receptors via presynaptic release.  This may be useful for both experimental 

protocols and for therapeutic use in a clinic.  Similarly, the presynaptic release of a 

neuroactive steroid may describe the endogenous mode of delivery for these molecules. 
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Section IV:  Specificity of sulfated neuroactive steroids and related compounds at other 
sites on the synaptic vesicle 

 

Introduction 

 

Standard kinetic assays of PREGS, CR and 5,6-QDC have revealed that these compounds 

inhibit vesicular glutamate uptake in a manner consistent with a competitive mechanism.  

To be more exact, the results demonstrate that binding of the competitive inhibitor and L-

glutamate is mutually exclusive, i.e., that only one can be bound at any one time.  

Moreover, models depicting the fits of PREGS, CR, and 5,6-QDC are consistent with the 

conclusion that these molecules, like L-glutamate, fit within the VGLUT pharmacophore.  

Finally, exchange studies suggest that PREGS and 5,6-QDC are partial substrates, which 

would only be expected of competitive inhibitors, i.e. compounds, which bind at the 

substrate binding-domains.  Taken together, these studies provide evidence that the 

compounds block VGLUT uptake by binding to the substrate binding domains.  Even if 

this is the case, it seemed prudent to investigate whether or not these compounds may 

have a second site of action. 

 

As previously discussed, vesicular glutamate uptake is driven by an electrochemical 

gradient generated by the hydrolysis of ATP.  The enzyme that catalyzes this hydrolysis, 

V-ATPase, is specific to synaptic vesicles.  The V-ATPase can be distinguished from 

other ATPases, i.e. Fo/F1-ATPase, Eo/E1-ATPase, by its sensitivity to N-ethylmaleimide 

(NEM) and insensitivity to Oligomycin B and vanadate (Cidon and Sihra, 1989).  The 

transport of protons into the vesicular lumen by the V-ATPase serves to establish a pH 
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gradient (ΔpH) between the vesicle lumen (~pH 6.8) and the extravesicular space (~pH 

7.4).  Likewise, the proton transport establishes an electrical gradient (ΔΨ) across the 

vesicular membrane with an inside positive and outside negative.  

 

The driving forces necessary for sequestration of neurotransmitter into synaptic vesicles 

are favorable due to one or both of the electrical or chemical gradients.  The uptake of 

ACh and monoamines is dependent primarily on the pH gradient, resulting from the 

antiport of two protons for one molecule of substrate (Parsons, 2000).  GABA and 

glycine uptake are dependent on the pH gradient and the electrical component, as well as 

the antiport of one proton per GABA molecule.  Additional studies indicate that uptake of 

GABA into synaptic vesicles is inhibited by 50% if either the ΔpH or ΔΨ is inhibited 

(McIntire et al., 1997). On the other hand, the primary driving force of glutamate 

sequestration into synaptic vesicles is presumed to be the ΔΨ (Maycox et al., 1988).  

Clearly, alterations of either the membrane potential or proton gradient could potentially 

affect glutamate uptake.  For this reason, the compounds were assayed for their effect on 

the electrochemical gradient. 

 

Experiments were conducted with fluorescent dyes capable of measuring ΔΨ.  The 

voltage-sensitive dye oxonol V (OXV) was used to measure any changes in the electrical 

gradient established by the V-ATPase.  Similarly, acridine orange (AO) was used to 

measure changes in the pH gradient.  The addition of ATP causes a quenching in the 

baseline fluorescence of the indicator dye (i.e., AO, OXV) as the ΔµH+ is generated.  Any 

changes in the quenching of the dye would be consistent with a change in the ΔΨ.   
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Results 
 

The proton gradient was measured by monitoring the changes of acridine orange 

fluorescence at an excitation wavelength of 492 nm and an emission wavelength of 520 

nm.  Thirty microliters of protein (100-150 µg) were added to 2 mL of KCl assay buffer 

(10 mM HEPES/KOH (pH 7.4), 4 mM KCl, 4 mM MgSO4) and 2 µL of acridine orange 

(10 µM). This mixture was allowed to preincubate for 5 minutes at 37°C while stirring.  

After five minutes of preincubation, fluorescence measurements were started.  The 

generation of the proton gradient was initiated by adding 25 µL of ATP (2 mM) directly 

into the cuvette.  The generation of the proton gradient produces a rapid quenching of 

acridine orange fluorescence.  Compounds of interest were added at either 60 sec or 360 

sec.  Only a slight reduction of fluorescence was evident after the addition of 5,6-QDC to 

the cuvette (Fig. 3.IV.1).  Part of the reduction in fluorescence was most likely due to a 

direct interaction of 5,6-QDC and acridine.  Thus, when the absorption, emission, and 

excitation spectra of acridine orange were assessed, in the presence and absence of 5,6-

QDC, a direct interaction was evident (data not shown).  PREGS demonstrated little if no 

effect to the pH gradient when added at 60 sec (Fig. 3.IV.2).  Addition at 360 sec with 

PREGS produced a slight decrease in fluorescence quench (Fig. 3.IV.2).  Overall, these 

results indicate only a slight affect of 5,6-QDC and PREGS on the pH gradient, and this 

suggests that these compounds did not interfere with [3H]-L-glutamate uptake as a 

consequence of disrupting the pH gradient.  While evidence suggests that CR is a 

competitive inhibitor, it should be noted that similar experiments were not reported due to 

a significant quench of the fluorescence signal as the result of an interaction between CR  
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Figure 3.IV.1.  Effect of 5,6-QDC on the proton gradient generated by a V-ATPase in 

synaptic vesicles.  

 

 
An overlay of a control trace (black line) with a 5,6-QDC added at 60 sec (green line) and 

360 sec (red line) from three representative trials. Each trace was performed n ≥ 3.  The 

proton gradient was measured with acridine orange at an excitation wavelength of 492 

nm and an emission wavelength of 520 nm.  Fluorescence intensity was measured for 10 

minutes.  The ATP was added at 180 sec.  Generation of the membrane potential was 

terminated with the addition of a protonophore (CCCP) at 480 sec.   
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Figure 3.IV.2.  Effect of PREGS on the proton gradient generated by a V-ATPase in 

synaptic vesicles.  

 
  
 
An overlay of a control trace (black line) with a PREGS added at 60 sec (green line) and 

360 sec (red) from three representative trials. Each trace was performed n ≥ 3.   The pH 

gradient was measured with acridine orange at an excitation wavelength of 617 nm and 

an emission wavelength of 643 nm.  Fluorescence intensity was measured for 10 minutes.  

The ATP was added at 180 sec.  Generation of the membrane potential was terminated 

with the addition of a protonophore (CCCP) at 480 sec.   
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acridine orange. 

 

A similar series of experiments were conducted to measure the membrane potential in the 

presence and absence of 5,6-QDC and PREGS.  The addition of 5,6-QDC produced an 

immediate quench of fluorescence of about 25 units.  However, upon the addition of 

ATP, a similar relative amount of quench was observed to occur as in the control (Fig. 

3.IV.3).  A similar effect of 5,6-QDC could be seen if it was added at 360 sec.  The 

protonophore, CCCP, was added to disrupt the membrane potential and terminate 

individual experiments.  Interestingly, the source of additional quench was not revealed 

in parallel studies in which 5,6-QDC was tested on the spectra of oxonol V. 

 

In contrast to a quench, the addition of PREGS produced an increase in fluorescence.  

Once again, quench of the signal occurred, rapidly following the addition of ATP.  The 

increase in fluorescence was also observed when PREGS was added at 360 sec.  Addition 

of PREGS at 60 sec reveals a slight loss in membrane potential fluorescence signal in the 

range examined (550-750 nm).  When the disturbances to these signals are subtracted, 

there seems to be only a minor effect on the maintenance of the membrane potential, in 

the case of PREGS (Fig 3.IV.4).  An absorbance spectrum of oxonol V was included to 

illustrate that the dye was not defective (Fig. 3.IV.5). 

 

These results indicate that at the concentration tested, PREGS and 5,6-QDC had little 

effect on the membrane potential and proton gradient.  In the instance of PREGS, this 

compound was included at a concentration of 90 µM, which was roughly equivalent to its  
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Figure 3.IV.3.  Effect of 5,6-QDC on the membrane potential generated by a V-ATPase 

on synaptic vesicles. 

 
An overlay of a control trace (black line) with a 5,6-QDC added at 60 sec (green line) and 

360 sec (red line) from three representative trials. Each trace was performed n ≥ 3. 

Membrane potential was measured with oxonol V at an excitation wavelength of 617 nm 

and an emission wavelength of 643 nm.  Fluorescence intensity was measured for 10 

minutes.  The ATP was added at 180 sec.  Generation of the membrane potential was 

terminated with the addition of a protonophore (CCCP) at 480 sec.  
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Figure 3.IV.4.  Effect of PREGS on the membrane potential generated by a V-ATPase on 

synaptic vesicles. 

 
An overlay of a control trace (black line) with a PREGS added at 60 sec (green line) and 

360 sec (red line) from three representative trials. Each trace was performed n ≥ 3.  

Membrane potential was measured with oxonol V at an excitation wavelength of 617 nm 

and an emission wavelength of 643 nm.  Fluorescence intensity was measured for 10 

minutes.  The ATP was added at 180 sec.  Generation of the membrane potential was 

terminated with the addition of a protonophore (CCCP) at 480 sec.  
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Figure 3.IV.5.  Absorbance spectrum of Oxonol V 

 

The absorbance spectrum of oxonol V (10 µM) in assay buffer (0.320 mM Sucrose, 10 

mM HEPES/KOH (pH 7.4), 4 mM KCl, 4 mM MgSO4) reveals a λmax at 615 nm. 
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predicted Ki value.  Likewise, the Ki of 5,6-QDC was included at 70 µM, again roughly 

equivalent to its respective Ki.  Although it would be prudent to evaluate the effects of 

PREGS and 5,6-QDC at a high concentration, such experiments may be problematic, due 

to the direct influence on the fluorescence properties of the included compounds on the 

electrochemical gradient.  Despite this potential complication, they are still considered 

VGLUT inhibitors.  Another complexity of the measurement is the heterogeneity of the 

vesicle preparation, thereby making it difficult to definitively assess the affect of these 

compounds on the electrochemical gradient selectively on the glutamate containing 

vesicles.  Establishing a method to either isolate VGLUT vesicles or reconstituting 

functional vesicles with VGLUT would provide a more reliable system. 
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Section V:  Specificity of sulfated neuroactive steroids and related compounds at other 
vesicular transporters (i.e. VMAT, VGAT) 

 

Introduction 

 

Each neurotransmitter in the CNS has an associated transporter that mediates its uptake 

into synaptic vesicles, i.e. vesicular GABA transporter (VGAT), vesicular acetylcholine 

transporter (VAChT), vesicular monoamine transporter (VMAT), etc.  These transporters 

exhibit distinct specificities and have kinetic properties that generally correlate with the 

intracellular concentrations of the respective ligand.  For instance, VGAT and VGLUT 

have KM values in the millimolar range, corresponding with the demonstrated 

intracellular concentrations of glutamate and GABA (Schousboe, 1981).   Likewise, the 

vesicular monoamine transporter (VMAT), which transports serotonin, dopamine, and 

norepinephrine, has a KM value in the nanomolar range to facilitate effective 

sequestration of low intracellular concentrations of monoamines (Squire et al., 2002).   

 

VGLUT and VGAT tend to be specific for endogenous substrates, particularly when 

compared to the plasma membrane transporter counterparts.  For example, the glutamate 

plasma membrane transporters (i.e. EAATs), which have a KM value in the micromolar 

range, translocate L-glutamate, D- and L-aspartate; whereas, VGLUT translocates L-

glutamate, but neither D- nor L-aspartate. VMAT, on the other hand, appears to be less 

specific.  VMAT is able to transport a number of biogenic amines, including tyramine, 

tryptamine and amphetamines. The specificity of the neurotransmitter transported into 

monoaminergic vesicles apparently conferred by at least two characteristics:  the contents 
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of vesicle and the presence of specific synthetic enzymes (i.e., Tyrosine hydroylase, 

aromatic L-amino acid decarboxylase, etc.).  Serotonin (5HT) vesicles differ from 

catecholaminergic (CA) vesicles in that CA vesicles contain ATP, and 5HT vesicles 

contain serotonin-binding protein (SBP). Serotonin-binding protein binds to serotonin 

with high-affinity and specificity, serving to retain serotonin in synaptic vesicles.  In 

contrast, dopamine-β-hydroxylase is present in noradrenergic vesicles (Coyle and Kuhar, 

1974).  

 

As previously discussed, Congo red, PREGS, and 5,6-QDC have been shown to be 

competitive inhibitors, as well as their activity at other sites of VGLUT.  The structural 

diversity of these compounds prompted us to investigate the activity of these compounds 

at other vesicular transporters.  Assessing the specificity of these compounds may resolve 

a number of issues relevant to each class of inhibitors.  For example, the QDCs represent 

one of the more potent classes of VGLUT inhibitors to result from a rational design 

effort.  Assessing the possible activity at other vesicular transporters offers an 

opportunity for further characterization of specific VGLUT inhibitors that may be 

utilized as pharmacological probes physiological preparations.  As for the neuroactive 

steroids, the elucidation of their physiological roles in the overall functioning of the CNS 

is still being investigated.  Understanding which neuroactive steroids are active at what 

vesicular transporters may add new information to this newly emerging area of research.  

To begin to understand the specificity of the neuroactive steroids on vesicular uptake, a 

panel of compounds was tested against uptake by VMAT and VGAT.   
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Results 

 

A number of neuroactive steroids and related compounds were tested for their ability to 

inhibit uptake into synaptic vesicles using the same protocol employed for the VGLUT 

studies.  Synaptic vesicles were prepared from rat forebrain and assayed for the uptake of 

either 5-[3H]-hydroxytryptamine (serotonin) or γ-[3H]-aminobutyric acid (GABA).  

Tritiated substrate and ATP were incubated, with vesicles for 1.5 min, in the presence 

and absence of potential inhibitors following a 5 min temperature preincubation.  The 

transport of tritiated substrate was terminated by the addition of ice-cold 150 mM 

potassium chloride (3x) onto filter paper under vacuum filtration and compounds were 

included at the indicated concentrations.  Data is reported as percent of control (Table 

3.V.1); thus, the lower the number, the greater the inhibition.  Among the compounds 

tested, CR exhibited the highest degree of selectivity with respect to VGLUT, with 

approximately 100-fold greater activity at the L-glu transport system, than that of the 

other systems.  When tested at 250 µM, 5,6-QDC and 6-(4’-biphenyl)-QDC, appeared to 

be moderately selective for VGLUT (2-fold) in relation to the other vesicular 

transporters.  Among the neuroactive steroids tested, 3α,5β-TH PROGS showed the most 

activity at all three transporters, while DHEAS was most selective for VGLUT.   To 

examine the activity in greater detail, the neuroactive steroids were also evaluated at 50 

µM (Table 3.V.1).  At these lower concentrations, DHEAS appeared to have the greatest 

specificity for VGLUT with percent of control values of 57.1, 94.1, and 98.0 at VGLUT, 

VMAT, and VGAT, respectively.  The least specific neuroactive steroids, 3α,5α-TH 
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PROGS, exhibited similar levels of inhibition, e.g., 65.3, 61.9, and 70.8 at VGLUT, 

VMAT, and VGAT, respectively.   

 

However, because these three vesicular transporters have KM values that vary over a large 

range (mM vs. µM), concentration-response analyses were carried out with PREGS, 

3α,5α-TH PROGS, 3α,5β-TH PROGS, and DHEAS at VMAT and VGAT over a range 

of  concentrations that spanned the predicted Ki values (Fig. 3.V.1; Fig. 3.V.2).  The IC50 

values were determined and Ki values were estimated using the Cheng-Prusoff 

relationship (Cheng, 1973).  Among the neuroactive steroids, the most potent inhibitor at 

VGLUT was 3α,5β-TH PROGS  with an estimated Ki value of 26.0 µM (Table 3.V.2).  

On the contrary, PREGS was the least potent inhibitor with a Ki value of 107.4 (Table 

3.V.2).  Of particular note, the estimated Ki value of DHEAS was 54.0 µM at VGLUT; 

whereas, the estimated Ki values for VMAT and VGAT were 2.74 mM and 1.29 mM, 

respectively (Table 3.V.2).  Other neuroactive steroids had estimated Ki values that 

ranged from 26.0-162 µM.  Allopregnanolone sulfate had the greatest activity at VMAT, 

with an estimated Ki value of 28.0 µM.  The most potent compound identified for VGAT 

was 3α,5β-TH PROGS with an estimated Ki value of 48.7 µM.  Kinetic values for the 

activity of PREGS at VGAT could not be determined due to the solubility limits of 

PREGS.   

 

These experiments clearly demonstrate a variable degree of selectivity among the 

neuroactive steroids as vesicular transport inhibitors.  The marked selectivity of DHEAS 

for VGLUT is interesting, considering the role of glutamate in excitotoxicity, and the 
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Table 3.V.1.  Pharmacological specificity of neuroactive steroids. 

 
Percent of control values for active VGLUT inhibitors tested against VGAT and VMAT 

uptake.  All data represents 3 experiments and is reported as percent of control + standard 

deviation.  VMAT uptake was tested with 100 nM 5-hydroxy-[3H]-tryptamine.  Control 

uptake for VMAT was ~13 pmol/min/mg protein.  VGAT uptake was tested with γ-[2,3-

3H(N)]-aminobutyric acid with control uptake values of ~550 pmol/min/mg protein.  * 

indicates estimated values. 

 

 

 

 

 

 

 

Compound VGLUT VMAT VGAT
PREG (250 M) 100 ± 3.5 79.4(6) ± 7.0 69.9(6) ± 10.0
PREG (50 M) 100 ± 11.1 106 ± 11.4 99.3 ±8.2
PREGAc (250 M) 85.7 ± 5.0 76.3 88.9 ± 3.23
PREGS (250 M) 53.2 ± 8.2 68.5(6) ± 7.5 77.5(6) ± 7.0
PREGS (50 M) 52.6 ± 11.3 86.9 ± 8.5 91.1 ± 12.7
DHEAS (250 M) 23.2 ± 3.2 63.7 ± 5.1 84.6(2) ± 22.3
DHEAS (50 M) 57.1 ± 12.6 94.1 ± 7.4 98.0 ± 10.1
3 ,5 -TH PROGS (250 M) 14.6 ± 3.8 20.7 ± 2.1 22.3 ± 4.3
3 ,5 -TH PROGS (50 M) 72.8 ± 11.1 63.6 ± 15.7 58.3 ±13.0
3 ,5 -TH PROGS (50 M) 65.3 ± 17.1 94.1 ± 7.4 70.8 ± 10.9
5,6-QDC (100 M) 42* 79.8 ± 11.0 69.9 ± 10.0
6-[4']-QDC (100 M) 43* 68.1 ± 7.7 79.4 ±3.9
QDC (100 M) 38.4 ± 4.0 91.7 ± 6.8 81.4 ± 0.3
Congo Red (100 M) 0.55* 69.9 ± 11.0 55.2 ± 1.6
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Figure 3.V.1.  Concentration-response analysis of PREGS, DHEAS, 3α,5β-TH PROGS, 

and 3α,5α-TH PROGS against vesicular 3H-5HT uptake  

 

Uptake of 3H-5HT was performed as described in Chapter 2.  Sulfated-neuroactive 

steroids were tested included in the assays over a range of concentrations.  Data points 

represent mean ± SEM for 3-4 experiments.  Control values for 3H-5HT uptake were 

114.74 ± 25.31 pmol/min/mg protein for n = 16.  Neuroactive steroids are represented by:  

3α,5α-TH PROGS, ■; 3α,5β-TH PROGS, ▲; PREGS, ▼; and DHEAS, ◆. 
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Figure 3.V.2.  Concentration-response analysis of DHEAS, 3α,5β-TH PROGS, and 

3α,5α-TH PROGS for vesicular uptake of 3H-GABA. 

 

Uptake of 3H-GABA was performed as described in Chapter 2.  Sulfated-neuroactive 

steroids were tested included in the assays over a range of concentrations.  Data points 

represent mean ± SEM for 3-4 experiments.  Control values for 3H-GABA uptake were 

459.49 ± 42.21 pmol/min/mg protein for n = 12. Neuroactive steroids are represented by:  

3α,5α-TH PROGS, ■; 3α,5β-TH PROGS, ▲; and DHEAS, ◆. 
 
 
 
 
 
 
 
 
 
 

-6 -5 -4 -3 -2
0

50

100

Log Con centration (M)



 86 

Table 3.V.2.  Pharmacological specificity of sulfated-neuroactive steroids as inhibitors of 

VGLUT, VMAT and VGAT  

 
The transport of [3H]-L-glutamate (250 µM), [3H]-5HT (100 nM), and  [3H]-GABA (250 

µM) into synaptic vesicles was performed as described in Chapter 2.  IC50 values were 

generated on GraphPad Prizm Software with nonlinear curve fitting, assuming a one-site 

binding model.  Ki values (± SEM) were calculated utilizing the Cheng-Prusoff equation 

in at least three independent experiments.  Control values for 3H-5HT uptake were 114.74 

± 25.31 pmol/min/mg protein for n = 16. Control values for 3H-GABA uptake were 

459.49 ± 42.21 pmol/min/mg protein for n = 12.  Ki values were only determined for 

active compounds.   *PREGS inhibitory values could not be tested at VGAT due to poor 

solubility.  

 

Compound IC50 ( M) Ki ( M)  

VGLUT   

PREGS 159.1 ± 9.8 107.1 ± 21.5 

DHEAS 60.8 ± 5.6 54.0 ± 5.0 

3 ,5  THPROG S  29.3 ± 2.3 26.0 ± 2.0 

3 ,5  THPROGS  45.0 ± 7.9 40.0 ± 7.0 

VMAT   

PREGS 180.4 ± 17.7 108.2 ± 10.6 

DHEAS 4573.0 ± 209.4 2744.0 ± 125.7 

3 ,5  THPROG S  269.4 ± 29.1 161.6 ± 17.5 

3 ,5  THPROGS  46.7 ± 1.5 28.0 ± 1.0 

VGAT   

PREGS n.d.* n.d.* 

DHEAS 1600.0 ± 41.6 1280 ± 33.3 

3 ,5  THPROG S  60.9 ± 1.2 48.7 ± 1.0 

3 ,5  THPROGS  150.9 ± 4.1 120.7 ± 3.3 
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purported role of DHEAS limiting excitotoxic damage (Lapchak et al., 2000).  The other 

neuroactive steroids examined do not seem to exhibit a high degree of specificity.  In 

light of previously mentioned distinctions between excitatory (e.g., DHEAS and 

PREGS), and inhibitory neuroactive steroids (e.g., 3α,5β-TH PROGS and 3α,5α-TH 

PROGS), it is interesting that these compounds display such remarkably similar 

estimated Ki values at these transporters.  The lack of differential activity among the 

neuroactive steroids and the possibility of 3α,5β-TH PROGS transport into vesicles via 

VGLUT suggests that vesicles may represent a synaptic delivery system which extends 

beyond classic neurotransmitters. 
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CHAPTER 4:  DISCUSSION 

 

From the perspective of the neurotransmitter, synaptic transmission can be divided into 

two major temporal components that occur during the signaling process.  The first is the 

presynaptic release of neurotransmitter, with the second being the binding of 

neurotransmitter to postsynaptic receptors.  Following receptor activation, the post-

synaptic neuron is affected in a number of ways, ranging from a change in membrane 

potential (e.g., depolarization or hyperpolarization) to the activation or inhibition of a 

second messenger system. Historically, pharmacological research on psychiatric and 

neurological diseases has generally targeted the interactions between neurotransmitters 

and postsynaptic receptors.  While valuable drugs have been developed with this 

approach, it can also present certain disadvantages.  For example, the constant presence 

of a receptor antagonist can prevent normal function, as well as potentially induce 

pathology.  On the other hand, by modulating synaptic transmission at the presynaptic 

level, it is conceivable that potential therapies might only act during pathological events.  

For example, epilepsy is generally thought of as a state involving reduced inhibitory 

GABAergic activity.  However, recent evidence suggests increased VGLUT1 expression 

may account for some types of increased epileptiform activity which follows hypoxic-

ischemic insult (Kim et al., 2005).  The modulation of VGLUT transport activity may 

attenuate the epileptiform neurological activity by reducing glutamate levels during times 

of excessive stimulation, but not affect glutamate levels during normal functioning. 
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If it is discovered that the specific modulation of glutamate uptake into synaptic vesicles 

can indeed affect presynaptic release, it represents a new level of modulation of 

excitatory transmission. In this manner, the development and characterization of specific 

VGLUT uptake inhibitors may not only provide a better understanding of the role of 

VGLUT in presynaptic release of glutamate, but also result in new therapeutic strategies. 

Beyond this, the elucidation of structural characteristics necessary for transport of 

glutamate may allow the design of molecules, active at post-synaptic receptors, that can 

be delivered to the synapse via exocytosis of the content of the vesicle during synaptic 

signaling. 

  

While the elucidation of competitive VGLUT inhibitors has developed substantially over 

the past decade, the development of compounds which are specific to VGLUT are still 

underway.  Efforts of our laboratory, in conjunction with those of C.M. Thompson and 

J.M. Gerdes, has focused on designing, synthesizing, and testing compounds which are 

selectively active at VGLUT.  The substituted 2,4-quinoline dicarboxylic acids have 

proven to be one of the more useful groups of VGLUT inhibitors developed through a 

rational design effort (Bartlett et al., 1998; Carrigan et al., 2002; Carrigan et al., 1999).  

To date, the substituted QDC, 6-[4’-biphenyl], has been the most potent inhibitor 

resulting from this effort, with a Ki value of 41 µM (Carrigan et al., 2002).  Aryl and aryl-

linked substitutions of the 5-,6-,7-,and 8- positions were included in the SAR analysis to 

explore a hypothesized lipophilic pocket in the transporter binding-domain.  One of these 

compounds, 5,6-naphthyl QDC, displayed good activity, but more importantly, had a 
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structure which strongly resembled that of a steroid.  This resemblance prompted the 

testing of neuroactive steroids at VGLUT.  

 

In this work, a series of neuroactive steroids have been pharmacologically assessed for 

their activity as inhibitors of vesicular glutamate uptake.  Among those compounds 

exhibiting inhibitory activity, pregnenolone sulfate (PREGS) was selected for more 

detailed kinetic characterization.  In parallel with PREGS, the structurally related, 

synthetically derived molecule that prompted the interest in the neuroactive steroids, 5,6-

QDC, was also included in these analyses.  To assess the specificity of these compounds 

at VGLUT, the cross-reactivity of the neuroactive steroids with other vesicular 

transporters was also examined.  Additionally, these compounds were tested for potential 

activity at sites other than VGLUT, specifically at the level of the electrochemical 

gradient.  To better understand the structure-activity relationships (SARs), molecular 

modeling analyses of PREGS, 5,6-QDC and CR were performed.  Lastly, an evaluation 

of the ability of identified competitive inhibitors to heteroexchange with 3H-L-glutamate 

previously equilibrated into vesicles was conducted to gain insights into the SARs that 

govern substrate translocation.  The results of this work have afforded an initial 

understanding of the ligand structural characteristics necessary for the binding and 

transport of glutamate via VGLUT. 
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Are PREGS and 5,6-QDC specific for VGLUT? 

  

As previously mentioned, PREGS emerged as one of the more potent blockers when a 

series of neuroactive steroids were assayed for their ability to block the uptake of 3H-L-

glutamate into synaptic vesicles.  For this reason, PREGS was advanced to more detailed 

kinetic analysis.  When subjected to either Lineweaver-Burk or nonlinear regression 

analysis, the pattern of inhibition produced by PREGS, as well as 5,6-QDC, was 

consistent with competitive inhibition. The Ki values generated for these compounds were 

228 µM and 107 µM for 5,6-QDC and PREGS, respectively.  While of modest potency, 

these Ki values are an order of magnitude lower than the KM for VGLUT.  These ligands 

are classified as competitive inhibitors, which is important for two reasons:  First, the 

compounds provided additional SAR data for delineation of the pharmacology of 

VGLUT.  Secondly, these results suggest that neuroactive steroids and/or related 

compounds may be endogenous regulators of VGLUT.  

 

As exemplified by PREGS, only the sulfated forms of neuroactive steroids were found to 

be inhibitors of 3H-L-glutamate uptake into synaptic vesicles.  This was concluded since 

the activity of the sulfated excitatory steroids, PREGS and DHEAS, were considerably 

more active than the non-sulfated varieties at other sites within the CNS, such as NMDA 

receptors.  Of potential physiological significance, certain sulfated neuroactive steroids, 

i.e. PREGS, DHEAS, 3α,5β-TH PROGS, and 3α,5α-TH PROGS, were identified as 

active (Ki values) in the micromolar range at VLGLUT at a level 1000-fold less than the 

KM of L-glutamate at VGLUT.  Consistent with these levels of activity, neuroactive 
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steroids have been shown to exhibit kinetic values in the micromolar range for 

glutamatergic receptors.  For example, the EC50 values of 3α,5β-TH PROGS and PREGS 

are in the micromolar range (62 µM and 57 µM, respectively) at NMDA receptors (Park-

Chung et al., 1994; Wu et al., 1991).  This does not, however, address the issue of 

whether the neuroactive steroids reach their effective concentrations at synaptic vesicles 

in vivo.  While reports of neuroactive steroid concentrations in the brain vary, local 

concentrations may be even more variable, due to the actions of localized synthetic 

enzymes present in proximity of a particular site of action.  This may allow for a transient 

increase in the intracellular concentration of neuroactive steroids to a level at which 

VGLUT function is affected.  While the sulfation of molecules is typically regarded as a 

Phase II detoxification process, the sulfate moiety of these compounds could render them 

compartment bound, as a manner for cells to regulate neuroactive steroid concentrations.  

 

What does this add to SAR? 

 

Of the QDCs tested, 5,6-QDC structurally appears to be the closest steroid mimic and , 

thus, was included in many of the SAR studies.  Both the neuroactive steroid and QDC 

inhibitory ligands raise interesting points regarding the structural characteristics shared 

by VGLUT inhibitors, especially related to the planar aspects of their structures.  These 

features are also shared with the naphthalene sulfonic acids that were first characterized 

as inhibitors by the lab of F. Fonnum (Roseth et al., 1995).  Their initial efforts showed 

Evans blue and Chicago sky blue to have Ki values of 40 nM and 190 nM, respectively 

(Roseth et al., 1995), which makes them some of the most potent inhibitors yet identified.  
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In a subsequent study, trypan blue, Evans blue, napthol blue black, and benzopurpurin 4B 

were determined to have planar structures with conjugated double bonds throughout the 

molecule with associated amino and sulfonic acid substitutions (Roseth et al., 1998). The 

authors concluded that functional groups other than amino and sulfonic acid moieties are 

necessary for inhibition, based on the finding that naphthylamine sulfonic acids were not 

potent even at concentrations 100-1000-fold higher than used with the dyes.  

Naphthylamine sulfonic acids differ from naphthalene sulfonic acids in that 

naphthylamine sulfonic acids are not dimeric, as are the dyes, and they do not contain a 

lipophilic side group attached to the naphthalene core (Roseth et al., 1998).   

Interestingly, these conclusions differ somewhat from the SAR data emerging from the 

QDC studies in that electronegative regions corresponding to an embedded glutamate 

were presumed to be important (Fig. 4.1) (Carrigan et al., 2002; Carrigan et al., 1999).  In 

this respect, the work of Fonnum may have overlooked these inconsistencies, because an 

intermediate length compound was not included in the analysis.  The finding that PREGS 

and 5,6-QDC are competitive inhibitors of VGLUT may address these inconsistencies by 

illustrating the importance of both lipophilic regions and the electronegative regions (in 

the form of sulfonates or carboxylates).  These particular structural differences will be 

addressed in more depth in the discussion regarding the VGLUT pharmacophore model.  

 

Pregnenolone sulfate has been shown to have multiple sites of action within the CNS, and 

more specifically, the glutamatergic system.  This raised the possibility that the 

neuroactive steroids may also have multiple sites of action among the vesicular 

transporters.  Thus, PREGS, 3α,5α-TH PROGS, 3α,5β-TH PROGS, and DHEAS were  
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Figure 4.1.  Development of the QDC template 
 
 

 
 
These VGLUT inhibitors were used in the development of the QDCs.  The “embedded” 

glutamate is the most obvious common structural feature between these molecules.  The 

addition of a bicyclic core, evident in QDC and 6-(4’)-QDC, increases potency.  The 

largest increase in potency has been due to lipophilic additions, such as the biphenyl 

group in the 6 position on the QDC structure. 
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tested for their inhibitory activity of the uptake of 3H-serotonin at VMAT and 3H-GABA 

at VGAT.  Pregnenolone sulfate, 3α,5α-TH PROGS, and 3α,5β-TH PROGS did show 

inhibitory activity.  However, these compounds did not display a specificity (Ki values) 

for VGLUT greater than ~5-fold versus VMAT and VGAT.  The lack of specificity 

displayed by these compounds is peculiar given their respective specificity at receptors in 

the CNS (i.e. for NMDA and GABAA); this, however, may be due to two possibilities:  

that their cross-reactivity (1) is a vestigial artifact of evolution, and/or (2) is part of larger 

neurophysiological mechanisms.  The first possibility is partly supported by evidence in 

the literature.  The vesicular monoamine transporter has been classified as a member of 

the toxin-extruding antiporters (TEXANs) and ABC-type adenosinetriphosphatases 

(Schuldiner et al., 1995).  This class of proteins transports a large range of toxic cations 

by utilizing proton gradients.  VGLUT may represent an anion transporter counterpart; 

there is one report of VGLUT protecting cells from Evans blue toxicity (Israel et al., 

2001).   

 

In contrast, DHEAS exhibited greater specificity for VGLUT relative to the other 

compounds tested.  Thus, its activity at VGLUT was ~50-fold more potent than at VMAT 

and ~20-fold more potent than at VGAT.  While speculative, this activity is of interest in 

light of the neuroprotective effects of DHEAS.  DHEAS has been shown to be 

neuroprotective against ischemic damage via GABAA receptors in a spinal cord ischemia 

model (Lapchak et al., 2000).  Additionally, DHEAS was shown to attenuate apoptosis in 

symapthoadrenal medulla cells by stimulating a variety of antiapoptotic pathways 

(Charalampopoulos et al., 2004).  DHEAS has also been shown to be a neuroprotectant 
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against excitotoxicity in hippocampal cultures (Kimonides et al., 1998).  Given that 

glutamate, in excess, can trigger excitotoxicity, it is possible that DHEAS may provide an 

endogenous mechanism for cells to protect against excessive release of glutamate under 

pathological conditions. 

 

Do the neuroactive steroids block vesicular uptake at other sites? 

 

Prompted by the ability of PREGS and 5,6-QDC to block the uptake of glutamate, 

additional studies were conducted to examine the effects of these molecules on the 

electrochemical gradient.  Two components (pH gradient and membrane potential) were 

tested in order to provide a more global understanding of effects potentially elicited by 

PREGS and 5,6-QDC.  Both of these molecules showed only a slight effect on the 

generation and maintenance of an electrochemical gradient.  During experiments 

measuring the proton gradient, 5,6-QDC appears to have a direct effect on the 

fluorescence signal of acridine orange.  A visual examination of the fluorescence traces in 

experiments measuring the electrochemical profile demonstrated a marked change in the 

intensity of the fluorescence signal when either PREGS or 5,6-QDC was added.  The 

interaction between PREGS, 5,6-QDC, and oxonol V were directly assessed, and no 

direct effects on fluorescence were found.  While no direct effects of either compound on 

oxonol V were detected, the generation of the electrochemical gradient does not appear to 

be effected.  Although beyond the scope of this project, these results must take into 

account the heterogeneity of the synaptic vesicle preparation utilized.  Thus, this  
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In summary, 5,6-QDC and PREGS have been shown to inhibit VGLUT in a competitive 

manner.  Neuroactive steroids active at VGLUT also display pharmacological effects on 

VMAT and VGAT.  While it seems possible that a nonspecific manner of inhibition 

would explain the cross-reactivity of the neuroactive steroids, the results from 

experiments assessing the effect of 5,6-QDC and PREGS on electrochemical gradient 

suggest otherwise.  However, higher concentrations of these compounds may interrupt 

the electrochemical gradient, as has been shown for other inhibitors (Ogita, 2001; Roseth 

et al., 1995).  Concentration-response experiments of these compounds and their effects 

on the electrochemical gradient may more thoroughly describe any effects.  Additionally, 

more detailed kinetic analyses of PREGS at VMAT and VGAT should give insights into 

its manner of inhibition. 

 

Do PREGS, 5,6-QDC, and Congo red align well with the VGLUT pharmacophore 
model? 
 

As the inventory of potent VGLUT inhibitors increases, a manner to visualize SAR data 

becomes useful.  The development of a ligand-based pharmacophore model is the most 

practical method to model this SAR data, given the lack of a crystal structure being 

readily available.  A 3D, ligand-based pharmacophore model is a representation of a set 

of features, common to a group of active compounds, within three-dimensional space.  

This VGLUT pharmacophore model was generated by Erin Bolstad, with three training 

set molecules from structurally distinct classes of competitive VGLUT inhibitors.  

Chicago sky blue, 6-(4’-biphenyl)-QDC, and bromocriptine were conformationally 

searched, and the conformations of these three molecules were assessed to identify the 
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most similar alignments in 3D space.  The chosen alignment of these three molecules 

yielded a pharmacophore model, which demonstrates a planar conformation with two 

electronegative groups, also previously identified in the QDC template.  The alignments 

of PREGS, 5,6-QDC and Congo red fragment (CRF) with this model were convincing, 

consistent with the suspected mode of binding which would be produced by a 

competitive inhibitor.  The overall length of 5,6-QDC appeared shorter than PREGS in 

the pharmacophore model fit.  The slight difference in Ki values (PREGS = 107 µM vs. 

5,6-QDC = 228 µM) might be explained by a better fit of PREGS.  Differences between 

these compounds raise an issue concerning the importance of the electronegative 

region(s) positioning on the bicyclic core.  In contrast to the conclusions of Fonnum’s 

group that the amino and sulfonic groups were unnecessary for binding, two 

electronegative regions were proposed to be important for potent inhibition of VGLUT 

during the initial development of the QDCs (Carrigan et al., 2002; Roseth et al., 1998).  

PREGS may provide a way to address this inconsistency.  The increased affinity of 

PREGS over 5,6-QDC may suggest that only one region of electronegativity is essential 

for binding.  Alternatively, differences in the structure of the lipophilic moiety most distal 

to the electronegative regions may also explain the difference in affinity between these 

two compounds.  PREGS contains an additional area of electronegativity, in the form of a 

carbonyl group, attached to the “D” ring of the steroid nucleus.  This begins to address an 

issue raised by (Roseth et al., 1998), which proposed that the difference in binding 

affinity between Evans blue and Chicago sky blue was due to a methoxy group on the 

dimethyl-biphenyl linker of Chicago sky blue, as opposed to a methyl in Evans blue 

(Roseth et al., 1995; Roseth et al., 1998).  There may be certain subtle differences in the 
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structure on the lipophilic region that contribute to relative differences in inhibitory 

potency.  The alignment of CRF further addresses issues regarding the electronegative 

regions. 

 

Congo red fragment does not contain either of the electronegative groups in the form of 

the “embedded glutamate”, as may be proposed for trypan blue or Evans blue, i.e. the C3 

and C6 or C5 and C7 positions.    It does, however, contain a sulfonic group at the C8 

position of the naphthalene groups on Evans blue or trypan blue.  The sulfonic group of 

CRF was aligned at each of the electronegative regions identified in the pharmacophore 

model.  In the first alignment (A1), the sulfonic group of CRF was orientated to the 

electronegative region designated as Region 1.  This orientation produced a grossly out-

of-plane fit.  A second fit was generated to compare to the first one.  The second fit 

consisted of aligning the sulfonic group with Region 2, the distal electronegative region.  

This alignment exhibited a better fit than the first, revealing a planar conformation of 

CRF.  In the dimeric form, CR is structurally similar to trypan blue, yet displays a Ki 

value that is 1000-fold less potent than Evans blue as pictured in Chapter 1 of this work 

(Fig. 1.2).  The primary structural differences between these two molecules is the 

presence of the dimethyl-biphenyl linker and positions of hydroxyl and sulfonate groups.  

One may conclude that the presence of a dimethyl-biphenyl linker and properly 

positioned electronegative groups would be most effective for inhibition of glutamate 

uptake; however, the molecules, mentioned here, also exhibit undesirable levels of cross-

reactivity with NMDA receptors (Bartlett, 1999).  Multiple iterative refinements for the 
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pharmacophore model development and additional kinetic data are necessary to address 

these issues of specificity. 

 

Most recently, an additional VGLUT pharmacophore model was generated utilizing the 

GASP (Tripos, St. Louis, MO) method (Thomspon et al., 2005).  The GASP protocol was 

selected to develop an unbiased, automatically aligned and iterative model.  This was 

achieved by the exploration of superposition orientations, generation of molecular 

overlays, and identification of pharmacophore model points.  The same training set 

utilized in the development of the initial VGLUT pharmacophore model was used for the 

GASP analysis.  This analysis developed a model which best satisfied five criteria:  1) 

similar overlap volume, 2) fitness score, 3) the feasibility and number of determined 

pharmacophore model points, 4) the potential for pharmacophore model regions not 

determined by GASP, and 5) overall structural alignment.  The model which emerged 

was represented by three points to quantify important interatomic distances.  These 

points, designated as A, B, and C, corresponded with points identified in the previous 

pharmacophore model, i.e. lipophilic pocket, two electronegative regions (Thomspon et 

al., 2005).  The GASP protocol did not identify certain pharmacophore model regions 

that were identified by the previous pharmacophore model.  Thus, while GASP provides 

a good unbiased approach to initial pharmacophore model generation, the need for 

rigorous pharmacophore model development is still apparent.  

 

In summary, the VGLUT pharmacophore model has predictive qualities of VGLUT 

inhibitors as verified by the fit of PREGS.  The steroid-like molecule, 5,6-QDC was 
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aligned to the pharmacophore model in a similar manner as PREGS.  The fit of CRF 

displayed one plausible fit and one that was less favorable.  The binding-site of the 

naphthalene sulfonic dyes may allow for different arrangements of amine and sulfonic 

substituents, and suggests that Ring 2 (lipophilic moiety) may confer additional binding 

properties that render the electronegative regions less important.  The recent development 

of a new VGLUT pharmacophore model presents an opportunity to generate alignments, 

and compare the alignments with previous pharmacophore representations, which may 

ultimately lead to the development of new inhibitors.  Identification of alternative 

substrates at VGLUT may lead to the development of a pharmacophore model, which 

describes transport characteristics of VGLUT transport. 

 

Are these competitive inhibitors also substrates? 

 

Recent studies of various neurotransmitter transporters have begun to distinguish the 

process of binding and translocation.  Thus, while the characterization of competitive 

inhibitors supports the conclusion that a particular compound can bind to the substrate-

site of the transporter, it does not address whether or not the compound can also be 

transported (i.e., act as an alternative substrate).  Studies on the EAATs have lead to the 

development of competitive inhibitors that exhibit substrate activity that ranges from 

similar to L-glutamate to non-substrate inhibitors.  One of the ways to directly address 

substrate activity is to synthesize a radioactive derivative of the compound or devise an 

alternative way to measure its concentration in synaptic vesicles.  As either process can 

be expensive and/or labor intensive, we hypothesized that quantifying exchange might 
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prove to be a way to assess substrate activity.  Thus, given an alternative access model, it 

is often possible to exploit the exchange process to study transports mechanisms.   

 

The process of exchange is most often studied by “preloading” synaptic vesicles with a 

substrate and measuring its rate of efflux. To produce this efflux, preloaded vesicles are 

diluted 20-fold into incubation buffer in the absence of ATP.  The amount of 3H-L-

glutamate retained in the vesicles is then quantified.  This process is presumed to occur 

via the alternating access, as depicted in Figure 4.2.  Normal transporter function occurs 

when transporter cycles through steps k1, k2, and k3 to facilitate the translocation of 

glutamate from the extravesicular space to the intravesicular compartment.  To complete 

the cycle, the transporter reorients towards the extravesicular space unoccupied by 

glutamate (k4). The process of efflux is measuring the movement of 3H-L-glutamate from 

the intravesicular space to the extravesicular space.  In the absence of inhibitors this will 

occur via the reverse operation of k-3, k-2, and k-1.   In the presence of the appropriate 

concentration of either externally applied L-glutamate, or an alternative substrate, efflux 

of 3H-L-glutamate proceeds through steps k-3, k-2, and k-1, followed by uptake of 

extravesicular unlabeled glutamate, or alternative substrate via steps k1, k2, and k3.  If this 

process is faster than efflux in the absence of external substrate, it is referred to as trans-

stimulation.  For VGLUT, our data suggests that the unoccupied transporter reorients at a 

rate slightly slower than when occupied after transport of a glutamate.  In contrast to 

substrate, the addition of a non-substrate inhibitor would be expected to "trap" the 

binding-site on the extravesicular side and prevent reorientation.  In our studies, the  
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Figure 4.2.  Model of VGLUT alternate access transport process 
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inclusion of a nonsubstrate inhibitor resulted in a reduction of efflux equal to a level at 

observed at 4° C.  In experiments performed at 4° C, efflux was virtually nonexistent.  

Congo red, previously identified as a non-substrate inhibitor, is able to block the efflux of 

3H-L-glutamate to the same degree as when these experiments are performed at 4°C, 

because CR essentially traps the binding-site on one side and prevents the cycling 

necessary for significant efflux. 

 

Presumably, an effective substrate (trans-ACPD) would increase levels of efflux, 

whereas, a non-substrate inhibitor (CR) would decrease efflux levels.  A number of 

compounds were screened for their effect on 3H-L-glutamate efflux.  The majority of the 

compounds examined reduced efflux of 3H-L-glutamate to a level which fell between that 

of a L-glutamate and a nonsubstrate inhibitor, raising the possibility that the compounds 

are active as a partial substrate, i.e., they can be transported, but less efficiently than L-

glutamate.  Interestingly, 5,6-QDC exhibited characteristics most consistent with that of 

trans-ACPD.  Some of the sulfated neuroactive steroids tested (PREGS and 3α,5β-TH 

PROGS) demonstrated a similar activity to that of 5,6-QDC.  The shorter overall length 

of 5,6-QDC, when aligned in the pharmacophore model, and lack of electronegative 

group in the distal lipophilic region as compared to PREGS may confer some increases in 

substrate characteristics.  

 

While the identification of good substrates at VGLUT is rather straightforward, it is more 

difficult to characterize compounds that act as partial substrates, with intermediate 

characteristics between that of glutamate and non-substrate inhibitors. We have attempted  
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to address this issue in two manners: (1) to include compounds tested at a concentration 

that achieves a theoretical substrate-binding site occupancy of ~90%, and (2) to 

mathematically examine the effect that various types of inhibitors (i.e., nonsubstrate 

inhibitor, alternative substrates) would have on efflux; a curve, based on Michaelis-

Menten kinetics, was compared with the control level of efflux for demonstration of a 

representative model.  Based on this equation, a curve describing the amount of efflux 

which would occur if 90% of the transporter binding-sites were removed, was generated.  

Any level of efflux greater than the level represented by the simulation of 90% 

transporter removal should signify that a compound has some substrate characteristics.  

While this is a preliminary model, it may provide some insight into the process of efflux.  

The data from the experiments (n ≥ 3) recording the amount of 3H-L-glutamate efflux in 

the presence of 3α,5β-TH PROGS over ten minutes was superimposed over the 

theoretical curves.  This level of efflux was greater than levels expected with 90% 

transporter removed.  The increased level of efflux, despite a binding-site occupancy of 

90% occupancy of transporters, suggests that 3α,5β-TH PROGS is being translocated 

into synaptic vesicles.  This rate is slower than that of L-glutamate, but suggests 

translocation of 3α,5β-TH PROGS, nonetheless.  These results suggest that a subset of 

compounds which range from amino acid analogues to naphthalene sulfonic dyes display 

characteristics of a partial substrate.  As previously discussed, this may, in part, be due to 

the evolution of VGLUT.  The VGLUTs are a member of the SLC17/type I phosphate 

transporter family (Reimer and Edwards, 2004).  This transporter family involves many 

organic anion transporters, present on organelles such as lysosomes.  VGLUT may 

represent a class of proteins similar to that of the TEXANs (of which VMAT belongs), 
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but rather than transporting organic cations, this putative group of proteins transports 

organic anions.  

 

Inhibition of uptake by an alternative substrate may result in both reduced amounts of 

glutamate, and increased amounts of alternative substrate being accumulated in the 

synaptic vesicle and possibly released presynaptically.  On the other hand, the reduction 

of sequestration into synaptic vesicle by a nonsubstrate alternative would simply result in 

a decreased amount of neurotransmitter molecules being released presynaptically.  These 

possibilities present some potentially interesting roles that DHEAS may play in 

neurotransmission. 

 

Particular to DHEAS, research indicates that this neuroactive steroid can stimulate LTP 

in a dose-dependent manner (Yoo et al., 1996).  The finding that DHEAS inhibits uptake 

of glutamate into synaptic vesicles, but stimulates LTP in the dentate gyrus of R. 

norvegicus presents an inconsistency.  While the effect of DHEAS on presynaptic release 

has not been characterized, it would seem that a reduction in the uptake of glutamate into 

synaptic vesicles would result in a lower amount released presynaptically.  Studies 

conducted in synaptosomes demonstrate the inclusion of rose bengal, noncompetitive 

inhibitor of glutamate uptake, can reduce the amount of glutamate released (Ogita, 2001).   

Alternatively, if DHEAS is translocated into synaptic vesicles as suggested by the 

analysis of 3α,5β-TH PROGS, then this may prove to be a manner of presynaptic 

delivery of the neuroactive substrate to the postsynaptic GABAA receptors; while 

concurrently reducing the amount of glutamate released.  It is possible that DHEAS could 
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elicit its effects on LTP by modulating GABAA receptors, as GABA can inhibit LTP 

(Majewska, 1992; Opera et al., 1995; Scharfman and Sarvey, 1985), and potentiating 

sigma and NMDA receptors (Chen et al., 2006; Maurice et al., 1997).  Current evidence 

suggests that DHEAS may also have partial substrate characteristics.  An examination of 

efflux over time is necessary to better characterize this effect.  None of these studies have 

addressed the manner in which DHEAS is introduced into the synapse when its exerted 

effects are believed to be receptor-mediated.  These results indicate the neuroprotective 

qualities elicited by DHEAS may be partly mediated by the inhibition of glutamate 

uptake into synaptic vesicles.  Consistent with this evidence, DHEA has been shown to 

decrease glutamate release in synaptosomes of rats under the age of 12 months (Lhullier 

et al., 2004).   

 

To conclude, this work is the continuation of an effort to better characterize the efflux of 

3H-L-glutamate from synaptic vesicles and delineate between alternative substrates and 

nonsubstrate inhibitors.  While none of these molecules, other than trans-ACPD, have 

been directly shown to be alternative substrates, the ability to exchange suggests that 

3α,5β-TH PROGS may indeed be a alternative partial substrate.  The ability of 

compounds to be alternative substrates present some interesting possibilities.  In the case 

of the neuroactive steroids, this may represent a manner in which these compounds are 

delivered to the synapse.  Ultimately, this may be a potential mode for presynaptic 

delivery of therapeutic agents. 
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Conclusions 

 

The structurally similar molecules, 5,6-QDC, and PREGS, have been identified as 

competitive inhibitors of vesicular glutamate uptake.  PREGS and 5,6-QDC have 

minimal effect on the electrochemical gradient generated by the V-ATPase.  This effect 

was expected given their characterization as competitive inhibitors.  The minimal effects 

on the electrochemical gradient do not rule out the possibility that they would produce a 

greater disruption at higher concentrations. Most neuroactive steroids identified as potent, 

competitive inhibitors of VGLUT were also active at VMAT and VGAT.  The one 

exception, DHEAS, was much more potent at VGLUT than either VMAT or VGAT.  

DHEAS may play unique roles in synaptic neurotransmission.  The VGLUT inhibitors, 

5,6-QDC and CRF, also appeared to fit the pharmacophore model in a convincing 

manner, consistent with kinetic data.  Experiments conducted to examine the effect of 

identified VGLUT inhibitors on the efflux of 3H-L-glutamate suggest that certain 

inhibitors display partial substrate characteristics.  The translocation of these compounds 

into the synaptic vesicles suggests that they could potentially be released exocytotically 

into the synapse.  This possibility carries with it many implications given the well-

recognized effect of neuroactive steroids on both GABA and glutamate receptors.   
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