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Abstract 

 The prevalence of asthma has markedly increased in recent decades. Asthma 
affects approximately ten percent of the population of the United States, and is the 
leading cause of childhood hospitalization. This epidemic has been attributed to air 
pollution, childhood immunizations and a more sanitary living environment. Allergic 
asthma is clinically characterized by airway hyperreactivity (AHR), increased mucus 
production and airway remodeling. On the cellular level, pulmonary eosinophilic 
infiltration and augmented levels of serum IgE arise as a consequence of a CD4+ Th2 cell 
response in the airway following exposure to allergen. It has been proposed that the 
chronic inflammation and associated airway events evident in this disease stem from a 
failure to regulate the underlying immune response. How these events are regulated in the 
healthy lung is yet unclear. In studies to investigate the mechanisms underlying such 
regulation we found that firstly, co-transfer of expanded natural CD4+ CD25+ Foxp3+ 
regulatory T cells (nTregs) mediated regulation of CD4+ Th17 effector cells as 
exemplified by diminished levels of IL-17 and decreased neutrophilic infiltration in the 
airways.  In contrast, co-transfer of nTregs did not attenuate the lung inflammation 
elicited by CD4+ Th2 or Th1 polarized cells. Interestingly, using the C129.IL4GFP mice 
we found that nTregs have the capacity to inhibit IL-4 production and Th2 differentiation 
in vitro.  Secondly, mice with genetically disrupted receptors (IP-/-) for the lipid-mediator 
prostacyclin (PGI2), demonstrated increased airway inflammation, eosinophilic 
infiltration and airway hyperreactivity following immunization and repeated aerosol 
challenge with ovalbumin. Moreover these mice displayed reduced serum 
immunoglobulin levels.  In summary, nTregs serve a specific function in controlling 
Th17 cell effector functions, but not Th1 or Th2 inflammation. Additionally, PGI2-IP 
signaling is an important pathway for inhibiting allergic pulmonary inflammation by 
controlling CD4+ Th2 cell effector functions. 
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CHAPTER ONE 

Introduction and Relevant Background 

1.0 Introduction 

 In the past two decades, the prevalence of asthma has almost doubled, reportedly 

affecting approximately 10% of the population of the United States. The severity of the 

problem is illustrated by the observation that asthma exacerbations are the leading cause 

of hospitalization among young children (1). This epidemic has been attributed to air 

pollution, childhood immunizations, and more hygienic living conditions, with no single 

cause identified as the chief cause. In the late 1980s the “hygiene hypothesis” proposed 

that a lack of early childhood exposure to infectious agents, symbiotic organisms and 

parasites augments susceptibility to allergic disease, by restricting development of the 

immune systems ability to self-regulate (2). Adaptive immunity is predominantly 

meditated by T and B cells, which possess an extensive diversity in antigen recognition, 

antigen specificity, potent effector activity and long lasting immunologic memory (3). 

The effectiveness of this response can pose a serious threat to the host by way of aberrant 

immune reactions.  Such a response is exemplified in allergic asthma. A major challenge 

in immunology is to determine how unresponsiveness or tolerance of the adaptive 

immune system to self-antigens is established, maintained and controlled as to avoid 

damage to the host. In addition, non-steroidal anti-inflammatory drugs (NSAIDs) have 

been clinically associated with disease exacerbation in asthmatics (4). The objective of 

the work described in this manuscript is to better understand how regulation of these 

aberrant immune responses factor in the pathogenesis of allergic inflammation in the 

lung. The work outlined in this dissertation is divided into two separate aims. Aim one 
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addresses potential mechanisms by which NSAIDs exacerbate airway inflammation. The 

approach adopted was to investigate the role of prostacyclin (PGI2) signaling, a 

prostanoid product of cyclooxygenase activity, that is inhibited by NSAID activity. The 

second aim was accomplished by investigating and proposing a potential mechanism for 

the role played by natural regulatory T cells (nTregs) in mediating suppression of the 

immune response in a murine model of pulmonary inflammation. 

  

1.1 Airway Inflammation and Asthma 

 Human allergic asthma is a complex condition characterized by increased levels 

of IgE, airway eosinophilic inflammation, airway hyperreactivity (AHR), increased 

mucus production and airway remodeling (1, 5). Importantly, CD4+ T cells orchestrate 

the inflammatory response in asthma. Leukocyte accumulation in the lung has the 

capacity to mediate many aspects of the pathophysiology of chronic inflammatory 

diseases including asthma and chronic obstructive pulmonary disease (COPD) (6).  

 

1.1.1 Pathophysiology of Asthma 

 The inflammatory response in asthma is characterized by the infiltration of 

macrophages, eosinophils and lymphocytes into the airway wall, accompanied by mucus 

and the shedding of airway epithelial cells (7). Structural changes, “airway remodeling”, 

occur as the epithelial and stromal cells attempt to repair the damage to the airway caused 

by local inflammation. Asthma is associated with airway remodeling and thickening of 

the airway wall by 10% to 300% (8). The small airways (2-4mm) are the primary 

pulmonary structures affected in moderate asthma, while severe to fatal disease 
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frequently involves all but the largest airway passages. The airway epithelium plays an 

important role as a physical barrier and, in its damaged state, is fundamental to asthma 

pathogenesis. Areas of epithelial metaplasia and damage, thickening of the subepithelial 

basal lamina, increased numbers of myofibroblasts and other evidence of airway 

remodeling are found in all but the mildest forms of asthma (9). The sub-epithelial layer, 

which is generally 4-5 microns thick in the normal pulmonary anatomy, ranges from 7-23 

microns in the asthmatic resulting from the deposition of collagen (types I, III, and IV), 

fibronectin and tenascin (10, 11). Myofibroblasts, which produce collagens and have 

been linked to hyperplasia in asthmatic lungs, contribute to the increase in airway smooth 

muscle mass resulting in an increase of up to three times the normal area (12).  

 Airway inflammation is a multicellular process involving several distinct types of 

of inflammatory cells, which include eosinophils, neutrophils, CD4+T lymphocytes and 

mast cells with eosinophilic infiltration being the predominant feature (13). The 

inflammatory process is largely limited to the conducting airways but with increased 

severity and chronicity the inflammatory infiltrate may extend to the small airways and 

adjacent alveoli (14). The inflammatory response in the small airways extends beyond the 

airway smooth muscle (Figure 1.1), whereas responses in the large airways are mainly in 

the submucosal tissue (15). 
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Figure 1.1   Inflamed small airway 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 A severely inflamed airway from a asthmatic patient. The inset shows 
submucosal fibrosis and increased small muscle (16) 

  

1.1.2 Airway Hyperresponsiveness (AHR) 

  AHR and airway obstruction are considered a consequence of the combined 

effects of airway remodeling and inflammation. AHR is defined as increased 

bronchoconstrictor response to a nonspecific stimulus (17). The precise mechanisms that 

control AHR are poorly understood. However, it is known that the magnitude of AHR 

closely correlates with the level of airway inflammation (18). Additional factors 

associated with AHR include: reduced airway diameter, increased smooth muscle 

contractility and degree of epithelial injury, dysfunctional neuronal regulation, increased 

microvascular permeability and many inflammatory mediators (19).  In addition, 
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allergen-induced asthma in mouse has been associated with complement factor 5 (C-5) 

(20).  

 

1.2  CD4+ T Effector Cell Differentiation 

 Since CD4+ Th2 cells drive the inflammatory response in asthma, it is important 

to understand the nature of how cells differentiate from naïve T cells into a polarized 

effector cells (Th1, Th2 and Th17).  Figure 1.2 illustrates the three known types of CD4+ 

pro-inflammatory effector cells, the factors that evoke their differentiation and the 

cytokines that they produce.  Several different types of regulatory cells have also been 

reported which differ in phenotype and cytokine requirements. The regulatory cells 

depicted here will be discussed in depth in subsequent sections.  

 

Figure 1.2     CD4+ Differentiation 
 
 

 

Figure 1.2  Diversification of the CD4 T Cell Lineages.  The Th1/Th2 paradigm was 
described nearly twenty years ago. The number of distinct lineages has increased over the 
past decade. The arrows indicate dominant cytokines involved with specific lineages. The 
cytokines below the cell type indicate key effector or regulatory cytokines expressed by 
differentiated cells of that lineage (21). 
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 CD4 effector T cells otherwise known as helper T cells (Th) play a pivotal role in 

engineering immune responses through their capacity to provide help to other cells of the 

adaptive or innate immune systems. A defining characteristic of adaptive immunity is the 

antigen-driven differentiation of clonally restricted lymphocyte precursors into effector 

cells of enhanced functional potential (Figure 1.2). Naïve T cells differentiate into 

effector T cells and as a consequence, possess an increased capability for orchestrating 

pathogen clearance. In part this is achieved by producing cytokines that activate the 

innate immune system and facilitate clearance of pathogens (Figure 1.2). The balancing 

of these immune responses is reliant on proper regulation of the differentiation and 

function of the Th cells. Dysregulation of Th cell function or proliferation may lead to 

inefficient clearance of pathogens or cause inflammatory diseases or autoimmunity. The 

dogma that Th cells are functionally heterogeneous and cytokines are important for Th 

cell function can be extended to distinguish the different classes of Th cells with distinct 

biological functions. Th1, Th2, Th17, and recently characterized-Tfh (T follicular 

helper), and Th9 cells are involved in inflammatory responses while regulatory T cell 

(Treg) including naturally occurring Treg (nTreg), induced Treg (iTreg) and class 1 Treg 

(Tr1) engage in immune suppression (3, 22).  
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 Figure 1.3          Th1/Th2 Paradigm 
 

 

 

 

 

 

 

 

 

 

  
 Figure 1.3 The cross regulation of CD4+ Th1 and Th2 cell transcription factors 
T-bet and GATA3. Coffman and Mossman proposed that in response to environmental 
cues, two different effector cell types derived from CD4+ T helper cells (23). 
 
 Many factors influence Th cell differentiation. These include TCR stimulation, 

co-stimulation, kinase cascades, transcriptional networks, with cytokine signaling being 

accepted as the predominant factor in driving Th differentiation. Initial studies of T cell 

biology defined two classes of CD4+ T cells; those that help B cells for immunoglobulin 

class switching, or those who enhanced macrophage activation or cell mediated immunity 

(24, 25).  These distinct cell populations correlated with the production of factors that 

either promoted or inhibited B cell class switching to IgE (26).  Mossman and Coffman 

then proposed the T helper type 1 (Th1)-Th2 hypothesis, which postulated that subsets of 

CD4+ T cells express reciprocal patterns of immunity via production of distinct profiles 

of cytokine secretion, either delayed-type hypersensitivity (cell-mediated immunity) 
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(Th1) or allergic (Th2) (27).  Furthermore, each Th subset promotes its own development 

and proliferation via the cytokines they secrete (28, 29), such that the induction of one 

type of response suppresses the induction of the other (30), (figure 1.3). 

 Differentiation of naïve CD4+ T cells to an effector phenotype requires antigen-

ligation with the T cell receptor (TCR) from the antigen-presenting cell (APC) in the 

context of class II MHC. The nature and strength of the signal of the antigenic stimulus 

influences Th polarization (31, 32), and the final lineage commitment (33). An additional 

stimulatory signal mediated via the CD28 on T cells to the B7 molecules on the APC is 

also essential for efficient T cell activation (34).  

 

1.2.1 CD4+ Th2 Differentiation and Effector Functions 

 The hallmark features of allergic asthma, elevated serum IgE, mucus 

hypersecretion, eosinophilia, and enhanced AHR to nonspecific antigenic stimuli, have 

all been linked to the effector functions of Th2 cytokines. Therefore, it is useful recognize 

how these cells are derived. Th2 cells are characterized as cells that express IL-4, IL-5, 

IL-9, IL-10, and IL-13 and are often associated with the humoral responses during which 

high levels of pathogen specific immunoglobulin are generated to neutralize foreign 

organisms. IL-4 is the cytokine known to have the greatest influence in driving Th2 

differentiation (35, 36). IL-4 when bound to IL-4Rα signals via the STAT6 pathway (37), 

inducing high levels of the transcription factor GATA-3 resulting in commitment to Th2 

differentiation, therefore upregulating T cell production of IL-4 (38-41).  Additionally, 

the Th2 immune response is important in the defense of extracellular pathogens such as 

helminths and nematodes (42, 43).  CD4+ Th2 lymphocytes contribute to the 
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inflammatory response and to airway remodeling by producing cytokines. Th2 cells 

promote IgG1 and IgE class switching and eosinophil recruitment (24, 25, 44, 45).  Th2 

cells are crucial for mucosal immunity (mucus hyper-secretion and increased 

contractility) in the lung (this will be discussed in detail in subsequent sections). IL-4 in 

combination with TGFβ has been shown to drive the differentiation of the newly 

identified Th9 cell lineage (46, 47).  

 In asthma, CD4+ Th2 cells are thought to initiate and perpetuate disease. 

Lymphocytes make up a small percentage of the total leukocytes in the lung. However, 

CD4 T cells are increased in the airways of asthma patients.  IL-4, IL-5, and IL-13 

protein and mRNA levels are increased in bronchoalveolar lavage (BAL) fluid, BAL 

cells and airway biopsies of asthmatics (5). The Th2 differentiation transcription factor, 

GATA-3 is expressed at high levels in CD4 T cells from the airways of asthmatics (48).  

 IL-4 promotes eosinophilia indirectly via the promotion of autocrine Th2 

development and murine eosinophils, themselves, produce IL-4 (49, 50), and the IL-4 

receptor alpha (IL-4Rα) (51, 52).  Importantly, IL-4 directs IgE synthesis and mast cell 

growth and activation in both human and mouse. IL-4 activates human vascular 

endothelial and respiratory epithelial cells to produced eosinophil chemoattractant 

cytokines. In the mouse, IL-4 preferentially induces antibody isotype switching to IgG1 

and IgE (53).  

 IL-5 promotes eosinophil generation in the bone marrow and entry into the blood. 

In contrast, IL-13 induced the production of eotaxins 1 and 2 in the lung tissue and lung 

lumen macrophages, respectively, to recruit the eosinophils from the blood to the lung 

(54). As a part of a epithelial protection mechanism, IL-13 stimulated mucus production 
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and secretion (55), and also reduces the ciliary beat frequency (56), and the ciliated cells 

are sloughed. In asthma, a poorly functioning mucociliary escalator and increased mucus 

production result in mucus pooling, cough and increased airway obstruction.  

 

1.2.2 CD4+ Th1 Differentiation and Effector Functions in Asthma 

 Although Th1 cells are not the primary cell type involved in asthma, it is 

important to have an understanding of their role in inflammation. Th1 cells are defined by 

the capacity to produce the pro-inflammatory cytokine interferon gamma (IFNγ), and 

provide protection against intracellular pathogens and viruses. Th1 differentiation 

requires both TCR ligation and IFN-γR- signal transcription activator of T lymphocytes 

(STAT) 1 induction and the transcription factor T-bet (57, 58).  

 IFN-γ is an important macrophage-activating factor, critical for the clearance of 

certain intracellular pathogens and viruses.  It is also necessary for immunoglobulin class 

switching in B cells by promoting production of IgG2a. T cells express the heterodimeric 

IFN-γ receptor-1 and -2 and thus can be stimulated by IFN-γ though the 

Jak1/Jak2/STAT1 pathway (59, 60).  In addition, STAT4 signaling is critical for IL-12 

signaling and thus the full commitment of Th1 cells (61, 62). IL-12 is a soluble factor that 

potently induces Th1 differentiation (63-65). CD4+ T cells only express the IL-12 

receptor (IL-12R) upon TCR stimulation (66), and IL-12R is maintained only on Th1 

cells and downregulated on Th2 cells (63, 64). IL-12 signaling is necessary for the 

expression of IL-18 receptor α (IL-18Rα). IL-18 serves as a cofactor with IL-12 in 

promoting IFN-γ production in CD4+ T cells and Th1 differentiation (67). Because Th1 

cells maintain IL-12 and IL-18 receptors even in the resting state, IL-12 and IL-18 
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stimulation can induce large amounts of IFN-γ by differentiated Th1 cells in the absence 

of TCR stimulation (68, 69).  

 

1.2.3 CD4+ Th17 Differentiation and Effector Functions  

 Although the Th2 cell has been indicated as the primary cell type involved in the 

allergic immune response, likely responsible for contributing to the ongoing chronic 

inflammatory response, recent studies have demonstrated provocative data for a role for 

IL-17 producing Th17 cells. 

 It is likely that Th17 cells evolved as an extension of the adaptive immune system 

specialized for enhanced host protection against extracellular bacteria and some fungi, 

microbes not well covered by Th1 or Th2 immunity (70).  Th17 cells, as indicated by the 

name, produce IL-17A (commonly known as IL-17), E and F (71-73).  Recent studies 

have demonstrated Th17 cells also produce IL-21 and IL-22 (74-77). The Th17 response 

apparently shares commonality with both Th1 and Th2 responses where they contribute 

to the resistance to Listeria, Salmonella, Toxoplasma, Cryptococcus, Leishmania and 

Francisella (78, 79). Preferential production of IL-17 by T cells during infection with 

specific pathogens such as Bacteriodes fragilis (80), Borrelia burgdoferi, Mycobacterium 

tuberculosis (81) and some fungal species (82) suggesting that Th17 cells respond to 

specific pathogens and are required for their clearance.  It also appears that Th17 cells 

play a pivotal role in the induction and propagation of some autoimmune conditions. IL-

17 expression has been associated with autoimmune diseases such as Multiple Sclerosis 

(MS), Rheumatoid Arthritis (RA), psoriasis, irritable bowel disease (IBD), as well as 
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allergic responses (73, 83).  IL-25 (IL-17E) may serve a potentially important role in the 

mediation of dysregulated Th2 responses that cause asthma or other allergic disorders.  

 The retinoic acid-related orphan receptors (ROR) are the key transcription factors 

for Th17 cell differentiation. ROR-γt is upregulated in T cells in response to IL-23 and its 

expression highly associates with IL-17 expression (84).  The genes targeted directly 

regulated by ROR-γt have yet to be identified. However, IL-17 is a good candidate 

because conserved ROR response elements are located in its promoter region (85).  TGF-

β and IL-6 cooperate in a non-redundant fashion to promote Th17 commitment (47, 86, 

87). 

 It has been proposed that IL-17 or IL-17F act in cooperation with IL-22 to 

augment the expression of antimicrobial peptides by human epithelial cells that are 

associated with host defense, such as β-defensin 2 (75), suggesting that the Th17 lineage 

may have evolved to eliminate pathogens at mucosal surfaces. Recently, our laboratory 

has demonstrated that Th17 cells play a crucial function in lung mucosal immune defense 

by promoting the polymeric Ig receptor (pIgR)-mediated delivery of IgA and IgM into 

the airway lumen where they contribute to airway immunity. These observations show 

that pIgR expression in the airway epithelium is typically low but is rapidly up-regulated 

by IL-17 (88).  
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1.3  The Regulation of the Immune Response 

1.3.1 Foxp3 Expressing Tregs 

 Two types of Tregs that express Foxp3 have been discovered to date. The first is 

generated in the thymus and bear a CD4+CD25+ phenotype. Since they are generated in 

the absence of specific priming, they are known as natural or nTregs. The second type of 

Treg cell is formed in the periphery in response to antigen stimulation the presence of 

TGF-β. These cells are known as induced Tregs (iTregs). 

 

1.3.2 CD4+CD25+Foxp3+ Natural Tregs  

 The immune system protects the host from an extensive range of pathogenic 

microorganisms while avoiding autoimmunity. Tregs play a central role in maintaining 

immunological unresponsiveness to self-antigens and a role in limiting inflammation also 

has been proposed (3).  Disruption in the development of Tregs is a primary cause of 

autoimmune disease in humans and animals. Furthermore, adaptive immune response 

typically involves, not only recruitment and activation of effector T and B cells but also 

the induction and recruitment of Tregs (3).  Depletion of CD25+CD4+ T cells augments 

effective tumor immunity in otherwise non-responding animals and augments microbial 

immunity in chronic infection (89, 90).  Alternately, CD25+CD4+ T cells enriched from 

wild type mice inhibit allergy, and establish tolerance to organ grafts after bone marrow 

transplantation, and promote feto-maternal tolerance (91).  nTregs are a subset of CD4+ 

T cells that develop in the thymus comprising approximately 5-10% of peripheral CD4+T 

cells. The most prominent function of nTregs is to maintain self-tolerance and immune 

homeostasis. nTregs are anergic and do not actively secrete large amounts of effector 
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cytokines. They do, however, produce considerable levels of inhibitory cytokines IL-10 

and the membrane bound form of TGF-β (92).  nTregs constitutively express the IL-2 

receptor α chain (CD25), high levels of the cytotoxic T lymphocyte antigen-4 (CTLA-4) 

and glucocorticoid induced TNF receptor (GITR) (3).  

 Differentiation from thymocytes into nTregs in the thymus is likely to occur due 

to precursor nTregs possessing a TCR with a higher affinity for thymic MHC/self-peptide 

ligands than other T cells, and these highly self-reactive T cells would be recruited to the 

Treg cell lineage during the course of thymic T cell selection (93-95).  Also, mutations in 

the LAT (linker of activated T cell) gene, which encodes a TCR proximal transduction 

molecule, abolishes the generation of Foxp3+ T cells, indicating the requirement of a 

strong signal via the TCR for the development of nTregs in the thymus (96).  

Additionally, the intensity of the interaction between T cell accessory molecules and their 

ligands on thymic stromal cells factors in the generation of nTreg cells. An example of 

this is deficiency of CD28, CD40, CD11a/CD18 or the B7 molecules results in a 

substantial reduction of CD25+CD4+ Treg cell in the thymus and periphery (91).  At the 

cellular level, both medullary thymic epithelial cells (mTECs) and DCs in the thymus 

contribute to Treg generation (97-99). 

 IL-2 is another molecule critical for the function of Tregs. Mice deficient in CD25 

succumb to spontaneously developed T cell-mediated fatal lymphoproliferative and 

inflammatory diseases (100, 101).  Humans with IL-2 deficiency syndrome manifest 

these symptoms along with severe autoimmunity and allergy, indistinguishable from 

immune dysregulation, polyendocrinopathy and enteropathy, X-linked (IPEX) syndrome 

(102).  Although a recent study demonstrated that IL-2 is not absolutely required for 
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development (103).  IL-2 is required for optimal Treg function, likely through facilitating 

their proliferation and survival (100, 101).  The Treg surface marker, CD25 IL-2Rα) is a 

component of the high affinity IL-2 receptor and is functionally essential to Treg 

development (3).  Binding of IL-2 to its receptor activates the JAK3-STAT5 pathway 

(104, 105).  IL-2 is required for sustained expression of Foxp3 and CD25 in nTregs in 

vitro (103, 106).  IL-2 inhibits TGF-β/IL-6-dependent differentiation of naïve T cells to 

inflammatory Th17 cells (107).  Foxp3 in concert with other transcription factors and co-

activators/co-repressors inhibits the transcription of IL-2 rendering them highly 

dependent on exogenous IL-2, produced chiefly by activated effector T cells.  

 Thymic stromal lymphopoietin is an IL-7 like cytokine that is known to induce 

the generation of thymic nTregs specifically through DC interactions in vitro (99).  TGF-

β is required for development and peripheral maintenance of nTregs in mice (108, 109).  

 

1.3.3 CD4+ iTregs  

 In addition to the naturally occurring Tregs, differentiation of regulatory T cells 

can be induced (iTregs) from naïve T cells following TCR engagement in the presence of 

TGF-β (110, 111) and IL-2 (107).  These iTregs subsequently produce large amounts of 

IL-10 and TGF-β and act to suppress immune responses with minimal antigen specificity 

(112-114).  TGF-β is obligatory for the de novo generation of iTreg and crucial for the 

accompanied increase in Foxp3 expression following TCR stimulation (111, 115, 116).  

IL-2 facilitates the differentiation of naïve CD4+ cells into iTregs while inhibiting their 

differentiation to Th17 cells (107).  In addition, in the presence of TGF-β, retinoic acid 

secreted by a certain subset of DCs, has been demonstrated to induce Foxp3 Tregs in the 
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gut (117-119).  It is yet unclear as to the stability of iTregs in the periphery. In humans, 

unlike mice, naïve T cells readily express Foxp3 upon TCR stimulation, although the 

expression is generally much lower and more transient than in nTregs (120, 121).  

 

1.3.4 The Expression of Foxp3 by Tregs  

 Tregs are produced in the thymus or can be induced from naïve T cells in the 

periphery. The transcription factor Foxp3 is considered to be the master regulator driving 

the differentiation and function of Tregs (122-124). Foxp3 is an X-linked transcription 

factor belonging to the Fork-head protein family, which is highly expressed specifically 

in nTregs and can be induced by TGF-β following antigenic stimulation in iTreg cells 

(125). The FOXP3 gene was first identified as the defective gene in the mouse strain 

scurfy. Scurfy is an X-linked recessive mutant that is lethal in hemizygous males within a 

month of birth, displaying hyperactivation of CD4+ T cells and overproduction of 

proinflammatory cytokines (126).  In addition, mutations in the human FOXP3 gene 

resulted in IPEX (127). Continuous expression of Foxp3 is critical for maintaining the 

suppressive activity of Tregs (128). 

 Recent searches for Foxp3 target genes have shown that Foxp3 directly or 

indirectly controls hundreds (~700) of genes and binds directly to 10% of them (129, 

130).  Known targets genes for Foxp3 include; IL-2, CD25, CTLA-4 and GITR (129).  

Foxp3 has been shown to control the cellular and molecular programs involved in Treg 

function as a homo-oligomer maintaining either direct or indirect interactions with the 

transcription factors NFAT (nuclear factor of activated T cells), AML1 (acute myeloid 

leukemia-1)/Runx1 (runt-related transcription factor-1)/HAT (histone acetyl transferase)/ 
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HDAC (histone deacetyl transferase complex and possibly NFκB (3).  NFAT forms a 

complex with AP-1 and NFκB promoting the expression of IL-2, IL-4, CTLA-4 and 

other genes associated with conventional T cell function (131), (Figure 1.4). It has 

recently been shown that the Foxp3 NFAT interaction is dependent on binding to DNA. 

Substitutions in the forkhead domain of Foxp3 that disrupt this interaction impair the 

ability of Foxp3 to repress IL-2, activate CTLA-4 and CD25, and confer suppressive 

activities when expressed in normal T cells. It is thought that AML1/Runx1 physically 

binding to Foxp3 at its N-terminus and NFAT at the C- terminus may result in repressing 

transcription of these cytokines essential for the activation and differentiation of T cells 

to the effector phenotype while inducing upregulation of CD25 and CTLA4 (132), 

(Figure 1.4).  

Figure 1.4     Foxp3 Signaling 
 

 

Figure 1.4 Control of the function of CD4+CD25+ Tregs by Foxp3. Foxp3 is required 
for the transcriptional complexes involving NFAT and AML1/Runx1 activate or repress 
the genes encoding cytokines and several cell-surface molecules in Tregs (3). 
  

 Additional forms of Tregs exist and these include Tr1 producing IL-10 and TGF-

β in the periphery.  These cells comprise a CD4+ cell lineage distinct from iTregs and 

nTregs since they do not express Foxp3 although they display repressor activities (111, 

133).  
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1.3.5 CD4+Th1/Th2/Th17 Effector Cells and Tregs: a Balancing Act 

 Effector T cell subsets are characterized by their unique cytokine profiles. A 

central principle of effector T cell development learned by the establishment of the 

Th1/Th2 paradigm was the counter-regulatory nature of the cytokine and transcription 

factor networks that induce, stabilize or inhibit the maturation of Th1 and Th2 effectors 

cells. The discovery of the third major effector lineage, Th17 effector cells has advanced 

this concept and fostered an appreciation of the developmental plasticity of CD4+ T cells 

(134).  In contrast to the Th1/Th2 cells, which are considered terminally differentiated 

insofar as their respective cytokine profiles, recent work has suggested that Th17 cells are 

less rigid. Th17 and Tregs share the requirement for TGF-β, (which inhibits both  Th1 

and Th2 cell development), for their respective differentiation and function. First 

considered as a branch of Th1 cell lineage, it is now clear Th17 cells arise as a distinct 

population, independent of the classical Th1 and Th2 programs (135).  Furthermore, the 

Th1 and Th2 cytokines, IFN-γ and IL-4, respectively, are strong inhibitors of early Th17 

development, consistent with the cross-inhibitory roles played by cytokines in effector T 

cell differentiation. However, the common requirement of TGF-β for both Th17 and 

iTreg cell development challenges the prevailing theory of the Th1/Th2 paradigm that 

distinct inductive cytokines are uniquely linked to a developmental lineage. The fate of 

Th17 or iTreg cell differentiation is coordinated via IL-6 signaling (47, 86, 87).  IL-6 

suppresses Treg function (136) and maturation.  IL-6 is produced by dendritic cells (DCs) 

activated by microbial products or IL-21, and by IL-6 stimulated T cells to establish an 

autocrine loop (74, 76). IL-6 in the presence of TGF-β induces Th17 cell differentiation. 

Alternatively, in the absence of IL-6, iTreg maturation will proceed.  Further, recent 
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studies have confirmed this observation by demonstrating that induction of the key 

transcription factors for Th17 and Tregs, RORγt and Foxp3, respectively (77, 84),  share 

a common dependence on TGF-β signaling and that the transcription factors directly 

interact, establishing a competitive antagonism that determines Th17 versus iTreg lineage 

specification (137-139). It is noteworthy that both IL-6 and IL-21 signaling are mediated 

by STAT3, thereby providing a common intermediate for the ROR transcription, thus 

Th17 promoting cytokines may act through STAT3- dependent pathways to reverse the 

Foxp3-mediated repression of RORγt in developing Th17 cells (138).  In addition, Th17 

differentiated cells appear to have the capacity to deviate to a Th1 progeny in response to 

IL-12 signaling, demonstrating late developmental plasticity of committed Th17 

precursors (140, 141). Similarly, Tregs also seem to retain substantial developmental 

plasticity. IL-17 and IFN-γ expression by induced or natural Tregs (in the absence of 

TGF-β has been reported (138, 142-144). Conversely, the reciprocal conversion of Th17 

cells into Tregs has not yet been described.  

 

1.4  Immunoglobulins 

 The lymphocytes of the adaptive immune system have evolved to recognize a 

great variety of different antigens from bacteria, viruses and other diseases-causing 

organisms. The immunoglobulins (Igs) are the antigen-recognizing molecules produced 

by B cells. Ig is found on the cell membrane of B cells as well as a secreted form. The B 

cell receptor (BCR) is the cell surface Ig and acts when bound to antigen to transmit a 

signal for B cell activation, leading to clonal expansion and specific antibody production. 

The secreted Ig (antibody) has several functions. These include binding specifically to 
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molecules pathogens or their toxic products in the extracellular spaces that elicited the 

immune response. As well as recruitment of cells and molecules to destroy the pathogen 

once the antibody is bound. Binding to antibody neutralizes viruses and marks pathogens 

for destruction by phagocytosis and complement.  

 Five different classes or isotypes of immunoglobulins are known: IgM, IgD, IgA, 

IgG and IgE.  IgG is the most abundant antibody and has four subclasses: IgG1, IgG2, 

IgG3 and in humans-IgG4. The Th2 cytokine IL-4 induces IgG1 and IgE production; 

IFN-γ induces IgG2a, while TGF-β drives production of IgG2b and IgA.  Furthermore, in 

mouse IgG2a and IgG2b have been described. The serum levels of the different Igs differ 

dramatically, The levels of the different immunoglobulin isotypes present in serum are 

hugely different with IgG1 levels being around 9mg/mL in contrast to IgE which is 

typically 50ng/mL. 

 

Figure 1.5  The Structure of the Immunoglobulin protein 
 

 

 

 

 

 

 

Figure 1.5 The structure of the immunoglobulin protein. The immunoglobulin molecule 
is composed of two heavy chains and two light chains joined by disulfide bonds so that 
each heavy chain is linked to a light chain and the two heavy chains are linked together 
(53). 
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  Figure 1.5 shows how the antibody is designated into two parts; the variable 

(antigen binding) region (gold), which by definition, varies extensively between antibody 

molecules and the constant region (blue), which is similar across most antibodies and 

engages the effector functions of the immune system.  

 IgE isotype antibodies are typically present in low concentrations in the plasma 

and are mainly produced by plasma cells in the mucosal-associated lymphoid tissues 

(145).  Asthma patients have elevated serum levels of both total and antigen specific IgE. 

Most of the IgE produced is bound by its high affinity Fc receptor (FcεRI), which is 

expressed by mast cells and basophils (145).  Cross linking of IgE on tissue mast cells by 

specific antigen results in the local release of inflammatory mediators such as histamines 

and leukotrienes, enzymes and cytokines that mediate the symptoms of asthma.  Various 

cell types, including B cells, express the low affinity IgE receptor FceRII. IgE bound to 

FcεRII facilitates allergen uptake by B cells, enhancing presentation to T cells and 

augmenting secondary immune responses.  

 

1.5 Cell Types Involved In Asthma Associated Airway Inflammation 

 1.5.1 Role for Eosinophils in Asthma 

 Airway eosinophilia is the most distinctive characteristic in asthma and has been 

considered central in the pathogenesis of disease (1).  Eosinophils are thought to 

contribute to allergic airway inflammation by release of their pro-inflammatory cytotoxic 

granule proteins, generation of lipid mediators such as the cysteinyl-leukotrienes, and 

their release of mediators that can induce lung remodeling (146, 147).  The predominant 

cell type in allergic inflammation, eosinophils are not only found in the airway wall in the 
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asthmatic patient, but also abundantly in the sputum and bronchoalveolar lavage fluid 

(13, 148, 149).  To date, levels of eosinophils and their granule proteins are among the 

most reliable indicators of disease severity in the lungs of asthmatic patients (150). 

Additionally, IL-5 is responsible for selective differentiation of eosinophils and 

stimulation of eosinophil release from the bone marrow into the peripheral circulation 

(151, 152).  

 Eosinophils are pleiotropic multifunctional leukocytes involved in the initiation 

and propagation of diverse inflammatory responses, as well as modulators of innate and 

adaptive immunity (153).  The recruitment of eosinophils to the lung as the prominent 

cellular infiltrate has been well documented (154).  Eosinophils traffic from the 

circulating blood into peripheral tissues byway of several processes involving rolling, 

tethering and firm adhesion to the vascular endothelium followed by trans-endothelial 

migration into the tissue (155, 156).  These processes are orchestrated by the concerted 

efforts of chemokine and cytokine signaling, adhesion molecules and their receptors 

expressed on vascular endothelial cells (157).  The initial steps of eosinophil rolling and 

tethering are regulated by selectins, single-chain transmembrane glycoproteins, on the 

surface of eosinophils and their ligands expressed on the endothelium (156, 158). 

Eosinophils have been shown to constitutively express L-selectin which regulates 

eosinophil rolling on the endothelium (159, 160).  Eosinophils are recruited from the 

bone marrow as CD34 precursor cells.  Following their release of prostaglandin D2 

(PGD2) cysteinyl leukotrienes, cytokines and chemokines, these airway eosinophils 

migrate through the microvasculature into the airway wall.  Release of eosinophil 

secondary granule proteins (ESGP) by activated eosinophils are indicated as a primary 
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function executed by these cells. Eosin stained ESGPs contain toxic cationic proteins 

such as major basic protein (MBP)-1 and MBP-2, eosinophil peroxidase (EPO) and 

eosinophil-associated ribonucleases, including eosinophil cationic protein and eosinophil-

derived neurototoxin (161).  The effector functions mediated by ESGPs include cytotoxic 

activities potentially leading to airway damage and lung dysfunction (162-164), as well 

as activities that effect proximal lung cells such as ESGP release into the airway lumen 

with subsequent toxicity that compromises the integrity of cell membrane permeability 

that may result in the damage or death of lung epithelium (165). 

 Eosinophils are capable of synthesizing and secreting at least 35 important 

inflammatory and regulatory cytokines, chemokines, and growth factors (153).  Many of 

these cytokines are potent inducers of immune responses in asthma and other 

inflammatory diseases. In some situations, eosinophils are the chief producers of 

cytokines such as TGF-β, which is linked with tissue remodeling in asthma (166).  A 

major distinction in cytokine production between eosinophils and T cells, which generate 

much larger quantities of cytokines, is that eosinophils store their cytokines 

intracellularly as preformed mediators, whereas cytokine production is induced only after 

T cell activation (167). 

 EPO levels can be exploited to evaluate the severity of the eosinophilic 

infiltration. EPO concentration is readily calculated from cells collected by way of 

bronchoalveolar lavage in humans or total lung lavage from mice. EPO catalyzes the 

peroxidative oxidation of halides (such as bromide, chloride, and iodide) and 

pseudohalides (thiocyanate) present in the plasma together with hydrogen peroxide 

generated by dismutation of superoxide produced during respiratory burst (168-170). 
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This reaction leads to the formation of bactericidal hypohalous acids, particularly 

hypobromous acid, under physiologic conditions. Eosinophils are robust producers of 

extracellular superoxide due to expression of high levels of the enzyme complex that 

generates superoxide (NADPH oxidase) (171) and preferential assembly of the enzyme 

complex at the cell surface (172).  

 

1.5.2 Dendritic Cells 

 A prominent characteristic of allergen sensitization is the uptake and processing 

of inhaled allergens/antigens by DCs in the airway epithelium and surrounding mucosal 

tissue, with their processes extended out to the airway surface (173-175). Antigen 

internalized by the DC, is processed and the antigen peptide is then loaded onto the HLA 

(human)/MHC Class II (mouse) molecule for subsequent presentation to T cells (176). 

IgE bound to high affinity receptor on the DC enhances uptake of the antigen (177). Once 

the DC engages the antigen, it is chemotactically signaled to migrate to the lung draining 

lymph nodes, where it makes contact with naïve T cells (178, 179). Engagement of the 

MHC/peptide complex to the TCR, accompanied by binding of costimulatory molecules, 

B7 on the DC to CD28, initiates sensitization and the subsequent immune response to the 

specific antigen (180). Inefficient interaction between these costimulatory molecules or 

engagement of CTLA-4 to either of the B7 receptors may lead to anergy (181-183).  

Once activated, T cells migrate to the airway under the influence of several chemokines 

interacting with their respective receptors (184, 185).  The activated T cells then become 

potent producers of a variety of cytokines, primarily IL-3, IL-4, IL-5, IL-6, IL-9, IL-13 

and granulocyte-macrophage colony stimulating factor (GM-CSF) (186). 
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1.5.3 Neutrophils 

 Although the neutrophil is not a predominant cell known in the pathophysiology 

of asthma, they are understood to play a role in more sever disease states. The upper tract 

of the respiratory system is colonized with commensal bacteria, whereas the lower tract is 

sterile. A critical component of the initial innate immune response in the lung is the 

vigorous recruitment of neutrophils, which peaks within the first 6 hours of an 

inflammatory response. Neutrophils have the capacity to sense pathogens and migrate 

across a chemotactic gradient through the epithelium. Recruitment of these cells is a 

multi step process; Initially, in response to mediators of acute inflammation, vascular 

endothelial cells upregulate expression of E and P selectin (CD62E and CD62P). The 

circulating neutrophils express mucins and tetrasaccharides, which are capable of binding 

to the selectin that tethers them to the vascular endothelium, allowing neutrophilic rolling 

in the direction of the circulation (187).  During circulatory migration, cytokines and 

chemoattractants act on the neutrophils. These molecules initiate G-protein mediated 

activating signal that causes conformation modification of the integrin adhesion 

molecules resulting in neutrophil adhesion followed by transendothelial migration (187). 

Once in the tissues, the activated neutrophils upregulate chemokine receptors and 

subsequently migrate up a gradient of the chemoattractant. In addition, the activating 

signal also stimulates neutrophilic metabolic pathways to a respiratory burst, producing 

reactive oxygen and nitrogen species (ROS and NOS), which upon release along with 

mediators of neutrophil primary and secondary granules (proteases, phospholipases, 

elastases, and collagenases) play a crucial role in the killing of viral pathogens and also 

contribute to tissue damage subsequent to an inflammatory response (187). Investigations 
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have shown that efficient neutrophil accumulation is important to induce an adaptive 

immune response via expression of IL-12 induction of Th1 differentiation of CD4+ T 

cells (188).  In addition, Th17 cells are generated in response to bacterial or fungal 

infection and subsequent IL-17 production is associated with increases in neutrophil 

influx and neutrophil-derived products such as metalloproeinases, elastases, and again, 

ROS and can have detrimental roles that contribute to the pathogenesis of severe lung 

inflammatory diseases (189).  

 

1.5.4 Mast Cells 

 Mast cells have been long associated with the early asthmatic reaction subsequent 

to allergen exposure (190).  Two different localized populations of mast cells have been 

described in asthma: mast cells found in the epithelium and submucosa are fundamental 

to disease pathogenesis and are highly responsive to inhaled allergens contributing to 

bronchoconstriction (191), and more recently, mast cells located in the peripheral and 

deeper in the airways are associated with some of the chronic inflammatory responses in 

asthma (192). Mast cells are markedly increased in association with airway smooth 

muscle in both the large and small airway through the action of autacoid mediators such 

as leukotriene D4 (LT)D4, prostaglandin D2 (PGD2) and histamine, and also contributing 

to the remodeling response (193, 194).  

 Upon activation, human mast cells release stored histamine, tryptase, heparin and 

cytokines as well as newly expressed eicosanoids, including; PGD2 and LTD4, which 

interact with cell-surface receptors on eosinophils, macrophages, basophils and mast 

cells, serving as chemoattractant as well as priming agents (195). 
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1.6  Regulation of the Lung Inflammatory Process 

 In the healthy individual, mucosal surfaces encounter nontoxic proteins 

continuously and vigorous immune responses are not usually induced. The respiratory 

tract is required to maintain its essential gas exchange function and as a result, has 

evolved to limit access of pathogen to the immune system with barriers such as the 

mucosal layer and tight junctions  (Figure 1.6).  

 
Figure 1.6  Mechanism of Airway Inflammation 
 

 

Figure 1.6 Inhaled allergen exposure to the airway. A. In non-inflamed tissue, inhaled 
allergen does not induce an immune response due to intact protective features of the 
respiratory tract support immune tolerance. B.  The asthmatic response includes inflamed 
airways promoting immune responsiveness, including stimulation of Th2 cells and 
activation of inflammatory cells such as eosinophils and subsequent release of their 
inflammatory mediators (1).  
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 However, the respiratory mucosa is not impenetrable. Many aeroallergens possess 

protease activity that may allow them access through the mucosal barrier consequently, 

activating innate immune responses by mast cells, γ/δ T cells and NK-T cells thereby 

promoting Th2 cell development and the ensuing secretion of IL-4 and IL-13 (196-198). 

Alternately, inhaled antigens activate mechanisms of suppression to induce immune 

unresponsiveness to naïve T cells. These tolerogenic effects of inhaled antigens have 

been shown to be both antigen specific and nonspecific (199-202), and can render CD4+ 

T cells anergic to antigen (203) CD4+, CD8+ and γ/δ T cells can be induced by inhaled 

antigens to a regulatory phenotype (200, 204, 205). APCs at mucosal sites have unique 

features that stimulate the development of tolerance. The generation of iTregs appears to 

be primarily under the control of mucosal DCs that produce IL-10 and promote the 

generation of Tr1/Th3 cells and Th2 cells (201). When an effector/ suppressor population 

is established in the lymphoid tissue, the ensuing cytokine environment will influence the 

subsequent cellular interactions and lead to immune tolerance. Also, downregulation of 

Class II MHC and costimulatory molecules on DCs at mucosal sites play important roles 

in the divergence of mucosal immune responses toward T cell differentiation to a 

regulatory phenotype or anergy of the effector cells (206, 207).  Conversely, a feedback 

mechanism has been described, illustrating that Tregs have the capacity to induce 

tolerogenic DCs that have decreased costimulatory activity and can induce anergy in 

CD4+ T cells, thus enhancing immune unresponsiveness (208, 209).  In addition to the 

Treg/DC paradigm in the lung, alveolar macrophages are extremely potent in suppressing 

immune responses whereby imposing a regulatory effect on the DC (210).  
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1.6.1 Eicosanoids 

 In addition to cell mediated immune regulation, lipid mediators are also crucial in 

the signaling pathways associated with both pro and anti-inflammatory immune 

responses.  Eicosanoids are the general class of signaling molecules derived from the 

product of oxygenation omega-3 (ω-3) or omega-6 (ω -6) essential fatty acids (EFAs).  

 

Figure 1.4     Eicosanoid pathway 
 

 

 

 

 

 

 

 

 

 
 

Figure 1.4 Metabolism of Arachidonic acid to PGI2. Membrane bound diacylglycerol or 

phospholipids are generated via the cyclooxygenase pathway (211).  

 

 The eicosanoids – prostaglandins (PG) and thromboxanes (TX) mediate local 

immune responses such as inflammation, vasoconstriction or vasodilatation, coagulation, 

pain and fever. Prostanoids are products of arachidonic acid metabolism synthesized via 
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the cyclooxygenase (COX) pathway (Figure 1.4) (181). The two isoforms of this enzyme, 

COX-1 and COX-2, metabolize arachidonic acid to PGH2, which is subsequently 

processed by specific enzymes to generate a series of products, most notably PGD2, 

PGE2, PGF2α, prostacyclin (PGI2), and thromboxanes (Tx). COX-1 is constitutively 

expressed in most cell types, and is the predominant form present in the gastrointestinal 

tract, kidney, and platelets (212-214). COX-2 is expressed at inflammatory sites by 

macrophages, neutrophils, and activated mesenchymal cells and is though to produce 

prostanoids that contribute to inflammatory swelling, pain, and fever (212-214).  

Nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin and indomethacin, are 

nonselective COX inhibitors and inhibit these inflammatory processes. The inhibition of 

COX-1, however, underlies the gastrointestinal toxicity of NSAIDs in humans, and this 

has prompted the development of COX-2-selective inhibitors such as NS-398 and 

celecoxib, which circumvent such detrimental effects (215).  The spectrum of prostanoids 

catalyzed by COX-2 differs from that synthesized by COX-1. Specifically, COX-2 is 

thought to be important for the production of PGE2 and PGI2 (216).  PGI2 has anti-

thrombotic effects in vivo and plays an important role in inflammation and pain 

perception (217).  Despite these potent actions, the effects of PGI2 appear to be very 

localized, since the prostanoid is highly unstable, with t1/2 of ~30 seconds under 

physiological conditions (212). 

 Leukotrienes also play a vital role in mediating inflammation. The leukotriene 

LTB4 is involved in cell adhesion and chemotaxis of leukocytes and stimulates 

aggregation, enzyme release, and generation of superoxide in neutrophils (218). 

Commercially available pharmaceuticals, drugs such as montelukast and zafirlukast that 
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block leukotriene receptor signaling have been shown to reduce symptoms associated 

with allergic inflammation such as asthma, psoriasis, and rheumatoid arthritis.  

 

 

1.6.2 Eicosanoid Pro-Resolution Molecules – Lipoxins, Resolvins  

 Lipoxins (LXs) are metabolites of arachidonic acid converted via lipoxygenase 

(LO), and were the first lipid mediators identified as having inflammation resolving 

properties.  These eicosanoids are structurally and functionally distinct from pro-

inflammatory prostaglandins and leukotrienes (219). Produced at the site of 

inflammation, these molecules are act via cell-cell interactions of activated epithelial cells 

followed by recruitment of eosinophils or neutrophils (219). LXs signal through specific 

interaction with the high affinity LXA4 (ALX) receptor, which is expressed on the 

surface of human airway epithelial cells, PMNs, monocytes, enterocytes and synovial 

fibroblasts (220-224).  Airway inflammation or injury induces upregulation of the ALX 

receptor on both proximal airway and distal alveolar cells (220, 225). 

 LXs are produced in many human inflammatory lung diseases, including asthma. 

In fact, a characteristic of severe asthma is diminished LX expression (226, 227).  LXs 

provide stop signals for PMN chemotaxis, trans-endothelial and trans-epithelial 

migration, production of reactive oxygen species (ROS) and neutrophilic granule release 

(228-230).  Conversely, LXs promote monocytes locomotion (231), macrophage 

mediated clearance of apoptotic PMN and microbial products by phagocytosis (232).  LX 

and their stable analogs have been shown to prevent PMN mediated tissue injury, 

enhance bronchial epithelial cell proliferation in response to injury and block release of 
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pro-inflammatory cytokines from epithelial cells (233).  Furthermore, LXs are associated 

with increased epithelial cell anti-infectious activities (234).  

 Resolvins are also pro-resolving lipid mediators derived from omega-3 fatty acids 

via either COX-2 or Cytochrome P450 enzymes and subsequentially modified by PMN 

LOs to the bioactive form (235).  Receptors for resolvins have been identified on 

monocytes, macrophages and DCs (236).  Although resolvins have yet to be identified in 

lung disease, they likely play a role in resolving allergic airway responses as they have 

anti-inflammatory effects in models of peritonitis and ischemia-reperfusion injury 

Resolvin E1 inhibits PMN transmigration and promotes the phagocytosis of apoptotic 

PMN by macrophages (237-239). Recent studies have suggested Resolvin E1 as a 

potential therapeutic for the treatment of asthma (240).   

 
 
 
1.7 Mouse models of asthma  

Asthma is a complex disease with multifaceted etiologies and complicated 

underlying mechanisms.  Along with most human diseases, studies using laboratory 

animals have provided much of the current understanding of the mechanisms driving 

asthma. The ability to produced accurate animal equivalents of the disease in the animal 

is amid the top concerns of the investigator when crafting the experimental design. The 

development of these animal models is a continued work in progress. Although various 

aspects of asthma have been persuasively demonstrated in animals, invariably every 

animal model misses some critical feature of the human disease. In addition, very few 

animals are known to develop any condition similar to asthma, with the exception to an 

allergic syndrome in cats (241). The knowledge that asthma involves interactions 
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between the innate and adaptive immune systems can be in large part credited to studies 

done in animal model (242).  Much like most animal-based biomedical research, mice 

are, in general, are the species of choice to study asthma, because of the immunological 

and molecular tools available to study them as well as the obvious practical advantages in 

terms of cost and simplicity of breeding protocols.  

Only a very limited literature database in terms of PGI2 and asthma is available at 

the present as well as currently no commercially available markers specific to the IP, 

makes study of this signaling pathway very challenging. The experimental model used to 

study the role of PGI2 signaling in allergic asthma, employed mice with a dysfunctional 

receptor for PGI2 – IP-/-. This model system was able to reliably and reproducibly induce 

pulmonary inflammation in both wt and knockout animals by immunizing and exposing 

the primed animals to aerosolized whole OVA. Using this model system, we were able to 

show that loss of the ability to signal via the IP, manifested in increased AHR, augmented 

pulmonary lymphocyte an eosinophilic influx, as well as elevated serum IgE, therefore 

we deemed this model could potentially translated to human asthma like symptoms and 

was sufficient for this research.  

 The DO11.10 mouse is genetically engineered that the T cell receptor specifically 

recognizes the 323-339 amino acid sequence of the OVA peptide. The investigation 

described in chapter four, exploited this property, where effector and regulatory T cells 

from the DO11.10 mouse were expanded in culture, to provide cells used for adoptive 

transfer studies in the wt (BALB/c) mice.  The recipient animals were subsequently 

repeatedly exposed to aerosolized whole OVA to induce a quantifiable lung inflammation 

which reliably demonstrated characteristics similar to those in detected in human asthma 
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(243). In addition, the KJ1-26 antibody which is specific for the transgenic TCR could be 

used to evaluate the activities of the transferred cells apart from the host response.   
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2.0    Materials and Methods 

2.0.1  Cell culture 

 Cells were cultured in RPMI 1640 media supplemented with 10% fetal bovine 

serum, L-glutamine (Gibco, Carlsbad CA), penicillin and streptomycin (Gibco), Hepes 

(Gibco), Sodium Pyruvate (Gibco) and 2-mercaptoethanol (Sigma).  

2.0.2 Animals  

DO11.10, BALB/c, C57BL/6 and C129-IL4 mice were purchased from Jackson Labs, 

Bar Harbor ME (The Jackson Laboratory) were bred and housed in pathogen-free 

conditions in the animal facility at the (University of Montana, Missoula, MT). IP-/- mice 

were the generous gift of Dr. Garret A. Fitzgerald (University of Pennsylvania, 

Philadelphia, PA). All experiments were performed to the guidelines of the National 

Institutes of Health, Bethesda, NIH. IACUC  

 

2.0.3 Immunization of IP-/- and wt mice with OVA/Alum 

 OVA/Alum antigen inoculant [1mg/mL] was prepared by mixing together 2 mL 

of 2.0 mg/mL Ovalbumin (Sigma, St. Louis, MO) in PBS and 2 mL of Imject®Alum 

(aluminum hydroxide, magnesium hydroxide and inactive stabilizers (Pierce, Rockford, 

IL) followed by a 30 min incubation at 37oc. The mixture was then centrifuged at 1200 

RPM x 10 min. The pellet was resuspended in 4 mL of PBS. The IP-/- and wt mice, in 

groups of 4, received 100 µl of the OVA/Alum by intra-peritoneal (ip) injection (100 µg). 

The mice were then rested for 10 days, before initiating treatment and or exposure to 

aerosolized OVA in PBS. 
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2.0.4 Lung histology  

Non-lavaged lungs were obtained and one part of the lung tissue was fixed in 10% 

Formalin, embedded in paraffin, and then (2 µm) sections stained with H&E, which was 

performed by Lou Herritt in the Confocal Microscopy and Image Analysis Laboratory. 

The samples were imaged on an Olympus fluorescent microscope. 

 

2.0.5 Measurement of Airway Inflammation  

 BAL was performed by cannulation of the trachea of each euthanized (Euthasol 

100µl) animal and washing the airways with 3 x 0.5 mL of PBS to collect BAL fluid. 

BAL fluid of four animals was pooled and EPO levels present in BAL cells were 

determined (method described below).  

 

 2.0.5.1  Cell differential 

 Cytospin preparations were performed on 5x104 cells followed by staining the 

cells using a Wright-Giemsa-protocol (Hema 3 Staining kit, Fisher Scientific, Houston, 

TX). Cell differential percentages were determined by light microscopic evaluation of 

stained and expressed as absolute cell numbers. Levels of cytokines IL-4, IL-5 or IL-17 

in the BAL were measured by ELISA as described. 

  

 2.0.5.2  Eosinophil peroxidase (EPO) assay 

 This assay is specifically used for detecting eosinophil peroxidase (EPO), which 

is contained within eosinophils. The EPO activity in BAL cells was determined by 

colorimetric assay. 100 µl of PBS is added to each well in a 96 well flat bottomed plate 
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(Falcon). The cells from the BAL fluid are resuspended in PBS pH 7.0 in a final volume 

of 300 µl. In triplicate for each sample, 100 µl of the cell suspension is added to the top 

well and serial diluted through the 8th well. The substrate solution is prepared by crushing 

one tablet of orthophenylene diaminedihydrochloride, (OPD, Sigma) (final concentration 

of 0.1%) in 50 µM Tris-HCL (Sigma) containing 0.1% Triton X-100 (Sigma) and 1 mM 

hydrogen peroxide (Sigma). 100 µl of the substrate solution is added to each well and the 

plates are then incubated at room temperature for 30 min or until sufficient color 

development has occurred at which time 50 µl or 0.3 M sulfuric acid (Sigma) is added to 

stop the reaction. The absorbance is measured using an automatic plate reader (Molecular 

Devices VersaMax microplate reader) at 495 nm. The measurements taken were total and 

not released EPO, and were indicative of the number of eosinophils present in the BAL. 

 

2.0.6 Measurement of Cytokines 

 2.0.6.1  IL-4, IL-5 and IFN−γ  Measurements 

 To examine cytokine production, cells from digested lung tissue, BAL or in vitro 

(4 and 8-day polarized cells) (5 x 105/mL) were stimulated with immobilized anti-CD3 (2 

µg/ mL) for 24 h, and the supernatants were harvested for measurement of IL-4, IL-5 and 

IFN-γ by enzyme linked immunosorbant assay (ELISA) were performed. The ELISA is a 

technique is used to detect an unknown amount of cytokine in a sample.  

 The protocol used to assay cytokines IL-4, IL-5 and IFN-γ are as follows: 50 µl of 

anti-IL4 (clone 11B11 from hybridoma cultivated in our laboratory), IL-5 (Pharmingen), 

IFN-γ (R4-6A2, American Type Culture Collection (ATCC), Manassas, VA) capture 

antibodies [5.0 µg/mL final], diluted in 1 mM carbonate/bicarbonate buffer (pH 9.6), are 
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pipetted into a 96 well plate and stored at 4oC overnight followed by 2 washes on an 

automated plate washer (Thermo Electron Wellwash 5 MK2 Plate washer, Fisher 

Scientific) with ELISA wash buffer (WB) (PBS & 0.5%Tween). 200 µl of blocking 

buffer (1% bovine serum albumin (BSA) (Sigma) in 1 mM carbonate/bicarbonate buffer 

pH 9.6) was added and incubated at room temperature for a minimum of 2 h; the excess 

was then washed off with WB x 5. Standards and samples were added (50 µl/well) and 

incubated over night at 4oC. The plates were washed with WB x 5. Biotin-conjugated 

detection antibodies (anti-IL-4 (Pharmingen), IL-5 (Pharmingen) and IFN-γ 

(Pharmingen) were diluted to 2.5 µg/mL in blocking buffer and 50 µl was added to each 

well and allowed to incubate at room temperature for 45 min followed by washing with 

WB x 5. Streptavidin-conjugated horseradish-peroxidase (SA-HRP) (Jackson 

ImmunoResearch Laboratories Westgrove ,PA) was diluted 1:4000 in blocking buffer. 

100 µl of SA-HRP was added to each well and incubated for 30 min at room temperature. 

The plates were washed with WB x 5 and blotted dry. 100µl of 3,3’,5,5’ 

Tetramethylbenzidine (TMB) (Sigma) substrate was added to each well, incubated up to 

30 min at room temperature at which point the reaction is stopped with 100 µl of 0.3 M 

H2SO4 (Sigma). The absorbance was read at 495 nm. 

 

 

 2.0.6.2  IL-17 Measurements 

 The R&D systems (Minneapolis, MN) IL-17 ELISA kit was used to quantify this 

cytokine. The protocol was similar to the previously described with the exception of the 

following: The capture antibody was diluted to 2.0 µg/ml in PBS and 100 mL added per 
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well in a 96 well plate. The plate was sealed and incubated at room temperature 

overnight. The plate was washed with WB x 3. The plate was blocked by adding 300 µl 

of blocking buffer (1% BSA in PBS) to each well and incubating the plate for a minimum 

of 1 h at room temperature.  The plate was washed with WB x 3. 100 µl of samples or 

standards (diluted in blocking buffer) were added to the appropriate well and incubated 2 

hours at room temperature. The plates were washed with WB x 3. 100 µl of detection 

antibody [200 ng/mL] was added per well and incubated for 2 h at room temperature. The 

plates were washed with WB x 3. 100 µl of SA-HRP (1:200) was added to each well and 

incubated for 20 min at room temperature in the dark. The plate was washed with WB x 

3. 100 µl of TMB was added to each well, the plate was incubated avoiding direct light 

for up to 20 min and the reaction was stopped with 0.3 M H2SO4. The absorbance is 

measured at 450 nm on the plate reader. 

 

2.0.7 Measurement of Immunoglobulins 

 IP-/- and wt mice were euthanized by injection of 100 µl Euthasol (Virbac, Fort 

Worth TX), IP. Blood was collected via cardiac puncture and the serum fraction was 

stored at -20oC. Total IgE, IgG1 and IgG2a were assayed using a protocol similar to that 

used to measure IL-4. The following antibody pairs were used; IgE capture Ab 

(Pharmingen clone R35-93), detection Ab (Pharmingen clone R35-72); IgG1 capture Ab 

(Pharmingen clone A85-3), IgG1detection Ab (Pharmingen clone A85-1); IgG2a capture 

Ab (Pharmingen clone R11-89), IgG2a detection Ab (Pharmingen R19-15).  IgEκ chain 

isotype control (anti-TMP). IgA, IgG2b, IgG3 and IgM were assayed using Southern 

Biotech immunoglobulin ELISA kit (Catalog # 5300-05) 
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2.0.8 Monitoring the phenotypic changes of the IP-/- CD4+ T cells in vitro 

 To monitor the effect of PGI2 on Th2 polarization in vitro, PLN cells from IP-/- 

and wt mice were first depleted of CD8+ cells by incubation of the cells with 2 µl anti-

CD8 PE (Pharmingen) for 20 min in the dark then washing with 1ml staining buffer, 

centrifuging for 5 min at 1200 RPM. The pellet was then incubated with 20 µl anti-PE 

microbeads for 20 min in the dark followed by another washing. The pellet is 

resuspended in MACS buffer and the CD8+ cells are depleted by magnetic column 

(Miltenyi Biotec Inc). The flow through was collected and the CD8 depleted cells (1x106 

cells/mL) were cultured on immobilized anti-CD3 (2 µg/mL) in the presence of IL-4 (2 

ng/mL) and anti-IFN-γ (5µg/ml) for 4 days. On day five the cells were harvested and 

counted. FACS was performed to analyze the expression of CD4 (APCCy7, 

Pharmingen), CD8a (PE Biolegend, San Diego, CA) CD62L (FITC, Pharmingen) and 

ICOS (PE, Pharmingen) 

 

2.0.9 Isolation of Lung Mononuclear Cells 

 Lung tissue was dispersed by collagenase (Type IV, Sigma-Aldrich) and 

fractionated using Percoll gradient (GE Healthcare, Piscataway, NJ) as detailed 

previously (244) and the resultant lung mononuclear cells (LMCs) were stimulated with 

OVA peptide or anti-CD3 for 24 h.  

2.0.10 Preparation of CD4+ Th1, Th2 and Th17 cells 

 Peripheral lymph node cells (PLN) from DO11.10 mice (5 x105/mL) were 

induced to differentiate into a Th2 effector phenotype by incubation for 4 d in the 

presence of OVA323–339 peptide (1µg/ml, Mimotopes, San Diego, CA) and murine IL-4 (2 
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ng/ml; R&D Systems,) plus anti-IFN-γ Ab (5 µg/mL, R4-6A2; American Type Culture 

Collection (ATCC), Manassas, VA). After 4 d of incubation, the cells were restimulated 

as before for another 4 d, but this time also in the presence of IL-2 (10 ng/mL R&D 

Systems). To drive T cell differentiation into a Th1 phenotype, PLN cells from DO11.10 

mice (5x105cells/ml) were incubated in the presence of OVA323–339 peptide (1 µg/mL), 

and mouse IL-12 (1ng/ml; R&D Systems) plus anti-IL-4 Ab (5 µg/ml, 11B11; ATCC). 

After 4 days of culture, cells were restimulated as before for another 4 d but this time also 

in the presence of IL-2 (10 ng/mL). To generate Th17 effector cells, PLN cells 

(5x105/mL) were incubated in complete RPMI with mitomicin C (Sigma, St. Louis, MO)- 

treated APCs (1x106/mL) in the presence of TGF-β (2 ng/mL; eBioscience, San Diego, 

CA), IL-6 (10 ng/mL; R&D Systems), anti- IFN-γ (5µg/mL HB-170), and anti-IL-4 Ab 

(5µg/mL 11B11). After 4 days of culture, the cells were restimulated as before, in 

addition to the presence of IL-23 (10ng/mL; R&D Systems). 

 

2.0.11 Preparation and Expansion of CD4+ CD25+ Foxp3+ Regulatory T cells in 

Culture 

 CD4+CD25+ T regulatory cells were purified from DO11.10 PLN cells using 

MACS magnetic cell sorting beads. (Miltenyi Biotec Inc., Auburn CA). The 

homogenized lymph nodes were first depleted of the unwanted cells by staining with 

CD4+CD25+ Regulatory T cell biotin-antibody cocktail (anti-mouse abs: CD8a, CD11b, 

CD45R, CD49b and Ter-119, incubated for 10 min. Adding anti-biotin microbeads and 

CD25-PE, incubated followed by washing the cells with MACS buffer. The resuspended 

cells were then separated via magnetic column, the flow through fraction was collected 
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and incubated with anti-PE microbeads, again washed and resuspended in MACS buffer 

and the PE positive CD25 cells were depleted by capture on magnetic column. The 

CD25+ cells were eluted when the magnetic column was removed from the magnet and 

flushed through with MACS buffer. The eluted cells were then put through a second 

series of magnetic selection using a fresh magnetic column. FACS was used to evaluate 

the purity of the CD4+CD25+ cell population from the isolated T cells and the efficiency 

of the isolation from the CD4+CD25- fraction of cells.  

 The purified CD4+CD25+ and CD25- populations (5x105 cells/mL) were cultured 

in complete RPMI media in the presence of OVA323-339 peptide (1 µg/mL), IL-2 (10 

ng/mL), IL-4 (2 ng/mL) + anti-IFN-γ antibody (5 µg/mL), and mitomycin C-treated 

antigen-presenting cells (APC) (2x106/mL BALB/c spleen cells). After 4 d of culture, the 

cells were re-stimulated as stated above without adding further APCs but with the 

addition of exogenous IL-2 (10 ng/mL), for 4 additional d. The expansion of CD4+CD25+ 

T cells in the presence of exogenous IL-2 was limited and was typically around a 30-fold 

increase in cell numbers over 8 d. Foxp3 expression was verified as described below. The 

CD4+CD25+ T cells expanded in IL-2 plus IL-4 were used for experiments to examine 

suppressor function.  

 

 

 2.0.11.1 Quantification of Foxp3 Expression 

  CD4+CD25+ and CD4+CD25- cells that were expanded under Th2 polarizing 

conditions for 8 d were intracellular stained using anti-Foxp3 Ab. To determine the purity 

of the culture, the Biolegend Mouse Treg FlowTM Kit (FOXP3 Alexa Fluor ® 488/CD4 
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APC/CD25 PE) was used. First, 20 µl of CD4 APC/CD25 PE cocktail was added to1x106 

cells/ tube. The tubes were vortexed and incubated at room temperature in the dark for 20 

min, followed by a wash with 1 mL of stain buffer (5 min at 1200 RPM). Working 

solutions of FOXP3 Fix/Perm buffer (4X) and FOXP3 Perm buffer (10X) were prepared. 

The cells were resuspended in 1 mL of FOXP3 Fix/Perm buffer (1X) and incubated at 

room temperature in the dark for 20 min. The cells were again washed in 1 mL of stain 

buffer and again with 1 mL FOXP3 perm buffer. The cells were then resuspended in 1 

mL FOXP3 perm buffer and incubated at room temperature in the dark for 15 minutes 

followed by centrifugation (5 minutes at 1200 RPM). The cell pellet was resuspended in 

100µl of FOXP3 perm buffer. 5 mL of either Alexa Fluor® 488- anti-mouse FOXP3 

antibody or Alexa Fluor ® 488 mouse IgG1, k isotype control was added to the cells and 

incubated at room temperature in the dark for 30 min. The cells are washed twice with 

cell staining buffer and resuspended in 0.5 mL staining buffer and analyzed on the 

FACSaria. 

 

2.0.12 Adoptive Transfer of CD4+ T cells into Mice and Ovalbumin Aerosol Challenge 

 3x106 expanded Tregs were adoptively transferred into BALB/c mice at the same 

time as 8x106 DO11.10 CD4+ Th1, Th2 or Th17 cells. Mice (four per group) were then 

intra-nasally challenged by exposure to aerosolized solutions of OVA (0.5%, Grade V; 

Sigma-Aldrich, Poole, U.K.) for 20 min/d over 7 consecutive d using a Wright’s 

nebulizer (Buxco). Control mice were mice that received either Treg, Th1, Th2 or Th17 

cells alone or no cells but were exposed to OVA aerosols. 
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2.0.13 Monitoring the Regulation of Th2 Differentiation of CD4+ T cells in vitro 

 To monitor the effect of Treg cells on Th2 polarization, IL-4 reporter mice were 

used, designated IL-4/GFP mice (IL-4 green fluorescent protein enhanced transcript, 

C129.IL-4. PLN cells (1x106), collected from naïve C129.IL-4 mice, were co-cultured 

with DO11.10 Tregs (2x105), in the presence of plate-bound anti-CD3 (2C11 2 µg/mL) 

(ATCC), IL-4 (2 ng/mL) and anti-IFN-γ (5 µg/mL) for 4 d. FACS was used to examine 

GFP expression. FACS analysis of endogenous GFP/IL-4 expression (FITC) vs. CD4+ 

(CD4 APC-Cy7, Pharmingen, San Diego, CA). Anti-clonotype KJ1-26-APC-Cy7 

(Pharmingen) staining was used to identify and subtract the DO11.10 Treg cells from the 

analysis, which was performed on a FACSAria (Becton Dickinson, by DIVA software, 

Franklin Lakes, NJ).  

 

2.0.14 Flow cytometric analysis of spleen, lymph node and lung mononuclear cells 

from in vivo experiments with Th1, Th2 or Th17 co-transferred with nTregs 

 Cells were stained and analyzed on a FACSAria (BD Biosciences, San Diego, 

CA) using FACSDiVa software for performing three-color analysis to enumerate CD4+ T 

cells (APC-Cy7), OVA-specific T cells (KJ1-26-FITC) and CD25+ T cells (PE). Flow 

cytometric analysis of endogenous GFP/IL-4 expression (FITC) vs CD4+ (anti-CD4 APC 

Cy7) was performed. The DO11.10 Tregs are enumerated using PE conjugated 

anticlonotype antibody KJ-126. The same staining scheme was used in addition to 

granulocyte identification by anti-Gr1 (Pharmingen) Biotin/Streptavidin-APC 

(Pharmingen) and anti-CD11b FITC (Pharmingen) to for neutrophils in LMNC. 
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2.0.15 Statistical Analysis 

Unless otherwise described, data are summarized as means + SEM. Data obtained from 

adoptive transfer experiments comparing two variables, were analyzed using the students 

t test, and differences were considered statistically significant with p < 0.05. To 

determine statistical significance of groups, one or two way ANOVA tests were used for 

analysis. The Prism software package was used in all cases.  
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3.0 Abstract  

 In order to investigate the mechanism underlying the anti-inflammatory properties 

of PGI2 a murine model of allergic lung inflammation was developed in which PGI2 

receptor deficient mice, IP-/-, were immunized with OVA and exposed to repeated 

ovalbumin (OVA) aerosols. We observed that lack of expression of the PGI2 receptor 

resulted in a marked increase in pulmonary inflammation demonstrated by augmented 

airway hyperreactivity, and eosinophilic infiltration into the lungs of IP-/- mice. IP-/- mice, 

following immunization and aerosol inhalation, displayed augmented levels of IL-4 

production by LMC and elevated serum levels of IgE and IgG1. Interestingly, in IP-/- 

control animals not exposed to OVA, the level of serum antibodies of several isotypes 

was profoundly decreased. FACS analysis revealed that the number of CD19+ B cells, 

CD4+ and CD8+T cells was elevated in the lungs of IP-/- compared to wt mice following 

OVA inhalation. Moreover, in OVA-immunized IP-/- mice, treatment with non-selective 

COX inhibitor indomethacin failed to increase the level of pulmonary eosinophilia. In 

contrast, the eosinophilic inflammation in wt mice was markedly increased by 

indomethacin treatment. Finally, in vitro studies showed that CD4+Th2 cells treated with 

the stable PGI2 analog Iloprost express high levels of L-selectin (CD62-L). Our results 

identify PGI2-IP as an important pathway for inhibiting allergic pulmonary inflammation 

that appears to play a part in NSAID-induced exacerbations of allergic inflammation.  

The humoral response is also markedly influenced by expression of the PGI2 receptor, IP. 
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3.1 Introduction 

 The prevalence of asthma has dramatically increased worldwide in the past two 

decades. Allergic asthma is characterized by airway hyperreactivity (AHR) and chronic 

bronchial inflammation in response to a range of environmental stimuli such as allergens. 

The hallmarks of allergic asthma include airway infiltration by CD4+ T cells and 

eosinophils, thickening of the airway tissues and increased mucus production and 

elevated levels of serum IgE (1, 5). It has been proposed that allergic asthma is associated 

with dysregulation of the Th2 type inflammatory response. Subsequent to allergen 

exposure Th2 cytokines IL-4, IL-5, IL-9 and IL-13 are key in driving pulmonary 

inflammation and AHR. IL-4 is particularly crucial in CD4+ T cell commitment to a Th2 

phenotype and IL-9 and IL-13 are important in AHR and mucus production. IL-5 

mediates eosinophil development, activation and recruitment to the affected tissues (30, 

245, 246). While the Th2 phenotype is linked to asthma and clearance of extracellular 

organisms, Th1 cells and their production of IFN-γ have been linked to viral clearance. 

IFN-γ has been identified with inhibition of antigen-induced infiltration of T cells and 

eosinophils in to the airways of mice (247). Currently, both nTregs and PGI2 have been 

shown to play important roles in regulating allergic inflammation in asthma (243, 244). 

 PGI2 is a major product of cyclooxygenase (COX) metabolism. In this process, 

arachidonic acid is cleaved from the membrane phospholipids by phospholipase A2 and 

converted by COX to PGH2. PGH2 is then converted, via the isomerase- PGI2 synthase 

(PGI2S), to PGI2. 

 PGI2 is a potent vasodilator and inhibitor of platelet aggregation (248). PGI2 is 

very unstable at physiological pH and is readily hydrolyzed to form the inactive 6-keto-
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PGF1α (249).  PGI2 exerts its biological effect by binding to a cell surface G protein-

coupled IP receptor (250). IP receptor activation by an agonist leads to augmented 

production of intracellular cAMP via stimulation of adenylate cyclase (250). PGI2-IP 

receptor signaling is important in preventing thrombosis, inhibiting injury-induced 

vascular proliferation (251), modulating allergic airway responses and mediating 

inflammatory swelling and pain (217, 252). 

 It has been shown in our laboratory previously that PGI2 production is increased 

during Th2 but not Th1-mediated pulmonary inflammation and plays a key role in 

regulating allergic responses (244, 253). The aim of this study was to determine the 

mechanism by which PGI2-IP signaling mediates regulation of allergic airway 

inflammation.  
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3.2    Results 

 

3.2.1 Characterization of Allergic Pulmonary Responses in Mice Lacking PGI2 

Receptors- IP-/- 

 Since the receptor for PGI2 (IP) is upregulated by IL-4 and COX-2 inhibitors 

exacerbate allergic inflammation (244, 253), we examined the role of PGI2 in modulating 

allergic lung inflammation (244, 253).  To elucidate the role of PGI2 signaling in the 

modulation of the inflammatory response occurring in the asthmatic airway, we assessed 

the difference in the inflammatory response in wild type C57BL/6 mice and animals that 

have genetically altered non-functional prostacyclin receptor (IP-/-), using a murine model 

of allergic asthma. It has previously been shown by Nagai et al (2003), that these mice 

primed with antigen and exposed to repeated aerosol challenges will elicit an eosinophilic 

response that is more severe than that observed in wt mice. However, the underlying 

mechanism as to how this exaggerated response occurs is unknown. The work illustrated 

in this study demonstrates that PGI2 signaling plays a role in the regulation of the allergen 

induced inflammatory response produced in the lung. Since Th2 cells preferentially 

express IP, we examined how PGI2 influences Th2 responses both in vivo and in vitro. 

We demonstrate phenotypic differences between the IP-/- and wt mice, in relation to the 

Th2 response and exploit these differences to shed light on the underlying mechanism of 

action utilized by PGI2 signaling in the regulation of pulmonary inflammation and AHR.  
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3.2.1.1   Establishing a mouse model of antigen induced airway inflammation 

using C57BL/6 and IP-/- mice. 

 We developed a model of murine immunization and antigen aerosol exposure to 

study how PGI2 signaling impacts allergen induced airway inflammation. In deriving a 

protocol to optimize the phenotypic differences between the wt and the PGI2 IP-/- mouse 

strains, we performed a series of experiments in which the antigen dose was varied. 

Figure 3.1 illustrates that wt and IP-/- strains were immunized with 1, 2 or 3 doses of a 

PBS suspension of 100µg of whole OVA protein complexed with Alum adjuvant. The 

animals were rested for 10 days between doses. Subsequent to last immunization and rest 

period, the animals were then exposed to aerosolized OVA for 20 minutes a day for 6 

days. Twenty-four hours following the final challenge, the animals were euthanized and 

bronchoalveolar lavage (BAL) was performed to collect BAL fluid (BALF).  

 

Figure 3.1 OVA immunization and aerosolization protocol for the induction of 

airway inflammation in wt and IP-/- C57Bl/6 mice. 

 

 

 

 Eosinophil infiltration to the airways is a defining characteristic of asthma and a 

gauge of the severity of the inflammatory response.  Eosinophil peroxidase (EPO) is an 

easily quantified product of eosinophils and indicator of airway inflammation.  Cell- 
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associated EPO levels were present in the BAL collected from immunized and challenged 

wt and IP-/- animals. A single OVA immunization was sufficient to elicit an eosinophilic 

response on subsequent OVA aerosol challenge. Figure 3.1 demonstrates that in IP-/- 

mice, a 2.5-fold increase in the level of EPO activity, compared to the wt mice, was 

induced in the mice that received one dose of OVA/Alum and exposure to OVA aerosols. 

Animals immunized with either 2 or 3 doses resulted in a pronounced pulmonary 

inflammation, whereby the difference in eosinophilic infiltration between the IP-/- and wt 

could not be discerned.  Based on this data, the protocol requiring one dose of 

OVA/Alum and the time course outlined in figure one was sufficient to induce a 

pulmonary eosinophilia and was chosen for the investigation of allergen induced airway 

inflammation, described in this chapter. 

 

Figure 3.2 

 

 

 

 

 

 

 

Figure 3.2  The optimal number of immunizations required for discernment of 
phenotypic differences between IP-/- and wt C57BL/6 mouse strains. All mice received 
100µl of 1mg/mL OVA/Alum in PBS and received one, two or three doses and repeated 
OVA aerosols following a ten-day rest period. EPO levels were determined by colometric 
analysis. Data represents means + SEM (n=3) and represents two separate experiments. 
*** = p <0.001 
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3.2.1.2  Histologic examination of lung inflammation in IP-/- and wt mice 

 To examine whether the deficiency of the IP receptor would influence the 

development of pulmonary inflammation, the lungs of sensitized (immunized) mice 

subsequent to repeated exposure to OVA aerosol were examined for structural changes.  

Histological evaluation using H&E stained sections, revealed a pronounced peribronchial 

and perivascular eosinophilic inflammation in the lung parenchyma of the OVA 

challenged IP-/- mice (Figure 3.3). This was in marked contrast to the moderate levels of 

inflammation observed in the in the airways of challenged wt mice. In both mouse 

strains, inflammatory cells were restricted to sites that were juxtaposed to airways and 

blood vessels. Inflammatory cells did not infiltrate into the alveolar spaces. Normal 

pulmonary architecture and vasculature was observed in the control unchallenged mice.  

 

Figure 3.3   

 

 

 

 

 

 

 

Figure 3.3 Increased inflammation in the airway of IP-/- mice following 
immunization and aerosol challenge with OVA Lung tissue histology stained with H&E 
(X25).  Primed WT mice were exposed to OVA aerosols for 7 days displayed 
peribronchial and perivascular eosinophilic inflammation that was markedly increased in 
the mice deficient for the gene encoding the IP receptor (IP-/-). Control mice did not 
receive OVA/Alum immunization nor exposure to OVA aerosols.  
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3.2.1.3  Airway hyperresponsiveness is increased in IP-/- mice 

 Increased airway responsiveness is an exaggerated airway narrowing in response 

to many stimuli and is a defining characteristic of the allergic asthmatic response. AHR 

was evaluated using the drug methacholine to provoke bronchoconstriction in the 

sensitized mice that had received repeated aerosol challenge. Lung resistance (RL) is the 

opposition to airflow caused by the constricted, inflamed airways; and the distensibility, 

or dynamic compliance (CDyn) of the lungs, the two physiological parameters used to 

quantify the severity of AHR.  

 Augmented AHR was observed in the IP-/- animals demonstrated by a marked 

increase in RL and diminished CDyn (69% and 72%, respectively) (Figure 3.4). 

Conversely, subsequent to OVA exposure, wt mice responded in the normal range under 

these experimental conditions, whereby moderate increase in AHR was observed as 

demonstrated by slight increase in RL and decrease in CDyn (27% and 51%, respectively) 

from baseline (Figure 3.4).  

 
Figure 3.4  
 
 
 
 
 
 
 
 
 
Figure 3.4 Mice deficient for the IP receptor demonstrate augmented AHR. WT 
C57Bl/6 and IP-/- mice were immunized with OVA/alum and exposed to aerosolized 
OVA for 20 minutes daily for 7 days. AHR was measured 24 hours after the last 
challenge. Changes in airway function are reported as response to inhaled methacholine. 
Exaggerated increases in airway resistance following exposure to OVA aerosols indicated 
AHR. One tailed students t test were performed to demonstrated statistical significance. 
*p<0.05 
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3.2.1.4  Elevated numbers of inflammatory cells present in the BAL of IP-/- mice 

 To elucidate the cell types involved the pulmonary inflammation resulting from 

sensitization and challenge, BAL was performed on wt and IP-/- mice 24 hours after the 

final exposure to OVA aerosol and the accumulated inflammatory leukocytes in the fluid 

were quantified by light microscopy (Figure 3.5). The level of airway inflammation was 

elevated in the IP-/- mice, which was displayed by a two-fold increase in eosinophilic and 

lymphocytic infiltration when compared to the wt. Differential cell counts of control mice 

revealed that although low numbers of lymphocytes were present in the BAL of wt 

animals that were immunized and exposed to ova aerosols, the number of lymphocytes in 

the BAL of IP-/- animals was markedly higher than observe in wt mice. In contrast to the 

unchallenged control animals, high levels of eosinophilic infiltration occurred in the 

lungs of the wt mice receiving aerosol treatment. Negligible accumulation of macrophage 

and neutrophil were detected in the lungs of either the wt or IP-/- animals under either 

control (no immunization-no challenge) or primed/OVA challenged conditions. 

 
Figure 3.5 

 

 

 

 

 
Figure 3.5  Inflammatory cells are increased in the BAL of IP-/- mice. BAL fluid 
was collected and cell differential counts were determined by light microscopic 
evaluation of cytospin preparations. Results are expressed as absolute numbers of 
macrophages (MAC), lymphocytes (LYM), eosinophils (EOS), and Neutrophils (NEU). 
One tailed students t tests were performed to determine significant differences between 
animal groups (p =**< 0.002). 
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3.2.1.5  Cell-associated eosinophil peroxidase activity in BAL of wt and IP-/- 

mice.  

 Eosinophil infiltration to the airways is a defining characteristic of atopic asthma 

and a gauge of the severity of the inflammatory response.  Eosinophil peroxidase (EPO) 

is an easily quantified product of eosinophils and indicator of airway inflammation.  Cell 

associated EPO levels were determined from BAL collected from sensitized and 

challenged wt and IP-/- animals (Figure 3.6).  Minimal concentrations of EPO were 

detected in the BAL of the control (not immunized/challenged) animals. In contrast, a 

marked increase in the concentrations of EPO was detected in the sensitized/challenged 

wt mice. Interestingly, the level of EPO present in the BAL from sensitized/challenged 

IP-/- mice was much higher (2.2 fold increase) than that observed in the wt mice. These 

results are consistent with the observations made using BAL differential counts. 

 

Figure 3.6 

 

 
 
 
 
 
 
 
 
 
 
Figure 3.6   EPO levels are increased in IP receptor deficient mice. Airway 
inflammation is augmented in immunized wt and IP-/- mice subsequent to repeated OVA 
aerosols. EPO levels were measured from BAL taken from animals sacrificed 24 hours 
post final OVA challenge.  EPO levels were determined by colometric analysis. Data 
represents means + SEM (n=3) and represents three separate experiments.*** p= <0.01 
(Challenged IP-/- compared to wt mice) 
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3.2.1.6  Characterization of lymphocytes in the BALF that were recruited to the 

lung during Th2 mediated inflammation by FACS analysis 

 Given that IP-/- mice displayed a heightened level of pulmonary inflammation, it 

was important to resolve the underlying mechanisms that caused this difference in 

phenotype. If PGI2 was operative at the level of a specific cell type, differences in the 

range of cell lineages presumably may change in IP-/- mice. Flow cytometry was used to 

identify cell types that were recruited to the lungs in both wt and IP-/- mice. To further 

examine the role of PGI2 signaling via the IP receptor on regulating distinct pulmonary 

lymphocyte populations in the allergic inflammatory response, wt and IP-/- mice were 

immunized and exposed to repeat OVA aerosols and the characteristics of lymphocytes 

recruited to the lungs were analyzed by FACS. OVA aerosol challenge of wt mice 

previously immunized with OVA resulted in the recruitment of CD4, CD8 T cells and B 

cells to the airway. Figure 3.7 shows that delineation of the cells present in the BALF 

collected from the untreated and primed/challenged animals demonstrated that 

comparison to the wt, IP-/- mice had increased numbers of CD4, CD8 T cells and CD19 B 

cells. Indeed, elevated numbers of lymphocytes were detected in the BAL of IP-/- mice in 

contrast to the wt mice, in particular a 2.5, 1.8, and 5.9 fold increase in CD4+, CD8+ T 

cells and CD19+ B cells, respectively (Figure 3.7A). Negligible lymphocytes were 

detected in the BAL of the wt or IP-/- mice control (no immunization nor OVA aerosols). 

The BAL from the wt mice contained increased numbers of lymphocytes in contrast to 

the unchallenged control mice.  

 To further determine the type of T cells appearing with greater abundance in the 

BALF of the IP-/- mice, the presence of αβ and γδ TCR expressing T cells was examined. 
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The priming and challenge protocol produced elevated numbers of BAL αβ+TCR+ T cells 

that were evident both the IP-/- and the wt mice as with CD4+ numbers the αβ+ T cells 

were most numerous in the IP-/- BAL. Conversely, only low levels of γδ+ TCR expression 

in the BALF of either the wt or IP-/- mice (Figure 3.7B). Since NK-T cells have been 

shown to play an important role in promoting AHR in mouse models of asthma (196), 

using the NK1.1 antibody it was observed that NK1.1- NK-T cell expression was slightly, 

but not statistically significantly, increased in the BAL of the treatment group of IP-/- 

mice in contrast to the otherwise small number of cells present in the wt mice. 

Macrophage staining using anti-CD11b antibody showed no difference between wt and 

IP-/- mouse groups (Fig 3.7C).   

 

Figure 3.7 

A . T & B Lymphocytes in BAL fluid 
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B  CD4+ αβ  /  γδ  TCR 

 

C. NKT and Macrophage  

 

 
FIGURE 3.7 (a-c).  Delineation of lymphocyte populations in BAL. a. BAL was 
performed on sensitized wt and IP-/- mice that received OVA aerosols for 20 minutes a 
day for 7 consecutive days. Cells were stained with anti-CD4 APCcy7 Ab, anti-CD8 PE 
and anti-CD19 APCcy7 antibodies and 30K events per condition were analyzed. Flow 
cytometry was also performed to analyze CD4+ stained cells. CD4+ T cells were stained 
with anti-CD4-APC-Cy7 and anti-TCRαβ FITC or anti-TCRγδ-FITC b. Anti-NKT-PE 
and anti-CD11b-FITC were used to evaluate the NKT and Macrophage populations 
present in the BAL of OVA immunized and aerosolized mice. b. Representative 
histograms are example from one of 3 separate experiments. Bar graphs demonstrate 
means+ SEM (n=3) and are representative of three separate experiments. One tailed 
students t tests were performed to determine statistical significance. 
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3.2.1.7  Characterization of lymphocyte populations found in the lung tissue 

spleen and peripheral lymphoid tissue by FACS Analysis 

 The preceding data has documented that an augmented inflammatory response 

occurred in the airways of the IP-/- mouse in contrast to the wt. To study potential 

differences in systemic cellular responses in wt and IP-/- mice the lung tissue and a range 

of lymphoid tissues were analyzed. Cells found in the lungs, lung draining, brachial and 

mesenteric lymph nodes (LN) and spleen mice that were immunized and exposed to 

repeated OVA aerosol challenge, were evaluated by FACS analysis (Figure 3.8). The low 

numbers of cells that were obtained from lung draining LN, were insufficient to perform 

a complete analysis. Therefore these cells in addition to the brachial and mesenteric LN 

populations were typically pooled for analysis. Increased numbers of CD19+B cells were 

found in the spleen of the IP-/- mouse in contrast to the wt only after 

immunization/challenge and not observed in the naïve or unchallenged immunized 

control animals.   No significant differences between the wt and IP-/- groups were found 

in CD4 and CD8 T cell populations in lung mononuclear cells (LMC), LN or spleen. This 

data indicates that the principal inflammatory response elicited in this model is located in 

the airways of these mice and thus best understood by addressing the tissue of the lung 

and the cells collected in the lung lavage. It is important to note that although CD4, CD8 

and CD19 positive CD4+ T cells are increased in BAL of IP-/- mice, there was no clear 

difference in LMC of IP-/-, possibly pointing to differences in recruitment to separate 

compartments in the lung. 
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Figure 3.8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.8  FACS analysis of the number of T and B lymphocytes present in the 
lung, lymph node and spleen immunized mice following OVA inhalation for 7 days. 
LMC were isolated from the collagenase digested lung tissue. Spleen MNC were isolated 
from tissue after mechanical homogenization and centrifugation in a gradient matrix. 
Because of low numbers of lung draining and brachial LN, cells were pooled for analysis. 
Flow cytometry was used to detect the presence of the anti-CD4-APCcy7, anti-CD8-PE 
and anti-CD19-APCcy7 positively stained cells. Unpaired t test with Welch's correction 
was performed to find these data did not reach statistical significance. 
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3.2.1.8  Cytokine production by lung mononuclear cells (LMC) 

 Since Th2 cells preferentially express IP we examined the inflammatory response 

in mice deficient for the IP receptor,  by monitoring cytokine production subsequent to 

sensitization and repeated exposure to inhaled OVA. To assess the inflammatory 

response in the airways, the cytokine concentration in the BAL fluid was assayed to 

evaluate the level of the Th2 response. However, in the BALF, neither IL-4, IL-5 nor 

IFN-γ were found at levels above the detectable limit (<5 pg/mL), for the sensitivity of 

our assay (results not shown), in either wt or IP-/- mice. Mononuclear cells extracted from 

the lungs of the same control and animals exposed to OVA aerosols were restimulated 

overnight on plate bound anti-CD3 and the supernatant was collected and assayed for IL-

4, IL-5 and IFN-γ (Figure 3.9). Consistent with our previous findings that PGI2 is 

responsible for inhibiting levels of Th2 cytokines (253), increased levels of IL-4 and IL-5 

were produced by LMC from immunized and challenged IP-/- mice when compared to the 

wt mice (Figure 3.9). Importantly, the levels of Th1 cytokine IFN-γ were not found to 

display any difference between the wt and the IP-/- controls or treatment groups (Figure 

3.9). This suggests that OVA-specific Th2 cells were recruited to the lungs following 

OVA inhalation. Interestingly, LMC prepared from both wt and IP-/-  control mice that 

had not been immunized or challenged produced low levels of IL-4, IL-5 and IFN-γ.  
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Figure 3.9  

 

Figure 3.9  Th2 response in LMC. Exposure to aerosolized OVA augments Th2 
cytokines in the airways of IP-/- mice. The lungs of wt and IP-/- mice were collagenase 
digested and the residing mononuclear cell populations were restimulated on plate bound 
anti-CD3. Levels of IL-4, IL-5, and IFN-γ from the supernatant were determined by 
ELISA. Naïve control mice were not exposed to aerosolized OVA. The data shown here 
represent the mean and SEM from three separate experiments. *= p <0.05 challenged IP-/- 
mice compared with challenged wt mice. 
 

 

3.2.1.9  Comparison of Th2 differentiation in vitro by wt and IP-/- cells 

 Since Th2-mediated inflammation was augmented in IP-/- mice, it was important 

to determine whether IP-/- cells showed any difference in their capacity to undergo Th2 

polarization in vitro. PGI2 is very labile and rapidly hydrolyzed at physiological pH to 

form the inactive 6-keto-PGF (249).  In vivo studies have shown that the majority of 

injected PGI2 disappears from the circulation within minutes (254).  Therefore, the stable 

analog of PGI2 – Iloprost, was used in these experiments.  Based on the profound 

augmentation of IL-4 levels produced in the IP-/- mice, and the findings- that Iloprost 

inhibits the production of IL-4 in BALB/c mice (unpublished data), we evaluated the 

production of cytokines produced in the wt and IP-/- mice, in the presence of Iloprost, in 

order to determine the impact of PGI2 signaling on Th2 polarization and their subsequent 

production of cytokines. CD4+ cells from both wt and IP-/- mice were cultured under Th2 
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polarizing conditions. The 4 day polarized cells were stimulated with anti-CD3 and their 

cytokine profiles were determined. Interestingly, IL-4 production by the IP-/- cells was 

much higher than that observed in the wt culture (Figure 3.10). Only low concentrations 

of IL-4 were produced by the wt culture and that was reduced in the presence of Iloprost. 

Unexpectedly, the Iloprost treatment also reduced the production of IL-4 from the IP-/- 

culture, suggesting alternate pathways, or non-PGI2-prostaglandin receptors were 

activated by Iloprost. The day-4 polarized wt and IP-/- cells still produced IFN-γ, 

(abundance of IFN-γ is a characteristic of the C57Bl/6 strain), with the latter expressing 

significantly higher levels. IFN-γ production was again reduced by Iloprost in both wt 

and IP-/- cultures. 

 

Figure 3.10 

 

Figure 3.10   IL-4 production is elevated in Th2 polarized cells from IP-/- mice.  The 
brachial and mesenteric lymph nodes were homogenized and the remaining cells were 
depleted of CD8+ T cells, and expanded in IL-4 and anti-IFNγ on stationary anti-CD3 
(1mg/µL) for 4 days. The cells were counted and restimulated overnight on anti-CD3 as 
described. The supernatant was collected after 24 hours and stored at -20. Levels of IL-4 
and IFNg were determined in triplicate by ELISA. Data is representative of two 
experiments. Two way ANOVA tests were performed to show statistical significance  
** = p <0.001 
 



65 65 

3.2.2 Serum immunoglobulins in naive unimmunized IP-/- mice differ from wt mice 

 One additional phenotypic parameter that was addressed was to measure serum 

antibody levels. Seven different isotypes from 6 wt and 6 IP-/- mice were analyzed. 

Interestingly, the serum levels of IgG2b and IgA were markedly lower in naive IP-/-, in 

comparison to the wt mice by 93% and 70%, respectively (Figure 3.11). In addition, 

serum IgE, IgG1, IgG2a and IgG3 levels were also decreased by 43%, 41%, 60% and 

38% in IP-/-, respectively. Serum IgM levels were, however, similar and reflected less 

than 10% difference between the two mouse strains. Since, with the exception of IgM, all 

Ig expression requires isotype switching, these results suggest PGI2 signaling plays a role 

in the mechanism of isotype switching.  
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Figure 3.11 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.11   Isotype serum immunoglobulin differences between IP-/- and wt mice. 
Serum was collected from naïve wt and IP-/- mice.  IgM, IgA, IgG1, IgG2a, IgG2b, and 
IgG2c levels were determined by ELISA. Statistical significance was determined by one 
tailed students t test **=p < 0.001, ***=p < 0.0005 
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3.2.2.1  IP-/- mice display higher IgE and IgG1 responses  

 Allergy is caused by a number of inhaled or otherwise ingested small-protein 

allergens that elicit IgE production in susceptible individuals. These experiments have 

shown that the IP-/- mouse displays increased levels of pulmonary eosinophilia. Given 

that Th2 cells promote IgE and IgG1 isotype switching in addition to driving allergic 

inflammation, we investigated antibody responses in the IP-/- mouse. IgE levels in mouse 

serum are typically less than 1 ng/ml, compared to IgG1, which is typically more than 9 

mg/mL in serum (53).  Interestingly, repeated exposure of OVA immunized animals to 

OVA aerosols resulted in the dramatic increase in serum total IgE levels. Serum IgE 

levels in IP-/- mice were 2 fold higher in (2687 + 81.9ng/ml) than in wt mice (1317 + 

60.5ng/mL), The total serum IgE of IP-/- control (immunized only) mice had a two-fold 

increase over the wt mice (284.5 + 131.5 ng/m and 193 + 61.6 ng/ml), respectively 

(Figure 3.12A-1). In contrast to the elevated basal levels of serum IgE found in naïve wt 

mice, the increased production of IgE in the immunized and immunized/challenged IP-/- 

mice suggest involvement of PGI2 regulation of isotype switching to IgE. Conceivably, 

PGI2 may be one of several prostaglandins contributing to this form of regulation. 

 In contrast to the serum, the concentration of IgE in the BAL fluid (BALF), under 

any condition, was below the level of detection for the sensitivity of our assay (Figure 

3.12A-2).  

 Figure 3.12A-3 depicts OVA specific IgE present under these circumstances in 

the serum and the BAL. Neither naive wt or IP-/- mice, or mice that were immunized but 

were not exposed to OVA aerosols, produced detectable concentrations of OVA specific 

IgE (data not shown). After 7 days of exposure of wt or IP-/- to aerosolized OVA, a trend 
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to increase in serum levels of OVA specific IgE was noted. Interestingly, after aerosol 

exposure, IP-/- mice, OVA specific serum IgE levels in serum were 3.5 fold higher than 

wt.  

Figure 3.12  

A (1-3) IgE production- Total and OVA specific is elevated in IP-/- mice 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.12 (a, 1-3) Immunoglobulin levels are altered in IP-/- mice. Ig production by 
wt compared to IP-/- mice was determined by ELISA following immunization and OVA 
inhalations. a. Total IgE and OVA specific IgE Data shown are the mean and SEM of 3 
separate experiments. Students t test was used to determining significance *=p<0.05, 
***=p< .001 (Challenged IP-/- compared to wt) 
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 Not surprisingly, serum IgG1 levels in both mouse strains were much higher than 

those for IgE. Consistent with the trend observed for IgE responses, serum IgG1 levels 

from naïve wt mice have roughly twice the basal level of the IP-/- mice (Figure 3.12B-1). 

In the IP-/- mouse, following OVA inhalation the levels of IgG1 were markedly higher 

than wt values (14 and 4.2 fold) in the serum and the BALF, respectively, following 

OVA challenge Figure 3.12B-1,3).  Evaluation of the concentration of OVA specific 

IgG1 proved in general, inconsistent. However the serum from IP-/- mouse produced 

slightly higher levels of the antigen specific IgG1 antibody Figure 3.12B-2). The IgG2 

serum levels of naïve IP-/- mice were half that of the wt mice. Following sensitization and 

repeated OVA inhalations the serum IgG2a levels were 2 fold higher than wt mice 

(Figure 3.12C). 

Figure 3.12 B (1-3) IgG1 production- Total and OVA specific is augmented in IP-/- 

mice 
 
 
 
 
 
 
 
 
C. Total IgG2a is augmented in the serum and BAL of IP-/-mice 
 
 
 
 
 
 
 
 
Figure 3.12 (b-c) Immunoglobulin levels are altered in IP-/- mice. Ig production by wt 
compared to IP-/- mice was determined by ELISA following immunization and OVA 
inhalations. b. Total IgG1. c. Total IgG2a. Data shown are the mean and SEM of separate 
experiments. Students t test were performed to determine a difference between the IP-/- 
and wt mice.  *=p<0.05, ***=p< .001 (Challenged IP-/- compared to wt) 
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3.2.2.2  IP-/- mice have slightly elevated numbers of IgE+ B cells 

 It has been proposed that IgE isotype switching expression can occur in the lung 

mucosa (255). As far as the mouse model of pulmonary inflammation, it has been 

presumed that most IgE production takes place in the proximal lymph nodes and is 

transported in by the lymph. To monitor whether the B cells recruited to the airways 

contributed to the IgE and or the IgG1 response, BAL cells were stained for surface 

expression of these immunoglobulin isotypes. The IP-/- mice, following either 

immunization only or immunization and aerosol challenge, demonstrated elevated 

numbers of lymphocytes in the BAL (156.6% and 22.7% increases, respectively), in 

comparison to the wt mice (Figure 3.13). Figure 3.13 illustrates that surface IgE 

expression was slightly increased on wt CD19+B cells following inhalation of OVA 

aerosols for 7 days.  In comparison to the wt, IgE expression was elevated by 7.8% in the 

IP-/- B cells. Low numbers of B cells were identified in the BALF of control mice for 

either wt or IP-/- mice. Surface IgG1 was slightly elevated in the wt mice following 

sensitization and challenge and again, further augmentation of expression by 5.6% was 

observed in the IP-/- in relation to the wt B cells. 
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Figure 3.13 

  
 
Figure 3.13   Cell surface expression of IgE and IgG1 on CD19+ B lymphocytes. 
Flow cytometry analysis was performed on the BAL of sensitized and OVA aerosolized 
wt and IP-/- mice 24 hours after final challenge. (a) Flow cytometry analysis of relative 
numbers of cells from wt and IP-/- groups in the lymphocyte gate (per 10k total cells 
counted) found in BALF. (b) The B cells were identified by gating on APC conjugated to 
anti-CD19. Each of the individual Ig’s (IgE and IgG) were detected by PE.  
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3.2.3 Nonspecific Cyclooxygenase Inhibitor- Indomethacin augments airway 
inflammation in wt mice, but not IP-R deficient mice 
 
 
 PGI2 is a product of arachidonic acid metabolism via the cyclooxygenase (COX) 

pathway synthesized by the action of prostacyclin synthase. The two isoforms of the 

cyclooxygenase enzyme, COX-1 and COX-2, metabolize arachidonic acid to PGH2, 

which is subsequently processed by prostacyclin synthase to form PGI2. Atopic 

asthmatics are typically advised to avoid using NSAIDs since they can exacerbate an 

asthmatic response (256). It has been proposed that this effect in part is a consequence of 

shunting arachidonic acid metabolism towards leukotriene biosynthesis (257). Our 

laboratory has previously demonstrated that selective inhibition of COX-2 in vivo 

specifically reduced PGI2 synthesis and resulted in a marked increase in Th2-mediated, 

but not Th1-mediated, lung inflammation (244).  In support of this conclusion, the data 

presented in section 3.2.1 clearly demonstrates that the type 2 inflammatory response is 

augmented when PGI2 signaling is blocked, by way of disruption of IP receptor. The 

range of prostanoids whose production requires COX-2 differs from those that are 

dependent on COX-1. COX-2 is thought to be critical for the production for PGE2 and 

PGI2. NSAIDs, such as aspirin and indomethacin, are nonselective COX inhibitors and 

suppress the effects contributed to by prostanoids such as inflammatory swelling, pain 

and fever (212-214). Revealing the role played by PGI2 in limiting allergic inflammation 

required comparison of the biological functions of other prostanoids such as PGD2, PGE2, 

PGF2α, and thromboxanes which are also downstream metabolites the COX pathway. 
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Figure 3.14 Indomethacin treatment of murine model of pulmonary inflammation 
 
 

  

 

 We used the murine model of pulmonary inflammation illustrated in Figure 3.14 

to investigate whether PGI2 signaling influences lung mucosal Th2 responses. Wt 

C57BL/6 and IP receptor deficient, IP-/- ,mice were sensitized with OVA and received 

repeated exposure to aerosolized OVA. In addition, the IP-/- mouse was used to determine 

the contribution of PGI2 to exacerbations of allergic inflammation elicited by a COX-2 

selective inhibitor; NS-398 and non-selective COX 1 and 2 inhibitor, indomethacin. 

 

3.2.3.1  Indomethacin does enhance eosinophilia in the BALFof wt mice 

 BAL performed 24 hours after the final OVA challenge, revealed that treatment 

or immunized wt animals with indomethacin during the 6 day aerosol exposure, resulted 

in a dramatic increase in pulmonary eosinophilic inflammation in wt mice (Figure 3.15, 

3.16). Conversely, indomethacin treatment of IP-/- mice did not increase the level of 

eosinophilia over that observed in animals that had not received the drug (Figure 3.15). In 

addition, although BALF lymphocyte numbers were slightly elevated following OVA 

inhalation, negligible numbers of macrophages and neutrophils were present in the BALF 

of either wt or IP-/- mice (Figure 3.15).   
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Figure 3.15 

 

 

 

 

 

 

 

 

Figure 3.15  Increased numbers of eosinophils in OVA immunized/challenged wt 
mice after treatment with indomethacin.  BAL fluid was collected from immunized wt 
or IP-/- mice following repeated OVA aerosols and receiving treatment with non-specific 
COX inhibitor indomethacin, and cell differential counts were determined by light 
microscopic evaluation of cytospin preparations. Results are expressed as absolute 
numbers of macrophages (MAC), lymphocytes (LYM), eosinophils (EOS), and 
Neutrophils (NEU). One tailed students t test were performed to determine significant 
differences between animal groups (p *** < 0.001).  
 
 
 
 
 The striking increase in the total number of eosinophils in the indomethacin-

treated wt animals was also reflected by the elevated level of EPO activity it the BALF 

(Figure 3.16). In contrast, indomethacin treatment of IP-/- mice did not increase the levels 

of cell-associated EPO. 
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FIGURE 3.16 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.16  EPO levels are increased in indomethacin treated wt mice. Airway 
inflammation in immunized wt and IP-/- mice subsequent to repeated OVA aerosols. EPO 
levels were measured from BAL taken from animals 24 hours post final OVA challenge.  
EPO levels were determined by colometric analysis. Data represents means + SEM (n=3) 
and represents three separate experiments. Students t test was performed to determine 
***p= <0.001 
 
 
 
 
3.2.3.2   Indomethacin treatment does not alter the lymphocyte population in the 
BALF of immunized wt or IP-/- mice that have inhaled OVA 
 
 In contrast to the dramatic eosinophilic response that developed in the airways of 

wt mice following indomethacin treatment, the recruitment of CD4+, CD8+ or CD19+ 

cells was not significantly increased by indomethacin treatment (Figure 3.17). Total 

numbers of each lymphocyte population present in the BALF of wt or IP-/- mice remained 

unchanged following indomethacin treatment when compared to the control mice. 
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Figure 3.17 
  
A 

 
 
 
Figure 3.17 Treatment with indomethacin did not alter lymphocyte populations in 
the BALF of immunized and challenged mice. BAL was performed on sensitized wt and 
IP-/- mice that received OVA aerosols 20 minutes a day for 7 consecutive days. 1x106 
cells were stained with anti-CD4 APC-Cy7 ab, anti-CD8 PE and anti-CD19 APC-Cy7 
antibodies and 3X104 events per condition were analyzed. Although this data did not 
reach statistical significance, the graphs represent means+ SEM (n=3) and are 
representative of three separate experiments. One tailed students t tests were performed to 
determine statistical significance whereby the data did not demonstrate variations 
between the control and treatment groups. 
 
 
 
 
3.2.3.3  Indomethacin treatment does not alter the cytokine production in the 
BALF of immunized wt or IP-/- mice that have inhaled OVA. 
 
 
 In accordance with the lymphocyte data from the BALF, measurements of IL-4 

and IL-5 from anti-CD3 restimulated LMC revealed that treatment with indomethacin did 

not significantly impact levels of Th2 type cytokine production by LMC from either the 

wt or IP-/- mice following OVA inhalation (Figure 3.18). Diminished levels of the Th1 

cytokine−IFN-γ in both wt and IP-/- along with the lack of variation of production of this 

cytokine between control groups suggest that although non-specific COX inhibition 

restricts IFN-γ production, the Th1 response is unaffected by PGI2 signaling. 
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Figure 3.18 

 
 
Figure 3.18  Treatment with non-specific COX inhibitor indomethacin, does not 
significantly alter the expression of Th2 cytokines in LMC of wt mice. The lungs of wt 
and IP-/- mice were collagenase digested and the residing mononuclear cell populations 
were restimulated on immobilized anti-CD3. Levels of IL-4, IL-5, and IFN-γ from the 
supernatant, was determined by ELISA. Naïve control mice were not exposed to 
aerosolized OVA. Data represent the mean and SEM from three separate experiments.  
 
 
 
3.2.3.4  The COX-2 selective inhibitor NS-398 did not increase airway 

inflammation in wt or IP-/- mice. 

 
Figure 3.19 

 

 

 

 

  

 In comparison to the sensitized and challenged control groups, treatment of mice 

with NS-398 (Figure 3.19) resulted in no significant modification of pulmonary 

inflammation in the wt mice, however, unexpectedly, significantly reduced infiltration of 

eosinophils to the airways was observed in the IP-/- NS-398 treatment groups (Figure 

3.20). This event may be indicative of alternate prostanoid pathways operative in the 
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different mouse strains. Again, only small, populations of lymphocytes and macrophages, 

and no neutrophils, were present in the BALF of either wt or IP-/- groups.  

 
Figure 3.20 
 
 
 
 
 
 
 
 
 
 
Figure 3.20   
The COX-2 
selective 
inhibitor NS-398 
did not 
increase airway 

inflammation in wt or IP-/- mice BAL fluid was collected from immunized wt or IP-/- 

mice following OVA aerosols NS-398, and cell differential counts were determined by 
light microscopic evaluation of cytospin preparations. Results are expressed as absolute 
numbers of macrophages (MAC), lymphocytes (LYM), eosinophils (EOS), and 
Neutrophils (NEU). One tailed students t test were performed to determine significant 
differences between animal groups (p *** < 0.001)  
 
 
 
3.2.4  CD4+ T cell levels of L-selectin (CD62L) are regulated by PGI2 

 L-selectin is expressed by naïve CD4+ T cells and is progressively lost following 

activation. We have observed that Th2 polarized CD4+ T cells that have been exposed to 

PGI2 retain CD62L (L-Selectin) expression on the cell surface in vitro (Figure 3.21). 

Whether this occurrence is due to increased expression of CD62L or inhibition of 

receptor cleavage is unknown.  Given that in addition to CD62L, the IP receptor is also 

highly expressed on Th2 cells, we considered whether Th2 cells from the IP-/- mouse 
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would demonstrate a contrary effect.  Interestingly, no observable differences were 

detected between immunized wt or IP-/- mice receiving indomethacin treatment during 

exposure to OVA aerosols and animals not receiving the drug (Figure 3.21). 

 

Figure 3.21 

 
 
 
 
 
 
 
 
  
Figure 3.21 L-Selectin (CD62L) is retained on CD4+Th2 cells in the presence of 
Iloprost.  FACS analysis was performed on peripheral LN cells from DO11.10 mice 
cultured under Th2 polarizing conditions in the presence or absence of Iloprost. FACS 
analysis was performed and the gate was set on the lymphocyte population and the 
APCCy7 positive CD4 cells were selected. Staining was done using anti-CD62L 
conjugated to FITC. The data is representative of three separate experiments. 
 

 
Figure 3.22 
  

 

 

 

 

 
Figure 3.22  Treatment with Indomethacin does not affect L-selectin expression by 
BAL lymphocytes on wt or IP-/- mice. Wt and IP-/- mice were immunized and received 
daily I.P. injections of Indomethacin (5mg/kg) immediately prior to inhaling OVA for six 
consecutive days. BAL was performed and the cells were analyzed by FACS. CD4+ and 
CD62L+ cells were stained with APCcy7 and FITC antibodies, respectively. The data 
represents three independent experiments. One tailed students t tests were performed and 
reflected no differences between treatment and control groups. 
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 It was important to investigate whether CD62L expression is compromised in the 

IP-/- mouse during Th2 polarization and allergic inflammation. To address this, we 

cultured naïve wt and IP-/- cells for five days under Th2 polarizing conditions, in the 

presence or absence of non-selective COX-2 inhibitor indomethacin.  In addition to L-

selectin, inducible T cell co stimulator (ICOS), a T cell surface molecule that is expressed 

after cell activation, was evaluated.   After 120 hours in culture, other than a reduction in 

the numbers of B cells present in the culture of the IP-/- cells not receiving indomethacin, 

no other differences in L-selectin expression were observed between wt and IP-/- mice. 

Surprisingly, ICOS expression was diminished in the IP-/- mice after 120 hours, which 

was rescued with indomethacin treatment (Figure 3.23). 
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Figure 3.23 

 

Figure 3.23  Cell adhesion molecule L-Selectin (CD62L) expression in IP-/- mice. 
FACS was performed on naïve wt and IP-/- cells that were cultured for five days in the 
under Th2 polarizing conditions, in the presence or absence of non-selective COX-2 
inhibitor indomethacin. CD4+ (APCcy7) cells were gated and CD62L and ICOS, (FITC 
anti-PE, respectively) expression was evaluated.    
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3.3 Discussion 

 3.3.1 Asthma: Incidence and pathology 

 The prevalence of asthma has markedly increased worldwide in recent decades. 

An estimated 20 million Americans suffer from asthma and approximately half of those 

cases are allergy-associated asthma. The incidence of asthma has been increasing since 

the early 1980s across all age, sex and ethnic groups (258). Asthma is the most common 

chronic childhood disease, affecting more than one child in 20. Nearly 5 million asthma 

sufferers are under 18 years of age (259).  It is more prevalent among African Americans 

than Caucasians and these ethnic differences in prevalence, morbidity and mortality are 

highly associated with poverty, urban air quality, indoor allergens, and lack of patient 

education and inadequate medical care (260).  Although treatments are available that 

alleviate the symptoms associated with asthma, there is no treatment that cures this 

disease. 

 Asthma is a chronic inflammatory disorder, which is characterized by attacks of 

wheezing and shortness of breath due to bronchoconstriction, mucus secretion, airway 

hyperresponsiveness to non-specific stimuli and airway wall thickening (261).  In allergic 

(atopic) asthma, airway inflammation is triggered by specific allergens (dust mites, 

pollen, animal dander), or non-specific triggers (air pollutants or viral infection). Two-

thirds of all asthma patients have atopic asthma, which is indicated by elevated levels of 

serum IgE and positive skin prick test to common allergens (262, 263).   

 Allergic asthma is an immune disorder that is dominated by Th2 lymphocytes, 

IgE, mast cells, eosinophils, macrophages, and cytokines, which drives airway 

inflammation. The asthmatic inflammatory response also involves local epithelial, 
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mesenchymal, vascular and neurological events (153).  It has been proposed that asthma 

arises from the dysfunction in events that would typically mediate the resolution of an 

underlying T cell response (5, 181, 264).  

 

3.3.2 Prostacyclin – Role in modulating the immune response 

 T cells at mucosal sites, such as the lung, are subject to immune regulation, 

partially from the actions of COX- derived prostanoids (265).  Prostanoids are lipid 

mediators generated from the oxidative metabolism of arachidonic acid by COX-1 and 

COX-2 enzymes and specific synthases (213, 214).  It is well recognized that 

prostaglandins (PG), play an important homeostatic function in the lung, particularly as 

regulators of cell proliferation, differentiation and apoptosis (266).  High concentrations 

of PG are produced in the normal lung, with typically large amounts of PGE2 and PGF1a 

found in the BAL (244).  However, in this respect, PGI2 biosynthesis in the lung is 

different than these other prostaglandins, since its production was concurrent with the 

onset of a Th2-mediated pulmonary inflammatory reaction and was highly dependent on 

COX-2. PGI2 was originally discovered as a lipid mediator expressed by vascular tissue 

that both inhibits platelet aggregation and is a potent vasodilator (267, 268). Endothelial 

cells, human follicular dendritic cells, thymic nurse cells, and human fibroblast are some 

of the cell types express COX-2 and prostacyclin synthase, both of which are 

requirements for the production of PGI2 (269-272).  Using synthetic analogs, PGI2 

signaling has been associated with regulating innate immunity including the inhibition of 

phagocytosis and bacterial killing activities in peritoneal macrophages (273). In addition, 

human follicular dendritic cells have been shown to inhibit T cells in the germinal center 
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by controlling PGI2 production via expression of PGI2 synthase (PGIS) (270, 274, 275).  

Treatment with Iloprost was found to interfere with the action of lung myeloid DCs by 

inhibiting their maturation and migration to the mediastinal lymph node, thereby 

abolishing the induction of allergen specific Th2 responses (276). 

 The prostacyclin receptor (IP) is expressed in mature thymocytes and splenic 

lymphocytes. In addition, IP mRNA has been found in neurons, megakaryocytes, and 

smooth muscle cell of the aorta, coronary and pulmonary arteries, in mouse (277).  Using 

mice in which the gene encoding the IP cannot be expressed (IP-/-), the biological 

significance of PGI2-IP signaling was shown to have crucial functions in preventing 

thrombosis, inhibiting injury-induced vascular proliferation (251), regulating allergic 

airway responses (252), and mediating inflammatory swelling and pain (217). 

Endogenously produced PGI2 has also been shown to act on the intracellular level via the 

nuclear peroxisome proliferator-activated receptor (PPAR-γ) (278, 279).  

 Previous studies from our laboratory reported that the PGI2 receptor (IP), is 

expressed by T cells and this expression is augmented by IL-4. Although T cells do not 

produce PGI2, CD4+ effector Th2 cells, preferentially express the IP receptor (253).  Yet 

the underlying processes by which PGI2-IP signaling regulates airway inflammation, 

remains unclear. Our data demonstrate that disruption of PGI2-IP signaling results in 

heighted allergic immune responses in the lung. This effect is shown in IP-/- mice by 

augmented Th2 cytokines, lymphocytes, eosinophil recruitment, IgE and IgG1 levels 

subsequent to OVA immunization and aerosol challenge. Decreased serum 

immunoglobulin levels in naïve IP-/- mice suggests that PGI2 signaling may serve an 

important regulatory function in immunoglobulin isotype switching.  
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Figure 3.24  Proposed mechanism for PGI2-IP signaling in the regulation of 
allergic pulmonary inflammation  

 

 
 

 To obtain a better understanding of the anti-inflammatory effects of PGI2, using a 

murine model of allergic asthma, we assessed the differences in lung inflammation and 

antibody response in wild type C57BL/6 mice and IP-/- mice. Nagai and coworkers 

previously showed, using an immunized/challenged model in different IP-/- mice, an 

eosinophilic response that is more sever than that observed in wt mice.  These IP-/- mice 

also had increases in both, numbers of Th2 cytokines, and levels OVA specific serum IgE 

and IgG1 (252, 280).  Although compelling, these data were cursory and the underlying 

mechanism employed by PGI2 signaling, was not resolved.  

 

 



86 86 

3.3.2.1  IP-/- mice have increased pulmonary inflammation following 

immunization and exposure to aerosolized OVA 

 Given that the receptor for PGI2 is induced by IL-4, we established an in vivo 

murine model to investigate the role of PGI2 signaling in allergic airway inflammation. 

This model was based on a protocol of antigen immunization and aerosol challenge 

would induce eosinophilic inflammation in these mice to enable observation of the 

phenotypic changes that occur as a result of deficient PGI2-IP signaling. A single OVA 

immunization was sufficient to induce an eosinophilic response upon subsequent OVA 

aerosol challenge. Obtaining the optimal antigen exposure was crucial for this 

investigation. To maximize any differences, the search for phenotypic differences 

between IP-/- and wt mice was especially challenging due to the overlapping functions of 

prostaglandins which may mask the more subtle events specific to PGI2 signaling.  

 Since PGI2 production and its receptor are upregulated during Th2-mediated 

pulmonary inflammation, we investigated the effect imposed by antigen priming and 

repeated exposure to OVA aerosols on the lung tissue of IP-/- mice.  Our findings showed 

a profound perivascular and peribronchial eosinophilic inflammation in the histological 

examination of the IP-/- mice. Increased numbers of CD4+, CD8+ T and CD19+ B 

lymphocytes, in particular eosinophils, were present in the BAL of IP-/- mice. In addition, 

augmented levels of cell associated EPO in the BAL and the heightened AHR response of 

the IP-/- mice; suggest PGI2 signaling inhibits antigen-induced bronchoconstriction in 

asthmatic lungs.  

 The heightened pulmonary inflammatory response in IP-/- mice required that we 

assess if PGI2 signaling was operating at the level of a specific cell type. As expected, 



87 87 

Flow cytometric analysis confirmed that IP-/- mice had increased numbers of CD4+, CD8+ 

T and CD19+ B cells in the BAL.  Given that these heightened inflammatory responses 

occurred in the airways of the IP-/- mouse, it was important to detail the potential 

differences in systemic cellular responses in the wt and the IP-/- mice. Interestingly, 

elevated numbers of CD19+ B cells were isolated to the spleen of the IP-/- mice, and the 

response was dependant on OVA sensitization and challenge.  In addition, these 

inflammatory cells appear to localize to the airways of these mice. That this difference in 

infiltrating lymphocyte populations between IP-/- and wt mice is not observed in the LMC 

suggests that PGI2 signaling influences cell recruitment to the lung compartment. It is 

important to also consider that the lung tissue is populated with large numbers of resident 

lymphocytes and that although inflammation is occurring in this space, the ability to 

discern variances between the strains is diminished because of these background cells. 

 It has previously been shown that CD4+ NK1.1 NK-T cells play a critical role in 

eliciting airway eosinophilic inflammation (196). Using this model, we found no obvious 

NK T cell differences in the number of NK-T cells in IP-/- mice in this model of airway 

inflammation. 

 The IP receptor is preferentially expressed on Th2 polarized CD4 cells (253), 

therefore it was crucial to evaluate the production of the Th2 cytokines IL-4 and IL-5. 

Since cytokine levels in BAL were below the threshold of sensitivity for detection, we 

assessed the cytokine concentration in LMN cells.   It is very interesting that, although no 

quantifiable differences were reflected in the lymphocyte populations between IP-/- and 

wt mice after immunization and OVA aerosol challenges, the level of IL-4 production 

was markedly and specifically increased in LMN from the IP-/- mice, suggesting that 
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OVA specific Th2 cells were recruited to the lungs following OVA inhalations. The level 

of IL-5 production was elevated in IP-/- mice but did not reach significance. In accordance 

with previous reports, levels of Th1 cytokine IFN-γ were unaffected by the lack of 

functional IP receptor. Collectively these findings suggest that PGI2 plays an important 

immunoregulatory function by limiting lung mucosal Th2 responses. These observations 

underscore IL-4 as not only as essential for the differentiation of CD4+ Th2 cells, but also 

in promoting a mechanism that limits the progression of allergic inflammation. 

 The observation that IL-4 levels are increased in the lungs IP-/- mice, prompted 

investigation into whether this was an effect of PGI2 signaling influencing the 

polarization of naïve CD4+ or, alternatively inhibiting fully differentiated CD4+ T cells. 

The production of IL-4 and IFN-γ was markedly higher in Th2 polarized IP-/- cells 

compared to wt cells. Wt cells produced low levels of IL-4, which was abolished in the 

presence of Iloprost. This observation strongly suggests that the anti-inflammatory effects 

of PGI2 arise predominantly as a consequence of its action in blocking differentiation of 

CD4+ Th2 cells. In IP-/- cells, IL-4 production was markedly diminished in the presence 

of Iloprost after 4 days of culture under Th2 polarizing conditions. This was unexpected 

and may either arise from Iloprost binding to the alternative PGI2 receptor, PPARγ. 
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3.3.3 Immunoglobulin response in IP-/- mice 

 3.3.3.1  Levels of IgG1 and IgE are elevated in IP-/- mice 

 The Ig measured in the BAL fluid is used as a means to monitor local production 

of immunoglobulin in the lung and enable comparisons to be made with antibodies 

detected in the serum. Our experiment revealed that in the BAL, IgE levels remained 

low/undetectable in both the IP-/- and wt mice, whereas IgE levels were markedly 

increased in the serum of IP-/- mice.  In contrast, IgG1 was elevated in both BAL and 

serum. It is important to consider that concentrations in mouse serum are on the order of 

milligrams for IgG1, and nanograms for IgE, and that a percentage of the IgG1 detected 

in the BAL may have leached from the serum into the airspace during the lavage 

procedure. Indicative of an OVA specific immune response and in concordance with 

previous reports (252, 280), serum levels of OVA specific IgE and IgG1 were markedly 

elevated in the immunized IP-/- mice following OVA aerosols. Collectively, these data 

suggest that augmented antibody production in the IP-/- mouse is occurring primarily 

outside the lung tissue and is a consequence of loss of regulation provided by PGI2-IP 

signaling. 

 3.3.3.2  Immunoglobulin isotypes are altered in serum IP-/- mice 

 IgM is the first antibody produced in an immune response and does not require 

isotype switching. Strikingly, with the exception of IgM, all the other isotype levels 

assayed were decreased in the serum of naive IP-/- mice. Most pronounced were the 

IgG2b and IgA, with concentrations less than 10% and 30% of the wt mice, and both of 

which require TGF-β for  expression. The reduced natural serum immunoglobulins in the 

IP-/- mouse could be a consequence of loss of PGI2 signaling in the process of isotype 
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switching or subsequent B cell expansion. In this context human follicular dendritic cells 

have been shown to express PGI2 synthase (270), thus proposing the interaction between 

follicular DC and Th2 cells in the follicle as an important location of immune regulation 

in the lymphoid tissue.  Collectively, these observations suggest that PGI2 acts to inhibit 

production of IgG1 and IgE associated with allergic inflammation in mice.  

 

3.3.4 PGI2 promotes L-Selectin expression by CD4+ T cells 

 Allergic inflammation is characterized by recruitment of specific leukocyte 

subpopulations from blood into tissue and requires a series of cell adhesion-molecule-

mediated interactions between postcapillary vascular endothelium and the leukocyte cell 

surface. L-selectin is a lymphocyte specific adhesion molecule expressed on the surface 

of naïve T cells and is progressively shed following activation by antigen. Expression of 

L-selectin is required for activated lymphocytes to enter the lymph node. Interestingly, in 

the presence of PGI2, CD4+ T cells retain expression of L-selectin in vitro.   Surprisingly, 

we found no correlation between lack of functional IP receptor and expression of L-

selectin following OVA immunization and aerosol inhalations. This may be a 

consequence of the low frequency of antigen specific CD4+ T cells in OVA immunized 

mice. The source of PGI2 in the lungs of OVA-challenged animals is likely to include 

fibroblasts and macrophages (243). However endothelial cells are also known producers 

of large amounts of this prostanoid (281).  The unstable nature of PGI2 suggests its 

immunomodulatory action is likely to be localized to the site of inflammation.  It is likely 

that L-selectin upregulation by PGI2 would serve a role in promoting migration of the 

CD4+ Th2 cells from the blood to the lymph node where the antibody response will 
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develop. It is possible that this phenomenon may contribute to the reduced levels of 

native antibodies, indicative of decreased T cell entry to the lymph nodes a consequence 

of diminished L-selectin expression on IP-/- CD4+ T cells. 

 

3.3.5 A role for PGI2 and its receptor in the augmentation of allergic lung 

inflammation elicited by inhibitors of COX Enzymes 

 Non-steroidal anti-inflammatory drugs (NSAIDs), such as aspirin and 

indomethacin are nonselective COX inhibitors and suppress the inflammatory processes 

initiated via PGI2 and other PG signaling. The inhibition of COX-1 has been associated 

with gastrointestinal toxicity in humans and thus provoked the development of COX-2 

selective inhibitors such as NS-398 and celecoxib, which circumvent such damaging 

effects (215). 

 Aspirin and most NSAIDs that inhibit COX enzymes precipitate asthma (282). 

Aspirin-induced asthma affects 5-10% of adult asthmatics (283). It has been proposed 

that aspirin, by inhibiting COX enzymes forces arachidonic acid metabolism down the 

leukotriene biosynthesis pathway. Aspirin-induced asthma is characterized by a chronic 

over production of cysteinyl leukotrienes (Cys-LT). LTC4 synthase the key enzyme in 

the generation of Cys-LT, is found overexpressed in the bronchi, and its mRNA is 

upregulated in peripheral blood eosinophils, of asthmatics. In addition, the gene encoding 

LTC4 synthase exist in two alleles, one of which is associated with severe, steroid 

dependent type of aspirin induced asthma (284).  

 Our previous studies have demonstrated that inhibitors of both COX-1 and COX-

2 (aspirin and indomethacin) or COX-2 alone (NS-398), augmented allergic lung 
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inflammation. To address the role of PGI2 and its receptor in NSAID induced 

exacerbations of allergic inflammation we examined the effect of indomethacin on the 

levels of lung Th2-inflammation in IP-/- and wt animals. 

 During an inflammatory response multiple prostanoids are generated from the 

oxidative metabolism of arachidonic acid by COX-1 and COX-2 enzymes that act on a 

variety of cell types (271). Using a mouse model of pulmonary inflammation, we have 

shown that following immunization and inhalation with OVA, that IP-/- mice developed 

pronounced pulmonary inflammation shown by elevated AHR, EPO, and eosinophil and 

lymphocyte recruitment to the airway. Having developed a mouse model of asthma in wt 

and IP-/- mice afforded an opportunity to evaluate the roles of PGI2 in NSAID-induced 

exacerbation. Treatment with indomethacin markedly augmented the intensity of the 

eosinophilia in the wt mice, but did not affect the levels of inflammation in the IP-/- mice. 

The number of CD4+ T cells and CD19+ B cells in the LMC of the IP-/- mice was higher 

than present in the wt mice following OVA immunization and aerosol challenge. 

Interestingly, the indomethacin treatment did not increase these levels in the IP-/- mice. 

Since the proinflammatory effects of indomethacin are evident in wt but lost in the IP-/- 

mice it appears that PGI2 signaling is a significant component of indomethacin-induced 

exacerbations of allergic inflammation.  

 Treatment with selective COX-2 inhibitor NS-398 resulted in no significant 

modification of pulmonary inflammation in wt mice. Unexpectedly the IP-/- mice that 

received treatment with NS-398 had decreased presence of eosinophils in the airway after 

OVA immunization and aerosol challenges.  
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Figure 3.25  NSAID Exacerbation of Allergic Inflammation 

 

3.3.6 Summary 

 Collectively, this data demonstrate that inflammatory events that arise in the lung 

invoke T and B cell interactions and subsequent antibody production are elevated in the 

IP-/- mouse. We propose here that PGI2 dampens allergic inflammation in the tissues and 

inhibits the IgG1 and IgE response developing in the lymph nodes. Nevertheless, the 

mediator displays a major effect on the levels of natural antibodies found in the serum of 

animals. 

 These observations reveal a key role for PGI2-IP signaling in regulating allergic 

responses in the lung, possibly by acting to inhibit T and B cell interactions resulting in 

downregulation of IgE production and diminished granulocyte activation. This study 

provides important insight into the regulatory processes that limit the severity of Th2-
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mediated inflammatory reactions. There is mounting evidence of the importance of PGs 

as regulators of immunity, and thus an improved understanding of the diverse activities of 

these mediators is crucial for the design of novel approaches aimed at immune regulation. 

 Our experiments suggest that: 

1. Allergic lung inflammation is elevated in IP-/- mice.  

2. The IP-/- mouse develops a heightened IgG1 and IgE response. 

3. Native Antibody levels of IP-/- mice are perturbed with reduced levels 

of IgA and IgG2b 

4. Indomethacin treatment did not augment allergic inflammation in IP-/- 

mice suggesting that PGI2 contributes to NSAID induced 

exacerbations of lung inflammation.  
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4.0 Abstract 

 We have examined the ability of nTreg cells to suppress lung inflammatory 

responses mediated by CD4+ Th1, Th2 and Th17 effector cells. OVA–specific nTreg 

cells isolated from DO11.10 mice were expanded in the presence of OVA323-339 peptide, 

IL-2 and IL-4. The expanded cells retained Foxp3 expression and their ability to suppress 

lung mucosal inflammation was examined. Mice that had inhaled OVA and had received 

CD4+ Th2 cells developed a pulmonary eosinophilia, and increased airway resistance 

upon challenge with methacholine. Cotransfer of CD4+ nTregs failed to suppress the 

pulmonary eosinophilia mediated by CD4+ Th2 cells. Nevertheless, Tregs were effective 

at inhibiting the Th2 polarization of naïve CD4+ T cells. Similarly nTreg cells failed to 

inhibit murine lung inflammation elicited by CD4+ Th1 cells. In contrast, Treg cells 

markedly inhibited the inflammatory response elicited by CD4+ Th17 cells. This was 

evident from a marked reduction in of recruitment of neutrophils and the level IL-17 

present in the BAL. Interestingly, CD4+ Treg cell failed to inhibit the response of CD4+ 

Th17 to anti-CD3 in vitro either in terms of proliferation or IL-17 production. Our results 

demonstrate that the immunoregulatory properties of Treg cells do extend to Th17 

responses. Specifically, Treg cells play a key role in modulating Th17-mediated 

pulmonary inflammation by suppressing the development of airway neutrophilia. 

Conceivably, this is partly a consequence of inhibiting IL-17 production.  
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4.1 Introduction 

 Allergic asthma is characterized by airway hyperreactivity (AHR) and chronic 

mucosal inflammation that is associated with pulmonary eosinophilia, mucous 

hypersecretion and airway remodeling (285, 286). The involvement of CD4+ Th2 cells in 

driving the inflammatory response in this disease has been proposed by several 

laboratories (286). More recently it has been suggested that CD4+ Th17 cells may also 

contribute to the airway inflammation particularly in cases of severe disease (287-289). 

That chronic allergic pulmonary inflammation in atopic asthma results from a failure to 

regulate the lung mucosal Th2 immune responses normally evident has been proposed 

(6). However, delineating the nature and relative importance of specific regulatory 

pathways in liming different Th2 responses remains to be defined. Regulatory roles for 

anti-inflammatory cytokines (TGF-β or IL-10), prostaglandins (290, 291) and action of 

nTreg and iTreg cells have been reported (292-294). It has also been suggested that 

regulatory T cells (Treg cells) play an important role in preventing inflammatory 

processes by eliciting immune suppression to inhaled antigens (293). With respect to the 

latter, in recent years, multiple Treg phenotypes have been described (106). However, the 

two major types are the natural Treg cells (nTreg) which are generated in the thymus (91, 

295) and induced Treg cells (iTreg) which are generated in the periphery (125). Both 

nTreg and iTreg express a key regulatory transcription factor, Foxp3, required for the 

development of the T regulatory phenotype (296, 297). nTregs are CD4+CD25+ T cells 

that are pivotal for the maintenance of peripheral tolerance and preventing the onset of 

autoimmune disease (298-300). They achieve this by suppressing the activation and 

proliferation of CD4+ and CD8+ T cells (301-305). nTreg cells have been shown to inhibit 
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the development of allergic lung inflammation (293, 294, 306). CD4+Foxp3+ Tregs can 

also be induced from CD4+CD25- precursors (iTregs) when encountering antigen in the 

presence of IL-2 and TGF-β (307, 308). iTreg cells although similar to nTreg cells in 

function, differ in principal antigen specificities and co-stimulatory molecules required 

for their generation (308). nTreg and iTreg cells mediate the suppression of T cell 

effector function through several mechanisms that require either direct cell contact (309) 

or the production of immunosuppressive cytokines such as IL-10 (310) and TGF-β (311). 

A thorough analysis demonstrating the sensitivity of naïve CD4+ T cells and effector 

CD4+ cells to suppression by nTregs has not been reported. A major limitation in using 

Treg cells to limit inflammatory responses is the low frequency of Treg cells present in 

lymphoid tissues. To circumvent this problem several investigators have expanded nTreg 

cells in vitro prior to transfer into animals or patients (312). Human CD4+CD25+ Treg 

cells from peripheral blood specific for human leukocyte antigen A2 (HLA-A2) have 

been successfully purified and expanded by TCR stimulation in the presence of high-

doses of IL-2 (313). In addition, antigen specific murine nTreg cells have been expanded 

in culture in the presence of anti-CD3 and CD28 and IL-2 remaining phenotypically and 

functionally pure (314). Although nTreg and iTreg cells are functionally similar their 

response to IL-6 is markedly different since this cytokine can convert nTreg to IL-17 

producing Th17 cells in contrast to iTregs which are resistant to conversion (308). 

Conversely, the induction of iTreg cells is inhibited by IL-4, which promotes the 

differentiation of a Foxp3- IL-9 and IL-10 expressing effector phenotype (315). 
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 In this study, we used an adoptive transfer model to investigate the effectiveness 

of antigen-specific nTreg in limiting the inflammatory responses elicited by Th2 and 

Th17 cells to inhaled antigens. This approach required purifying, expanding, and 

characterizing nTreg cells prior to monitoring their effect on fully differentiated CD4+ 

Th2 and Th17 cell responses and cytokine production. Comparisons were made with 

recipients of CD4+ Th1 cells. Treg cells isolated from DO11.10 mice cultured in the 

presence of OVA peptide and IL-2 and IL-4 were highly effective at limiting Th17-

mediated inflammation but failed to inhibit Th2-mediated lung inflammation. 

Nevertheless, Treg cells were effective at inhibiting the polarization of naïve CD4+ T 

cells. To monitor Th2 polarization in vitro, the reduction of GFP expression by CD4+ T 

cells from IL-4 reporter mice (4get mice), was monitored.  
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4.2 Results 

4.2.1  Identification and characterization of CD4+CD25+Foxp3+ natural Tregs in 

naïve DO11.10 mice   

 CD4+CD25+ regulatory T cells have been demonstrated to perform a central 

function in preventing organ-specific autoimmune diseases (300) and limiting 

inflammatory responses. Given that depletion of CD4+CD25+ cells was associated with 

heightened Th2-mediated pulmonary inflammation (294) we examined the ability of 

nTreg cells to suppress pulmonary inflammation. We used the OVA-specific TCR 

transgenic mouse DO11.10 as a source of Ag-specific CD4+CD25+Foxp3+ T cells and 

determined their ability to suppress Th1, Th2 and Th17-mediated lung inflammation. 

Tregs were identified in DO11.10 mice by staining with the antibodies to CD25 and 

Foxp3 (Figure 4.1A). Flow analysis of peripheral lymph nodes demonstrated that 4-6% of 

naive DO11.10 CD4+ T lymphocytes constitutively express CD25 (Figure 4.1A) 

(compared to 0.6% of the cells that stained positive for IgG isotype control). Memory 

CD4+ T cells (316) and nTregs (312) have been identified in TCR transgenic mice 

previously. nTregs in DO11.10 mice expressed the OVA-specific transgenic TCR as 

evidenced by staining with the anti-clonotypic antibody KJ1-26 (Figure 4.1A). Flow 

analysis revealed that intracellular Foxp3 was expressed by 4.7% of peripheral lymph 

node CD4+T cells. To verify that CD4+CD25+ cells were Tregs we used three color 

staining of the LN cells using anti-CD4, CD25, and Foxp3 antibodies. This approach 

revealed that 85-95% of the CD4+CD25+ cells and 2% of CD4+CD25- cells expressed 

Foxp3 (Figure 4.1A). Magnetic bead sorting of natural CD4+CD25+ Tregs from the 

lymph nodes of DO11.10 mice, yielded an average of 2x105 viable cells per mouse.  
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Importantly we found that 69.6% of Foxp3+ cells stained with the anti-clonotypic 

antibody KJ1-26 and would be expected to respond to OVA323-339 peptide (Figure 4.1A). 

 The limited numbers of nTregs in DO11.10 mice made adoptive transfer 

experiments of these cells difficult. To circumvent this problem natural Tregs purified 

from DO11.10 mice were expanded in culture in the presence of OVA323-339 peptide and 

exogenous IL-2 and IL-4. We have shown previously that CD4+CD25+Foxp3+ T cells 

proliferate in the presence of IL-2 and IL-4 with retention of Foxp3 expression and 

suppressive function (294). Importantly, IL-4 has been shown to inhibit the generation of 

induced-Tregs, iTregs (315). Three x106 purified CD4+CD25+ cells typically yielded 20-

30x106 cells after eight days. Intracellular Foxp3 staining demonstrated that the majority 

of CD4+CD25+ expanded continued to express Foxp3 (86%) and were clonotype specific 

(figure 4.1B,C). In contrast, activated CD4+CD25- cells expanded under identical 

conditions expressed minimal levels of Foxp3 protein (0.1%) (Figure 4.1B). The 

expanded CD4+CD25+ cells provided a source of Tregs for use in experiments.  
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Figure 4.1 (a-c) 

 

Figure 4.1  Identification and expansion of OVA-specific CD4+ T cells in DO11.10 
mice. Peripheral lymph nodes were prepared from DO11.10 mice and stained using anti-
CD4, CD25, Foxp3 antibodies and the anti-clonotypic antibody KJ1-26. A. The 
frequency of CD4+, CD25+ and KJ1-26+ cells that expressed Foxp3 was determined. The 
proportion of Foxp3+ cells were assessed by intracellular staining using Alexafluor 488-
conjugated anti-Foxp3. B. CD4+CD25+ T cells were cultured in the presence of OVA323-

339 peptide (1µg/ml), IL-2 (10 ng/ml) and IL-4 (2ng/ml). After 8 days the cells were 
stained for Foxp3, CD25, CD4 expression as detailed previously. C. To determine 
whether the expanded Foxp3+ cells expressed the transgenic TCR the cultured cells were 
stained with KJ1-26, Foxp3, CD4 and isotype control antibodies.  
 

 

 4.2.2 Expanded nTregs did not suppress Th2 or Th1 mediated airway 

inflammation 

 We examined whether pulmonary inflammation mediated by fully polarized 

CD4+ Th1 or Th2 polarized cells would be suppressed by co-transfer of expanded Tregs 

with the effector cells. CD4+ cells from DO11.10 mice were cultured for 8 days in Th1 or 

Th2 polarizing conditions. These cells (107 cells/animal) were adoptively transferred 

alone or simultaneously with expanded Tregs into BALB/c mice followed by inhalation 
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challenges with aerosolized OVA. Effector CD4+ Th1 or Th2 cells elicited a mucosal 

inflammatory response that was characterized by the inflammatory cells that entered the 

lung tissue and BAL. nTregs were co-transferred into mice at the same time as CD4+ Th1 

or Th2 polarized effector cells at a ratio of 1 to 2, respectively. Consistent with previous 

findings (294), following exposure to OVA aerosols, a pronounced peribronchial and 

perivascular neutrophilic or eosinophilic inflammation and an increase in KJ1-26+ T cells 

were observed in the lung parenchyma of recipients of the Th1 or Th2 cells, respectively 

(Figure 4.2A,B). Animals receiving Th2 cells developed a pronounced pulmonary 

eosinophilia evidenced by cytochemical staining and EPO activity in contrast to control 

animals that inhaled OVA but did not receive CD4+ Th2 cells (Figure 4.2A,C). The mice 

receiving only nTregs showed no evidence of lung inflammation. The cotransfer of Tregs 

with Th2 cells failed to suppress the inflammatory response and reproducibly resulted in 

increased numbers of lymphocytes, macrophages and eosinophils in the BAL (Figure 

4.2A) and higher levels of EPO (Figure 4.2C). Conversely, Th1-induced inflammation 

resulted in the recruitment of neutrophils (CD11b/GR-1+ cells) and activated 

macrophages to the airway (Figure 4.2B,D). Cotransfer of nTregs failed to reduce the 

level of CD11b/Gr-1+ neutrophils present in the BAL of Th1 recipient mice. nTregs did 

not reduce the number of OVA-specific Th1 or Th2 cells in the lungs since the number of 

CD4+KJ1-26+ present in the lungs was unaffected by cotransfer of nTregs (Figure 4.2E,F) 

while recipients of nTregs contained few CD4+KJ1-26+ T cells. It is clear from these 

results, that under the described conditions, Tregs when co-transferred with fully 

polarized T effector cells, were not only incapable of regulation, but may contribute to 

the enhancement of pulmonary inflammation. 
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Figure 4.2 (A-F) 

 
 
Figure 4.2  Expanded natural Tregs failed to suppress Th1 and Th2 – mediated 
lung inflammation. CD4+Th1 or Th2 differentiated cells and expanded nTreg cells were 
injected (107 cells /animal) into BALB/c mice that were then exposed to OVA aerosols 
for 7 consecutive days. Control mice did not receive the effector cells. A. BAL fluid was 
collected to evaluate the levels pulmonary inflammation elicited by CD4+ Th2 cells.  The 
cell differential counts for recipients of Tregs, CD4+ Th2 cells and Th2 + Treg cells were 
determined by light microscopic evaluation of cytochemically stained cytospin 
preparations. Results are expressed as absolute numbers of  lymphocytes (Lym), 
macrophages (Mac), eosinophils (Eos), and neutrophils (Neu). B. The cell differential 
counts for recipients of Treg, CD4+ Th1 cells and Th1 + Treg cells were determined and 
expressed as absolute numbers as previously. C. The level of EPO activity was 
determined by colorimetric analysis. D. The number of CD11b+Gr-1+ cell present in 
BAL of mice that received Th1 cells +/- Tregs was determined by flow cytometry. E. 
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Lung mononuclear cells were collected from the collagenase-digested lungs of Th2 
recipient mice that had inhaled OVA. Anti-KJ1-26 clonotypic and anti-CD4 antibody 
staining was used to identify the ova-specific T cells and the cells were analyzed by flow 
cytometry. F. Lung mononuclear cells were prepared from Th1 recipient mice that had 
inhaled OVA and the number of CD4+KJ1-26+ cells determined as detailed previously. 
 

 

4.2.3 Expanded nTregs suppress Th2 polarization and IL-4 expression by CD4+ T 

cells in vitro  

 We next evaluated whether expanded nTregs could inhibit the initial Th2 

polarization of CD4+ cells. The differentiation of naïve CD4+ T cells into fully polarized 

Th2 cells is characterized by the expression of the transcription factors GATA-3 and 

STAT6 and the cytokines IL-4 and IL-13. To monitor CD4+ Th2 polarization in vitro we 

used the C129.IL4GFP (4GET) mouse (317) (Jackson Laboratory). C129.IL4GFP 

peripheral lymph node cells were co-cultured with the expanded Tregs on anti-CD3 

coated plates (ratio of 1:4) in the presence of exogenous IL-4 and IL-2 in order to drive 

Th2 maturation. After 4 or 8 days in culture we determined the number of GFP 

expressing CD4+ T cells by flow cytometry (figure 4.3A). Importantly, the KJ1-26 

clonotypic antibody specifically recognized DO11.10 nTregs but not C129.IL4GFP CD4+ 

cells which we exploited to gate Tregs and remove them from the analysis. Interestingly, 

nTregs from DO11.10 mice inhibited Th2 polarization, using GFP production as a 

measure of IL-4 expression in comparison to C129.IL4 alone control cells. After 4 days 

in culture the nTregs inhibited expression of GFP by the C129.IL4 cells by 50.6%  

(13.7% positive GFP staining compared to 64.3% positive for the cultures grown in the 

absence of nTregs) (Figure 4.3B). The reduction in IL-4 production by nTregs was not 

associated with an increase in the level of IFN-γ as observed by other reports (318). The 
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nTreg suppression was reversed by inclusion of an antibody to GITR (Figure 4.3C), 

which has been shown to reverse the action of Tregs (319). In contrast, the addition of a 

soluble form of OX40L failed to reverse the Treg mediated suppression of Th2 

polarization (Figure 4.3C) 

Figure 4.3 

 
 
Figure 4.3  Expanded natural Tregs did suppress the differentiation of CD4+Th2 
cells. C129.IL4 peripheral lymph node cells and expanded Tregs were co-cultured for 4 
days on anti- CD3 coated plates (ratio 1:4) in the presence of exogenous IL-4. FACS 
analysis of GFP was performed after removing CD4+KJ1-26+ Tregs from the analysis by 
gating out cells staining with APCcy7 conjugated anti-KJ1-26. A. Examine the effect of 
exogenous IL-2 and Tregs on the GFP expression of C129.IL4 lymphocytes. C129.IL4 
cells were cultured in the presence of immobilized anti-CD3 (2µg/ml) and IL-4 (2ng/ml) 
for 4 days. The effect of adding IL-2 (10ng/ml) or Treg (ratio 4CD4+ cells : 1 Treg cell) 
on GFP production was determined B. Examine the suppression of GFP expression by 
C129.IL4 lymphocytes by Tregs. CD4+ C129.IL-4 cells were cultured in the presence of 
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absence of Tregs using anti-CD3 a, IL-2 + IL-4 as previously. C. C129.IL-4 cells were 
stimulated in the presence of anti- CD3 and IL-4 and IL-2 and GFP expression 
determined after 4 days. Tregs were added to the culture in the presence of anti- GITR 
antibody (20µg/ml) of solubilized OX40L (20µg/ml). 
 

 

4.2.4  Expanded nTregs suppress Th17 mediated airway inflammation 

 The ability of nTregs to suppress lung mucosal Th17 responses was also 

examined. The adoptive transfer of DO11.10 CD4+ Th17 into BALB/c mice and 

subsequent exposure to aerosolized OVA resulted in a pronounced airway neutrophilia 

(Figure 4.4A) that was associated with the presence of IL-17 in the BAL (Figure 4.4B). 

Interestingly, the cotransfer of nTregs with CD4+ Th17 resulted in the marked reduction 

in Th17-mediated inflammatory responses as defined by the number of neutrophils 

present in the airways and levels of IL-17 present in the BAL (Figure 4.4B).  

 The reduction in Th17-mediated inflammatory processes in the airways following 

cotransfer of Tregs was also associated with the reduction in KJ1-26+ cell in the BAL 

from (3.52-3.65)% to (1.72-1.77)%. In mice that received both CD4+Th17 and Tregs it 

was important to discriminate between KJ1-26+ effector Th17 and Tregs present in the 

lung. Intra-cellular staining of IL-17 revealed that cotransfer of Tregs markedly reduced 

the proportion of IL-17 expressing KJ1-26+ cells present in LMC (27.4% to 11.3%). 

Th17 recipient mice displayed increased levels of airway resistance and reduced dynamic 

compliance compared to control mice and were significantly worse than recipients of 

CD4+ Th2 cells alone (Figure 4.4C). Interestingly, this trend was not reversed by the 

cotransfer of nTregs which was not surprising given that transfer of Tregs alone resulted 

in an increase in airway resistance and reduced compliance. Interestingly, the increase in 
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airway resistance and reduction in dynamic compliance elicited by Th17 and nTregs 

appeared additive (Figure 4.4D). These findings confirm that although the Th17-mediated 

inflammatory response was markedly reversed by antigen specific nTregs this was not 

accompanied by an improvement in airway function (Figure 4.4C,D). A marked 

peribronchial and perivascular inflammation was observed in Th17 recipient mice, which 

was reversed with the co-transfer of Tregs (Figure 4.4E).  

Figure 4.4 
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Figure 4.4 Expanded natural Tregs did suppress Th17- mediated lung inflammation, 
cytokine production but had no effect on airway function. A. To assess the effects of 
expanded nTregs on the neutrophilic response induced by Th17 cells, BAL cell 
differential counts were determined after samples were centrifuged using a Shandon 
Cytospin followed by staining with Hema3. Results are reported in absolute numbers of 
cells collected. B. IL-17 levels in the BAL fluid from different experimental groups (n=3) 
of animals were measured by commercially available ELISA kit (e-Bioscience). C. ,D 
Airway resistance and dynamic compliance were measured over a range of methacholine 
concentrations E. Histological analysis of lung tissue was performed using H&E staining. 
 

 

4.2.5  Expanded nTregs did not suppress Th17 responses in vitro  

 The possibility that the Tregs suppressed Th17 function in vitro was also 

examined Th17 cells were stimulated with immobilized anti-CD3 in the presence of 

different numbers of Tregs forming Th17:nTreg ratios of 4:1, 8:1 and 16:1. The addition 

of nTregs to CD4+ Th17 cells did not inhibit IL-17 production by the stimulated Th17 

cells over a range of ratios (Figure 4.5A). Similarly, the proliferation of the cells in 

response to anti-CD3 was not affected by the presence of nTregs (Figure 4.5B). These 
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data strongly suggest that nTregs do not act directly on CD4+ Th17 cells and raises the 

possibility that Tregs may act indirectly by modifying dendritic cell function. 

 

Figure 4.5 

 

Figure 4.5  Expanded CD4+ Tregs failed to inhibit CD4+ Th17 proliferation of 
cytokine production in vitro. CD4+ Th17 cells were added to 24 well plates pre-coated 
with 2µg of anti-CD3 (2C11). CD4+ expanded Tregs were added to the wells at different 
concentrations. Controls comprised of Th17 cells or expanded Tregs alone. Culture 
supernates were harvested after 18h and assayed for IL-17 by ELISA. Similarly the levels 
of proliferation were determined by adding 1µCi of 3H-TdR to the cells and the levels of 
incorporation determined after 18h by scintillation counting.  
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4.3 Discussion 

 Allergic asthma is characterized by production of Th2 cytokines, IgE antibodies, 

eosinophilic lung inflammation, airway hyperresponsiveness, airway remodeling and 

mucus hyperproduction (320, 321).  A role for CD4+ T cells and NK-T cells in driving 

the inflammatory response has been proposed (322). The inhalation of soluble antigens 

typically results in the onset of sustained tolerance that reverses the progression of the 

inflammatory process (323). However the mechanisms underlying the resolution of 

airway mucosal Th2 mediated inflammation remain poorly understood. Moreover, the 

regulatory mechanisms operative during the early differentiation of CD4+ cells may differ 

from fully differentiated effector cells in part because of the different cytokine 

dependence. CD4+CD25+Foxp3+ (Treg) cells are considered an important regulator of the 

immune system, and have been shown to prevent autoimmunity (300) and the 

development of Helicobacter hepaticus induced colitis (324, 325). The therapeutic 

potential of transferring exogenous Treg cells was first demonstrated in a murine model 

of colitis, showing that in SCID mice disease progression could be reversed, by 

transferring CD4+CD25+ Tregs.  Furthermore, successful treatment of severe colitis with 

Tregs could be reversed upon treatment of the animals with anti-IL-10 monoclonal 

antibody (mAb) (326), implicating IL-10 as a requirement in Treg mediated regulation of 

inflammation. However, regulation was evident in the absence of IL-10 or TGF-β (327). 

In addition, CD4+CD25+Foxp3+ Tregs are capable of regulation of both CD4+ and CD8+ 

T cell responses, in part by inhibiting IL-2 production and restricting clonal T cell 

expansion and development of memory (303). In this study, we used the DO11.10 TCR-

transgenic mouse to model antigen induced lung inflammation and examine the influence 
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of Ag-specific regulatory T cells in the suppression of these responses. Consistent with 

previous reports, 4-6% of the CD4+ T cells from DO11.10 mice constitutively express 

CD25 (294, 318, 328). In addition, these CD4+CD25+ T cells expressed the Foxp3 protein 

and the transgenic TCR as determined by staining with the anti-clonotypic antibody, KJ1-

26. The principal difficulty encountered when delineating the anti-inflammatory 

properties of CD4+CD25+Foxp3+ Treg cells are obtaining sufficient Tregs with a known 

antigen specificity. To circumvent this limitation we expanded natural-Tregs from the 

OVA-specific TCR transgenic mouse DO11.10 in vitro in the presence of OVA323-339, IL-

2 and IL-4. Our results demonstrated that freshly isolated and expanded CD4+CD25+ 

DO11.10 Tregs expressed the Foxp3 protein and mediated suppressive activity. 

 We investigated the capacity of nTregs in limiting the onset of inflammation 

mediated by fully differentiated CD4+ Th1, Th2 and Th17 cells. Interestingly, CD4+ 

Th17, but not Th1 or Th2, mediated lung inflammation was suppressed by the cotransfer 

of expanded nTregs. The CD4+ Th17 cells following transfer into mice retained a Th17 

phenotype insofar as they produced IL-17 but not IFN-γ following OVA inhalation so 

demonstrating that immune deviation of the transferred CD4+ T cells away from a Th17 

phenotype was not evident. Conceivably, the expansion of the CD4+ Th17 cells was 

inhibited by the transferred CD4+ Tregs. In this context adoptively transferred CD4+ Th17 

cells did proliferate in vivo in response to inhaled antigen and this proliferation was 

dependent on the IL-2R. Inhibiting Th17 cell expansion could arise from direct regulation 

of the CD4+ Th17 cells or act via inhibiting antigen presentation by DCs. It has been 

previously been reported that Tregs can suppress immune responses by suppressing DC 

maturation and/or CD80/CD86 expression (329). This may explain why nTregs failed to 
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suppress Th17 responses in vitro. Our experiments prove that nTregs were capable of 

suppressing the Th2 polarization of naïve CD4+ T cells but render little effect over fully 

polarized Th2 cells. Although IL-2 is known to suppress Th17 cells, IL-2 played a 

significant role in the expansion of the CD4+ Th17 cells prior to transfer into hosts and 

after aerosol challenge. It is conceivable, that the regulation observed arose from the 

suppression of IL-2 production and Th17 expansion in vivo.  

 The effective regulation could arise as a consequence of preventing expansion 

and/or cytokine production by CD4+ Th17 cells by either directly interacting with the T 

cells or dendritic cells that present inhaled antigens in the lung. It unclear why effector 

CD4+ Th17 cells, but not Th1 or Th2 cells, are susceptible to regulation by nTregs. This 

may arise from differences in intrinsic properties of effector T cells. Also the lung 

mucosal environment may facilitate Treg function during Th17-mediated inflammation. 

In this context, it has been demonstrated that nTregs purified from DO11.10 mice only 

marginally suppressed Th2-mediated airway inflammation (330). Interestingly, Treg 

mediated suppression of Th2-mediated inflammation cells was considerably enhanced by 

the phosphodiesterase 4 inhibitor, rolipram (330). Possibly a consequence of promoting 

suppression of the cell-contact dependent transfer of cAMP to Th2 cells, that has been 

proposed to contribute to regulatory function (330, 331).  

 

 In summary CD4+CD25+Foxp3+ Tregs play a key role in regulating airway 

inflammation mediated by CD4+ Th17 cells. In addition, our results demonstrate that 

Tregs can inhibit Th2 polarization. IL-2 and progression of the CD4+ cells through 

several cell cycles has been shown to be essential for effective Th2 polarization. This 
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suppression was evident in the presence of exogenous IL-2 implying that that action of 

Tregs was irrespective of IL-2-dependent proliferation. A better understanding of the 

mechanism underlying the immunomodulatory qualities exerted by Tregs could provide 

important information leading to novel approaches to control the airway inflammatory 

response manifest in bronchial asthma.  

 The regulatory events leading to the limitation of lung inflammation remain 

unclear. Further elucidation of the role of nTregs is at this time necessary and critical in 

order to broaden our understanding of mechanisms underlying diseases such as asthma. 
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Chapter 5 
 

Conclusions 
 
 
 An increase in the prevalence of asthma in past decades coupled with the 

observation that presently no treatment is available that impacts on the incidence of this 

disease, has predicated the need for a deeper understanding of the mechanisms 

underlying this disease. Allergic asthma is chronic inflammatory disorder in which a type 

2 response by CD4+ T cells in the airways predominates in driving the inflammation.  It 

is however, becoming increasingly apparent that the disease is heterogeneous with 

respect to immunopathology and clinical phenotypes (332). Although the current thought 

is that asthma stems predominately from Th2-type lymphocytes, IgE, mast cells 

eosinophils, and cytokines, that respond to antigen in the airways, it is becoming more 

evident that mesenchymal, vascular and neurological events are also involved in directing 

the Th2 phenotype to the lung via aberrant injury-repair mechanisms (6). It has been 

proposed that allergic inflammation arises from the dysfunction of events that normally 

lead to the resolution of the underlying T cell response (6). To date it is assumed that Th2 

driven inflammation and the IgE response are under the same mechanism of regulation. 

However, it is conceivable that during inflammation, the mucosal pro-inflammatory 

response is regulated by events that do not affect the IgE response, and vice versa. Our 

data suggests the possibility that PGI2 more effectively regulates the IgE response that the 

other aspects of CD4+ Th2 driven inflammation, potentially involving a novel role in 

mediating isotype switching. Moreover, NSAIDs, such as aspirin, have been implicated 

in the exacerbation of these effects.   
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 Collectively, the findings described in this text outline cellular and molecular 

actions with potential roles in the regulation of these inflammatory events. The first set of 

experiments addressed the role of the eicosanoid-PGI2.  PGI2 has previously described 

roles as an anti-thrombotic agent, as well as a messenger of signaling events leading to 

inflammation and pain (217). The rationale behind these experiments is such that since 

the IP receptor is selectively expressed on CD4+ Th2 cells, (but not Th1 differentiated 

cells) and that prostanoids typically suppress immune responses, we proposed that 

inhibition of PGI2-IP signaling would lead to elevated pulmonary inflammation. Indeed 

disruption to the receptor for PGI2, IP in C57BL/6 mice resulted in a phenotype with an 

augmented Th2 type pulmonary inflammation, heightened AHR and increases in 

eosinophilic infiltration and IgE and IgG1 in the airways of these animals following OVA 

immunization and aerosol challenge. Interestingly, the unimmunized and unchallenged 

IP-/- mice appeared to have a defect in antibody production connected with isotype 

switching, since all of the serum Ig levels were markedly decreased, with the exception of 

IgM--which doesn’t require isotype switching. Even more interesting is that both of the 

two most dramatically diminished natural antibodies were IgA and IgG2b, which require 

TGF-β for their production.  

 Remembering that CD4+CD25+ cells expanded in IL-4 express the IP receptor and 

consequentially having noticed the immunomodulatory effects of PGI2 on Th2 type 

inflammation, it was logical to examine the potential involvement of nTregs on 

suppressing the allergic inflammation. Surprisingly, co-transfer of nTregs inhibited Th17 

mediated lung inflammation, but not Th1 or Th2 in terms of reduced neutrophilia and IL-

17 production in vivo. A question we are left with is why Th17 cells are apparently more 
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susceptible to regulation by Tregs than Th1 or Th2 cells. One possible explanation for 

this phenomenon is that transferred Th17 cells may undergo a higher rate of expansion 

than do the Th1 or Th2 transferred cells, Consequently, suppression of the cell cycle may 

have a more pronounced effect on Th17 compared to Th1 or Th2 mediated inflammation. 

It would be useful to labeling the transferred Th2 or Th17 cells with CFSE and examine 

the relative expansion of the effector cells in vivo.  Alternatively the regulation of the 

Th17 response may be occurring via Treg-APC-effector interactions through mechanisms 

involving reduction in the effectiveness of antigen presentation in the airway itself.    

 
Future Directions 
 
Investigation into the role of PGI2-IP signaling pathway in immune responses 
 

1) Investigate the role prostacyclin plays in the IgA and IgG2b response. Both 

isotypes require TGF-β and our preliminary data shows that Iloprost induces TGF-β 

protein production by lymph nodes. The cellular source of TGF-β is currently unknown, 

but from the available data, it appears be produced from a non-T cell. 

 Following immunization with OVA/alum the defect in IgA and IgG2b production 

is lost and no longer detectable in the serum of IP-/- mice.  This procedure uses an alum 

adjuvant via intra-peritoneal route of immunization. Consequently, using this protocol, 

antibody production is likely to occur primarily in the spleen and mask the defect present 

in other lymphoid tissue. It is possible that the observed defect in unimmunized mice may 

arise a mechanism operative in the lymph nodes, or gut associated lymphoid tissues 

which results in lower concentrations of serum antibody therefore masking the effect.  

Therefore it would be of interest to investigate the effect of priming with alternate 
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adjuvants, doses or routes of immunization to explore the underlying mechanisms 

responsible for the abnormal in antibody production. Moreover, a series of adoptive 

transfer experiments where IP expressing T or B cells are transferred into IP-/- mice in an 

attempt to fix the defect may prove informative. 

 

Experiments to further understand the roles played by Tregs in allergic asthma 

1) It is important to characterize of the molecular mechanism by which nTregs 

influence CD4+ Th17-mediated inflammation. Is it by an IL-10 dependent mechanism 

requiring a reduction in airway APC function? Or alternatively is it by regulating the 

CD4+ cells directly? 

2) Investigate the differences in the regulatory effects between nTreg and iTreg in 

the capacity to inhibit Th2 and Th17-mediated lung inflammation.  

3) Isolate Tregs from lung tissue directly and monitor their ability to suppress 

inflammatory processes.  Evaluate antigen presentation and migratory mechanisms from 

the lung localized Tregs. 

4) Characterize the phenotype of Foxp3+ Tregs in the lungs using the Foxp3-GFP 

mouse. Further elaboration is needed of the differences between Treg inhibition of Th2 

and Th17-mediated lung inflammation. This  

5) TGF-β is required for the production of IgA and IgG2b. Preliminary data from 

our laboratory has demonstrated this cytokine is altered in the IP-/- mouse. Since TGF-

β production is one of the regulatory actions of Treg cells, experiments designed to 

disclose a Treg population in the IP-/- mouse that may be involved and the mechanism 
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underlying in this immunoglobulin defect may provide important information to better 

understand of nTreg inhibition of the inflammatory response.   
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