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Abstract 
 
Elmer-Dixon, Margaret M. Ph. D., Summer 2018     Biochemistry & Biophysics 
 
Elucidation of the Physical and Chemical Properties of Cytochrome c - Cardiolipin Interactions 
 
Chairperson: Bruce E. Bowler 
 
 Recently, the electron transport protein Cytochrome c (Cytc) was shown to interact with the 
mitochondrial lipid cardiolipin (CL) during the initial stages of the intrinsic apoptotic pathway. 
This interaction is characterized by the protein binding and oxidation of cardiolipin on the 
concave surface of the outer leaflet of the inner mitochondrial membrane. To date, this 
interaction has been studied with a variety of methods and techniques reporting varied and often 
conflicting findings characterizing the nature and extent of the protein-lipid interaction. Cytc has 
been hypothesized to interact with cardiolipin electrostatically, hydrophobically and through 
hydrogen bonding and is thought to partially to completely unfold and imbed in the membrane 
during the interaction or remain folded on the membrane surface. This thesis aims to (1) 
quantitatively assess the electrostatic protein-lipid interaction, (2) characterize the cationic amino 
acid constituents that comprise the electrostatic protein binding site, (3) address the impact of 
membrane curvature on (a) lipid packing and (b) protein binding. Here, we present a complete 
analysis of electrostatic Cytc-CL binding to both yeast and human variants of the protein. Using 
a new technique for lipid quantification, we characterize the interaction of the protein with 
membrane surfaces with high reproducibility. Our findings strongly suggest a biphasic response 
of the protein when exposed to CL with attenuated unfolding of the human variant with respect 
to the yeast variant. Alanine scanning was used to elucidate the electrostatic constituents of the 
anionic site. Lysines 72, 73, 86 and 87 were shown to be involved in CL binding but do not 
completely characterize electrostatic binding site. We also show that CL preferentially partitions 
to concave surfaces and that this preferential localization attenuates the interaction of Cytc with 
the outer leaflet of  mixed lipid vesicles. Lastly, we demonstrate the role of membrane curvature 
for electrostatically bound Cytc. Here, Cytc conformational rearrangements are attenuated on 
concave CL surfaces. The nature of the binding is intrinsically different with a concerted 
structural rearrangement observed on concave surfaces as opposed to the biphasic 
electrostatically-driven conformational rearrangement seen on convex outer leaflets. 
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CHAPTER 1: Introduction 
 
 
1.1. Cytochrome c Biological Role in the Cell. 

Cytochrome c (Cytc) is a small globular heme protein found in high concentrations in the 

intermembrane space of mitochondria where it shuttles electrons between complex III and 

complex IV of the electron transport chain (Figure 1.1).1–3 Peroxidase activity associated with 

energy harvesting in electron transport has been isolated to the heme active site at the center of 

the protein.1 Structural analysis, in coordination with mutagenesis and stopped-flow4,5, has 

shown that access to the heme active site is regulated by the flexible Ω-loop-D (residues 70-85, 

Figure 1.2). Further, loop opening, and thus heme access, is directly linked to enhanced 

peroxidase activity. 

 
 

 
Figure 1.1. Cartoon of electron transport chain showing Cytochrome c’s role transporting 

electrons from complex III to complex IV on the surface of the inner mitochondrial membrane 

(IMM).1 
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Figure 1.2. Cartoon of iso-1-yeast Cytc corresponding to PDB 2YCC6 produced using 

MacPymol. Heme center (Black sticks), tethered to protein by His18 (Yellow) and Met80 

(Magenta). The flexible Ω-loop-D (residues 70-85, Dark Grey) controls direct access to the 

heme. The A site (Red) flanks Ω-loop-D above the heme while the L site (Green) sits below the 

heme. The C site (Orange) is hydrophobically buried adjacent to the heme. The N site (Blue) sits 

behind the heme toward the back of the heme crevice. 
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1.2.Cytochrome c’s Role in Apoptosis. 

Recently, Cytc was shown to have an additional role in the precursory steps of the intrinsic 

apoptotic pathway.7–12 During apoptotic initiation, Cytc binds and oxidizes the non-bilayer-

forming lipid cardiolipin (CL) on the surface of the outer leaflet of the inner mitochondrial 

membrane in the cristae of the mitochondrion (Figure 1.3).12,13 After oxidation, the protein loses 

affinity for the CL surface and dissociates from the membrane and exits the mitochondrion.10–12 

The exact mechanism for protein efflux from the mitochondrion is not clearly understood with 

several potential mechanisms of escape hypothesized.10–12 Interestingly, CL is found in 

appreciable concentrations on the outer membrane of the mitochondrion suggesting a migration 

pathway may exist.12  

The nature of the protein-lipid interaction between cationic Cytc (+8 net charge) and CL (-2 

headgroup charge) is not clearly understood and several conflicting models have been postulated 

to characterize the involvement of residues and regions on the protein, the structural orientation 

of the protein-lipid interaction, and the extent of protein interaction with the lipid and the 

membrane.13–28 
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Figure 1.3. Composite three-dimensional model of chick cerebellum mitochondrion imaged 

using electron tomography. Outer membrane shown in blue and cristae, including both leaflets of 

the inner mitochondrial membrane, is displayed in yellow.29  

 
 
1.3. Cardiolipin Binding Sites of Cytochrome c. 

Four major regions of the protein have been hypothesized to function as binding sites during 

CL interaction. The anionic site, site A, resides on the flexible Ω-loop-D above the heme where it 

potentially regulates access to the heme loop crevice, the known site of peroxidation during 

electron transport (Figure 1.2).14,23,30–32 This site is minimally characterized as electrostatically 

interacting with one lysine at residue 72.14,23,30,31 Lysines at residues 7314,23,30,31 and potentially 

86 and 87 may also be constituents of this site.32 The C site, comprised of a hydrophobically 

buried asparagine at residue 52, could potentially hydrophobically interact with buried CL acyl 
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chains (Figure 1.2).14  The lipid-interacting or L site comprises the region below the heme and 

consists of histidines at positions 26 and 33 and lysines at positions 22, 25 and 27.33 The L site is 

thought to interact with CL via both hydrogen bonding and electrostatic interactions (Figure 

1.2).33  Recently, a fourth site, the N site, has been characterized as Phe36, Gly37, Thr58, Trp59 

and Lys60 (Figure 1.2).34   

These four sites are not completely conserved across eukaryotes. Lysine at position 25, 

Thr58, as well as Lys60 are absent in yeast variants and may produce a varied response to lipid 

binding at the L site and N sites, respectively, when compared with higher order variants.6,33,34 

 

1.4. Conformational Binding Models of Cytochrome c. 

Two major conformations have been hypothesized to characterize protein structure during 

lipid interaction. The compact folded structure maintains the native Cytc conformation, docking 

lipid headgroups at the exterior binding sites (A and L (See Figure 1.2)) while promoting acyl 

chain invagination into the heme loop crevice by maintaining a highly structured hydrophobic 

pocket around the heme.15,21,34,35 The C site could further stabilize infiltration of acyl chains into 

the protein core through hydrophobic interaction.14,21,31,36,37 Direct experimental evidence also 

supports a partially unfolded or extended conformer.18,19,23–25,38 In this conformation, Ω-loop-D 

opens, promoting access to the heme active site. 18,19,23–25 Further structural rearrangement may 

encourage more contact between sites N, C and L with the membrane. Partial unfolding of the 

structure may also allow for partial burial of the protein into the hydrophobic region of the 

membrane.38  
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1.5. Environmental Contributions to Cytochrome c-Cardiolipin Binding. 

To study this interaction, a wide variety of mimetic systems have been employed. Lipid 

composition has varied from pure cardiolipin systems39 to mixed cardiolipin/neutral lipid 

systems18,19 at varying concentrations. Further complicating the problem, a range of pHs from 

7.0-8.0 are used.14,18,19,33,35,39 Cytc has a pH dependent conformer that further convolutes binding 

analyses. To complicate the matter further, hydrogen bonding is attributed to the L site due to the 

presence of histidines at the site, suggesting the site’s involvement is a pH dependent 

phenomenon.18,33 This variation in experimental design may be partially responsible for the 

diverse and conflicting results that have led to the characterization of four binding sites and two 

potential conformational models.  

 

1.6. The Complexity and Consequences of In Vitro Experimental Design on Cytochrome c-

Cardiolipin Binding. 

The diverse array of model systems used to investigate Cytc-CL binding makes direct 

comparison of experimental findings difficult at best. To investigate the intrinsic nature of the 

protein-lipid interaction, the true interaction of Cytc with CL is necessary. Further, a systematic 

approach to experimental design is essential to make meaningful comparison of findings across a 

breadth of experiments possible. 

Complex experimental design, multiple binding site involvement and multiple protein 

conformations have made extracting binding constants from lipid titrations nontrivial. Further, 

reported binding constants are often conflicting due to lack of analytical lipid quantification 

among other concerns. A simplified approach including reproducible, analytical analysis of site-

specific involvement in lipid binding is needed to meaningfully analyze the Cytc-CL system. 
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1.7. Cardiolipin’s Structure Dictates Membrane Location and Functionality. 

Cardiolipin is a large non-membrane-forming phospholipid consisting of two negatively 

charged phosphate headgroups and four acyl chains.40 Tetraoleylcardiolipin (1’,3’-bis[1,2-

dioleoyl-sn-glycero-3-phospho]-glycerol) is the most stable form of cardiolipin, and the one 

generally used in vitro. It has four 18-carbon mono-unsaturated acyl chains (Figure 

1.4).7,12,19,39,41 Many variations of the lipid exist but are hard to work with and generally not used. 

The four unsaturated acyl chains have a larger cross-sectional area than the lipid’s headgroup 

giving the bulk structure of the molecule a conic geometric shape and making it a non-membrane 

forming lipid.40,42 Non-membrane forming lipids with smaller headgroups than tail cross sections 

can generally be found on the concave leaflet of curved membranes.40,42,43 Cardiolipin is known 

to reside in high concentrations on the outer leaflet of the inner mitochondrial membrane.7,13,41 

This surface is concave in accordance with the preferred membrane surface dictated by the 

lipid’s structure (Figure 1.3). 
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Figure 1.4. The most commonly researched form of Cardiolipin, Tetraoleylcardiolipin (1’,3’-

bis[1,2-dioleoyl-sn-glycero-3-phospho]-glycerol), imaged using ChemBioDraw courtesy of 

Avanti Polar Lipids (https://avantilipids.com/product/710335). 

 

1.8. Experimental Considerations Ignore Cardiolipin’s Preferred Membrane Location. 

The majority of studies investigating Cytc-CL interactions utilize mixed membrane systems 

generally consisting of CL and dioleoylphosphocholine (1,2-dioleoyl-sn-glycero-3-

phoshocholine or DOPC)13,15,17,21,22,24,25,27,44–46 (and occasionally other formulations14,16,21,22,25,35). 

Because CL’s structure suggests a strong preference for the lipid to partition to the concave 

surface of membranes, careful consideration is needed when designing experiments with mixed 

lipid systems. Either the system designed needs to be characterized to verify the lipid of interest 

is in the location where the interaction is being studied or experimentation needs to occur on 

concave surfaces. DOPC is a well known, cylindrical membrane forming lipid with no preferred 

curvature-dependent localization.40,47,48 Experiments using DOPC/CL formulations generally 

assume that both lipids mix homogeneously throughout the membrane without verifying lipid 

location. This basic assumption gives rise to concerns that Cytc binding to these mixed systems 

may not truly be an investigation of CL binding. It should be noted that findings corresponding 

https://avantilipids.com/product/710335)
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to these mixed systems are often conflicting and difficult to compare. An analysis of CL location 

in mimetic systems would facilitate a better understanding of previously reported findings using 

mixed lipid membranes. 

 
1.9. Experimental Considerations Ignore Cytochrome c’s Location in the Mitochondria and 

the Role of Membrane Curvature in Protein-Lipid Binding. 

Cytc is known to reside in high concentrations in the inner mitochondrial space surrounded 

by the cardiolipin rich, concave, outer leaflet of the inner mitochondrial membrane. The 

physiological environment where Cytc-CL binding occurs32 (the concave outer leaflet) and CL’s 

hypothesized propensity for negatively curved surfaces strongly suggests that the true nature of 

the protein-lipid interaction is membrane curvature dependent. To date, one group has considered 

the membrane structural dependence on this interaction.34 All other investigations of Cytc-CL 

binding ignore membrane curvature, assume homogeneous lipid mixing and study protein 

binding to convex surfaces of memetic membranes.13,14,26,27,32,35,44–46,49,50,15–17,21–25 While these 

studies are valuable for their isolation of regional contributions by the protein to lipid interaction, 

they do not begin to study the interaction in a physiologically relevant manner making their 

findings interesting but not necessarily meaningful. A comprehensive, analytical approach to 

protein binding to concave surfaces is needed to elucidate the complex physical and chemical 

interactions that govern Cytc-CL binding. 
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GOALS 
 
Goal 1: Create Method for Rapid Quantification of Lipids. 

In an effort to quantitatively approach lipid-protein binding, a technique for rapid lipid 

quantification was developed to be used immediately before experimentation to ensure accurate 

analytical assessment of CL’s involvement in binding. In Chapter 2, Mie scattering theory is 

used to derive a computational method to determine lipid concentration from scattering 

measurements acquired using a UV-Visible spectrophotometer for pure lipid and mixed lipid 

systems. 

 

Goal 2: Investigate Species-dependent Electrostatic Binding of Cytochrome c to 

Cardiolipin. 

Cytochrome c is highly conserved across eukaryotes yet its function varies from yeast, where 

it serves only in electron transport, to higher order organisms like mammals, where it is integral 

to both the electron transport chain and apoptotic pathway initiation. Further, the primary lysine 

attributed to the anionic site, site A, on Cytc is completely conserved in all organisms.51 Chapter 

3 investigates the role of the primary A-site lysine at position 72 in both yeast and human 

variants of the protein during CL binding. 

 

Goal 3: Characterize the Electrostatic Constituents of the Anionic Site on Cytochrome c. 

 With the varied approaches to study the Cytc-CL interaction, it is unsurprising that a 

complete characterization of the anionic binding site of Cytc has not been undertaken. In chapter 

4, we quantitatively evaluate the electrostatic contributions by lysines in and around the anionic 
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site of model protein, yeast iso-1-Cytc in an attempt to (1) characterize the binding site 

constituents and (2) elucidate the physical nature of the binding event. 

 

Goal 4: Evaluate Cardiolipin’s Preferred Location on Curved Surfaces with Variable Lipid 

Composition. 

 Cardiolipin is found in high concentrations on the concave surface that comprises the 

outer leaflet of the inner mitochondrial membrane in eukaryotes. Further, the structure of CL 

suggests that the lipid readily preferentially localizes on the concave leaflet of membranes. Yet, 

when investigating the Cytc-CL interaction, most experiments assume homogenous mixing of 

DOPC and CL containing membranes between the inner (concave) and outer (convex) leaflets of 

vesicles when investigating protein-lipid binding on the convex surface of a mimetic membrane 

such as a vesicle. Chapter 5 investigates the preferred location of CL in membranes in a 

concentration dependent manner.  

 

Goal 5: Investigate the Role of Cardiolipin Partitioning in Mixed Lipid Systems During 

Convex, Electrostatic, Cytochrome c Binding. 

 Using analytical techniques for evaluating electrostatic protein-lipid binding on 

membrane surfaces established in chapters 2 and 3, chapter 5 investigates the role of lipid 

partitioning in mixed lipid membranes on protein binding to convex surfaces.  
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Goal 6: Investigate the Role of Membrane Curvature on Electrostatic Cytochrome c – 

Cardiolipin Binding. 

Cytc-CL binding occurs on the concave surface of the inner mitochondrial membrane. 

Chapter 6 evaluates the physiological relevance of membrane surface curvature on protein-lipid 

binding. 
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CHAPTER 2: Lipid Quantification 
 
 
 
2.1. Rapid Quantification of Cardiolipin Lipid and Vesicle Concentration. 
 
2.1.1. INTRODUCTION 

Vesicles are made and used in a variety of biologically relevant experiments to elucidate and 

characterize membrane associated interactions. Existing methods for vesicle quantification are 

time consuming and costly. Commercially available particle-counting equipment can enumerate 

vesicles as small as 10 nm, but these devices are expensive. Phosphate analysis assays and 

inductively coupled plasma atomic emission spectroscopy (ICP) can measure phosphate 

headgroup concentration but are time consuming and destroy large amounts of sample 1–3 and 

thus are impractical for routine use. Because of these limitations, measurement of 

protein/membrane binding affinities via analytical vesicle titrations is expensive. Due to lipid 

oxidation in solution and membrane stability 4,5, it is essential that lipid and vesicle concentration 

be measured expeditiously. Here, we report a rapid and reliable method for vesicle 

quantification. 

This quantification technique can be performed immediately before vesicle titrations of 

protein samples and does not destroy any of the vesicle stock solution. After initial validation, 

this technique requires only 15 minutes to quantify vesicles and lipids and uses common 

laboratory equipment and software. In this report, we apply the method to measurement of the 

concentration of 100% 18:1 cardiolipin (1',3'-bis[1,2-dioleoyl-sn-glycero-3-phospho]-sn-

glycerol) vesicles of known radii, we then use existing physical parameters to extend this method 

to DOPC analysis demonstrating that the method is readily adapted for use with vesicles 

composed of any lipid with appropriate validation or calibration.  



 
 

19 

 
 

2.1.2. THEORETICAL CALCULATIONS      

Quantifying lipids is difficult because they have no absorbance signature in a convenient 

region of the UV-Visible spectrum (Figure 2.1.1.). While lipids, themselves, do not 

characteristically absorb visible light, supramolecular structures like lipid vesicles scatter light in 

a size, wavelength, concentration and media dependent manner known as Mie scattering 6. A 

UV-Vis spectrophotometer can be used to evaluate Mie Scattering as a function of wavelength. 

Knowing particle size, the wavelength and angle of exposure, as well as the refractive index of 

the medium, the concentration of particles in solution can be calculated. Methods for using Mie 

scattering theory to measure nanoparticle concentration 6,7 have been modified for application to 

cardiolipin and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles so that vesicle and 

lipid concentration can be determined.  
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Figure 2.1.1. Scattering measurement of 136.6 nm extruded cardiolipin vesicles prepared at a 

concentration of 535 PM lipid (based on reported mass from manufacturer) in 20 mM TES Buffer, 

0.1 mM EDTA, pH 8. The scattering curve demonstrates no intrinsic absorbance in the UV-Visible 

region of the electromagnetic spectrum for cardiolipin.   

 

This method involves calculating the scattering cross section of vesicles of known size at an 

appropriate wavelength using Mie scattering theory, measuring the absorbance of the vesicle 

with a UV-Vis spectrophotometer and solving Beer’s law for the particle concentration. Matlab 

code is provided in Appendix I.1 for the required calculations. To accurately calculate scattering 

due to vesicles, vesicle size, angle and wavelength of absorbance and the index of refraction of 

the medium are required. Furthermore, with appropriate validation or calibration, the number of 

lipids per vesicle can be determined, allowing total lipid concentration to be calculated.  
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To relate absorbance to the calculated scattering off of a non-absorbing vesicle, Beer’s law 

must be expressed in terms of the scattering extinction coefficient, Cext 6,7;  

𝐴(𝜆) = 𝑑∑ 𝑁𝑖𝐶𝑒𝑥𝑡,𝑖(𝜆)𝑖         Eqn. 2.1.1 

where d is sample path length, N is the number of scattering centers and A is the total absorbance 

measured at a specific wavelength, O.         

The scattering extinction coefficient is expressed as 6,7 

𝐶𝑒𝑥𝑡 =
𝜆2

2𝜋
∑ (2𝑛 + 1)∞
𝑛=1 𝑅𝑒{𝑎𝑛 + 𝑏𝑛}     Eqn. 2.1.2 

where an and bn are the differential expressions of Bessel functions 

𝑎𝑛 =
𝑚𝜓𝑛(𝑚𝑥)𝜓𝑛

′ (𝑥)−𝜓𝑛(𝑥)𝜓𝑛
′ (𝑚𝑥)

𝑚𝜓𝑛(𝑚𝑥)𝜉𝑛′ (𝑥)−𝜉𝑛(𝑥)𝜓𝑛′ (𝑚𝑥)
        Eqn. 2.1.3a 

𝑏𝑛 =
𝜓𝑛(𝑚𝑥)𝜓𝑛

′ (𝑥)−𝑚𝜓𝑛(𝑥)𝜓𝑛
′ (𝑚𝑥)

𝜓𝑛(𝑚𝑥)𝜉𝑛′ (𝑥)−𝑚𝜉𝑛(𝑥)𝜓𝑛′ (𝑚𝑥)
      Eqn. 2.1.3b 

where ψn, is the Ricatti-Bessel Function, j(n), of the first kind, and ξn, is the Hankel function, 

h(n), of the first kind. The value, x is the size parameter relating vesicle radius, R, to wavelength; 

𝑥 = 2𝜋𝑅𝑒(𝑚)𝑅
𝜆

         Eqn. 2.1.4 

where wavelength, O, is reported in the same units as the vesicle radius. The value m is the 

relative refractive index represented by the real, nRe, and complex, nIm, parts of the refractive 

index of the lipid and water. 

𝑚 = 𝑛𝑅𝑒,𝑙𝑖𝑝𝑖𝑑+𝑛𝐼𝑚,𝑙𝑖𝑝𝑖𝑑

𝑛𝑅𝑒,𝑤𝑎𝑡𝑒𝑟+𝑛𝐼𝑚,𝑤𝑎𝑡𝑒𝑟
       Eqn. 2.1.5 
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For cardiolipin. nRe,lipid was set to 1.46 8, while nIm,lipid was approximated as nIm,water at 200 nm 

(1x10-7, 9). The wavelength dependence of nRe,water was calculated with Eqn. 2.1.6 10, 

𝑛𝑅𝑒,𝑤𝑎𝑡𝑒𝑟(𝜆) = 1.31848 + 6.662
𝜆−129.2

       Eqn. 2.1.6 

while nIm,water was approximated using the value at 200 nm reported above. Equations 2.1.2-2.1.6 

were programmed into Matlab to solve Eqn. 2.1.1 for N, allowing calculation of vesicle 

concentration. Absorbance measurements taken with a Beckman Coulter DU 800 UV-Visible 

spectrophotometer were used in the calculation. Wavelengths were selected such that the value 

of x in Equation 2.1.4 was between 1 and 10. Wavelengths of 300-400 nm are ideal for 

measuring vesicle scattering off of 100-200 nm diameter vesicles. 

 
 
2.1.3. EXPERIMENTAL METHODS         

2.1.3.1. Fluorescein Vesicle Preparation.  

Vesicles of cardiolipin (TOCL, Avanti Polar Lipids) were formed in the presence of high 

concentrations (~mM) of fluorescein dye in 20 mM TES, 0.1 mM EDTA at pH 8. Lipids were 

purchased in chloroform from Avanti. Lipids were initially dried under a steady stream of Argon 

for 2 hours to remove chloroform. The dried sample was reconstituted into the above specified 

buffer and vortexed for 1 minute. Lipid solutions then underwent a freeze/thaw/vortex cycle that 

was repeated 5 times. Lipids were then extruded with an Avanti Mini-extruder fitted with 200 

nm membranes to form vesicles. Vesicle diameter was measured by DLS and found to be 136.6 

nm. Fluorescein-filled vesicles were buffer exchanged to remove unencapsulated dye from the 

buffer using a 10,000 MWCO Amicon centrifugal ultrafiltration device. Samples were buffer 

exchanged multiple times until the flow through showed no detectable fluorescein (𝜀495 = 76,000 
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M-1 cm-1) by UV-Vis spectroscopy. Vesicle size did not change during buffer exchange from that 

observed immediately after extrusion, as determined by DLS.  The spectra of vesicle samples 

were collected at a series of dilutions. Total fluorescein concentration in the vesicle stock 

solution was calculated after adjusting for dilution. Vesicle inner volume was approximated by 

using the lipid size to estimate bilayer thickness, so that the measured vesicle diameter could be 

corrected for bilayer thickness (estimated as ~3.9 nm from the combined acyl chain and 

headgroup length of cardiolipin determined with MacPymol software, Schrödinger, Inc.).  This 

estimation corresponds closely with recently published experimental data for cardiolipin bilayers 

(bilayer thickness ~3.7 nm11). Using inner volume per vesicle derived in this manner, the total 

initial solution volume and the fraction of absorbance remaining after buffer exchange, the 

vesicle concentration was calculated (Table 2.1.1.). 

 

2.1.3.2. NBD Vesicle Preparation.  

To calibrate lipid concentration to vesicle concentration, vesicles were doped with 5% NBD-

labelled DOPC lipid (Avanti Polar Lipids), (for NBD, 𝜀 485 = 19,500 M-1 cm-1). 

Cardiolipin(TOCL)/NBD-labelled DOPC vesicles were formed under the same conditions as 

stated above using Cardiolipin that was mixed with 5% mole ratio NBD-labelled DOPC lipid in 

chloroform. The resultant mixture was dried to remove chloroform before reconstitution in 20 

mM TES buffer in 0.1 mM EDTA at pH 8.      

Cardiolipin(TOCL)/NBD-DOPC mixtures were extruded using an Avanti mini extruder and 

their size was measured using DLS. NBD-DOPC lipid was assumed to fully incorporate into 

cardiolipin vesicles at a 5% mole ratio. The membranes of the extruder were colorless after 

vesicle extrusion, consistent with this assumption. The scattering and absorbance spectrum of the 
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NBD doped cardiolipin vesicles was measured from 200-800 nm at a series of dilutions (Figure 

2.1.2.). The absorbance spectrum of free NBD in solution was also measured (Figure 2.1.2.). 

NBD absorbance was evaluated from the UV-Vis spectrum of vesicles (Figure 2.1.2.) and used 

to determine cardiolipin concentration. Cardiolipin concentration from three independently 

prepared samples is reported in Table 2.1.2. Lipid concentration was also evaluated from the 

scattering portion of the UV-Vis spectrum (Figure 2.1.2.) using vesicle concentration obtained 

from Mie scattering and the lipid density evaluated from the relative surface area of cardiolipin 

(129.8 Å2, [1]) and the vesicle.  
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Figure 2.1.2. CL vesicles were prepared at 5% NBD mole ratio.  Total absorbance was measured 

(red) and the NBD signal (blue, dashed) was subtracted to produce scattering due to vesicles 

(yellow). Scattering data were fit using equations 1-6 for wavelengths between 300-400 nm. 

Vesicles were measured to be 136 nm using DLS and lipid concentration per vesicle was 

approximated to be 1.75x105 lipids/vesicle based on ICP measurements. 

 

2.1.3.3. ICP Sample Analysis to Measure Lipid Concentration.     

Cardiolipin (TOCL, Avanti Polar Lipids) vesicles were prepared in 20 mM TES, 0.1 mM 

EDTA at pH 8 by extrusion through two 200 nm pore membranes using an Avanti Mini-extruder 

using the same lipid preparation as stated previously. Scattering and Rg (DLS) were measured for 

each sample before submission for ICP phosphorous analysis.      
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DOPC (Avanti Polar Lipids) vesicles were prepared in 20 mM TES, 0.1 mM EDTA at pH 8 

by extrusion through two 100 nm pore membranes using an Avanti Mini-extruder using the same 

lipid preparation method as stated previously. Scattering and Rg (DLS) were measured for each 

sample before submission for ICP phosphorous analysis.           

DLS was performed on extruded vesicles to measure particle size and vesicle concentration 

of the stock was calculated using the Matlab vesicle concentration calculator. Samples were then 

made from the stock at various concentrations. The corresponding vesicle concentration for each 

sample was calculated using the Matlab vesicle concentration calculator before submission for 

ICP phosphorous analysis. A cold digest (concentrated nitric acid, 12 hours) was used to remove 

both phosphorous atoms from the cardiolipin headgroup2 and samples were analyzed on a Perkin 

Elmer 5300 DV ICP-OES using the 178.2 nm emission of phosphorous. 

 

2.1.3.4. Method Validation.          

Initial validation or calibration measurements are required before the Matlab vesicle 

concentration calculator (MVCC) can be used simply with absorbance data as input. Strong 

absorbing dyes were used to estimate vesicle and lipid concentration and relate these 

measurements to scattering measurements. All experiments were performed on a Beckman 

Coulter DU 800 UV-Visible spectrophotometer where the spectral range from 200 to 800 nm 

was monitored. A Malvern Zetasizer Dynamic Light Scattering (DLS) instrument was used to 

monitor vesicle size throughout the validation process. If a DLS instrument is not available, 

particle size can be measured with a UV-Vis spectrophotometer7.      

To validate the MVCC, vesicles were first quantified by labelling their interior with a 

strongly absorbing dye and measuring dye content after external dye was removed by extensive 
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washing. Knowing vesicle size (and thus internal volume) and initial dye concentration, vesicle 

concentration could be calculated from the decrease in dye absorbance after the wash step.  

Vesicles were formed in the presence of fluorescein (a strongly absorbing dye) to determine 

vesicle concentration. External fluorescein was removed from extruded vesicles by buffer 

exchange and the residual fluorescein concentration was calculated. This fluorescein 

concentration was related to inner volume of a vesicle to determine the total number of vesicles 

required to produce the fluorescein absorbance (Table 2.1.1.).       

Next, the vesicle concentration was found using Mie scattering theory. To extract scattering 

data from spectra taken of fluorescein-filled vesicles, the fluorescein absorbance was subtracted 

from spectra collected after buffer exchange (Figure 2.1.3.). Scattering absorbance data between 

300-400 nm were input into the Matlab vesicle concentration calculator because this spectral 

region has minimal fluorescein absorbance (Figure 2.1.3.) The vesicle concentration obtained is 

reported in Table 1. The vesicle concentration found using fluorescein is within an error of less 

than 8% of the vesicle found using Mie Scattering theory in three independent trials. Taking into 

account the error in approximating inner vesicle volume and extracting scattering absorbance 

from the raw absorbance data, the agreement is good, validating the use Mie scattering theory to 

calculate vesicle concentration. 
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Table 2.1.1. 
Comparison of vesicle concentration calculated using fluorescein filled vesicles with 
that obtained from Mie scattering for the same vesicles. 

Vesicle Concentration from 
Fluorescein Absorbance 

Vesicle Concentration from 
Mie scattering 

% Error 

4.8 ± 0.1 x1017 5.15 ± .01 x1017 6.8 

5.0 ± 0.1 x1017 5.16 ± .01 x1017 3.1 

4.8 ± 0.1 x1017 5.16 ± .01 x1017 7.0 

Concentrations reported in vesicles per L. Vesicle concentration measurements and 
calculations found for three independent trials. Error reported reflects error in 
absorbance measurements.  
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Figure 2.1.3. Fluorescein filled vesicle scattering and absorbance data of extruded vesicles 

measuring 136.6 nm in diameter using DLS (blue). Fluorescein intrinsic absorbance spectrum 

shown for diluted fluorescein stock used during vesicle preparation (dotted red). Scattering off 

vesicles after subtracting out absorbance due to fluorescein inside vesicles.  

 

Having established that the number of vesicles per sample could be calculated, we carried out 

a second, independent set of experiments so that the MVCC could be calibrated to incorporate 

lipid density per vesicle to permit lipid concentration determination. In these experiments, lipid 

concentration per vesicle was measured using fluorescently labelled lipid to correlate vesicle 

concentration to lipid concentration. NBD-labelled DOPC lipid was used to dope Cardiolipin 
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vesicles and determine lipid concentration. Associated scattering data from absorbance 

measurements was used to calculate vesicle concentration and relate that to lipid concentration 

using Cardiolipin headgroup size as reported by Pan et al.11 The lipid concentrations obtained 

from NBD absorbance and from Mie scattering theory from three independent trials are within 

5% (Table 2.1.2.), confirming the validity of the surface area used for cardiolipin.  

 

Table 2.1.2. 
Comparison of lipid concentration calculated using NBD doped vesicles with that 
obtained from Mie scattering for the same vesicles. 

Lipid Concentration from 
NBD Absorbance, M 

Lipid Concentration from Mie 
scattering, M 

% Error 

8.5 ± 0.3 ×10-4 8.41 ± .04 ×10-4 1.1 

8.4 ± 0.2 ×10-4 8.20 ± .03 ×10-4 2.4 

8.5 ± 0.2 ×10-4 8.16 ± .02 ×10-4 4.4 

Error evaluated as standard deviation of multiple spectra collected for each trial. 

 

 

As an independent external method for lipid concentration calibration, ICP was used to 

measure phosphorous content of samples of pure cardiolipin vesicles. Samples were prepared for 

ICP as outlined in Supplementary Information. The correspondence between cardiolipin 

concentration obtained by phosphorous analysis and cardiolipin concentration calculated with the 

MVCC using the experimental value for cardiolipin surface area11 to evaluate lipid density was 

consistently within <5% (Table A.1.).         

To demonstrate the versatility of the MVCC, samples of DOPC were also submitted for ICP 

analysis and compared to MVCC calculated concentrations (TableA.1.). DOPC bilayer 
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thickness, headgroup surface area 11 and index of refraction 12 were used to calculate DOPC lipid 

concentration from scattering. Error between the MVCC and ICP was within <3% demonstrating 

the calculator’s ability to accurately measure lipid concentration given the corresponding lipid 

physical parameters.            

Lipid concentration, as determined using the reported manufacturer concentration, was 

compared to MVCC findings to analyze the necessity of a vesicle calculator in quantitative 

experiments. Significant deviations in concentration based on manufacturer specified lipid mass 

or concentration and ICP analysis are reported for all DOPC and TOCL samples in Table A.2. 

Error in concentration based on starting material and final ICP measurements were as high as 

28%, whereas the correspondence between the ICP and MVCC values was always <5% (Table 

A.1.). Because of the vesicle formation process used, lipid had the potential of being lost in 

several steps demonstrating that concentration based on manufacturer reported lipid mass does 

not necessarily reflect final experimental concentration. This finding supports the use of the 

MVCC in reliably determining lipid concentration for quantitative experiments.  

 

2.1.4. CONCLUSION           

The Mie scattering-based method for vesicle quantification was designed to provide a quick, 

reliable, and cost effective analytical method, which after initial validation by absorbance and/or 

phosphorous analysis, can be implemented immediately before any experiment involving use of 

extruded vesicles. The method allows vesicle concentration to be accurately measured simply 

using UV- Vis measurements. Knowing the surface area of the lipid (validated or calibrated by 

absorbance or by phosphorous analysis), lipid concentration can also be obtained with the 
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MVCC. Due to the simplicity of the experimental setup, vesicle and lipid concentrations may be 

calculated quickly and without sample destruction, providing a reliable alternative for more time-

consuming methods.            

The wavelength measurement range is only limited by the size of the vesicle (thus size 

parameter, x (See Eq. 1.4)) and constraints of the detection device. When using extruded vesicles 

or vesicles with a well-defined radius, as was done here, DLS measurements are not necessary 

once vesicle size is established, although occasional spot- checking of the consistency of the 

extrusion process is recommended. While the region of 300-400 nm was used to measure vesicle 

scattering and calculate concentration, any convenient wavelength in the UV-Visible spectrum 

may be used provided the constraints on size parameter, x, are met from Eqn. (2.1.4). This 

technique uses the mean vesicle radius to determine Cext for a scattering center. Table A.3. 

provides wavelength ranges for testing dependent on vesicle size for various vesicle 

compositions. It should be noted that for samples with large standard deviations in vesicle radius, 

theoretical vesicle calculations may have higher error.           

The technique may be adopted for any pure lipid system. The above outlined technique 

should also work for mixed lipid systems, provided the refractive index of the mixed lipid vesicle 

is available. Finally, any buffer that does not appreciably change the index of refraction may be 

used provided it does not absorb significantly at the wavelength of detection. Modifications may 

be made to incorporate the adjusted index of refraction of the buffering media if needed.   

A simplified version of the MVCC written in .m file format can be found in Appendix I.1 

with associated instructions on the installation and running of the file. This version uses reported 

index of refraction, headgroup size and bilayer thickness to calculate lipid concentration for 
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TOCL, DOPC, POPC (1- palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and POPG (1-

palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycerol)).8,11–15 
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2. 2. Rapid quantification of vesicle concentration for DOPG/DOPC and 

Cardiolipin/DOPC mixed lipid systems of variable composition.  

 

2.2.1. INTRODUCTION          

Lipid bilayers in the form of micelles, vesicles and liposomes are important for studies of 

membrane associated biological interactions. More recently, they have been utilized for vaccine 

delivery.16 Both fields use a diverse array of lipid compositions to form biologically relevant 

membranes.16,17 To date, basic characterization of lipid systems has been time consuming and 

expensive.  

Recent work by Elmer-Dixon and Bowler (See Chapter 2.1.)18  described and validated a 

rapid, label-free, and non-destructive method to determine vesicle number and to generate lipid 

concentration in pure lipid systems composed of either 1,2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC) or cardiolipin (1’,3’-bis[1,2-dioleoyl-sn-glycero-3-phospho]-sn-

glycerol, TOCL). Using Mie scattering theory, Beer’s law was applied to scattering, non-

absorbing vesicles to calculate the number of vesicles scattering light.6,18  A standard UV-Visible 

spectrophotometer was used to acquire absorbance measurements of the pure lipid vesicles. 

Knowing vesicle size and the refractive index of the lipid, vesicle concentration was calculated 

using a Matlab Vesicle Concentration Calculator (MVCC, code found in Appendix I.1).18 Lipid 

concentration measurements using standard methods were used to calibrate the number of lipids 

per vesicle allowing the MVCC also to derive lipid concentration from the absorbance data. This 

paper extends the MVCC to allow calculation of vesicle number and lipid concentration for 

mixed lipid systems.  
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2.2.2. THEORETICAL CALCULATIONS        

As previously noted,18 quantification of lipids is difficult because they lack a characteristic 

absorbance in the UV-Visible spectrum. However, it is possible to quantify lipid-containing 

vesicles based on their light scattering properties, using Mie scattering theory. Knowing the lipid 

number per vesicle, a total lipid concentration can be calculated. Our previous work applied this 

approach to quantify vesicle and lipid concentrations for pure lipid systems of Cardiolipin and 

DOPC.18 Simple modifications in the calculation of vesicle concentration from UV-Visible 

spectrophotometer scattering measurements can be implemented to extend the technique to 

mixed lipid systems.           

The pure lipid vesicle quantification method of Elmer-Dixon and Bowler (see Chapter 2.1.)18 

requires that the physical characteristics of the pure lipid are known. Specifically, the MVCC 

requires that the lipid headgroup surface area, lipid bilayer thickness and refractive index of the 

lipid are known. Headgroup surface area and bilayer thickness are used to determine total vesicle 

surface area and approximate lipid packing in the membrane allowing calculation of the total 

number of lipids per vesicle given a known vesicle diameter. Refractive index is required as it 

dictates how light interacts with the non-absorbing vesicle surface leading to a deviation from its 

initial trajectory. Cardiolipin (TOCL) and DOPC have significantly different refractive indices 

(1.468 and 1.375,12 respectively) resulting in differences in the absorbance due to scattering when 

the same number of vesicles for each pure lipid are scanned with a UV-Visible 

spectrophotometer. Refractive index prediction for heterogeneous systems from individual 

component refractive indices is well established for bulk liquid mixtures.19 That said, the lipids 

comprising the system are constrained to the lipid bilayer at the surface of the vesicle. At the 

time of this publication, the authors are unaware of existing models to predict refractive index 
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from component refractive indices for mixed lipids on surfaces. To extend the MVCC to mixed 

lipid systems, we have developed and validated a model for approximating the refractive index 

of lipid mixtures.  

The quantification of mixed lipid vesicles requires the use of a bilayer refractive index 

dependent on the composition of the mixed lipid system. Assuming that lipids readily 

incorporate into heterogeneous vesicles, a corresponding refractive index can be calculated based 

on the mole fraction of membrane constituents, the headgroup surface area of each lipid and the 

corresponding refractive index for that lipid.  The mole fraction of each constituent lipid in the 

membrane only partially dictates the surface composition of a heterogeneous lipid membrane 

because the surface area of the headgroup of each constituent lipid can vary considerably. The 

mole fraction, xi, of a lipid, ℓi, in a system of mixed composition is 

 

𝑥𝑖 =
[ℓ𝑖]
∑ [ℓ𝑖]𝑖

 .            Eqn. 2.2.1 

 

We define effective lipid headgroup surface area, HDSAeff, as the mole fraction weighted sum of 

the actual surface areas of the constituent lipids, HDSAi,   

 

𝐻𝐷𝑆𝐴𝑒𝑓𝑓 = ∑ 𝑥𝑖 ∗ 𝐻𝐷𝑆𝐴𝑖𝑖         Eqn. 2.2.2  

 

Using HDSAeff, the fractional surface area, Pi, for each lipid constituent is the mole fraction 

weighted surface area of each divided by HDSAeff:  
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𝑃𝑖 = 𝑥𝑖 ∗
𝐻𝐷𝑆𝐴𝑖
𝐻𝐷𝑆𝐴𝑒𝑓𝑓

  .           Eqn. 2.2.3 

 

Because the refractive index is expected to be proportional to fractional contribution of each lipid 

to lipid surface area, the effective refractive index of a mixed lipid system is the sum of 

refractive indices (RIi) of the constituent lipids weighted by Pi: 

 

𝑅𝐼 = ∑ 𝑅𝐼𝑖 ∗ 𝑃𝑖𝑖 .           Eqn. 2.2.4 

 

Equations 1-4 have been used to modify the previously published Matlab code (Appendix I.2)18 

to incorporate the mixed lipid refractive index. The updated Matlab code, which we refer to as 

the Mixed Lipid Calculator (MLC), incorporates this method of evaluating RI for a mixed lipid 

vesicle, and is provided in supplementary information. Like the MVCC for pure lipid vesicles, 

the MLC requires absorbance measurements of scattering off of vesicles of known approximate 

size to calculate particle and lipid concentration using Beer’s law.6,18  

 

2.2.3. EXTERNAL VALIDATION.        

To validate the above method for evaluating refractive index in mixed lipid systems, vesicle 

and lipid concentration calculations with the MLC were compared with direct measurements of 

lipid content using phosphorous analysis. Samples analyzed with the MLC were prepared and 
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sent for independent lipid concentration analysis using Inductively Coupled Plasma Atomic 

Emission Spectroscopy (ICP) to determine phosphorous content.     

The previously reported MVCC was not tested and validated with pure DOPG vesicles using 

the known physical parameters of the lipid (Refractive index, headgroup surface area, bilayer 

thickness). Thus, before modifying the MVCC for use with mixed lipid systems containing 

DOPG, the MVCC was validated for pure DOPG vesicles using a headgroup surface area of 

0.694 nm2,20 a bilayer thickness of 3.63 nm20 and a refractive index of 1.359.12   

Known amounts of DOPG (Avanti Polar Lipids, Inc), based on the manufacturer reported 

mass, were dried under a constant flow of compressed nitrogen to remove excess chloroform. 

Samples were then reconstituted in 20 mM TES buffer, 0.1 mM EDTA, pH 8 to yield a 

concentration based on the manufacturer reported mass (see Table A.4.). Samples were extruded 

to 100 nm diameter using an Avanti Mini-extruder. Vesicle diameter was verified with dynamic 

light scattering (DLS) measurements using a Malvern Zetasizer. A Beckman-Coulter DU 800 

spectrophotometer was used to measure Mie scattering in standard absorbance mode for each 

sample at multiple wavelengths between 300 and 400 nm. The vesicle diameter and the Mie 

Scattering data were used to evaluate lipid concentration using the MVCC.18 Samples were then 

submitted for independent ICP analysis. Table 2.2.1. compares the results for the two methods. 

The agreement between ICP and the MVCC is excellent. 
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Table 2.2.1. 
Comparison of DOPG lipid concentration in 100 nm pure DOPG vesicles found 
using ICP and calculated from Mie scattering data using the MVCC. 

DOPG lipid concentration 
measured using ICP, mM* 

DOPG lipid concentration from 
Mie scattering (MVCC), mM† 

% Error‡ 

1.16 1.14 ± 0.02 1.7% 

0.94 0.89 ± 0.05 5.3% 

0.20 0.21 ± 0.01 5.0% 

*Based on phosphorous content obtained from ICP measurements (see Table A.4) after a cold digest 
to release phosphorous (see ref. [3]) 
†Error is the standard deviation from scattering measurements at different wavelengths  
‡% Error for Mie scattering data versus ICP data 

 

 

Samples of mixed lipid composition were then prepared to test the validity of the method of 

evaluating RI for mixed lipid vesicles implemented in the MLC. Known masses of DOPC were 

mixed with known masses of either Cardiolipin (CL) or DOPG (Avanti Polar Lipids, Inc) based 

on their manufacturer reported concentrations, and dried under a constant flow of compressed 

nitrogen to remove excess chloroform. Samples were then reconstituted in 20 mM TES buffer, 

0.1 mM EDTA, pH 8 to yield a concentration based on the manufacturer reported mass (see 

Table A.5.). Concentrations for reconstitution were well above the known critical micelle 

concentration (CMC) for constituents of the mixture to ensure heterogeneous incorporation of 

lipids into vesicles.21 Samples were extruded to 100 nm diameter using an Avanti Mini-extruder. 

Vesicle diameter was verified using DLS (Malvern Zetasizer). Mie scattering was measured with 

a Beckman-Coulter DU 800 spectrophotometer operating in standard absorbance mode. For each 

sample, multiple wavelengths between 300-475 nm were used to evaluate Mie scattering. 

Samples were then submitted for independent ICP analysis.      
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Table 2.2.2. reports lipid concentration and compares calculated total lipid concentration 

using Mie scattering to total concentration obtained by ICP measurements of phosphorous 

content. The average percent error between the values obtained by ICP and those calculated from 

Mie scattering with the MLC is 4.3%, providing a strong validation of our method for evaluating 

refractive index in mixed lipid systems. The concentrations from Mie scattering measurements 

are also mostly within one standard deviation of the concentrations obtained by phosphorous 

analysis (Table 2.2.2.). The method of evaluating RI for mixed lipid systems provides close 

agreement between ICP measurements and calculations from Mie scattering data with the MLC 

across a broad range of mixing ratios, indicating that the method of evaluating RI is general.  
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Due to the physical nature of the lipids investigated here, it is impossible to obtain scattering 

measurements based on specific lipids in a mixed lipid system using absorbance spectroscopy in 

the visible range of the electromagnetic spectrum. That being said, knowing the mole fraction of 

each constituent lipid from the mass of lipid used to prepare the vesicles, the concentration of 

each lipid can be calculated from the total lipid concentration. This indirect measurement permits 

quantification of individual lipid populations in mixed lipid systems using the MLC (see Table 

2.2.2.). The close correlation between the lipid concentrations obtained by Mie scattering and 

ICP also indicates that the manufacturer-provided masses are fairly accurate and that losses of 

Table 2.2.2. 
Comparison of total lipid concentrations of 100 nm DOPC:CL or DOPC:DOPG mixed 
lipid vesicles found using ICP and calculated with the MLC. 

Mixed lipid 
vesicle 
content* 

Total lipid 
concentration 
by ICP, mM† 

Total lipid 
concentration 
from Mie 
scattering (MLC), 
mM‡ 

Calculated 
DOPC 
concentration 
(MLC), mM 

Calculated CL 
or DOPG 
concentration 
(MLC), mM 

% 
Error§ 

20% CL 0.93 0.95 ± 0.03 0.76 0.19 2.30 

20% CL 1.26 1.37 ± 0.04 1.09 0.27 8.66 

20% CL 2.28 2.47 ± 0.08 1.97 0.49 7.96 

50% CL 0.58 0.54 ± 0.03 0.27 0.27 6.22 

50% CL 0.35 0.35 ± 0.03 0.17 0.17 1.86 

20% DOPG 1.07 1.09± 0.01 0.87 0.22 2.29 

20% DOPG 0.38 0.37± 0.01 0.30 0.07 3.26 

20% DOPG 0.75 0.79± 0.03 0.63 0.16 4.37 

50% DOPG 1.06 1.08± 0.02 0.54 0.54 1.86 

*Mole percent, the remainder being DOPC.  
†Based on phosphorous content obtained from ICP measurements (see Table A.4) after a cold digest to 
release phosphorous (see ref. [3]). 
‡Error is the standard deviation from scattering measurements at multiple wavelengths. 
§% Error for Mie scattering data versus ICP data. 
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material during extrusion (average percent error is 11.9 % for mixed lipid systems relative to 

ICP, see Table A.5) do not affect the mole fractions of lipids in the vesicles used to evaluate RI. 

 

2.2.4. CONCLUSION          

The modification of the MVCC to produce the MLC for mixed lipid systems provides a 

rapid, reliable, non-destructive quantification method for timely experimental characterization of 

lipid vesicles across a broad range of mixed lipid compositions. The method provides accurate 

lipid concentrations using a standard UV-Vis spectrophotometer making the technique accessible 

and affordable.            

As discussed in our earlier report,18 the optimal wavelength region for Mie scattering 

measurements depends on vesicle size. Further, with vesicle extrusion, DLS is not necessary 

once vesicle size is characterized for the system. The MLC has been validated for DOPC:DOPG 

and DOPC:CL mixed lipid vesicles, but can be extended to any other lipid if the headgroup 

surface area, the bilayer thickness and the refractive index of the lipid of interest is known.  

Finally, all lipid mixtures in this work were prepared well above the CMC.21 If sample 

preparation for vesicle formation is near the transition temperature for a specific lipid or the 

CMC, the resultant vesicles may not be heterogeneous. In this case, the MLC may fail to 

accurately measure lipid concentration.         

Matlab code for the MLC along with installation and user instructions can be found in 

Appendix I.2. 
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CHAPTER 3: Site A-mediated Partial Unfolding of Cytochrome c on 

Cardiolipin Vesicles Is Species Dependent and Does Not Require Lys72  

 

3.1. INTRODUCTION 

Cytochrome c (Cytc) is well known to function as an electron transporter during respiration.1 

More recently, Cytc was shown to be involved in the initiating steps of apoptosis.2-4 This 

involvement requires the protein to dissociate from the inner mitochondrial membrane and exit 

mitochondria.2-4 Before any of these steps can happen, the protein must oxidize cardiolipin 

(CL).4, 5 Thus, the nature of Cytc-CL binding, CL oxidation by Cytc and subsequent dissociation 

of Cytc from CL recently has been the subject of intense investigation.6, 7 Cytc-membrane 

interactions have been studied in vitro with a variety of memetic membrane systems using 

primarily mammalian Cytc,8-21 and in some cases, yeast iso-1-Cytc.22, 23 These studies use 

differing compositions of mixed lipid systems, salt and solution concentrations and detection 

techniques. These variations make direct comparison of protein response to lipid exposure 

between and among different studies difficult, if not impossible.  Four binding sites, A (Figure 

3.1, anionic site; lysines 72, 73, 86 and 87; electrostatic),13, 14, 21 C (cardiolipin site; Asn52; 

hydrophobic),13, 14 L (lysines 22 and 27, histidines 26 and 33; membrane fusion)24 and N (novel 

site; Phe36, Gly37, Thr58, Trp59, Lys60)25 have been characterized. However, few studies have 

attempted to analyze the binding at these sites in isolation or via mutagenesis methods.26, 27 

Similarly, few studies exist that directly compare binding behavior for Cytc from different 

species.22, 23 

Comparison of the binding of yeast iso-1-Cytc versus human Cytc to cardiolipin vesicles has 

the potential to provide important insight into how this interaction has evolved to optimize the 
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Cytc-mediated switch that initiates the intrinsic pathway of apoptosis through peroxidation of 

cardiolipin.  Yeast, while capable of releasing Cytc from mitochondria under solution conditions 

that mimic apoptosis,28 lacks many components of the intrinsic pathway of apoptosis, including 

the ability to interact with Apaf-1 to form a functional apoptosome.32-34 Yeast iso-1-Cytc has 

been free of the necessity of evolving to bind to Apaf-1, which has led to some changes in 

sequence that affect the charge distribution around site A. Mutating Glu62 to the yeast residue, 

Asn, in horse Cytc leads to a 10-fold decrease in caspase activation.34 
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Figure 3.1. Overlay of yeast iso-1-Cytc (PDB entry 2YCC;29 light gray and salmon) and human 

Cytc (PDB entry 3ZCF;30 dark gray and red) aligned using Pymol.31 Lys72 (trimethyllysine in 

yeast, tmK72), Lys73, Lys86 and Lys87, which have been implicated as constituents of site A, 

are show in light gray and dark gray stick models for yeast iso-1-Cytc and human Cytc, 

respectively. Ω-Loop-D (residues 70 – 85), which positions the Met80 heme ligand, is shown in 

salmon and red for yeast iso-1-Cytc and human Cytc, respectively. Trp59, seen behind the heme, 

is shown as a blue stick model. The heme and its ligands, Met80 and His18, are shown as light 

gray and dark gray stick models for yeast iso-1-Cytc and human Cytc, respectively. 
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Figure 3.2. Surface electrostatics of site A in 

yeast iso-1-Cytc versus human Cytc. (A) 

yeast iso-1-Cytc (PDB entry 2YCC),29 (B) 

chain A of human Cytc (PDB entry 3ZCF)30 

and (C) chain A of human K72A Cytc (PDB 

entry 5TY3).35 Electrostatic surface was 

generated with PyMol.31 Positive, neutral and 

negative electrostatic surfaces are indicated 

by blue, white and red surfaces, respectively. 

Lysine and glutamate residues in or near site 

A are labelled.        
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This mutation contributes to a significant change in the continuity of the positive surface 

charge around site A (Figure 3.2), along with the additional mutation from Thr69 in yeast to 

Glu69 in mammals. The re-ordering of the cluster of charged residues at positions 86 – 90 that 

follow -loop D (KKEKD in yeast iso-1-Cytc and KKKEE in human Cytc) also changes the 

charge distribution around site A (Figure 3.2A versus 2B) and has implications for ATP 

inhibition of CL binding.23 Studies on the salt dependence of yeast iso-1-Cytc versus horse Cytc 

binding to 100% CL vesicles indicate that the electrostatic interaction with CL is much stronger 

for yeast iso-1-Cytc,23 indicating that these evolutionary changes significantly impact the 

Cytc/CL interaction. However, this study was carried out at pH 7 and showed strong increases in 

light scattering when 100% CL vesicles were mixed with yeast iso-1-Cytc and horse Cytc. This 

behavior indicates that significant binding through site L, which leads to membrane fusion, was 

occurring under these conditions and thus the results do not report exclusively on site A binding. 

To address the evolution of Cytc/CL binding specifically through site A, solution conditions to 

quantitatively investigate site A, in the absence of other binding sites, have been developed. CL 

vesicle binding to wild type human Cytc (HuWT) and wild type yeast iso-1-Cytc (yWT), using 

Escherichia coli-expressed iso-1-Cytc, which lacks the native post-translational modification at 

K72 (𝜀-NH2 is trimethylated in yeast36), has been characterized. The results show that site A 

binding to 100% CL vesicles is both similar and different for yeast iso-1-Cytc and human Cytc. 

 Recent studies on horse Cytc variants have also indicated that Lys72 is a predominate 

contributor to CL/Cytc binding at pH 7.26, 27 The structure of human Cytc carrying a K72A 

mutation shows the expected truncation of the charge surface usually assigned to site A (Figure 

3.2B versus 3.2C). Thus, significant effects on site A binding might be expected. Recent work 

indicates that K72A mutations to yeast iso-1-Cytc37 and human Cytc35 can promote 
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conformational fluctuations that enhance the intrinsic peroxidase activity of these proteins. Thus, 

it is of interest to evaluate whether the enhanced conformational flexibility produced by the 

K72A mutation also affects binding through site A. The site A specific binding conditions 

developed here are also applied to K72A variants of yeast iso-1-Cytc and human Cytc (yK72A 

and HuK72A, respectively). Our results indicate that other nearby lysines can compensate for the 

loss of Lys72 from site A.  

3.2. EXPERIMENTAL METHODS 

3.2.1. Mutagenesis.  

The yeast WT iso-1-cytochrome c was made using the QuikChange Lightning Site-Directed 

Mutagenesis kit (Agilent Technologies, Inc.) to mutate Ala72 to lysine (A72→K72) (primers: 

CATGTCAGAGTACTTGACTAACCCAAAGAAATATATTCCTGGTACCAGATGG  and its 

reverse complement, from Invitrogen Life Technologies) in the pRbs_BTR1 plasmid38 carrying 

the gene for the K72A variant of iso-1-Cytc.37 The pRbs_BTR1 plasmid38 is a derivative of 

pBTR136, 39 with an optimized ribosomal binding sequence. pRbs_BTR1 co-expresses the iso-1-

cytochrome c gene, CYC1, and the yeast heme lyase gene, CYC3, allowing covalent attachment 

of the heme in the cytoplasm during expression. After mutagenesis, mutant DNA was 

transformed into XL-10 Gold Competent Escherichia coli cells (Agilent Technologies). Cultures 

(5 mL) of individual clones were grown and the DNA  extracted using a Wizard Genomic DNA 

Purification Kit (Promega Corp). Extracted DNA was submitted to the Murdock DNA 

Sequencing Facility (University of Montana, Missoula) for sequencing to confirm successful 

mutagenesis.   
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3.2.2. Protein Preparation.            

The yeast iso-1-cytochrome c variants yWT and yK72A37 were expressed from the 

pRbs_BTR1 plasmid. Human Cytc variants, HuWT and HuK72A,35  were expressed from the 

pBTR(HumanCc) plasmid, obtained from the Pielak laboratory at the University of North 

Carolina.40 DNA plasmids for all mutants were transformed into E. coli BL21 competent cells 

(EdgeBio, Gaithersburg, MD). The yeast and human variants were expressed and purified using 

previously reported methods.41-44 Final purification was by HPLC cation exchange (Uno S6, 

BioRad) using a previously described gradient.41 Purified protein in the reduced state was 

oxidized using a 5-fold excess by weight of potassium ferricyanide followed by size exclusion 

chromatography using a Sephadex G-25 (GE Healthcare Life Sciences) column to separate 

oxidized Cytc from ferricyanide. Protein concentration prior to experiments was determined by 

UV-Vis spectroscopy (Beckman Coulter DU 800 spectrophotometer) using the previously 

reported extinction coefficients of Cytc at 339, 526.5, 541.75 and 550 nm.45 

 

3.2.3. Lipid and Vesicle Preparation.         

Cardiolipin (1’,3’-bis[1,2-dioleoyl-sn-glycero-3-phospho]-sn-glycerol, TOCL) was 

purchased from Avanti Polar Lipids, Inc., Alabaster, AL and used in vesicle formation without 

further purification. Lipids were dried under Argon to remove chloroform before being 

reconstituted in 20 mM TES Buffer, 0.1 mM EDTA, pH 7 or pH 8, as specified. Lipids and 

buffer were vortexed for 1 minute then set in a warm bath for 9 minutes. This vortex/warm bath 

cycle was repeated 10 times. To form vesicles, the lipid solution underwent a freeze/thaw/vortex 

cycle five times. The vesicle solution was then extruded to the desired vesicle size using an 

Avanti mini-extruder with two 100 nm membranes. The size of the extruded vesicles was 
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measured using a Malvern Dynamic Light Scattering (DLS) instrument and found to be 102 ± 9 

nm. Scattering measurements were performed using a Beckman Coulter DU 800 with a 10 mm 

pathlength Hellma micro-cuvette. Scattering measurements were used in coordination with DLS 

measurements to determine vesicle and lipid concentration using a previously reported technique 

based on Mie scattering.46 Vesicles were used immediately after preparation to avoid issues 

related to vesicle stability. DLS measurements following experiments indicated no change in 

vesicle size. 

 

3.2.4. Titration of Cytc with Cardiolipin Vesicles.       

Titrations were performed using a batch procedure. The main stock of freshly prepared 

vesicles was then used to make a set of dilutions at 2-fold the concentration required for each 

vesicle concentration in the titration curve. A 2-fold concentration protein stock was added to 2-

fold concentration lipid for each titration point in a 1:1 ratio resulting in a solution at the desired 

protein and lipid concentrations. Samples were gently mixed by hand and incubated for 30 

minutes before spectroscopic measurements. Experiments were performed in triplicate and each 

sample at each concentration point was prepared independently. 

 

3.2.5. Absorption Spectroscopy.  

A Beckman Coulter DU800 spectrophotometer was used to measure the UV-Vis 

spectrum during titrations of Cytc with CL vesicles. A 10 mm pathlength Hellma micro-cuvette 

was used to measure absorption between 200 and 800 nm at a 1 nm step and 400 nm/min scan 

rate with a 5 nm bandwidth. 
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3.2.6. Circular Dichroism Spectroscopy.  

An Applied Photophysics Chirascan circular dichroism (CD) spectrophotometer was used for 

Soret CD measurements. Spectral regions from 350-450 nm were measured with a Hellma 4x10 

mm quartz cuvette utilizing the 4 mm pathlength. CD data were acquired using a 1 nm 

descending step, 1.8 nm bandwidth and a 3 second acquisition time at 25 qC. Three independent 

titrations were carried out for each protein. All spectra were smoothed using a 6th order Savitsky-

Golay filter smoothing technique. The data points in Figure 3.7 of the Results are the average 

and standard deviation of the three independent trails for each of the four proteins studied. 

 

3.2.7. Fluorescence Spectroscopy.  

An Applied Photophysics Chirascan CD spectrophotometer was adapted for scanning 

fluorescence measurements. Tryptophan excitation was performed at 295 nm with a 5 nm 

bandwidth. A Helma 5x5 mm fluorescence cuvette was used during data acquisition. Excitation 

bleed-through was filtered using a 305 nm cutoff filter (Newport Corp.) and data were acquired 

using the scanning emission monochromator provided by Applied Photophysics. Emission 

spectra were measured from 320 - 500 nm using a 1 nm step and a 2.5 nm bandwidth with an 

acquisition time of 0.5 sec per step. A minimum of three independent trials were acquired for 

each Cytc variant. Each trial was smoothed using a 6th order Savitsky-Golay filter smoothing 

technique before averaging data points from the three independent trials (See Figure 3.14, 

Results). 
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3.2.8. Data Fitting.   

CD and fluorescence data for all Cytc variants were fit to the simplest suitable model, a one 

site cooperative Langmuir-type equation (eq 3.1), where the spectroscopic value,  

𝑠(𝑥) =
𝑠𝑜+𝑠1(

𝑥
𝐾𝑑(app)

)
𝑛

1+( 𝑥
𝐾𝑑(app)

)
𝑛            (eq 3.1) 

s(x), corresponds to the amplitude measured at the lipid to protein ratio, x, in the titration and s0 

and s1 are the amplitudes of the initial and final states, respectively. In eq 3.1, Kd(app) is the 

apparent dissociation constant corresponding to the lipid concentration or lipid to protein ratio 

(LPR) required to induce half occupancy of the conformation associated with site A binding to 

CL and n is the associated Hill coefficient. 

 

3.2.9. Guanidine Hydrochloride Induced Protein Unfolding Monitored by Fluorescence.  

An Applied Photophysics Chirascan CD spectrophotometer adapted for scanning 

fluorescence monochromator measurements and coupled with a Hamilton Microlab 500 series 

auto-titrator was used to perform guanidine hydrochloride (GdnHCl) titrations monitored using 

Trp59 fluorescence. Tryptophan excitation was performed at 295 nm with a 5 nm bandwidth. A 

Hellma 4 mm x 10 mm quartz cuvette was used with excitation along the 4 mm pathlength and 

acquisition along the 10 mm pathlength. This cuvette accommodates a stir bar to ensure 

complete mixing during the titration. Excitation bleed-through was filtered as described for 

vesicle titrations. Emission spectra were measured from 320 - 500 nm as described for vesicle 

titrations. The autotitrator was setup to increase GdnHCl concentration variably in 0.05 to 0.1 M 

increments. Two protein stock solutions were prepared at 10 µM protein concentration in 1) 20 

mM Tris Buffer, 40 mM NaCl, at pH 7 as well as 2) 6 M GdnHCl, 20 mM Tris Buffer, 40 mM 



 
 

55 

NaCl, at pH 7 and were stored at 4 qC until experimentation when the solutions were equilibrated 

to 25 qC. Protein stock with GdnHCl was auto-titrated into protein stock with no GdnHCl. After 

each increment of GdnHCl, the sample was stirred in the cuvette for 10 seconds and then left to 

rest for 100 seconds before data acquisition. Three independent trials were acquired for yWT iso-

1-Cytc. 

 

3.3. RESULTS 

3.3.1. Site A-specific Binding Conditions.  

To create a simplified, controlled environment to investigate site A-specific CL binding, we 

optimized experimental conditions. Site A sits on the Ω-loop covering heme crevice access1 and 

has been characterized as being comprised of Lys72 and Lys73,13, 16 and sometimes lysines 86 

and 87 (see Figures 3.1 and 3.2).6, 21 Therefore, electrostatic interactions dominate. Both sites C 

and L diminish in importance above neutral pH.14, 24 To isolate site A, binding studies were 

carried out in 20 mM TES buffer, 0.1 mM EDTA at pH 8. To further simplify binding, 100% CL 

vesicles formed with 1’,3’-bis[1,2-dioleoyl-sn-glycero-3-phospho]-sn-glycerol (TOCL) were 

used. 

To demonstrate that binding at site A is dominant at pH 8, we compared binding to 100% 

TOCL vesicles monitored by UV-Vis spectroscopy at pH 7 versus pH 8 using yWT iso-1-Cytc 

and HuWT Cytc. At pH 7, titrations of yWT iso-1-Cytc with CL led to a substantial increase in 

light scattering as CL concentration increased (Figure 3.3A), as observed previously.23 Similar 

observations are made with HuWT Cytc at pH 7 (Figure 3.4A), although, the degree of light 

scattering is less pronounced. Thus, at pH 7, Cytc-CL interactions produce large structures that 

generate scattering. This finding corresponds directly with Kawai et al.24 who attributed 
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formation of large structures to vesicle fusion mediated by simultaneous binding to both sites A 

and L of Cytc.  

Deprotonation of ionizable residues contributing to site L eliminates this site above pH 7 in 

the membrane system used in this earlier study.24 For 100% CL vesicles, titration of yWT iso-1- 

Cytc and HuWT Cytc at pH 8 led to no significant light scattering, indicating that site L no 

longer plays a role in binding at this pH (Figure 3.3B, Figure 3.4B). Thus, CL vesicle titrations at 

pH 8 should report on site A binding. While light scattering does not report directly on site C, pH 

dependent binding data for site C indicate that binding is almost completely eliminated when pH 

is raised to 7. 

  

 

 

 

 

Figure 3.3.  (A) UV-Vis absorbance of yWT iso-1-Cytc in the presence of various 

concentrations of 100% CL lipid vesicles at pH 7, 25 qC. (B) UV-Vis absorbance of yWT iso-1-

Cytc in presence of various concentrations of 100% CL lipid vesicles at pH 8, 25 qC. Panel A 

shows signal shifted well above 0 A.U (absorbance units). across the spectrum for each titration 

point above 0 M CL total lipid concentration, indicative of scattering due to large lipid vesicles.  
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3.3.2. Site A Binding Monitored by Heme Soret CD.  

  To assess Cytc-CL binding analytically, 100 nm pure TOCL vesicles were formed by 

extrusion and vesicle and lipid concentrations were quantified utilizing a previously 

reported method for rapid lipid quantification.46 We monitored the Soret region of Cytc 

during titrations using CD spectroscopy, which probes the environment near the heme. 

Soret CD band signal shifts are indicative of heme crevice rearrangement due to binding 

at site A.  

 Soret CD from 350-450 nm demonstrates intrinsically different spectral signatures for 

human and yeast variants (Figure 3.5) at pH 8. HuWT shows a pronounced negative 

Figure 3.4. (A) UV-Vis absorbance of 97% oxidized HuWT Cytc in the presence of various 

concentrations of 100% CL lipid vesicles at pH 7, 25 qC. (B) UV-Vis absorbance of HuWT 

Cytc in presence of various concentrations of 100% CL lipid vesicles at pH 8, 25 qC. Panel A 

shows signal shifted well above 0 A.U. across the spectrum for each titration point above 0 M 

CL total lipid concentration indicative of scattering due to enlarged lipid vesicles. 
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trough at 418 nm while yeast has less obvious negative ellipticity at pH 8. At lower pH, 

the negative trough is prominent for yeast iso-1-Cytc.22 Previous studies on the Soret CD 

of the alkaline state of horse Cytc47 indicate that the reduced negative trough for yWT is 

consistent with population of the alkaline conformer at this pH (pKapp = 8 for the alkaline 

transition of yWT).36, 38 The negative trough is more pronounced for yK72A than for 

yWT (compare black spectra in Figure 3.6 for yWT and yK72A), consistent with the 

higher pKapp of 8.6 for yK72A.36 Furthermore, peaks and troughs do not occur at exactly 

the same wavelengths: the HuWT positive peak is at 405 nm while for yWT it is at 407 

nm and HuWT shows a negative trough at 418 nm whereas for yWT it is at 422 nm. 

 

 

 

 

 

 

Figure 3.5. yWT iso-1-Cytc (solid line) and HuWT Cytc (dashed line) at 10 µM concentration in 

20 mM TES buffer, 0.1 mM EDTA, pH 8. Spectra were acquired at 25 oC. 
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The Soret CD signal response to increased CL vesicle concentration also differs for 

human versus yeast iso-1-Cytc (Figure 3.6). The negative trough near 420 nm initially 

decreases in magnitude for both yWT and HuWT. At higher CL concentrations, the 

negative trough re-emerges for yWT, leading to an isodichroic point (Figure 3.6). Neither 

the reemergence of the negative trough nor the isodichroic point are observed for HuWT. 

For yWT, the isodichroic point is not present for the first few data points, indicating a 

distinct process from that which occurs after the isodichroic point forms. This early phase 

is likely initial intermolecular binding and only modestly affects the Soret CD spectrum. 

This observation suggests that initial intermolecular binding does not strongly perturb the 

structure of the heme crevice, consistent with some previous reports.11, 25 The binding 

process leading to the isodichroic point would then correspond to an intramolecular 

structural rearrangement on the surface of the vesicle. Structural rearrangements are 

expected to depend on available space on the membrane surface. For this reason, we 

analyze our data in terms of lipid to protein ratio (LPR). Only lipid available on the outer 

leaflet of the vesicle is used to calculate LPR, i.e. exposed LPR. Because the dissociation 

constants extracted from our data are due to structural rearrangements on the membrane 

surface rather than intermolecular association, they will be referred to as apparent 

dissociation constants, Kd(app). 
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Figure 3.6. CD spectra as a function of the concentration of 100 nm CL vesicles for (A) 

yWT and (B) yK72A iso-1-Cytc and (C) HuWT and (D) HuK72A Cytc. Protein 

concentration was 10 µM. Black arrow denotes direction of signal shift of the positive 

peak during titrations. 0 M exposed lipid concentration corresponds to the black curve for 

each mutant. Maximum exposed (outer leaflet) lipid concentration was 200 μM and 

corresponds to the blue spectrum for each protein. 
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For human Cytc, the magnitude of the Soret CD at the wavelength of the positive 

maximum in the 0 M CL spectrum was used to track CL binding. Because of the re-

emergence of the negative trough in the Soret CD peak for yeast iso-1-Cytc, the response 

of the Soret CD signal versus exposed LPR was quantified by subtracting the magnitude 

of the Soret CD at the wavelength of the negative trough from the magnitude of the Soret 

CD at the wavelength of the positive peak in 0 M CL. 

Figure 3.7 shows binding isotherms monitored by Soret CD for yWT and yK72A iso-

1-Cytc (Figure 3.7A) and for HuWT and HuK72A Cytc (Figure 3.7B) plotted versus 

exposed LPR. The mutations affect the amplitude of the change in the Soret CD as 

observed for CL binding of Lys→Asn variants of horse Cytc.26 We fit the data to the 

simplest possible model, a single site Langmuir-type binding isotherm allowing for 

cooperativity (eq 3.1, Experimental procedures).16, 18 The resultant parameters (Table 

3.1), Kd(app), and the cooperativity, n, were used to plot percent bound protein versus 

exposed LPR for each variant (Figure 3.8). It is evident from these plots and the 

parameters in Table 3.1 that the K72A mutation causes no significant change in the 

Kd(app) of CL for yeast iso-1-Cytc and human Cytc and perhaps a small decrease in the 

cooperativity. 
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Figure 3.7. Yeast iso-1-Cytc and human Cytc Soret CD signal response to cardiolipin.  

(A) yWT (black) and yK72A (red) iso-1-Cytc Soret CD signal as a function of exposed 

(outer leaflet) LPR. Data points at each LPR are the difference between the CD signal at 

the wavelength of the positive maximum and the wavelength of the negative minimum in 

the Soret region of the CD spectrum of iso-1-Cytc in the absence of vesicles. (B) HuWT 

(black) and HuK72A (red) Cytc Soret CD signal as a function of exposed LPR. Data 

points at each LPR are the CD signal at the wavelength of the positive maximum in the 

Soret region of the CD spectrum of human Cytc in the absence of vesicles. All titrations 

were carried out at 25 °C and pH 8 using 100% CL vesicles extruded through a 100 nm 

membrane. Error bars are the standard deviations of the average values from three 

independent trials.  Solid curves are fits to eq 3.1. 
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Figure 3.8. (A) Plots of fraction protein bound versus exposed (outer leaflet) lipid to protein 

ratio (LPR) for yWT (black) and yK72A (red) iso-1-Cytc using the parameters extracted from a 

fit to eq 3.1. (B) Plots of fraction protein bound versus exposed LPR for HuWT (black) and Hu 

K72A (red) Cytc using the parameters extracted from a fit to eq 3.1. Fraction bound = (s(x)-

s0)/(s1-s0) in these plots. 

 

Table 3.1. Thermodynamic Parameters for Cytc Site A Binding to 100% CL Vesicles 
 CDa,b Fluorescencea,c 

variant 
Kd(app) (LPR, 

µM) n 
Kd(app) (LPR, 

µM) n 
yWT 10.2 ± 0.3  

(102 ± 3) 
2.2 ± 0.1 23.4 ± 0.8  

(117 ± 4) 
2.3 ± 0.2 

yK72A 9.8 ± 0.2  
(98 ± 2) 

2.01 ± 0.07 26.2 ± 0.8  
(131 ± 4) 

2.3 ± 0.1 

HuWT 8.6± 0.7 
 (86 ± 7) 

1.27 ± .09 36.0 ± 3.6  
(180 ± 18) 

2.2 ± 0.2 

HuK72A 8.4 ± 1.2  
(84 ± 12) 

1.1 ± 0.1 40.5 ± 3.0  
(203 ± 15) 

1.9 ± 0.1 
aReported in exposed (outer leaflet) lipid to protein ratio (LPR) and in brackets in 
µM exposed lipid concentration. Error corresponds to the standard error in the fit of 
the parameter. bCytc concentration was 10 µM. cCytc concentration was 5 µM. 
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3.3.3. Site A Binding Monitored by Trp59 Fluorescence.  

Trp59 fluorescence also was used to track binding for yWT and yK72A iso-1-Cytc 

and for HuWT and HuK72A Cytc. Trp59 fluorescence enhancement results from loss of 

Cytc tertiary structure (unfolding) as Trp59 moves away from the heme.48 Growth in the 

intensity of emission was seen for all four proteins in titrations of 5 µM solutions of each 

Cytc (Figure 3.9). All variants show a shift in the peak emission wavelength from ~330 

nm to ~340 (Figure 3.10), consistent with Trp59 moving from a buried to a surface-

exposed site in contact with ordered but not bulk water.49 The Trp59 environment is not 

as polar as for guanidine hydrochloride unfolded Cytc, where the emission maximum 

shifts to ~350 nm (Figs. 3.11 – 3.13). 
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Figure 3.9. Fluorescence spectra as a function of the concentration of 100 nm CL vesicles 

for (A) yWT and (B) yK72A iso-1-Cytc and (C) HuWT and (D) HuK72A Cytc. Protein 

concentration was 5 μM. Black arrow denotes direction of signal shift during the titration. 

0 M exposed lipid concentration corresponds to the dark red signal for each Cytc variant. 

Maximum exposed lipid concentration (250 µM) corresponds to the blue spectrum for 

each variant. 
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Figure 3.10. (A) yWT (black) and yK72A (red) iso-1-Cytc fluorescence emission peak location 

versus exposed (outer leaflet) LPR. (B) HuWT (gray) and HuK72A (red) Cytc fluorescence 

emission peak location versus exposed LPR. 

  

 

 

 

 

 

 



 
 

67 

 

 

 

 

 

Figure 3.11. Trp59 fluorescence spectra of 10 μM yWT iso-1-Cytc at pH 7, 25 oC, in 20 

mM Tris, 40 mM NaCl over a titration from 0 M (black) to 3 M (blue) GdnHCl 

concentration. Fluorescence measured in arbitrary units (A.U.). Black arrow indicates 

direction of increase in fluorescence intensity with increasing GdnHCl concentration. 
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Figure 3.12. Trp59 fluorescence intensity (350 nm) progression of 10 μM yWT iso-1-Cytc at pH 

7, 25 oC, in 20 mM Tris, 40 mM NaCl over 3 independent GdnHCl titrations from 0 M to 5 M. 

Fluorescence measured in arbitrary units (A.U.). 

 

 
 

 

 

 

Figure 3.13. Trp59 fluorescence peak shift monitored for 3 trials over GdnHCl titrations 

from 0 M to 5 M GdnHCl for yWT iso-1-Cytc. 
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Titrations were monitored at the wavelength corresponding to the emission peak at the 

highest CL vesicle concentration for each Cytc variant studied. Figure 3.14 shows the 

increase in Trp59 fluorescence for both yeast iso-1-Cytc and human Cytc variants as 

exposed LPR increases, consistent with significant disruption of tertiary structure. 

Previous work on horse Cytc has shown similar effects on Trp59 fluorescence during 

titrations with CL-containing vesicles.16, 17 The overall increase in fluorescence is larger 

for human Cytc than for yeast iso-1-Cytc. Human Cytc also requires higher LPR to 

complete the CL titration. The fluorescence-monitored titration data were fit to a single-

site Langmuir-type binding model allowing for cooperativity (eq 3.1, Experimental 

procedures). Parameters from these fits (Table 3.1) were used to plot fraction of bound 

protein versus exposed LPR (Figure 3.15). Attenuation of apparent binding by the K72A 

mutation is more evident when monitored by fluorescence versus Soret CD. For both 

human and yeast iso-1-Cytc, Kd(app) in terms of exposed LPR is significantly larger than 

observed when titrations with CL vesicles are monitored by Soret CD (Table 3.1). 
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Figure 3.14. (A) yWT (black) and yK72A (red) iso-1-Cytc fluorescence intensity as a 

function of exposed LPR. (B) HuWT (black) and K72A (red) Cytc fluorescence intensity 

as a function of exposed LPR. All titrations were carried out at 5 μM protein 

concentration using 100 nm 100% CL lipid vesicles at pH 8 and 25 °C. Fluorescence 

intensity was followed at the wavelength of maximum intensity in the fluorescence 

emission spectrum of Cytc at the highest lipid concentration. Solid curves are fits to eq 

3.1. 
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Figure 3.15. (A) Fraction protein bound versus exposed (outer leaflet) LPR for yK72 (black) and 

yK72A (red) iso-1-Cytc using parameters in Table 3.1. (B) Fraction protein bound versus 

exposed LPR for HuK72 (black) and HuK72A (red) Cytc using parameters in Table 3.1. Fraction 

bound = (s(x)-s0)/(s1-s0).    

 

 

3.4. DISCUSSION 

3.4.1. Similarities and Differences between Site A Binding to CL Vesicles for Yeast 

Iso-1-Cytc and Human Cytc.  

The primary similarity between the interaction of yeast iso-1-Cytc and human Cytc 

with CL vesicles is that both proteins show two binding phases. Based on the initial low 

amplitude phase that occurs prior to formation of the isodichroic point with the yeast 

protein, we assume that both binding phases are intramolecular structural rearrangements 

of Cytc on the membrane surface. The first phase, which occurs at lower exposed LPR, is 
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observable with Soret CD and thus involves rearrangement of the local heme 

environment. The presence of a positive/negative couplet in the Soret CD spectrum of the 

native state of Cytc has been attributed to the presence of Met80 ligation to the heme50 

and of Phe82 near the heme,51 although the exact nature of the interaction that produces 

the couplet  may be more complex.52 The loss of this couplet is observed when human 

Cytc binds to CL and initially for iso-1-Cytc binding to CL (Fig. 3.6). Loss of the couplet 

is also observed for the alkaline conformer,47 providing some insight into the possible 

nature of the small structural rearrangement that occurs at lower LPR when Cytc binds to 

CL.  Structural studies of the alkaline conformer of iso-1-Cytc show that it is compact 

with a rearrangement of Ω-loop D.53, 54 However, structural studies on a K72A variant of 

iso-1-Cytc show that loss of Met80 ligation is possible with a very small structural 

rearrangement.37   The second binding phase occurs at significantly higher exposed LPR 

and leads to an increase in the Trp59 fluorescence. The increase in Trp59 fluorescence is 

attributable to reduced quenching of the fluorescence by the heme due to increased Trp59 

to heme distance, indicating a significant loss of tertiary structure.48 These observations 

are qualitatively consistent with previous work on horse Cytc, which supports an 

equilibrium between compact and extended conformers, with the extended conformer 

favored at higher LPR.8, 16 While our data only inform on the heme-Trp59 distance, the 

increase in the Trp59 to heme distance at higher LPR is consistent with the fluorescence 

resonance energy transfer studies of Pletneva and coworkers,8 which indicate that the 60’s 

and C-terminal helices move away from the heme in the extended conformer.  

The second similarity for yeast iso-1-Cytc and human Cytc interactions with CL is 

that site A binding is not strongly affected by the K72A mutation. This result indicates 



 
 

73 

that the other lysines (73, 86, 87) in site A can compensate for the loss of Lys72 for 

Cytc/CL binding at pH 8. 

Fitting data to eq 3.1 reveals differences in variant response to CL binding. For the 

first phase, Kd(app), is similar for yWT, yK72A, HuWT and HuK72A (Table 3.1). 

However, the cooperativity parameter, n, for HuWT and HuK72A Cytc is lower by ~0.9 

units than for yWT and yK72A iso-1-Cytc. Despite the similar Kd(app) values, the 

cooperativity suggests that site A for human Cytc may only accommodate ~1 lipid, while 

yeast iso-1-Cytc interacts with ~2 lipids. This difference might be attributed to population 

of the alkaline conformer for yeast iso-1-Cytc at pH 8.0. However, the pKapp of the 

alkaline transition for yK72A is 8.6 (versus 8.0 for yWT)36, 38 with no significant effect on 

Kd(app) or n (Table 3.1). Thus, the higher value of n for yeast iso-1-Cytc does not appear 

to be specific to the degree of population of the alkaline conformer. The details of the 

structural rearrangement of the heme crevice also appear to differ between yeast and 

human Cytc. Yeast iso-1-Cytc shows a reemergence of the negative CD band near 420 

nm, reminiscent of the shape of the native Soret CD spectrum, which is not observed with 

human Cytc. This observation suggests that for iso-1-Cytc the position of Phe82 could 

become more nativelike51 or that Met80 ligation is partially restored50 during this phase of 

binding to CL. 

Comparison of Kd(app) from CD versus fluorescence data shows significant shifts in 

Kd(app) reported in terms of LPR for both yeast and human Cytc (Table 3.1). The Kd(app) 

for the fluorescence detected site A interaction is 2-fold larger for yeast iso-1-Cytc than 

for Soret CD detected site A interactions. A much larger 4-fold shift in Kd(app) is 

observed for human Cytc. The cooperativity, n, differs for yeast versus human Cytc for 
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the smaller structural rearrangement monitored by Soret CD, but is near 2 for both yeast 

and human Cytc for the larger structural rearrangement monitored by fluorescence at 

higher LPR. The Kd(app) values for CD and fluorescence detected interactions of 100% 

CL vesicles with site A are close enough for the yeast protein that the cooperativity 

parameters for the two structural rearrangements may not be fully independent. Thus, it is 

possible that n for one of the phases for the yeast iso-1-Cytc interaction with CL is 

inflated. The higher stability of human Cytc versus yeast iso-1-Cytc44 may be a factor in 

the larger LPR needed to disrupt the tertiary structure of human versus yeast iso-1-Cytc in 

the larger conformational rearrangement at higher LPR. The closer spacing of the 

stabilities of the substructures of yeast iso-1-Cytc38 compared to mammalian Cytc55, 56 

could be a factor, as well. The larger LPR for loss of tertiary structure of human Cytc on 

the surface of a CL vesicle, as detected by Trp59 fluorescence, suggests that more 

membrane surface area may be required to unfold the more stable protein. Stability 

provides a compelling argument for the higher LPR required to partially unfold human 

Cytc on CL vesicles. However, the surface charge pattern near site A, which differs for 

human Cytc versus yeast iso-1-Cytc (see Figure 3.2), could also impact the partial 

unfolding phase of Cytc on CL vesicles. 

The larger increase in fluorescence for human Cytc versus yeast iso-1-Cytc (Figures 

3.9 and 3.14) suggests a larger disruption of the structure of human Cytc than for yeast 

iso-1-Cytc in the large structural rearrangement at higher LPR. It is known that extended 

conformers of Cytc have higher peroxidase activity.8 While there is some debate about 

the physiological significance of extended conformers,11 it is plausible that the higher 

LPR required to produce the more extended conformer of human Cytc versus yeast iso-1-
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Cytc, combined with the larger extent of unfolding apparent for the human versus the 

yeast protein at higher LPR, demonstrate the evolution of both a more stringent and 

efficient switch for the peroxidase activity of Cytc early in apoptosis.    

For yeast iso-1-Cytc, the K72A mutation leads to a small increase in the Kd(app) for 

the larger fluorescence-detected structural rearrangement (Table 3.1). For human Cytc, 

the K72A mutation causes a small decrease in the cooperativity, n, for the larger 

fluorescence-detected structural rearrangement (Table 3.1). Thus, Lys72 affects the 

binding mode monitored by Trp59 fluorescence more significantly than the binding mode 

monitored by Soret CD. However, when site A is isolated at pH 8, Lys72 is not necessary 

for the structural rearrangements that occur when Cytc interacts with 100% CL vesicles. 

 

3.4.2. Comparison with Previous Data for Binding of CL to Cytc.  

It is of interest to compare our results to those obtained at lower pH where multiple 

binding sites contribute to the interaction of Cytc with CL-containing vesicles. Previous 

work by Santucci and coworkers was carried out with 100% CL vesicles at pH 7 using 

yeast iso-1-Cytc22, 23 and horse Cytc.18, 26, 27 They observe biphasic binding curves with 

Soret CD measurements and similar binding curves for yeast iso-1-Cytc and horse Cytc.18, 

22 At pH 7, sites C, L and A will all contribute to Cytc binding to CL vesicles. Thus, more 

complex binding curves are expected. The observed binding affinities,18 when corrected 

to exposed lipid concentrations, are ~1x105 M-1 (Kd = 10 µM, n = 2) and ~5x104 M-1 (Kd = 

20 µM, n =4). Two binding constants of similar magnitude were also observed with horse 

Cytc by Pandiscia and Schweitzer-Stenner using 20% CL (80% DOPC) vesicles at pH 

7.4, when their data are analyzed in terms of CL concentration exposed on the outer 
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leaflet of the vesicle.16 Multiple binding sites should be available at pH 7.4, too. For 

purposes of comparison, we provide Kd(app) in µM units in Table 3.1. The Kd values 

reported at pH 7 – 7.4 are ~5-fold smaller than what we observe (Kd(app) ~ 85-100 µM), 

suggesting that the availability of multiple binding sites leads to significantly higher 

overall CL binding affinity. Studies by Pandiscia and Schweitzer-Stenner with 100% CL 

vesicles at pH 7.4 are more difficult to compare with our data because they were analyzed 

with a more complex model.17 However, the binding curves are also consistent with 

considerably higher affinities than we observe under our binding conditions.     

  A K72N variant of horse Cytc appears not to bind to 100%  CL vesicles,26 in contrast 

to our results with K72A variants of human Cytc and yeast iso-1-Cytc. Alanine versus 

asparagine variants may behave differently. GdnHCl titration data for Lys→Asn variants 

of horse Cytc yield unusual biphasic unfolding curves, whereas the K72A variants of 

yeast iso-1-Cytc57 and human Cytc35 have monophasic unfolding curves like the wild type 

proteins. Thus, the Lys→Asn variants may perturb the stability of Cytc in a manner that 

also affects binding to cardiolipin.  

 

3.4.3. Conservation of Lysine at position 72 of Cytc.  

Lysine at position 72 of mitochondrial Cytc is strongly, but not absolutely conserved 

in all known cytochromes c.58 It is important,59 although not absolutely essential,60 for 

interaction with redox partners in the electron transport chain. It is important for 

formation of a strong complex with Apaf-1,32, 34, 40 although mutation to other residues 

does not completely abrogate activation of caspases by the apoptosome.40, 60, 61 Truncation 

of Lys72 to alanine enhances the intrinsic peroxidase activity of both yeast iso-1-Cytc37 
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and human Cytc.35 Thus, Lys72 also plays some role in the peroxidase activity of Cytc, 

which acts as a signaling switch in the early stages of apoptosis. Lys72 also affects the 

binding of Cytc to CL-containing vesicles. However, the results presented here indicate 

that, while it may be important for binding at some CL binding sites,26, 27 it is not essential 

for interactions at site A. Thus, the strong conservation of Lys at position 72 of Cytc does 

not appear to be because it is essential for any one function, but because it is an important 

contributor to most of the functions of Cytc. 

 

3.5. CONCLUSION 

In summary, at pH 8, we are able to isolate the site A binding site. In the absence of 

the C and L binding sites, the interaction of Cytc with CL vesicles is significantly weaker. 

The Kd(app) values obtained by Soret CD, in terms of exposed LPR, are similar for 

human Cytc and yeast iso-1-Cytc, indicating that the initial small structural rearrangement 

requires a comparable amount of space on the surface of CL vesicles. The second and 

larger structural rearrangement monitored by Trp59 fluorescence occurs at significantly 

higher LPR for human Cytc than for yeast iso-1-Cytc, indicating that more surface area 

on CL vesicles is required to unfold the more stable human Cytc. Based on the larger 

increase in Trp fluorescence for the human versus the yeast protein, the degree of 

unfolding is larger, indicating a more extended conformer for the human versus the yeast 

protein. This more extended conformer may yield higher peroxidase activity.8 Thus, the 

signaling switch which controls peroxidase activity early in apoptosis may have evolved 

to be a more stringent, but more effective, switch. Neither phase of the interaction with 
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CL vesicles through site A is strongly affected by the K72A mutation indicating that other 

lysines can compensate for Lys72 at site A. 

. 
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CHAPTER 4: Electrostatic Constituents of Cardiolipin binding to site A of Cytochrome c 
 
 
 
4.1. INTRODUCTION 
 

Cytochrome c is a well-used model system for studies on protein folding,1, 2 conformational 

dynamics3 and long distance electron transfer in proteins and protein complexes.4 With regard to 

studies on its biological function, the emphasis of recent research has shifted from its role in the 

electron transport chain5, 6 to understanding its role during apoptosis.7-9 Cytochrome c (Cytc) 

abandons its function as an electron transporter in the electron transport chain during apoptosis, 

oxidizes cardiolipin and is released from the inner mitochondrial membrane followed by passage 

through the outer mitochondrial membrane into the cytoplasm.10 Upon its release from the 

mitochondria, Cytc binds apoptotic protease activating factor 1 (Apaf-1)11 and, in the presence of 

dATP, forms the apoptosome which in turn, initiates the apoptotic pathway.12, 13 Work has shown 

that Cytc undergoes a conformational rearrangement upon binding to cardiolipin (CL). Various 

model systems incorporating CL-containing membranes have been used to elucidate the true 

nature of the protein-lipid interaction10, 14-28 for Cytc in the mitochondria. Several binding modes 

have been proposed to describe the interactions of Cytc with these membrane mimetic systems. 

However, the nature of both the structural rearrangement and the constituents of the binding sites 

remain a matter of considerable debate.14-24 Thus, further characterization of the Cytc-CL 

interaction is important.  

Four regions of Cytc have been postulated to interact with CL. The anionic site (site A) sits 

on the flexible Ω-loop D and is thought to electrostatically interact with CL.14 Lys72 and, to a 

lesser extent, Lys73 have been identified as primary constituents of site A.14, 17, 29, 30 Lysines 86 

and 87 have also been proposed to be constituents of site A.31 The cardiolipin binding site, site C, 
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is believed to involve hydrogen bonding of protonated cardiolipin to Asn52.14 Site C is also 

believed to involve a hydrophobic component. The L site is comprised of lysines at residues 22, 

25, 27 and histidines at residues 26 and 33 that interact with CL via electrostatic and hydrogen 

bonding interactions at low pH.32 This site is opposite site A, allowing Cytc to bridge two 

membrane surfaces, thus, promoting membrane fusion. The N site containing residues F36, G37, 

T58, W59 and K60 may be yet another interaction site for CL.33  

Two major protein conformations have been proposed to characterize Cytc structure upon 

interaction with CL on lipid bilayer surfaces. Some results suggest a native-like folded structure 

binds to the lipid membrane.15, 23, 33, 34 Site C is believed to involve insertion of one or more of 

the hydrocarbon chains of the CL lipid into the hydrophobic core of Cytc.15, 35-37 This interaction, 

which has been referred to as an extended lipid anchorage,15, 35 would seem to require a well-

defined binding that would best be provided by a compact structure.  The ability of Cytc to form 

a well-defined binding pocket for hydrocarbons has recently been shown through a set of X-ray 

structures, which show the hydrocarbon chain of detergents bind within a well-defined pocket in 

domain-swapped dimers of yeast iso-1-cytochrome c (iso1-Cytc).38 However, there is also good 

evidence for an equilibrium between compact and partially unfolded structures on CL-containing 

membrane surfaces, with the partially unfolded structures favored when the lipid to protein ratio 

(LPR) is higher.17-19, 26, 27 Peroxidase activity data indicate that this partially unfolded  conformer 

has higher catalytic activity.18 

Previous mutagenesis studies on the constituents of site A using horse Cytc have been carried 

out with 100% CL vesicles at pH 7.29, 30 Under these conditions, both sites A and C contribute to 

binding.28 Recent crystallographic studies on detergents bound to a domain-swapped dimer of 

yeast iso-1-Cytc show that the head group of CL may interact with the hydrophobic site C with 
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acyl chain emerging near Lys73. Thus, it is possible that binding studies at pH 7 on variants with 

mutate surface lysines may report on both binding at sites A and C.     

We have recently shown that binding of CL to site A of both human Cytc and yeast iso-1-

Cytc can be accomplished without interference from other binding sites at pH 8.39 At pH 8, 

Lys72 was not essential for the binding of either the yeast or the human protein to 100% CL 

liposomes.39 The work presented here aims to further clarify the relative importance of lysines 

72, 73 86 and 87 to the site A binding site of Cytc for CL. Using the Soret band region of the 

circular dichroism (CD) spectrum of Cytc (350-450 nm) and fluorescence from Trp59 (emission 

from 320-500 nm), we have investigated A site binding. We show that charge neutralization at 

residues 72, 73, 86 and 87 (Figure 4.1) in site A by alanine-scanning attenuates binding. Further, 

double charge neutralization substitutions at residues 72 and 73 and at residues 86 and 87 do not 

completely prevent binding. All binding titrations monitored by Soret CD demonstrate a strong 

binding at an exposed (outer leaflet) lipid to protein ratio (LPR) of <12. An electrostatic binding 

event at an exposed LPR of ~20 is detected by fluorescence-monitored titration data. The 

binding event involves partial unfolding of the protein structure. The apparent degree of 

unfolding is strongly effected by which lysines constitute site A. 
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Figure 4.1. Structure of yeast iso-1-Cytc (PDB ID 2YCC)40 with Lys72 (red), Lys73 (yellow), 

Lys86 (dark green), Lys87 (orange) and Trp59 (light green) shown behind heme (black) and its 

ligands Met80 and His18. Red arrow measures width of postulated A site. 

 

4.2. EXPERIMENTAL PROCEDURES 
 
4.2.1. Preparation of Yeast Cytc Variants.  

Iso-1 Cytc variants were prepared in the pRbs_BTR1 plasmid41 carrying the yeast iso-1-

cytochrome c gene, CYC1, with a C102S substitution to prevent disulfide dimerization. The 

plasmid also carries the CYC3 gene (yeast heme lyase) permitting covalent attachment of heme 

in the cytoplasm. The PCR-based QuikChange Lightning method (Agilent) was used to prepare 

all variants. The starting point for mutagenesis were the previously described WT39 and K72A42 

variants of iso-1-Cytc. Primer sequences for the following mutations: K73A, K72|73A 

(Lys→Ala at positions 72 and 73), K86A, K87A, K86|87A (Lys→Ala at positions 86 and 87), 
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K72|73|86|87A (Lys→Ala at positions 72, 72, 86 and 87), can be found in Table A.6. For the 

K72|73|86|87A variant, pRbs_BTR1 DNA carrying the K72|73A variant was used as template 

and the K86|87A primer (Table A.6) was used to introduce the required mutations. Mutagenesis 

reaction mixtures were transformed into in Escherichia coli XL10 Gold competent cells 

(Agilent). DNA was extracted from single colonies, following overnight cultures, using the 

Wizard MiniPrep DNA Purification Kit (Promega Inc). Mutated plasmids were sequenced 

(Eurofins, Louisville, KY) to verify the mutations conferring the Lys→Ala substitutions. 

 

4.2.2. Protein Expression of Yeast Iso-1-Cytochrome c Variants. 

All variants were expressed and purified using previously reported methods.43, 44 HPLC 

cation exchange (Uno S6 column, BioRad) was used to purify iso-1-Cytc variants in the reduced 

state.44 Immediately prior to experiments, iso-1-Cytc variants were oxidized using 5 mg of 

ferricyanide per mg of protein followed by size exclusion chromatography using Sephadex G-25 

resin (GE Life Sciences) equilibrated to and run with buffer appropriate to the experiment. 

Protein concentration and the degree of oxidation was measured with a Beckman Coulter DU 

800 spectrophotometer using previously reported extinction coefficients for Cytc at 339, 526.5, 

541.75 and 550 nm.45  

 

4.2.3. Alkaline Transition Detected by pH Titration.  

The alkaline conformational transition of Cytc variants K73A, K72|73A, K86A, K87A, 

K86|87A and K72|73|86|87A was measured using a Beckman Coulter DU 800 UV-Vis 

spectrophotometer with a 10 mm pathlength Beckman Coulter MICRO CELL. Absorbance was 

measured from 600 to 750 nm in 1 nm increments at a scan rate of 400 nm/min with a bandwidth 
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of 1 nm. The absorbance at 695 nm was used as a probe for the Met80-heme ligation of the 

native state of Cytc.46  Absorbance at 750 nm was used as a baseline to correct for spectrometer 

drift during the titration yielding A695corr (A695corr = A695-A750). Titrations were performed at room 

temperature (20 ± 1 oC) with 400 µM protein in 0.1 M NaCl.  Protein samples were initially 

prepared in solution at low pH (approximately pH 5 – 6) and titrations were performed by adding 

equal amounts of 800 µM protein in 0.2 M NaCl and varying concentrations of NaOH (0.03 to 

0.3 M) to increase the solution pH by 0.05 – 0.1 pH units. A695corr absorbance values were plotted 

versus pH and fit to a modified Henderson-Hasselbalch equation incorporating both proton 

linkage number, n, and the apparent pKa, pKapp, for formation of the alkaline conformer as 

previously described.43 

 

4.2.4. Global Unfolding Measured using Guanidine Hydrochloride Titration.  

An Applied Photophysics (Leatherhead, UK) Chirascan circular dichroism (CD) 

spectrophotometer interfaced with a Hamilton Microlab 500 series auto-titrator was used to 

perform guanidine hydrochloride (GdnHCl) titrations, as previously described.47 All titrations 

were carried out at 10 µM protein concentration in 20 mM Tris Buffer, 40 mM NaCl, at pH 7 

and 25 qC. Three independent trials were acquired for Cytc variants K73A, K72|73A, K86A, 

K87A, K86|87A, K72|73|86|87A. A corrected ellipiticity at 222 nm, θ222corr, was calculated by 

subtracting ellipticity at 250 nm, θ250, as baseline from ellipticity at 222 nm, θ222, to evaluate loss 

of helicity during the GdnHCl titration. θ222corr plotted versus GdnHCl were fit assuming a linear 

free energy relationship between protein stability and GdnHCl concentration48 as previously 

reported.49, 50 
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4.2.5. Preparation of Cardiolipin vesicles.    

Cardiolipin [1′,3′-bis(1,2-dioleoyl-sn-glycero-3-phospho)-sn-glycerol (TOCL)] from Avanti 

Polar Lipids, Inc. (Alabaster, AL) was used to prepare pure (100%) CL vesicles by extrusion 

through 100 nm membranes using an Avanti mini-extruder, as previously described.39 Vesicle 

and lipid concentration were evaluated by Mie scattering using a Beckman Coulter DU 800 UV-

Vis spectrometer, as previously described.39, 51 Vesicles were used immediately after preparation.  

 

4.2.6. Iso-1-Cytc-CL Binding Titrations.  

Cardiolipin binding experiments were performed in 20 mM TES, 0.1 mM EDTA buffer at 

pH 8 using a batch procedure as previously described.39 Briefly, freshly prepared 100% CL 

vesicles were mixed by hand in a 1:1 ratio with stock protein 30 minutes prior to spectroscopic 

measurements. Samples were prepared independently for each concentration of lipid for each 

trial. A set of vesicle solutions at twice the desired final concentration was prepared for 1:1 

mixing with stock solutions of the iso-1-Cytc variants to produce the set of solutions at the 

desired exposed LPR for the binding curves. Titrations were monitored by Soret CD or Trp 

fluorescence using an Applied Photophysics Chirascan CD Spectrometer with the sample holder 

temperature set to 25 oC. For Soret CD, spectra were measured from 350 – 450 nm using the 4 

mm pathlength of a Hellma 4x10 mm quartz cuvette. Spectra were acquired using a 1 nm 

descending step, 1.8 nm bandwidth, at a scan rate of 3 s/nm. Three independent titrations were 

carried out for each variant. For Trp59 fluorescence, excitation was at 295 nm (5 nm bandwidth). 

A Hellma 5x5 mm fluorescence cuvette was used. Excitation bleed-through was filtered using a 

305 nm cutoff filter (Newport Corporation, Irvine, CA) in front of the emission monochromator. 

Emission spectra were measured from 320 - 500 nm using a 1 nm step and a 2.5 nm bandwidth 
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with an acquisition time of 0.5 sec per step using a scanning emission monochromator provided 

by Applied Photophysics. A minimum of three independent trials were acquired for each Cytc 

variant. All Soret CD and fluorescence spectra were smoothed using a 6th order Savitsky-Golay 

smoothing technique before averaging data points from the three independent trials. 

 

4.2.7. Near UV Circular Dichroism Spectroscopy.  

CD spectra in the aromatic region were acquired with an Applied Photophysics Chirascan 

CD Spectrophotometer set to scan from 350 – 250 nm in 1 nm steps (1.8 nm bandwidth) at a 

scan rate of 3.0 s/nm. Spectra were acquired at 25 oC in a 10x4 mm Hellma Quartz cuvette 

utilizing the 4 mm path length. Stock solutions of each variant were prepared at 100 µM in 20 

mM TES buffer, 0.1 mM EDTA, pH 8. Stock solutions were then mixed 1:1 with the same 

buffer to produce protein at 50 µM for data collection. Samples of protein in GdnHCl were 

prepared by mixing the protein stock solutions 1:1 with 6 M GdnHCl buffered with 20 mM TES 

buffer, 0.1 mM EDTA, pH 8 resulting in a 50 µM protein solution in 3 M GdnHCl. Samples of 

protein in the presence of CL vesicles were prepared by mixing protein stock solutions with 

vesicles at 1 mM CL concentration in 20 mM TES buffer, 0.1 mM EDTA, pH 8 giving a final 

solution of 50 µM protein in the presence of 500 µM CL (exposed LPR = 5). CL containing 

samples were equilibrated for 30 minutes prior to acquiring spectra. Spectra of solutions of CL 

vesicles were also prepared by mixing 20 mM TES buffer, 0.1 mM EDTA, pH 8 and the stock 1 

mM CL in a 1:1 ratio to demonstrate that light scattering off of the vesicles did not affect the 

near UV CD spectra of iso-1-Cytc bound to the CL vesicles. 
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4.3. RESULTS 

4.3.1. Variants of Iso-1-Cytc Used to Probe Binding of CL vesicles to Site A.  

We have previously reported the effect of a K72A variant on the binding of iso-1-Cytc 

through site A to CL vesicles at pH 8. Two binding phases were observed for WT (Lys72 is not 

trimethylated because of expression from E. coli52) iso-1-Cytc and the K72A variant. At lower 

exposed (outer leaflet) lipid to protein ratio (LPR) a CD monitored binding event occurred, 

which we attributed to a local conformational rearrangement and yielded an apparent 

dissociation constant, Kd(app) near 10 in units of exposed LPR. This binding phase was 

unaffected by the K72A substitution. The second phase, monitored by Trp59 fluorescence, 

yielded an apparent dissociation constant, Kd(app) near 23 in units of exposed LPR, which 

increased modestly to an exposed LPR near 26 in the presence of the K72A substitution. These 

results indicated that binding through site A at pH 8 did not depend strongly on a single lysine.  

Site A binding has been attributed to electrostatic interactions with two subclusters of lysines, 

Lys72/Lys7314, 17, 29, 30 and Lys86/Lys8753 that are separated by 15.4 ± 2.5 Å (𝛼-carbon to 𝛼 -

carbon distances, see Figure 4.1) with the closest distance being the 12.4 Å separating the 𝛼 -

carbons of Lys73 and Lys86. Thus, it is possible that elimination of a single Lys would simply 

adjust the orientation of iso-1-Cytc on the membrane surface without strongly affecting Kd(app). 

To evaluate the role of this cluster on the interaction between iso-1-Cytc with 100 nm pure 

(100%) CL vesicles, we have prepared single substitution variants with each lysine replaced with 

alanine. To probe the role of the two lysine subclusters, we have prepared Lys72|73Ala and 

Lys86|87Ala double substitution variants. Finally, to determine whether or not site A mediated 

binding is limited to this cluster of four lysines we have prepared the quadruple substitution 

variant, Lys72|73|86|87Ala. We note that all variants were expressed from E. coli. Thus, for 
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variants that contain Lys72, it will not be trimethylated52 as is the case when expression of iso-1-

Cytc is from the native host, Saccharomyces cerevisiae.     

 

4.3.2. Local and Global Protein Unfolding.  

Iso-1-Cytc undergoes a conformational change at mildly alkaline pH, typical of 

mitochondrial cytochromes c,3, 46 from the native conformer with Met80 ligated to the sixth 

coordination site of the heme iron (See Figure 4.1) to a conformer with a lysine replacing Met80. 

The conformational switch for yeast iso-1-Cytc involves a change from heme ligation to Met80 

to ligation by Lys72, Lys73 or Lys79.50, 52  For iso-1-Cytc expressed from S. cerevisiae, the 

apparent pKa, pKapp of the alkaline transition is 8.6.54, 55 pKapp decreases to near 8.0 when Lys72 

is not trimethylated.41, 52 Because we are measuring the binding of iso-1-Cytc variants to CL 

vesicles at pH 8, to selectively monitor binding to site A, it is important to determine the effect of 

the Lys→Ala mutation on pKapp, so we know the degree to which the alkaline conformer is 

populated under our iso-1-Cytc-CL binding conditions.  

Figure 4.2 shows individual pH titrations of K73A, K72|73A, K86A, K87A, K86|87A, 

K72|73|86|87A variants as well as WT Cytc. pH titrations were performed in triplicate for each 

mutant and individual trials were fit to a modified Henderson-Hasselbalch as outlined in 

Experimental Procedures. Figure 4.2. shows that the titrations cluster into two distinct groups. 

The group that has a higher pKapp, comprises the variants that lack Lys72. The resultant 

thermodynamic parameters are reported in Table 4.1. The single mutant variants K73A, K86A, 

K87A and double mutant K86|87A show modest shifts in pKapp to more basic pH relative to the 

pKapp of WT iso-1-Cytc expressed from E. coli.  The K72|73A and K72|73|86|87A variants show 

a more pronounced basic shift in the pKapp of the alkaline transition to values near 8.7. The pKapp 
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observed from yeast-expressed K73A iso-1-Cytc, where the alkaline state ligand is Lys79 is 8.82 

± 0.02,56 consistent with Lys79 being the alkaline state ligand for the K72|73A and 

K72|73|86|87A variants, as expected. 

 
 
 
 
 

 
 
 
Figure 4.2. Corrected absorbance at 695 nm (A695corr = A695nm – A750nm) versus pH for WT 

(black), K73A (yellow), K72|73A (grey), K86A (cyan), K87A (orange), K86|87A (green) and 

K72|73|86|87A (lavender) iso-1-Cytc. Data were collected at 20 ± 1 o C in 0.1 M NaCl with a 

protein concentration of 400 μM. Solid lines are fits to a modified Henderson-Hasselbalch as 

described in Experimental Procedures in the main text. 
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Global protein unfolding was investigated using GdnHCl unfolding monitored by CD. Figure 

4.3 shows individual GdnHCl unfolding titrations for the K73A, K72|73A, K86A, and K87A 

variants. The thermodynamic parameters for all variants are provided in Table 4.1. Table 4.1 

shows modest changes in Gibb’s free energy indicating these substitutions have small effects on 

the global stability for these variants. Single Lys→Ala substitutions have very modest effects on 

global stability. The double and quadruple substitution variants demonstrate compensatory and 

largely additive behavior between lysines. Most notably, the K86|87A double substitution variant 

decreases global stability by ~0.4 kcal/mol while the K72|73A substitution variant increases 

global stability by ~0.5 kcal/mol. The compensatory effect of combining these substitution 

variants to form the quadruple substitution variant K72|73|86|87A results in an additive effect on 

global stability with the ∆∆G relative to WT iso-1-Cytc being only 0.1 kcal/mol.  

 

 

 

Table 4.1. Thermodynamic parameters for local and global unfolding of iso-1-Cytc 
variants by pH GdnHCl titrations, respectively. 
 pH Titration GdnHCl Denaturation 

Variant pKapp n ΔGuo'(H2O), 
kcal/mol 

m,  
kcal/mol•M 

Cm, 
M 

WTa 8.00 ± 0.05 0.98 ± 0.01 5.05 ± 0.30 4.24 ± 0.13 1.19 ± 0.04 
K72Ab 8.65 ± 0.01 1.15 ± 0.01 5.31 ± 0.08 4.39 ± 0.09  1.21 ± 0.01 
K73A 8.16 ± 0.01 0.99 ± 0.00 4.87 ± 0.08 3.79 ± 0.10 1.29 ± 0.03 
K72|73A 8.71 ± 0.01 1.02 ± 0.04 5.48 ± 0.04 4.05 ± 0.05 1.32 ± 0.04 
K86A 8.37 ± 0.02 1.02 ± 0.06  4.87 ± 0.07 4.40 ± 0.03 1.11 ± 0.01 
K87A 8.12 ± 0.04 1.04 ± 0.09 4.79 ± 0.06 4.04 ± 0.11 1.19 ± 0.02 
K86|87A 8.37 ± 0.56 1.07 ± 0.02 4.60 ± 0.09 3.77 ± 0.14 1.22 ± 0.06 
K72|73|86|87A 8.75 ± 0.02 0.86 ± 0.01 5.09 ± 0.07 4.12 ± 0.06 1.24 ± 0.01 
aData from ref. 41 
bData from ref. 49 
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Figure 4.3. GdnHCl unfolding shown as corrected ellipiticity, θ222corr, versus GdnHCl 

concentration for K73A (yellow), K72|73A (grey), K86A (cyan), K87A (orange) iso-1-Cytc. Data 

were collected at 25 oC, 10 μM protein, 20 mM Tris Buffer, 40 mM NaCl, at pH 7. Solid lines 

show fits of the data to a two-state model assuming a linear dependence of the free energy of 

unfolding on GdnHCl concentration.  

 

4.3.3. Cardiolipin Binding Monitored by CD.  

The Soret region of the CD spectrum, from 350-450 nm, was used to investigate 

conformational changes in iso-1-Cytc corresponding the heme environment during CL 

titrations.57, 58 Iso-1-Cytc site A variants at 10 µM protein concentration were titrated with 100 

nm cardiolipin vesicles from 0-250 µM exposed lipid concentration (0-25 exposed LPR). Figure 

4.4 shows Soret CD spectra for the K73A and K87A variants of iso-1-Cytc from the averaged 

data of 3 independent trials where each spectrum corresponds to data averaged at a specific lipid 

concentration. 
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Figure 4.4. Soret CD spectra of 10 µM the K73A (left) and K87A (right) variants of yeast iso-1-

Cytc with 100 nm TOCL vesicles in 20 mM TES buffer, 0.1 mM EDTA at pH 8 and 25 oC. Lipid 

concentration increases from 0 μM to 250 μM exposed (outer leaflet) lipid (black→red→blue).  

 

For WT iso-1-Cytc and many of the variants, the negative CD band near 420 nm is missing, 

although this is not universally true (Figure 4.5, Figure 4.6). Lack of this band likely results from 

the fact that WT and many of these variants have pKapp values near 8 (see Table 4.1). 

Interestingly, this negative band re-emerges at high exposed LPR (Figure 4.4). After the three 

lowest exposed LPR data points, an isodichroic point is established indicating that a two state 

process is occurring for the remainder of the titration (Figure 4.4).  The same isodichoric point is 

observed for all variants investigated (Figure 4.6). 
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Figure 4.5. Soret CD spectra of WT yeast iso-1-Cytc (black), and the K72A (red) and K73A 

(yellow) variants in 20 mM TES buffer, 0.1 mM EDTA at pH 8 and 25 oC.  
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Figure 4.6. Soret CD spectra of 10 µM yeast iso-1-Cytc variants titrated with 100 nm CL 

vesicles in 20 mM TES, 0.1 mM EDTA buffer at pH 8 and at 25 oC. Exposed (outer leaflet) CL 

concentration ranges from 0→200 µM (black→red→blue).  
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The Soret CD spectrum of WT iso-1-Cytc expressed from S. cerevisiae has a characteristic 

positive peak at 406 nm and negative trough at 420 nm.59, 60 For WT iso-1-Cytc expressed from 

E. coli, the negative trough near 420 nm is essentially eliminated (Figure 4.6). For the K73A the 

perturbation to the Soret CD spectrum is similar to WT iso-1-Cytc. However, the negative 

through near 420 nm is more prominent for the K72A variant. Based on the pKapp values in Table 

4.1, the population of the alkaline conformer will be near 50% for WT iso-1-Cytc and the K73A 

variant at pH 8. The higher pKapp of the K72A variant will lead to <20% population of the 

alkaline conformer at pH 8. Thus, the diminished negative trough in buffer at pH 8 appears to be 

linked to population of the alkaline conformer. 

Pandiscia et al.27 showed a shift in the peak location in the Soret CD during titration with CL-

containing vesicles. They used a peak to trough amplitude defined by the initial, unbound protein 

signal to characterize lipid-protein interactions. Peak wavelength shifts were observed (blue 

shifted) during the titration of each variant with CL vesicles (Figures 4.4 and 4.6). Following 

Pandiscia et al, relative amplitude was defined for each variant as the peak minus the trough of 

the unbound protein. The peak and trough wavelength for the unbound state were used to define 

amplitude throughout the titration (Figure 4.7). Monitoring the peak-trough amplitude in the 

Soret region of each variant effectively tracks changes in the heme environment as the exposed 

LPR increases. 
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Figure 4.7. The difference in the CD signal at the peak and the trough wavelengths of the 

unbound iso-1-Cytc variants, ∆∆𝜀 =  ∆𝜀max- ∆𝜀 min, as 100 nm TOCL vesicles are titrated into 10 

µM solutions of yeast iso-1-Cytc variants in 20 mM TES, 0.1 M EDTA buffer at pH 8 and 25 oC. 

The titrations are reported in exposed LPR. WT (black), K72A (red), K73A (yellow), K72|73A 

(gray), K86A (cyan), K87A (orange), and K86|87A (green) data points are fit to a one-site 

cooperative binding model (eq 4.1, solid curves). The K72|73|86|87A (lavender) variant data 

points are simply connected with a dashed line.  

 

 

4.3.4. Fits of Soret CD Amplitudes to a One-site Cooperative Binding Model.  

The amplitude, ∆∆𝜀, due to protein binding to CL liposomes varies from variant to variant 

with the largest amplitude observed for the K87A, K86A and K86|87A variants and the smallest 

change in amplitude over the titration demonstrated by the K72|73A variant (Figure 4.7). 

Averaged Soret CD amplitude data as a function of exposed LPR for each variant were fit to a 

one-site cooperative Hill equation (eq 4.1)26 to elucidate A-site specific CL binding, 
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𝑠(𝑥) =
𝑠𝑜+𝑠1(

𝑥
𝐾𝑑(𝑎𝑝𝑝)

)
𝑛

1+( 𝑥
𝐾𝑑(𝑎𝑝𝑝)

)
𝑛    (4.1) 

where the spectroscopic value, s(x) corresponds to the amplitude measured at the exposed LPR, 

x, in the titration, so is the value of spectroscopic parameter for the initial state, s1 is the value of 

spectroscopic parameter for the final state, Kd(app) is the apparent dissociation  

  

constant for the iso-1-Cytc-CL interaction at the membrane surface, and n is the associated Hill 

coefficient and can be interpreted as the number of lipids binding to site A. Figure 4.7 shows the 

fit to eq 4.1 overlaid with the amplitude data for each mutant. Parameters for the fits to eq 4.1 are 

reported in Table 4.2. 

The values of Kd(app) for the K72A and K86A variants are within error the same as for WT, 

whereas there are small increases in Kd(app) for the K73A and K87A variants. Within error the 

double-substitution variants, K72|73A and K86|87A, have Kd(app) values that are identical to 

 
Table 4.2. Thermodynamic parameters for binding of site A of Cytc to 100% CL vesicles. 
 CDa,b Fluorescencea,c 

Variant Kd(app) (LPR, µM) n Kd(app) (LPR, µM) n 
WT 10.2 ± 0.2 

(102 ± 2) 
2.2 ± 0.1 23.4 ± 0.8 

(117 ± 4) 
2.3 ± 0.2 

K72A 9.8 ± 0.2 
(98 ± 2) 

2.01 ± 0.07 26.2 ± 0.8 
(131 ± 4) 

2.31 ± 0.10 

K73A 11.5 ± 0.8 
(115 ± 8) 

1.6 ± 0.1 29.8 ± 1.7 
(139 ± 6) 

2.07 ± 0.15 

K72|73A 12.4 ± 1.2 
(124 ± 12) 

1.6 ± 0.1 34.0 ± 2.7 
(195 ± 23) 

1.77 ± 0.13 

K86A 10.6 ± 0.4 
(106 ± 4) 

1.85 ± 0.08 22.9 ± 0.7 
(114 ± 4) 

1.93 ± 0.08 

K87A 11.2 ± 0.3 
(112 ± 3) 

1.92 ± 0.06 22.0 ± 0.9 
(107 ± 4) 

1.97 ± 0.13 

K86|87A 11.6 ± 0.8 
(116 ± 8) 

1.7 ± 0.1 22.2 ± 0.7 
(109 ± 3.7) 

2.88 ± 0.15 

aReported in exposed (outer leaflet) lipid to protein ratio (LPR) and in brackets µM exposed 
lipid concentration. Error corresponds to the standard error in the fit of the parameter. bCytc 
concentration was 10 µM. cCytc concentration was 5 µM.  
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those observed for the K73A and K87A variants. The modest effect on Kd(app) for the binding 

event monitored by Soret CD indicates that the variation in the degree of population of the 

alkaline conformer for these variants does not significantly affect the binding event observed by 

Soret CD, 

All variants show a decrease in their Hill coefficient, n, relative to WT, suggesting that loss 

of lysines decreases the average number of lipids interacting with site A. Loss in lipid binding is 

modest for both K72A and K87A (~0.2 and ~0.3 lipids). K73A and K86A demonstrate a more 

pronounced loss in lipid binding through their Lys→Ala substitutions (~0.6 and ~0.35 lipids, 

respectively). The double mutant, K72|73A has the same decrease in n as the K73A variant in 

(~0.6 lipids), whereas the K86|87A exhibits a further decrease in lipid binding (~0.5 lipids) 

indicating that both lysines of this subcluster contribute to the CL interaction. 

 

4.3.5. Cardiolipin Binding Monitored using Trp59 Fluorescence.  

Tryptophan fluorescence was used as a secondary probe to investigate environmental 

changes indicative of protein structural rearrangement (partial to full unfolding) in and around 

the heme crevice as a result of the iso-1-Cytc-CL interaction. Cytc has one tryptophan at position 

59 in the heme crevice (Figure 4.1) that is quenched by heme when the protein is folded. The 

increase in Trp59 fluorescence when Trp59 moves away from the heme has been used to monitor 

loss of tertiary structure when Cytc unfolds.61 Exposure of WT and variant forms of iso-1-Cytc 

to 100% CL vesicles leads to increased tryptophan fluorescence, corresponding to a distance 

increase of Trp59 from the heme, which is indicative of partial or full unfolding of the protein 

(Figure 4.8, Figure 4.9). A red shift of fluorescence peak location is observed for WT and all 

variants (Figure 4.10), consistent with an increase in the solvent exposure of Trp59. 
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Figure 4.8. Trp59 Fluorescence emission spectra of 5 µM K73A (left) and K87A (right) iso-1-

Cytc titrated with 100 nm TOCL vesicles in 20 mM TES, 0.1 mM EDTA buffer at pH 8 and 25 

oC. Lipid concentration increases from 0 µM to ~250 µM (outer leaflet) lipid concentration 

(black→red→blue). Fluorescence is in arbitrary units (A.U). 
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Figure 4.9. Trp59 fluorescence emission spectra of 5 µM yeast iso-1-cytc variants titrated with 

100 nm CL vesicles in 20 mM TES. 0.1 mM EDTA buffer at pH 8 and at 25 oC. Exposed (outer 

leaflet) CL concentration ranges from 0→250 µM (black→red→blue).  
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Figure 4.10. Trp59 spectral peak location (in nm) from 100 nm CL vesicles titrated into 5 µM 

WT(black), K72A (red), K73A (yellow), K72|73A (gray), K86A (cyan), K87A (orange), and 

K86|87A (green) iso-1-Cytc in 20 mM TES. 0.1 mM EDTA buffer at pH 8 and at 25 oC. 

Titrations are reported in exposed LPR.  

 

 

To track progression of the iso-1-Cytc-CL interaction by fluorescence, the peak wavelength 

location in the final titration spectrum of each variant (see Figure 4.10) was used. The increase in 

fluorescence intensity versus exposed LPR for each variant is shown in Figure 4.11. Peak shift 

and center of mass shift were also tracked over the course of the titration (Figure 4.10, Figure 

4.12). Both peak shift and center of mass shift demonstrate the impact of lysine removal on 

solvent exposure of Trp59. K86|87A and K87A demonstrate the greatest red shift in peak 

location while K72|73A has the smallest peak shift relative to the folded protein (Figure 4.10). 

K86|87A and K87A also have the largest shift in center of mass location while K72|73A center 

of mass shift is minimal (Figure 4.12). 
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Figure 4.11. Increase in Trp59 emission during titration of iso-1-cytc variants with 100 nm CL 

vesicles in 20 mM TES, 0.1 mM EDTA buffer at pH 8 and 25 oC. The concentration of iso-1-

Cytc was 5 µM in all titrations. A single-site cooperative binding model is fit to titration data 

(solid curves). Error bar are one standard deviation from multiple independent trials, WT(black), 

K72A (red), K73A (yellow), K72|73A (gray), K86A (cyan), K87A (orange), and K8|687A 

(green). The K72|73|86|87A variant (lavender data points connected by a dashed line) is shown 

without a fit. Fluorescence measured in arbitrary units. 
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Figure 4.12. Trp59 spectral center of mass location (in nm) for 100 nm CL vesicles titrated into 

5 µM WT(black), K72A (red), K73A (yellow), K72|73A (gray), K86A (cyan), K87A (orange), 

and K86|87A (green) iso-1-Cytc in 20 mM TES, 0.1 mM EDTA buffer at pH 8 and at 25 oC. 

Titrations are reported in exposed LPR. 

 

 

The fluorescence binding curves for each variant were fit using eq 1 (Figure 4.11). The 

Kd(app) with respect to exposed LPR obtained from fluorescence data for each variant is 2- to 3-

fold larger than Kd(app) obtained from the Soret CD-monitored titration data. This observation 

indicates that the iso-1-Cytc-CL interaction is biphasic (Figure 4.13). The magnitude of the 

change in Kd(app) obtained from fluorescence data also depends on which subcluster of site A 

contains the Lys→Ala substitution(s). Substitution of one or both of the lysines in the 

Lys86/Lys87 subcluster of site A has minimal impact on Kd(app). By contrast, substitution of the 

lysines in the Lys72/73 subcluster leads to significant increases in Kd(app), with the K72|73A 

double-substitution variant increasing Kd(app) by 45%. It is also noteworthy that variants with 
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substitutions in the Lys86/Lys87 subcluster all lead to significant increases in Trp59 fluorescence 

relative to WT iso-1-Cytc (Figures 4.8, 4.9 and 4.11) when bound to CL at high exposed LPR.   
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Figure 4.13. Soret CD signal change (ΔΔ𝜀= Δ𝜀max- Δ𝜀min) for  100 nm CL vesicles titrated into 

10 µM yeast iso-1-Cytc variants in 20 mM TES, 0.1 mM EDTA buffer at pH 8 (blue) overlaid 

with Trp59 emission amplitudes for 100 nm CL vesicles titrated into 5 µM yeast iso-1-Cytc 

variants in 20 mM TES, 0.1 mM EDTA buffer at pH 8 (red). Titration reported as a function of 

exposed LPR. A one-site cooperative binding model is fit to the titration data (solid lines). Data 

were acquired at 25 oC. 
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The magnitude of Kd(app) for the K86A, K87A, and K86|87A variants shows minimal 

perturbation from the WT Kd(app) (decrease of 0.5 – 1.5 in units of exposed LPR, see Table 4.2). 

This minimal response suggests that lysines at residues 86 and 87 do not strongly impact the 

large scale structural rearrangement that occurs at high exposed LPR and causes Trp59 to move 

away from the heme. Conversely, the Kd(app) for the K72A, K73A and K72|73A variants 

increases more significantly relative to WT iso-1-Cytc (3 – 11 in units of exposed LPR). The 

increase in required exposed lipids to induce partial unfolding indicates that Lys72 and Lys73 are 

both important for partial unfolding of iso-1-Cytc on CL liposomes. 

For fluorescence monitored binding phase, all variants, except K72A, demonstrate changes in 

the number of lipids bound, n. The K73A diminishes n by 0.2 units and the K72|73A variants 

decreases n by ~0.5 units. Thus, removal of both lysines, K72|73A, has a combined cooperativity 

loss greater than expected based on the values of n for the individual variants. K86A and K87A 

show decreases in n of ~0.35 and ~0.30 lipids. However, the K86|87A variants show an additive 

increase in n of approximately ~0.55 lipids.  

 

4.3.6. Trp59 Environment Monitored using Circular Dichroism. 

The CD region reporting Trp59 rearrangement was investigated to determine the role of CL 

in local rearrangement around the amino acid following the work of Pinheiro et al.62 Figure 4.14. 

shows near UV CD in the absence (folded protein) and presence (unfolded protein) of 3 M 

GdnHCl as well as in the presence of CL vesicles at a concentration corresponding to an exposed 

LPR of 5 for each variant. Each variant demonstrates minimal perturbation of the near UV CD 

signal in the presence of CL under crowded conditions on the membrane surface. The sharp 

minima at 282 and 289 nm are characteristic of Trp59 in the native state structure of iso-1-
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Cytc.63 This finding shows that in the region of the binding curve where the surface density of 

iso-1-Cytc is expected to be high (low exposed LPR), the perturbation to the near UV CD, and 

thus to the Trp59 environment, is minimal. By contrast, large changes in the near UV CD are 

observed in 3 M GdnHCl where all variants are expected to fully unfolded (see Figure 4.3). 

These results indicate that at low exposed LPR the environment of Trp59 is only modestly 

perturbed. Previous work on horse Cytc binding to phosphatidylserine (DOPS) vesicles at a high 

exposed LPR of 125 show complete loss of the near UV signal due to Trp59.62     
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Figure 4.14. Near UV CD of 50 µM yeast iso-1-Cytc variants in 20 mM TES, 0.1 mM EDTA 

buffer at pH 8 (black) overlaid with 50 µM yeast iso-1-Cytc variants mixed with 500 µM 100 

nm CL vesicles in 20 mM TES, 0.1 mM EDTA buffer at pH 8 (exposed LPR = 5; blue) and with 

50 µM yeast iso-1-Cytc variants in 3 M GdnHCl in 20 mM TES, 0.1 mM EDTA buffer at pH 8 

(red). All spectra were recorded at 25 oC. 

 

K72|73|86|87A 

K86A 

K86|87A 

K87A K72|73A 

K73A K72A WT 



 115 

 

4.4. DISCUSSION 

4.4.1. General Features of Cardiolipin Binding to Site A at pH 8.  

In previous work, we established that we can isolate binding to site A at pH 8.39 Under these 

conditions, we no longer observe an increase in light scattering in the UV-Vis absorbance 

spectrum that is typical of binding to site L.32 We are also above the pH regime where binding to 

site C is expected to occur.14 In our previous report, we observed that an isodichroic point in the 

Soret CD spectra of WT yeast iso-1-Cytc and a K72A variant begins to form at an exposed LPR 

near 3.39 This result indicates that initial intermolecular binding occurs below an exposed LPR of 

~3 with the remainder of the titration representing a conformational rearrangement of iso-1-Cytc 

on the surface of 100% CL vesicles. A similar behavior is observed here for all of the site A 

Lys→Ala variants. However, the isodichroic point does not establish until a somewhat higher 

exposed LPR for the K87A (see Figure 4.4) and the K86|87A variant (Figure 4.6), suggesting 

that these substitutions weaken the initial intermolecular binding to the CL vesicles. In the case 

of the quadruple substitution variant, K72|73|86|87A, a separate intermolecular binding phase is 

apparent in the binding isotherm (Figure 4.7), indicating that intermolecular binding is 

significantly weakened for this variant.  

In our previous report,39 and for all variants studied here, the majority of the amplitude signal 

propagation of the Soret CD-monitored binding titration occurs after the initial intermolecular 

association. The minimal effect of intermolecular association on the Soret CD at small values of 

exposed LPR indicates that when the membrane surface is crowded, the structure of iso-1-Cytc is 

minimally effected by binding to 100% CL vesicles.  Consistent with this observation, the largest 

change in the Soret CD signal occurs during the initial intermolecular association of the 
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K72|73|86|87A variant for which intermolecular association is not complete until larger values of 

exposed LPR. Because we are observing intramolecular rearrangements of membrane bound iso-

1-Cytc, which appear to be dependent on available space on the membrane surface, we report all 

apparent dissociation constants, Kd(app), in terms of exposed LPR.  

In our previous work, binding monitored by Trp59 fluorescence occurs at larger values of 

exposed LPR than binding monitored by Soret CD.39 This observation is consistent with two 

sequential structural rearrangements on the surface of the CL vesicles. The same behavior is 

observed here for all site A Lys→Ala variants (Figure 4.13 and Table 4.2). The characteristic 

positive/negative couplet observed for the Soret CD of the native state of Cytc has been 

attributed to the presence of the heme-Met80 bond64 and is believed to report on the orientation 

of Ph82 relative to the heme,59 although exact structural determinants of the splitting of the 

couplet are likely more complex.65 An X-ray structure of the K72A variant of iso-1-Cytc at pH 

8.8 shows that a modest structural rearrangement of iso-1-Cytc is sufficient to permit 

replacement of the Met80 heme ligand by water.  Quenching of Trp59 fluorescence is used to 

monitor loss of tertiary structure as Trp59 moves away from the heme (see Figure 4.1).61    For 

most of the site A Lys→Ala variants, the increase in Trp59 fluorescence is small during the CD-

monitored transition (Figure 4.13). Thus, the first structural rearrangement is likely a small 

conformational rearrangement that alters the heme environment. The modest effect of CL 

binding on the near UV CD spectrum of iso-1-Cytc at low exposed LPR (Figure 4.14) is also 

consistent with this conclusion. The second conformational change, which leads to a large 

increase in Trp fluorescence, is consistent with significant unfolding of iso-1-Cytc. The existence 

of an equilibrium between compact and extended conformers has previously been demonstrated 

for the binding of horse Cytc to CL vesicles.18, 26 These features of CL binding to site A of yeast 
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iso-1-Cytc qualitatively remain unaltered even by complete elimination of the four lysines 

(K72|73|86|87A variant) most commonly considered to define the boundaries of site A (Figure 

4.13). This observation indicates that site A may be a more extensive binding site than 

previously thought.   

 

4.4.2. Effect of Lys→Ala Substitutions in Site A on the Structure of Iso-1-Cytc bound to CL 

Vesicles.  

For CL vesicle binding to the cluster of positive charges that comprise site A, the degree of 

perturbation to the structure of iso-1-Cytc, as detected by either Soret CD or Trp59 fluorescence, 

depends on whether the substitution is in the Lys72/73 or the Lys86/87 charge subcluster. The 

K86A, K87A and K86|87A variants all show a larger change in both the Soret CD signal 

(Figures 4.4, 4.6 and 4.7) and a greater increase in the Trp59 fluorescence (Figures 4.8, 4.9 and 

4.11) compared to the binding of WT iso-1-Cytc to CL vesicles. Thus, elimination of the Lys86 

and/or Lys87 charges leads to a larger perturbation of the heme environment for binding to CL 

vesicles at low exposed LPR (crowded vesicle surface) and a larger degree of loss of tertiary 

structure for binding to CL vesicles at high exposed LPR (uncrowded vesicle surface). By 

contrast, the K72A, K73A and K72|73A variants all cause a smaller change in both the Soret CD 

signal (Figures 4.4, 4.6 and 4.7) and a smaller increase in the Trp59 fluorescence (Figures 4.8, 

4.9 and 4.11) compared to the binding of WT iso-1-Cytc to CL vesicles. Therefore, elimination 

of the Lys72 and/or Lys73 charges leads to a smaller perturbation of the heme environment at 

low exposed LPR (crowded vesicle surface) and a larger degree of loss of tertiary structure at 

high exposed LPR (uncrowded vesicle surface). 
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The shift in the emission maximum of Trp59 upon binding to CL vesicles (Figure 4.10) is 

also consistent with the relative degree of unfolding indicated by the increase in Trp59 

fluorescence observed for the different site A Lys→Ala variants (Figures 4.8, 4.9 and 4.11). For 

WT iso-1-Cytc, the wavelength of maximum emission from the Trp59 shifts from ~330 nm for 

the native state of iso-1-Cytc to near 340 nm when bound to CL vesicles through site A at high 

exposed LPR.39 This shift in emission maximum indicates that Trp59 moves from a buried to a 

surface-exposed site in contact with ordered water when bound to CL vesicles.66 Exposure to 

bulk water typically leads to an emission maximum near 350 nm for tryptophan.66 For the K86A, 

K87A and K86|87A variants the emission maximum shifts to ~342 nm indicating greater 

exposure to bulk water for these variants when bound through site A to CL vesicles at high 

exposed LPR (Figure 4.10). The greater exposure to bulk water for these variants relative to WT 

iso-1-Cytc is consistent with the higher degree of unfolding relative to WT iso-1-Cytc indicated 

by their higher emission intensity when bound to CL vesicles at high exposed LPR (Figures 4.8, 

4.9 and 4.11). For the K72A, K73A and K72|73A variants the emission maximum shift is 

smaller than for WT iso-1-Cytc, shifting only to ~335 nm for the K72|73A variant at high 

exposed LPR (Figure 4.10). The smaller shift in emission maximum for these variants indicates 

that Trp59 is more buried for these variants when bound through site A to CL vesicles at high 

exposed LPR. A more buried Trp59 for these variants relative to WT iso-1-Cytc is consistent 

with the lesser degree of unfolding relative to WT iso-1-Cytc indicated by their lower emission 

intensity when bound to CL vesicles at high exposed LPR (Figures 4.8, 4.9 and 4.11). 

These observations indicate that binding through the Lys72/Lys73 charge subcluster of site A 

is necessary for larger conformational rearrangements both at low exposed LPR (crowded vesicle 

surface) and high exposed LPR when bound to CL vesicles through site A. By contrast, the 
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Lys86/Lys87 charge subcluster of site A appears to inhibit larger scale conformational 

rearrangements at both at low exposed LPR (crowded vesicle surface) and high exposed LPR 

when bound to CL vesicles through site A. When lysines 86 and 87 are substituted by alanine, 

binding to CL vesicles through site A leads to larger conformational rearrangements. The 

K72|73|86|87A variant, which eliminates both site A charge subclusters shows conformational 

rearrangements upon binding to CL vesicles that are intermediate between the effects of the two 

subclusters (Figures 4.6-4.9) indicating that the effects of the two charge subclusters on binding 

to CL vesicles through site A are compensatory.  

   

4.4.3. Effect of Lys→Ala Substitutions in Site A on Kd(app) and the cooperativity of binding 

of Iso-1-Cytc to CL Vesicles.  

In our comparative study on yeast iso-1-Cytc versus human Cytc binding to CL vesicles via 

site A,39 we noted that our Kd(app) values are higher (weaker apparent binding) that in previous 

studies carried out at pH 7 and 7.4.26, 28-30, 36, 67 This difference likely reflects the involvement of 

site C and site L in these studies of binding at lower pH. Lys→Asn and Lys→Arg substitutions 

in Ω-loop-D (residues 70 – 85) also indicated that Lys73 and Lys79 were critical for binding at 

pH 7. We see no such specificity in our data at pH 8. This difference likely reflects participation 

of site C and/or site L at pH 7. Site C is believed to involve direct insertion of one or more of the 

hydrocarbon chains of CL into the hydrophobic core of Cytc.15, 35, 36 Insertion of a hydrocarbon 

chain undoubtedly introduces restrictions not present for binding only through site A, the anionic 

site. 

As discussed above, our data for the binding of iso-1-Cytc variants to CL vesicles via site A 

are consistent with the thermodynamic parameters in Table 4.2 reporting on conformational 
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rearrangements of iso-1-Cytc already bound on the surface of the CL vesicles. That said, it is 

evident for the K87A and K86|87A variants and most particularly the K72|73|86|87A variant 

(Figure 4.6 and 4.7) that the isodichroic point for binding monitored by Soret CD does not form 

until further into the binding titration. This observation suggests that these variants have 

qualitatively weaker intermolecular association with CL vesicles than WT iso-1-Cytc. Because 

of the low amplitude of this pre-isodichroic point phase, we were unable to fit the data for these 

variants to a more complex model.   

The most noteworthy observation in Table 4.2 is that Kd(app) is not strongly sensitive to the 

site A Lys→Ala substitutions. Once bound to the membrane, two stages of conformational 

rearrangement occur, a first phase under crowded conditions (low exposed LPR) involving 

perturbation of the heme environment and a second phase involving partial unfolding of Cytc 

that requires more space on the membrane surface (high exposed LPR). The relative insensitivity 

of Kd(app) to site A Lys→Ala substitutions suggests that site A is fairly malleable, with the loss 

of one or more lysines relatively easily replaced by nearby lysines. We were unable to obtain a 

reliable fit of the Soret CD or the Trp59 emission versus exposed LPR data to the simple one site 

cooperative binding model for the K72|73|86|87A variant which has all lysines commonly 

attributed to site A replaced with alanine. It is evident that two separable conformational 

rearrangements still occur (Figures 4.7, 4.11 and 4.13). Thus, in the absence of the “site A” 

lysines other nearby positively charged groups, (Arg13, Arg91 and Lys88 for the Lys86/Lys87 

charge subcluster and Lys54, Lys55 and Lys79 for the Lys72/Lys73 subcluster) appear to be able 

to cause similar structural rearrangements at similar degrees of crowding (exposed LPR) on the 

membrane surface.     
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The Kd(app) for the first phase monitored by Soret CD is only modestly sensitive to exposed 

LPR. The K73A and K86A variants yield Kd(app) within error of the WT value of 10.2 ± 0.2, 

with maximal increases of 15 – 20% for the K72|73A and K86|87A variants. The cooperativity, 

n, which provides an estimate of the number of CL involved in this phase, decreases for all 

variants. Thus, elimination of lysines appears to decrease the number of lipids that interact with 

iso-1-Cytc in the first conformational rearrangement. For the Lys72/Lys73 subcluster, Lys73 is 

the dominant contributor to the cooperativity, whereas in the Lys86/Lys87 subcluster the two 

lysines appear to contribute equally to the cooperativity of the conformational rearrangement 

when the surface of the membrane is crowded. 

The behavior of Kd(app) for the second phase monitored by Trp59 fluorescence depends 

strongly on the subcluster of site A, which has had its charges neutralized. Substitution of either 

Lys72 or Lys73 increases Kd(app) and the increase is roughly additive in the K72|73A variant 

with the K72|73A variant showing a 45% increase in Kd(app). For the Lys86/Lys87 charge 

subcluster, Lys→Ala substitutions do not affect Kd(app).  The effect of substitutions in the 

Lys86/Lys87 subcluster on the emission maximum and on the degree of increase in Trp59 

emission intensity upon binding to CL vesicles suggest a higher degree of unfolding than for WT 

iso-1-Cytc. More extensive unfolding might be expected to lead to a higher Kd(app) in terms of 

exposed LPR (less crowded membrane surface needed). Based on the smaller red shift in the 

Trp59 emission maximum and the decrease in Trp59 emission intensity for Lys→Ala 

subsitutions in the Lys72/Lys73 charge subcluster, the space needed on the membrane is 

expected to be less for these variants to partially unfold. Thus, changes in Kd(app) do not 

correlate well with degree of unfolding assessed by Trp59 fluorescence (Trp59-heme distance). 

It can be speculated that neutralization of the Lys86/87 charge subcluster shifts the site A 
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interaction toward partial unfolding centered around Lys54/Lys55 and Lys72/Lys73, increasing 

the Trp59-heme distance but not requiring a large increase in the space needed on the membrane 

relative to WT iso-1-Cytc. In the absence of the Lys72/Lys73 charge subcluster, partial 

unfolding may be dominated by the Lys86/Lys87 charge subcluster with concomitant unfolding 

of the C-terminal helix. This possibility would require more space on the membrane, but might 

lead to a smaller increase in the Trp59-heme distance for iso-1-Cytc bound to CL vesicles at high 

exposed LPR if Ω-loop-C (residues 40 – 57) is less disrupted in the absence of Lys72/Lys73. 

Fluorescence resonance energy transfer studies on horse Cytc binding to CL vesicles are 

consistent with both the 60s helix and the C-terminal helix moving away from the heme.18 

Substitutions in the Lys72/73 versus the Lys86/87 charge subcluster may shift the ensemble of 

iso-1-Cytc structures on the membrane surface from ones involving partial unfolding near the 

60s helix versus the C-terminal helix.   

In all cases, the cooperativity, n, in Table 4.2 for the second phase of structural 

rearrangement when iso-1-Cytc is bound to CL vesicles is near 2, indicating that no matter the 

composition of site A interactions, direct interaction with ~2 CL lipids is needed for partial 

unfolding of iso-1-Cytc. The cause of the increase in n for the K86|87A variant is unclear based 

on the current data. 

 

4.4.4. Implications for the Peroxidase Activity Signaling Switch in Apoptosis.  

Studies on horse Cytc bound to CL vesicles indicate that the degree of structural 

rearrangement that occurs on CL vesicles correlates with the peroxidase activity of the bound 

Cytc.18 The effects of neutralizing the different subclusters of iso-1-Cytc show that the 

distribution of positively charged amino acids on the surface of Cytc can be used to control the 
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magnitude of the structural rearrangement that occurs when Cytc binds to CL on the inner 

mitochondrial membrane. Thus, it is possible that the distribution of charges on the surface of 

Cytc has evolved to maximize the increase in peroxidase activity of Cytc and thus the 

effectiveness of the signaling switch when it is bound to CL in the early stages of apoptosis. Our 

previous comparative study of the binding of yeast iso-1-Cytc and human Cytc to 100% CL 

vesicles is consistent with the hypothesis. The magnitude of the enhancement in Trp59 emission 

for WT human Cytc relative to WT iso-1-Cytc is similar to the effect of elimination of the 

Lys86/Lys87 charge subcluster for iso-1-Cytc. Thus, the distribution of charges on the surface of 

human Cytc (see Figure 2 in ref. 39) appears to have evolved to allow for a larger structural 

rearrangement when human Cytc binds to CL. Recent studies on the G41S and Y48H disease-

causing variants of human Cytc indicate a linkage between increased dynamics at the interface of 

Ω-loops C (residues 40 – 57) and D (residues 70 – 85) and enhanced peroxidase activity.68, 69 The 

similarity of the behavior of the Lys86/87 iso-1-Cytc charge subcluster variants and human Cytc 

may reflect evolution of Cytc toward a distribution of charges on the surface of human Cytc that 

favors opening at the interface of Ω-loops C and D when bound to CL vesicles. Such evolution 

of the charge distribution could optimize the peroxidase signaling switch in the early stages of 

apoptosis.      

 

4.5. CONCLUSIONS 

We show that binding of iso-1-Cytc to 100% CL vesicles specifically through site A at pH 8, 

is not strongly dependent on any one of the four lysines commonly attribute to site A. Our results 

indicate that the specific complement of positively charged residues comprising site A is fairly 

malleable. These results contrast with previous work at pH 7 which suggest that lysines 72 and 
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79 are critical for binding to CL.29, 30 The difference is likely because binding at pH 7 includes 

contributions from other binding sites such as site C. Our data also show that the details of both 

the small structural rearrangement at low exposed LPR (crowded membrane surface) and the 

larger structural rearrangement at high exposed LPR (uncrowded membrane surface) are 

significantly dependent on the site A lysines available for interaction with CL. These results 

suggest that site A may have evolved to optimize the structural switch that turns on peroxidase 

activity in the early stages of apoptosis.   
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CHAPTER 5: Consequences of Cardiolipin Lipid Partitioning in Mixed 
Membrane Systems 
 
 
 
5.1. INTRODUCTION 

Lipid bilayers provide both a barrier for containment and exclusion of cellular components as 

well as a platform for protein interactions required for cell signaling. Not all bilayers are created 

equal and their composition varies greatly based on cellular location and functionality.1 

Membrane lipid composition is responsible for a host of lipid-protein interactions with both local 

and far reaching consequences.2 Understanding the dynamics of mixed lipid bilayers and their 

impact on lipid-protein binding is essential for understanding their role in regulatory processes.    

Cardiolipin (CL) is a structurally unique phospholipid that plays a pivotal role in the initial 

stages of apoptosis,3,4 CL’s structural characteristics could have a dramatic impact on its function 

in the mitochondria with overarching consequences that affect the entire cell. Most studies on the 

properties of CL and its interactions with proteins are carried out with 1’,3’-bis[1,2-dioleoyl-sn-

glyvero-3-phospho]-sn-glycerol (TOCL). With four mono-unsaturated acyl chains and two 

phosphate groups comprising its headgroup, TOCL has a classic inverted cone or type-2 lipid 

structure typical for lipids that tend to pack on concave surfaces.1 

CL is synthesized in the matrix and is inserted into the concave surface of the inner leaflet of 

the inner mitochondrial membrane.3,5,6 Here, it has many important roles from facilitating an ion 

gradient and tethering electron transport constituents to functioning as an apoptotic trigger.5 

Recent work shows that the electron transport chain electron shuttle, cytochrome c (Cytc), 

oxidizes CL, causing dissociation of the Cytc-CL complex, and thus facilitating the exit of Cytc 

from mitochondria into the cytoplasm.6 In the cytoplasm, Cytc binds to apoptotic protease 

activating factor 1 (Apaf-1) causing the formation of the apoptosome, which initiates 
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apoptosis.3,6 Both before and since the discovery of the role of Cytc as a peroxidase that 

oxygenates CL in the earliest stages of apoptosis, considerable efforts has been directed at 

characterizing Cytc-CL binding. A vast array of techniques and mimetic membrane systems has 

been employed to investigate Cytc-CL binding in vitro. Both pure CL7–9 and mixed lipid 

systems6,10,19–22,11–18 modeling the content of CL in the IMM have been used extensively to 

characterize how Cytc docks to CL producing a conformer of Cytc that can oxidize CL.  

Four potential lipid binding sites on the surface of Cytc have been described in the literature, 

the anionic  (A-site),10,13,23 the hydrophobic cardiolipin binding site which may involve hydrogen 

bonding to Asn52 (C-site),10,13 the histidine rich, hydrogen bonding L-site24 and the novel site (N 

site).25 These four sites may work independently or in concert to dock CL and facilitate its 

oxidation at the peroxidase active site of a non-native conformer of Cytc.3,4,26–32,6,7,9,11,12,14,18,20 

Mixed lipid systems using liposomes comprised of 20-50% CL have often been employed to 

study this interaction.6,10,33,11,14,16,18–22 Lipid binding in these experiments has been investigated 

solely on the exterior of the liposomes. CL composition is generally offset with the neutral 

cylindrically shaped lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) in these systems.1 

Given that the results of the various binding studies do not agree quantitatively, it is important to 

understand if partitioning of CL to the inner versus the outer leaflet of liposomes could be 

affecting the differing results observed with different model systems and different methods of 

vesicle preparation.  

This paper elucidates the nature of two mixed membrane systems commonly used to 

characterize Cytc binding to membranes by (1) evaluating the leaflet-dependent distribution of 

CL and DOPG in mixed lipid vesicles, (2) assessing potential anionic, headgroup-governed, 
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partitioning and (3) applying our findings on inner versus out leaflet CL distribution to Cytc 

binding studies to evaluate the effect of CL partitioning on Cytc-CL binding.  

 

5.2. EXPERIMENTAL METHODS  

5.2.1. Materials.  

Cardiolipin (1’,3’-bis[1,2-dioleoyl-sn-glycero-3-phospho]-sn-glycerol, TOCL), DOPC (1,2-

dioleoyl-sn-glycero-3-phosphocholine), and DOPG (1,2-dioleoyl-sn-glycero-3-phospho-(1’-rac-

glycerol) were purchased from Avanti Polar Lipids, Inc., Alabaster AL and used in vesicle 

formation without additional purification. 

 

5.2.2. Preparation of 1,1,2,2,-tetrakis[4-(2-

trimethylammonioethoxy)phenyl]ethene  (TTAPE-Me).  

TTAPE-Me was synthesized following previously reported methods.34,35 Briefly, 3.0 g of 

4,4’ dihydroxybenzophenone (Sigma Aldrich), 5.0 g potassium carbonate (Sigma Aldrich), 4 mL 

1,2 dibromoethane and 50 mL acetone were combined in a round bottom flask and refluxed 

overnight. Thin layer chromatography (TLC, 75% ethyl acetate in hexanes) was used to verify 

quantitative conversion of benzophenone to 4,4′-bis(2-bromoethoxy) benzophenone (BBEBP). 

The identity of BBEBP was verified via gas chromatography coupled to mass spectroscopy. 0.56 

g of BBEBP, 28 ml of tetrahydrofuran, 0.146 mL of titanium tetrachloride (Sigma) and 0.168 g 

of zinc dust were combined in a round bottom and refluxed overnight. Conversion of BBEBP to 

1,1,2,2-tetrakis[4-(2-bromoethoxy)phenyl]ethene (TBEPE) was verified by thin layer 

chromatography. The 1H NMR spectrum matched that reported previously for TBEPE.34 0.4 g 

TBEPE, 10 mL of tetrahydrofuran and 2.25 mL dimethyl amine were mixed for 45 minutes at 
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25˚C to form TTAPE-Me. Product was purified a silica gel column and then dried using rotovap. 

Successful production of TTAPE-Me was verified by 1H and 13C NMR. Observed spectra were 

consistent with previously reported NMR spectra.34  

 

5.2.3. Vesicle Preparation.  

Mixed lipid samples were prepared to the desired mole ratio by combining the appropriate 

volume of each lipid, based on the reported lipid concentration provided by the manufacturer 

(Avanti Polar Lipids, Inc, Alabaster AL), in a 1 dram vial, mixed and dried under nitrogen to 

remove chloroform. Samples were reconstituted to desired total lipid concentration using 20 mM 

TES buffer, 0.1 mM EDTA, pH 8. Lipids and buffer were gently mixed using a low speed 

vortexer for 1 minute and set in a warm bath at approximately 40˚C for 9 minutes; this mixing 

was repeated ten times. Samples were then subjected to a freeze/thaw/mixing (-60˚C/40˚C/25˚C ) 

cycle five times to form vesicles. Vesicles were then extruded to 100 nm using an Avanti mini 

extruder outfitted with two 100 nm pore membranes. Samples were passed through the extruder 

11 times to guarantee approximate vesicle size. Vesicle size was confirmed to be 100 ± 5 nm 

using dynamic light scattering measurements carried out in triplicate with a Malvern Zetasizer. 

When detecting-external lipid, TTAPE-Me was added to extruded vesicle samples in 40 – 80-

fold molar excess. When detecting total lipid distribution, vesicles were formed in presence of 

fluorophore by reconstituting lipid with buffer containing 40 – 80-fold molar excess of TTAPE-

Me relative to total lipid concentration. CL/DOPC samples were prepared to a total lipid 

concentration of 1.5 mM. DOPG/DOPC samples were prepared to a total lipid concentration of 3 

mM. Mixed lipid samples at each mole fraction for both external TTAPE-Me exposure and total 

(inner and outer leaflet) TTAPE-Me exposure were prepared independently in triplicate.  
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5.2.4. TTAPE-Me Fluorescence Measurements.  

A Perkin-Elmer LS55 Fluorescence Spectrometer was used to acquire fluorescence spectra. 

Samples were excited at 350 nm in a 4 mm x 4 mm Hellma fluorescence cuvette. Emitted light 

was passed through a 350 nm cutoff filter to eliminate excitation breakthrough. Sample emission 

was acquired from 370-600 nm with a 2.5 nm bandwidth and a scan rate of 100 nm/min.  

 

5.2.5. TTAPE-Me and Vesicle Concentration Determination.  

Using a Beckman-Coulter DU800 Spectrophotometer, UV-Visible spectra were acquired in 

triplicate from 300-450 nm for samples in a Hellma 10 mm microcuvette. TTAPE-Me 

concentration was approximated using absorbance at 350 nm (due to no reported extinction 

coefficient) to ensure that all samples had the same excess of fluorophore. Measurements at 400, 

425, and 450 nm were used to evaluate lipid concentration by Mie scattering as TTAPE-Me has 

no appreciable absorbance in this region. DLS measurements (Malvern Zetasizer) and the UV-

Visible measurements at 400, 425 and 450 nm were used to calculate the total lipid and vesicle 

concentration as well as the concentration of each constituent in the mixed lipid vesicle using 

previously reported methods based on Mie scattering.36,37 

 

5.2.6. Protein Purification.  

Wild type (WT) yeast iso-1-cytochrome c (iso-1-Cytc) was expressed and purified from 

Escherichia coli BL21-DE3 cells following previously reported procedures38,39. Unlike, WT 

iso1-Cytc expressed from its native host, Saccharomyces cerevisiae, the Lys72 of WT iso-1-Cytc 

expressed from E. coli is not trimethylated.40   
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5.2.7. Cytochrome c cardiolipin/DOPC and DOPC vesicle titrations.  

Cardiolipin/DOPC and DOPC binding titrations of WT iso-1-Cytc were performed by a 

batch procedure. Vesicle samples were prepared and quantified immediately prior to the 

experiment, as described above. WT iso-1-Cytc purified as described above was adjusted to 

twice the desired concentration. A set of vesicle samples was prepared at twice the desired lipid 

concentration for each step of the titration. WT iso-1-Cytc and vesicle samples were mixed in 1:1 

volume ratios generating a set of samples at the desired experimental concentration of protein 

and lipid for each step of the titration. Samples were gently mixed and incubated at room 

temperature for 30 minutes before spectroscopic measurements at 25 oC. Measurements at each 

lipid concentration were performed in triplicate with independently prepared samples.  

 

5.2.8. Circular Dichroism Spectroscopy.  

An Applied Photophysics Chirascan CD Spectrophotometer was used to acquire Soret CD 

measurements of iso-1-Cytc/vesicle titration samples. The spectral region 450-350 nm was 

probed with samples in a Hellma 4x10mm Quartz cuvette, utilizing the 4 mm pathlength. Spectra 

were acquired at 25 oC in 1 nm step increments, with a 1.8 nm bandwidth, and a 3 s sampling 

time at each wavelength. Each spectrum was smoothed using a 6th order Savitsky-Golay filter 

smoothing technique. Spectra from three independent trials were averaged at each lipid 

concentration. 

 

5.2.9. Cytochrome c Fluorescence Spectroscopy.  

An Applied Photophysics Chirascan CD Spectrophotometer was adapted for scanning 

fluorescence measurements using a scanning emission monochromator (Applied Photophysics). 



 137 

Samples were placed in a 5x5 mm Hellma fluorescence cuvette. Trp59 of iso-1-Cytc was excited 

at 295 nm with a 5 nm bandwidth. Excitation bleed through was filtered out using a 305 nm 

cutoff filter (Newport Co.) placed in front of the detector. Emission spectra were acquired from 

320-500 nm at 25qC with 1 nm step, a 2.5 nm bandwidth and a 0.5 sec acquisition time per step. 

Emission spectra from three independent trials were averaged at each lipid concentration. 

 

5.2.10. Cytochrome c Absorbance Spectroscopy.  

A Beckman-Coulter DU800 UV-Visible Spectrophotometer was used to acquire iso-1-Cytc 

spectra in the presence of varying concentrations of lipid vesicles. Samples were placed in a 10 

mm pathlength Hellma microcuvette and scanned from 200-800 nm with a 1 nm step, a 5 nm 

bandwidth and a scan rate of 400 nm/min. 

 

5.2.11. Data Fitting.  

Fits of CD and fluorescence data as a function of exposed (outer leaflet) lipid to protein ratio 

(LPR) were attempted using a one-site cooperative Langmuir-type equation (eqn. 5.1) where s(x) 

is the reported spectroscopic value at a given exposed (outer leaflet) LPR and  

 

𝑠(𝑥) =
𝑠𝑜+𝑠1(

𝑥
𝐾𝑑(app)

)
𝑛

1+( 𝑥
𝐾𝑑(app)

)
𝑛     (eqn. 5.1.) 

 

so and s1, represent the value of s(x) in the initial (no lipid) and final (lipid bound) states, 

respectively. The apparent dissociation constant Kd(app) corresponds to the requisite lipid to 

protein ratio to produce 50% bound protein and n is the corresponding Hill coefficient. 
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5.3. RESULTS AND DISCUSSION  

5.3.1. TTAPE-Me Fluoresces in the Presence of both CL and DOPG.  

To determine the role of the inverted cone structure of CL in mediating partitioning of CL to 

the inner versus the outer leaflet of vesicles studies, an important control is to evaluate whether 

DOPG, a negatively-charged cylindrical lipid, behaves differently. It is preferable to measure 

partitioning of the two lipids using the same method. In previous work, TTAPE-Me was shown 

to fluoresce strongly in the presence of CL-containing vesicles.33 It was also shown that DOPC 

vesicles containing phosphatidylserine at levels found in the mitochondria (1%) did not produce 

a significant fluorescence in the presence of TTAPE-Me.33 To be able to compare the 

partitioning of CL versus DOPG to the inner versus the outer leaflet of an extruded vesicle, we 

initially compared the relative enhancement of emission from TTAPE-Me in the presence of CL 

versus DOPG. As a control, we compared the effects of DOPC vesicles (headgroup has no net 

charge) on the fluorescence of TTAPE-Me. Because CL has approximately twice the headgroup 

surface area of DOPG, we carried out studies with DOPG (and DOPC) vesicles at twice the lipid 

concentration as for the CL vesicles to keep the available surface area of CL and DOPG 

available for TTAPE-Me binding the same as a function of mole fraction. Pure lipid vesicles at 

lipid concentrations of 1.5 mM for CL, 3 mM for DOPC and 3 mM for DOPG (Figure 5.1) were 

exposed to excess TTAPE-Me. With excitation at 350 nm, TTAPE-Me has minimal fluorescence 

in the absence of lipid (Figure 5.1).  In the presence of DOPC, no appreciable enhancement of 

fluorescence is detected (Figure 5.1). TTAPE-Me, therefore, does not report on the presence of 

DOPC. When exposed to pure CL vesicles, the fluorescence emission of TTAPE-Me is strongly 

enhanced with peak fluorescence at approximately 468 nm and a slight shoulder between 370-
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400 nm (Figure 1). These findings are congruent with Leung et. al34 who reported on TTAPE-Me 

as a probe for detecting CL. A similar enhancement in emission is observed for TTAPE-Me in 

the presence of pure DOPG vesicles with peak fluorescence at approximately 472 nm and a less 

prominent shoulder appearing between 370-400 nm compared to pure CL vesicles. Thus, 

TTAPE-Me exhibits enhanced fluorescence of similar magnitude in the presence of the anionic 

lipids CL and DOPG, with only minor differences in the emission spectra.  These findings show 

that TTAPE-Me is capable of detecting the presence of anionic lipid but not does distinguish 

appreciably between different anionic lipid headgroups, at least for CL and DOPG.  

 
 
 
 

 
Figure 5.1. Emission spectra for free TTAPE-Me (black) added externally at 40 mM excess to 

vesicles in the presence of 100 nm pure vesicles of either 1.5 mM CL (red), 3 mM DOPC (green) 

and 3 mM DOPG (cyan) in 20 mM TES buffer, 0.1 mM EDTA at pH 8 and 25qC. Samples were 

excited at 350 nm with a bandwidth of 5 nm and emission was detected at 90o after passage 

through a 350 nm cutoff filter.  
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5.3.2. TTAPE-Me Detects DOPG on the Inner and Outer Leaflet of Vesicles.  

The outer leaflets of vesicles at a constant concentration, but composed of varying mole 

fractions of DOPG and DOPC were exposed to excess TTAPE-Me and the fluorescence 

associated with the presence of DOPG was measured (Figure 5.2). Both the intensity at the peak 

of fluorescence and total fluorescence (area under the emission spectrum) increase linearly with 

respect to an increase in the mole fraction of DOPG (Figure 5.3,Left) demonstrating the ability 

of TTAPE-Me to quantitatively report the presence of DOPG. When DOPG/DOPC vesicles were 

formed in the presence of TTAPE-Me, exposing both leaflets to the fluorophore, the 

fluorescence also scaled linearly with the mole fraction of DOPG. However, the fluorescence 

was double that observed when only the outer leaflet was exposed to TTAPE-Me. This finding 

verifies that TTAPE-Me acts as a quantitative anionic lipid reporter for anionic lipid residing on 

both surfaces. Furthermore, this verifies that vesicle formation in the presence of TTAPE-Me 

permits detection of anionic lipid inside the vesicle. Black and gray trend lines have been added 

to figure 5.3 to demonstrate the approximate fluorescence reporter response expected for 

homogeneous lipid mixing with no preferential lipid partitioning to either the inner or outer 

leaflet of the vesicle. DOPG fluorescence reported using both peak fluorescence intensity at 460 

nm and total fluorescence follow this trend closely strongly suggesting that DOPG has no 

preferential partitioning on the vesicle surface. This observation is congruent with the expected 

behavior of DOPG, which is a cylindrical lipid with no preference for leaflet curvature. These 

findings also suggest that there is no headgroup governed partitioning to a preferred curved 

surface for this system.  

When reported fluorescence from outer leaflet exposure is compared to reported fluorescence 

for total vesicle exposure for each mole fraction of DOPG, it is evident that approximately 50% 
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of the total fluorescence is generated by the outer leaflet throughout the titration (Figure 5.3, 

Right). Half of the DOPG population is consistently reported on the outer leaflet leading to the 

conclusion that there is no preferential localization of DOPG on one specific leaflet.  

 

 

 

 
 
Figure 5.2. Raw TTAPE-Me fluorescence data corresponding to exposure to 100 nm 

DOPG/DOPC vesicles at 3 mM total lipid concentration composed of varying mole percent of 

DOPG (10%(Black), 20%(Dark Blue), 40%(Teal), 50%(Cyan), 70%(Yellow), 80%(Orange), and 

100% (Red)). Data were acquired in 20 mM TES, 0.1 mM EDTA, at pH 8 and 25 oC. Left panel: 

only outer leaflet is exposed to excess TTAPE-Me. Right panel: both leaflets are exposed to 

excess TTAPE-Me.   

 



 142 

 

Figure 5.3. LEFT: Fraction of total DOPG reported by TTAPE-Me fluorescence at various 

mole fractions of DOPG, using the pure DOPG vesicles exposed to TTAPE-Me on both leaflets 

as the reference state. For samples exposed to TTAPE-Me on the outer leaflet, fluorescence peak 

intensity is shown with solid green circles and total integrated fluorescence emission with solid 

red circles. For samples exposed to TTAPE-Me on both the inner and outer leaflets, fluorescence 

peak intensity is shown with solid black squares and total integrated fluorescence emission with 

solid cyan squares. The solid black line shows the predicted linear dependence of fluorescence of 

homogeneously mixed DOPG/DOPC vesicles as a function of DOPG mole fraction when 

exposed to TTAPE-Me on both the inner and outer leaflets. The dashed gray line shows the 

predicted linear dependence of fluorescence of homogeneously mixed DOPG/DOPC vesicle as a 

function of DOPG mole fraction when exposed to TTAPE-Me on outer leaflet only. Error bars 

are the standard deviation derived from data for peak intensity or total fluorescence from 3 

independent trials. RIGHT: Fraction of DOPG detected on the outer leaflet with respect to total 

DOPG detected on both the inner and outer leaflets by TTAPE-Me fluorescence as a function of 

DOPG mole fraction for DOPG/DOPC vesicles. Solid red squares use peak fluorescence 
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intensity of TTAPE-Me and empty black squares use total fluorescence emission of TTAPE-Me. 

The solid black line represents the ratio of 0.5 expected at all mole fractions for homogeneously 

mixed DOPG/DOPC vesicles with no preferential partitioning of the DOPG. Error bars are the 

standard deviation derived from data for peak intensity or total fluorescence from 3 independent 

trials. 
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5.3.3. TTAPE-Me Detects Cardiolipin on the Inner and Outer Leaflet of Vesicles.  

The inner and outer leaflets of vesicles composed of varying mole fractions of CL and DOPC 

were exposed to excess TTAPE-Me and fluorescence associated with the presence of CL was 

measured (Figure 5.4). Both peak fluorescence intensity and total fluorescence increase linearly 

with respect to an increase in the mole fraction of CL in the vesicles when excess TTAPE-Me is 

present both inside and outside the vesicles (Figure 5.5, Left). A solid black line illustrates the 

expected linear dependence of fluorescence on the mole fraction of CL in the CL/DOPC 

vesicles. The close adherence of the observed data to the expected linear dependence on mole 

fraction of CL illustrates the ability of TTAPE-Me to report on total CL concentration, similar to 

its ability to quantify mitochondria based on its binding to CL.33 By contrast, the fluorescence 

corresponding to external CL (Figure 5.5,Left) systematically falls below the theoretical trend 

line (gray dashed line) representing predicted external fluorescence for a homogeneously mixed 

lipid with no preferential partitioning to the inner concave surface of the vesicle. This 

observation is more clearly illustrated when the fluorescence of CL/DOPC vesicles only exposed 

to TTAPE-Me on the outer leaflet is compared to the fluorescence of CL/DOPC vesicle with 

excess TTAPE-Me available both inside and outside the vesicles (Figure 5.5, Right). When 

TTAPE-Me is only available on the outer leaflet of the vesicles, the amount of CL reported by 

TTAPE-Me is always considerably less than 50% of the TTAPE-Me fluorescence when TTAPE-

Me is available to both the inner and outer leaflets of the vesicles, except when the mole fraction 

of CL is 1. Such deviations could result if the CL containing vesicles are not unilamellar. 

Transmission electron microscopy confirms that CL vesicles prepared by extrusion are 

unilamellar (Figure 5.6). Thus, our data show that for mixed lipid systems when CL is doped into 

DOPC bilayers, CL preferentially localizes on the concave inner leaflet of the vesicles. For 
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mixed CL/DOPC vesicles with a CL mole fraction of 0.5 or less, the fraction of the total CL that 

partition to the outer leaflet is ~0.2 (Figure 5.5, Right). This fractional partitioning indicates a 5:1 

preference for the concave inner leaflet because of the inverted conical structure of CL. 

 

 

 

Figure 5.4. Raw TTAPE-Me fluorescence corresponding to exposure to 100 nm CL/DPOPC 

vesicles at 1.5 mM total lipid concentration composed of varying mole percent of CL (0% 

(Blue), 12%(Green), 34%(Yellow), 50%(Orange), 75%(Red), and 100%(Maroon)). Data were 

acquired in 20 mM TES, 0.1 mM EDTA, at pH 8 and 25 oC. Left panel: only outer leaflet is 

exposed to excess TTAPE-Me. Right panel: both leaflets are exposed to excess TTAPE-Me.  
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Figure 5.5. LEFT: Fraction of total CL reported at various mole fractions of CL by TTAPE-Me 

fluorescence, using the pure CL vesicles exposed to TTAPE-Me on both leaflets as the reference 

state. For samples exposed to TTAPE-Me on the outer leaflet, data fluorescence peak intensity 

are shown with solid green circles and data for total integrated fluorescence emission with solid 

red circles. For samples exposed to TTAPE-Me on both the inner and outer leaflets, fluorescence 

peak intensity data are shown with solid black circles and total integrated fluorescence emission 

data with solid cyan circles. The solid black line shows the predicted linear dependence of 

fluorescence of homogeneously mixed CL/DOPC vesicles as a function of CL mole fraction 

when exposed to TTAPE-Me on both the inner and outer leaflets. The dashed gray line shows 

the predicted linear dependence of fluorescence of homogeneously mixed CL/DOPC vesicle as a 

function of CL mole fraction when exposed to TTAPE-Me on the outer leaflet only. Error bars 

are the standard deviation derived from data for peak intensity or total fluorescence from 3 

independent trials. RIGHT: Fraction of CL detected on the outer leaflet with respect to total CL 

detected on both the inner and outer leaflets by TTAPE-Me fluorescence as a function of CL 

mole fraction for CL/DOPC vesicles. Solid red squares use peak fluorescence intensity of 
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TTAPE-Me and empty black circles use total fluorescence emission of TTAPE-Me. The solid 

black line represents the ratio of 0.5 expected at all mole fractions for homogeneously mixed 

CL/DOPC vesicles with no preferential partitioning of the CL. Error bars are the standard 

deviation derived from data for peak intensity or total fluorescence from 3 independent trials. 

 

 

Figure 5.6. Transmission electron microscopy image of 100% Cardiolipin vesicles extruded to 
100 nm. 
 

 

 

 

 



 148 

5.3.4. Cardiolipin Addition to DOPC Vesicles Induces Asymmetric Lipid Distribution but 

DOPG Does Not.  

Measurement of TTAPE-Me fluorescence induced by DOPG in mixed DOPG/DOPC 

vesicles demonstrates that headgroup charge interactions per se do not cause asymmetric 

distribution of DOPG to the inner versus the outer leaflet when it is mixed with another 

cylindrically-shaped lipid. Roke and colleagues showed that vesicles containing 

phosphatidylserine and DOPC also do not generate asymmetric distributions of lipids between 

leaflets.41 DOPG and DOPC have been shown to form charged domains laterally in a leaflet42 but 

not between leaflets. Further, Tian and Baumgart showed that  sorting of cylindrically-shaped 

lipids as a function of membrane curvature does not occur.43 We also find no evidence of lipid 

partitioning between leaflets in our samples containing varying mole fractions of DOPG mixed 

with DOPC. DOPC appears to have no preferential localization, nor does it drive asymmetric 

lipid distribution. This is to be expected based on the findings of Roke and colleagues and Tian 

and Baumgart. Techniques employed here could not resolve phase separation in each leaflet. 

 Our studies on CL/DOPC show that CL preferentially partitions to the inner leaflet of a 

mixed lipid membrane. Neglecting potential headgroup interactions, CL’s inverted cone shape 

alone predicts a preferred asymmetric distribution to concave surfaces.44 Sorre et. al showed that 

DOPC can be sorted into a preferred bilayer as needed based on local environmental criteria.45 

Here, the structure of CL provides the needed packing instability required to drive DOPC to the 

outer leaflet while CL sorts preferentially onto the concave interior surface of the vesicle. 
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5.3.5. External Cytochrome c Binding to 100% DOPC Vesicles Demonstrates No 

Significant Protein-Lipid Binding.  

Vesicles and liposomes are often prepared with varying concentrations of neutral DOPC 

when investigating Cytc binding to CL.6,10,20,22,11–14,16–19 To fully understand the role of lipid 

partitioning to binding of Cytc in mixed lipid systems, wild type (WT) yeast iso-1-cytochrome c 

(iso-1-Cytc) binding to DOPC was investigated. Because the headgroup of DOPC is neutral and 

the headgroup of CL carries two negative charge we use solution conditions that select for 

electrostatic binding to the A-site, namely a pH 8 buffer that suppresses binding at the L- and C-

sites.7 Specifically, electrostatic binding at the A-site of iso-1-Cytc was investigated by titrating 

in varying concentrations of 100 nm pure DOPC vesicles in 20 mM TES buffer, 0.1 mM EDTA 

at pH 8. Binding was investigated using both the Soret CD and Trp59 fluorescence signals of 

iso-1-Cytc during a DOPC vesicle titration (Figure 5.7). The Soret CD signal monitors the heme 

environment of iso-1-Cytc. The heme is the known site of peroxidase activity in the protein and 

interactions at the heme have been directly linked to cardiolipin binding.7,16,46 The Soret CD 

showed no appreciable change over the course of the titration implying that the structural 

rearrangement around the heme of iso-1-Cytc that normally occurs when Cytc binds to CL 

membranes does not occurs for extruded 20% CL/80% DOPC vesicles. A plot of the difference 

in the intensity of the positive maximum and negative minimum of the Soret CD spectrum, ''H, 

also shows no significant change over the course of the titration further verifying a lack of lipid-

induced heme rearrangement and thus binding of Cytc to the DOPC vesicles (Figure 5.7).  

Trp59 fluorescence has been used to investigate partial unfolding of the protein upon lipid 

interaction.7,33 Lipid induced protein unfolding typically leads to an increase in Trp59 

fluorescence. However, fluorescence did not increase when Cytc was exposed to 100% DOPC 
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vesicles over a large range of exposed (outer leaflet) lipid to protein ration (LPR) (Figure 5.7). 

An analysis of the intensity of the peak of fluorescence over the range of the titration shows no 

significant change due to exposure to DOPC vesicles. Thus, DOPC vesicles do not induce partial 

unfolding of Cytc, as detected by Trp59 fluorescence, a signature for binding of Cytc to 

membrane surfaces. This finding is in accordance with previous studies that demonstrate Cytc’s 

preferential binding to anionic lipid headgroups.16 
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Figure 5.7. Titration of yeast iso-1-Cytc with 100 nm 100% DOPC vesicles in 20 mM TES, 0.1 

mM EDTA at pH 8 and 25 ˚C monitored by Soret CD (top left) and Trp59 fluorescence (top 

right). Soret CD amplitude (∆∆𝜀 = ∆𝜀 max – ∆𝜀 min) plotted as a function of exposed lipid to 

protein ratio (LPR, bottom left). Trp59 fluorescence intensity at 331 nm plotted as a function of 

exposed LPR (bottom right). 
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5.3.6. Titration of Cytc with 20% CL/80% DOPC Vesicles Demonstrates Minimal Protein-

Lipid Binding.  

20% CL:80% DOPC vesicles are commonly used to investigate CL binding to Cytc 

12,14,16,21,47 because CL represents 20% of the lipid content of mitochondria.48 Both Soret CD and 

Trp59 fluorescence have been used in these studies to monitor binding of mixed lipid vesicles to 

Cytc. Previous studies have been carried out at lower pH where the C- and L-sites also contribute 

to binding. At pH 8, where binding of iso-1-Cytc is limited to the A-site,7 a plot of the difference 

in the intensity of the positive maximum and negative minimum of the Soret CD spectrum, ''H, 

does not change over the course of the titration of WT yeast iso-1-Cytc with 20% CL/80% 

DOPC vesicles (Figure 5.8). Likewise, Trp59 fluorescence does not show the increase in 

intensity normally observed for partial unfolding of iso-1-Cytc typically associated with binding 

of iso-1-Cytc to CL-containing vesicles (Figure 5.8). Tracking the fluorescence intensity over the 

course of the titration at the emission maximum confirms the lack of a significant interaction of 

iso-1-Cytc with 20% CL/80% DOPG via the A-site at pH 8 (Figure 5.8). Thus, neither local 

structural rearrangement around the heme (Soret CD), nor partial unfolding of iso-1-Cytc (Trp59 

fluorescence) occur when iso-1-Cytc is titrated with 20% CL/80% DOPC vesicles at pH 8. 
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Figure 5.8. Titration of iso-1-Cytc with 100 nm 20% CL/80% DOPC vesicles in 20 mM TES, 

0.1 mM EDTA at pH 8 and 25 ˚C monitored using Soret CD (top left) and Trp59 fluorescence 

(top right). CD amplitude (∆∆𝜀 = ∆𝜀 max – ∆𝜀 min) plotted as a function of exposed LPR (bottom 

left). Fluorescence intensity at 331 nm plotted as a function of exposed LPR (bottom right). 
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5.3.7. 100% DOPC and 20% CL/80% DOPC Do Not Illicit Electrostatic Cytochrome c 

Binding at pH 8 via the A-site.  

Previous work investigating binding binding to 100% CL vesicles the A-site of Cytc did 

showed a significant change in both the Soret CD and Trp59 fluorescence for yeast iso-1-Cytc7 

(see Figure 5.8, lower panel). Using a one-site cooperative binding model (eq 5.1), Soret CD 

reported a Kd(app) of 10.2 in terms of exposed LPR and a cooperativity, n, of 2.27 and Trp59 

fluorescence reported Kd(app) of 23.4 in terms of exposed LPR and n of 2.37 (solid curves in 

Figure 5.8, bottom panels). Attempts to fit the Soret CD and Trp59 fluorescence amplitudes to eq 

5.1 failed for both 100% DOPC and 20% CL/80% DOPC vesicle binding at pH 8 in Figures 5.7 

and 5.8. Thus, 100% DOPC and 20% CL/80% DOPC vesicles fail to induce electrostatic binding 

to the A-site of Cytc at pH 8. 

TTAPE-Me fluorescence studies show that CL/DOPC vesicles had approximately 20% of the 

total CL on the outside of the vesicle for CL mole fractions of 0.5 and below (Figure 3B). In the 

case of 20% CL/80% DOPC vesicles, 20% of the total concentration of CL on the outside 

corresponds to the mole fraction of only 0.04 CL on the outer leaflet. Thus, the range of exposed 

LPR in terms of CL concentration effectively covers the range 0 – 4 rather than 0 – 100 (0 – 20 

in terms of CL concentration) for the Soret CD-monitored titrations (Figure 4) and 0 – 8 rather 

than 0 – 200 (0 – 40 in terms of CL concentration) in the case of the Trp59 fluorescence-

monitored titrations (Figure 5.8). Given that the Kd(app) for Soret CD is ~10 in terms of exposed 

LPR and Trp59 fluorescence is ~23 in terms of exposed LPR for 100% CL vesicles it is not 

surprising that no significant binding is observed. As there will be an entropic penalty for 

demixing in the mixed lipid system,49 the necessary Kd(app) is probably even higher than those 

observed for pure CL vesicles. Thus, it is not surprising that no binding is observed under our 
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conditions because of the preferential partitioning of CL to the inner leaflet of extruded vesicles. 

To elucidate the apparent dissociation constant corresponding to electrostatic binding it would be 

necessary to go to much higher exposed LPR, which would be impractical in our system. 

Because of this, a mixed lipid system where CL may not distribute evenly on both leaflets, may 

not be ideal for investigating quantitative Cytc binding.   

 

5.3.8. 100% DOPC Vesicles Do Not Illicit Electrostatic Cytochrome c Binding at pH 7 but 

20% CL/80% DOPC Vesicles Do Facilitate Binding.  

Previous work showed that 100% CL vesicles induce scattering in the presence of WT iso-1-

Cytc at pH 7.7 This scattering was attributed to CL binding to multiple binding sites on Cytc, 

notably the electrostatic A-site, and hydrogen bonding L-site.24 Binding of vesicles to multiple 

sites on Cytc induces large supramolecular structures of vesicles crosslinked by Cytc that 

enhance scattering in the UV-Visible spectral region. DOPC and 20% CL/80% DOPC vesicle 

binding to Cytc was evaluated at pH 7 using UV-Visible spectroscopy to determine if enhanced 

scattering due to formation of supramolecular structures occurs over the course of vesicle 

titrations of iso-1-Cytc (Figure 5.9). No appreciable scattering off of DOPC and 20% CL/80% 

DOPC vesicles beyond the expected concentration-dependent scattering off the vesicles 

themselves36,37 occurs during vesicles titrations of WT iso-1-Cytc. The lack of scattering off of 

DOPC vesicles at pH 7 verifies the lack of affinity Cytc has for DOPC. This finding is consistent 

with the lack of binding detected for DOPC vesicles at pH 8 (Figure 5.7). The lack of scattering 

off of 20% CL/80% DOPC vesicles (Figure 5.9) suggests CL may not be sufficiently present in 

the outer leaflet to induce crosslinking of vesicles. This finding is congruent with TTAPE-Me 
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detecting less CL on the outer leaflet of CL/DOPC vesicles than expected for unbiased 

partitioning of CL to the inner versus the outer leaflet of 100 nm vesicles. 

 

 

 

Figure 5.9. UV-Visible spectra of 100 nm DOPC (Left) and 20% CL/80% DOPC (Right) 

vesicles as a function of total lipid concentration in the presence of 10 µM yeast iso-1-Cytc in 20 

mM TES, 0.1 mM EDTA, at pH 7 and 25 oC.    

 

 

Stronger binding of Cytc to cardiolipin binding has been detected using mixed lipid systems 

at pH 76,10,13,17,19,21,23,30 and 7.4.11,12,14,16,18,20,22 Under these conditions binding appears to be 

stronger because of the availability of sites A and L.7 Thus, lipid binding to WT iso-1-Cytc with 

20% CL/80% DOPC vesicles at pH 7 was evaluated using Soret CD and Trp59 fluorescence. 

DOPC binding studies demonstrated no significant lipid binding to Cytc at pH 7 (Figure 5.10). 

Neither Soret CD nor Trp59 fluorescence deviated significantly from the unbound spectral 

signature throughout each titration. 
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When WT iso-1-Cytc was exposed to 20% CL/80% DOPC vesicles, the Soret CD spectra is 

affected as the titration progresses (Figure 5.11). The observed ''H is indicative of CL binding 

however an upper limit to the binding curve could not be resolved because sufficiently high 

concentrations of vesicles could not be achieved. Thus, it was not impossible to evaluate Kd(app) 

and n for extruded 20% CL/80%DOPC vesicles using Soret CD alone. Trp59 fluorescence also 

showed evidence of Cytc-CL binding for extruded 20% CL/80% DOPC vesicles at pH 7 (Figure 

5.11). The increase in Trp59 fluorescence intensity at 331 nm shows that exposure of iso-1-Cytc 

to extruded 20% CL/80% DOPC vesicles at pH 7 leads to movement of Trp59 away from the 

heme and thus partial unfolding of the protein. However, with 100% CL vesicles the emission 

maximum red shifts from ~330 nm to ~ 340 nm, whereas a minimal red shift is apparent for the 

interaction of iso-1-Cytc with extruded 20% CL/80% DOPC vesicles at pH 7. Thus, the nature of 

the interaction appears to be qualitatively different.  Sufficiently high exposed LPR could not be 

achieved to allow the Trp59 intensity versus exposed LPR data to be fit to eq 5.1. This finding is 

in accordance with TTAPE-Me findings suggesting that some CL resides on the outer leaflet but 

much less than expected if partitioning of CL was unbiased for extruded vesicles. Thus, even 

though binding is stronger at pH 7, the low content of CL in the outer leaflet of extruded mixed 

CL/DOPC vesicles precludes quantitative assessment of binding even at pH 7. It is possible that 

preparation of vesicles by other methods such as sonication may affect the degree of partitioning 

to the inner leaflet, possibly accounting for the stronger apparent binding observed at pH 7 – 7.4 

in previous studies with mixed lipid CL/DOPC vesicles. 
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Figure 5.10. Titration of Iso-1-Cytc with 100 nm 100% DOPC vesicles in 20 mM TES, 0.1 mM 

EDTA at pH 7 and 25 ˚C monitored using Soret CD (top left) and Trp59 fluorescence (top right). 

Soret CD amplitude (''H = 'Hmax – 'Hmin) as a function of exposed lipid to protein ratio (LPR) 

(bottom left). Trp59 fluorescence intensity at 331 nm as a function of exposed LPR (bottom 

right).  

 

 

 



 159 

 

Figure 5.11. Titration of iso-1-Cytc with 100 nm 20% CL/80% DOPC vesicles in 20 mM TES, 

0.1 mM EDTA at pH 7 and 25 ˚C monitored using Soret CD (top left) and Trp59 fluorescence 

(top right). Soret CD amplitude (''H = 'Hmax – 'Hmin) plotted as a function of exposed LPR 

(bottom left). Trp59 fluorescence intensity at 331 nm plotted at as a function of exposed LPR 

(bottom right). 
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5.4. CONCLUSION 

Using the fluorophore TTAPE-Me which binds specifically to lipids with anionic 

headgroups, we have shown that for CL/DOPC mixed lipid vesicles prepared by freeze/thaw 

methods followed by extrusion, the inverted cone lipid CL shows a 5:1 to preference for the 

concave surface of the inner leaflet of the vesicle over the convex outer leaflet at CL mole 

fractions less than or equal to 0.5. DOPG, a cylindrically-shaped vesicle, shows the expected 1:1 

partitioning between the inner and outer leaflet, for mixed DOPG/DOPC vesicles at all mixing 

ratios. Thus, for extruded vesicles, lipid structure can impact the characteristics of the vesicles 

produced with potential impacts for studies on protein lipid interactions. We show for the 

interaction of iso-1-Cytc with extruded 20% CL/80% DOPC vesicles at both pH 7 and 8 that the 

binding is much weaker than expected based on previous work with pure CL vesicles. The 

weaker than expected interaction of iso-1-Cytc with 20% CL/80% DOPC vesicles results from 

the ~4% CL content in the outer leaflet caused by the 5:1 preference of CL for the inner leaflet of 

mixed CL/DOPC vesicles prepared by extrusion.  It is possible that preparation of vesicles by 

other methods such as sonication may affect the degree of partitioning to the inner leaflet. 

  



 161 

5.5. REFERENCES  

(1)  Burger, K. N. J. Greasing Membrane Fusion and Fission Machineries. Traffic 2000, 1 (8), 
605–613. 

 
(2)  Cho, W.; Stahelin, R. V. Membrane-Protein Interactions in Cell Signaling and Membrane 

Trafficking. Annu Rev Biophys Biomol Struct 2005, 34, 119–151. 
 
(3)  Kagan, V. E.; Bayır, H. A.; Belikova, N. A.; Kapralov, O.; Tyurina, Y. Y.; Tyurin, V. A.; 

Jiang, J.; Stoyanovsky, D. A.; Wipf, P.; Kochanek, P. M.; Greenberger, J. S.; Pitt, B.; 
Shvedova, A. A.; Borisenko, G. Cytochrome c/Cardiolipin Relations in Mitochondria: A 
Kiss of Death. Free Radical Biology and Medicine 2009, 46 (11), 1439–1453. 

 
(4)  Orrenius, S.; Zhivotovsky, B. Cardiolipin Oxidation Sets Cytochrome c Free. Nature 

chemical biology 2005, 1 (4), 188–189. 
 
(5)  Paradies, G.; Paradies, V.; De Benedictis, V.; Ruggiero, F. M.; Petrosillo, G. Functional 

Role of Cardiolipin in Mitochondrial Bioenergetics. Biochimica et Biophysica Acta - 
Bioenergetics. 2014, pp 408–417. 

 
(6)  Kagan, V. E.; Tyurin, V. A.; Jiang, J.; Tyurina, Y. Y.; Ritov, V. B.; Amoscato, A. A.; 

Osipov, A. N.; Belikova, N. A.; Kapralov, A. A.; Kini, V.; Vlasova, I. I.; Zhao, Q.; Zou, 
M.; Di, P.; Svistunenko, D. A.; Kurnikov, I. V; Borisenko, G. G. Cytochrome c Acts as a 
Cardiolipin Oxygenase Required for Release of Proapoptotic Factors. Nat Chem Biol 
2005, 1 (4), 223–232. 

 
(7)  Elmer-Dixon, M. M.; Bowler, B. E. Site A-Mediated Partial Unfolding of Cytochrome c 

on Cardiolipin Vesicles Is Species-Dependent and Does Not Require Lys72. Biochemistry 
2017, 56 (36), 4830–4839. 

 
(8)  Sinibaldi, F.; Milazzo, L.; Howes, B.; Piro, M.; Fiorucci, L.; Polticelli, F.; Ascenzi, P.; 

Coletta, M.; Smulevich, G.; Santucci, R. The Key Role Played by Charge in the 
Interaction of Cytochrome c with Cardiolipin. JBIC Journal of Biological Inorganic 
Chemistry 2017, 22 (1), 19–29. 

 
(9)  Sinibaldi, F.; Howes, B. D.; Droghetti, E.; Polticelli, F.; Piro, M. C.; Di Pierro, D.; 

Fiorucci, L.; Coletta, M.; Smulevich, G.; Santucci, R. Role of Lysines in Cytochrome C-
Cardiolipin Interaction. Biochemistry 2013, 52 (26), 4578–4588. 

 
(10)  Rytomaa, M.; Kinnunen, P. K. J. Reversibility of the Binding of Cytochrome c to 

Liposomes. Implications for Lipid-Protein Interactions. Journal of Biological Chemistry 
1995, 270 (7), 3197–3202. 

 
 
 
 



 162 

(11)  Vincelli, A. J.; Pottinger, D. S.; Zhong, F.; Hanske, J.; Rolland, S. G.; Conradt, B.; 
Pletneva, E. V. Recombinant Expression, Biophysical Characterization, and Cardiolipin-
Induced Changes of Two Caenorhabditis Elegans Cytochrome c Proteins. Biochemistry 
2013, 52 (4), 653–666. 

 
(12)  Pandiscia, L. A.; Schweitzer-Stenner, R. Coexistence of Native-like and Non-Native 

Partially Unfolded Ferricytochrome c on the Surface of Cardiolipin-Containing 
Liposomes. Journal of Physical Chemistry B 2015, 119 (4), 1334–1349. 

 
(13)  Rytomaa, M.; Mustonen, P.; Kinnunen, P. K. J. Reversible, Nonionic, and PH-Dependent 

Association of Cytochrome c with Cardiolipin-Phosphatidylcholine Liposomes. Journal of 
Biological Chemistry 1992, 267 (31), 22243–22248. 

 
(14)  Mandal, A.; Hoop, C. L.; Delucia, M.; Kodali, R.; Kagan, V. E.; Ahn, J.; Van Der Wel, P. 

C. A. Structural Changes and Proapoptotic Peroxidase Activity of Cardiolipin-Bound 
Mitochondrial Cytochrome C. Biophysical Journal 2015, 109 (9), 1873–1884. 

 
(15)  Heimburg, T.; Marsh, D. Investigation of Secondary and Tertiary Structural-Changes of 

Cytochrome-C in Complexes with Anionic Lipids Using Amide Hydrogen-Exchange 
Measurements - an Ftir Study. Biophysical Journal 1993, 65 (6), 2408–2417. 

 
(16)  Gorbenko, G. P.; Molotkovsky, J. G.; Kinnunen, P. K. J. Cytochrome c Interaction with 

Cardiolipin/Phosphatidylcholine Model Membranes: Effect of Cardiolipin Protonation. 
Biophysical Journal 2006, 90 (11), 4093–4103. 

 
(17)  Rytömaa, M.; Kinnunen, P. K. J. Evidence for Two Distinct Acidic Phospholipid-Binding 

Sites in Cytochrome C. Journal of Biological Chemistry 1994, 269 (3), 1770–1774. 
 
(18)  Muenzner, J.; Toffey, J. R.; Hong, Y.; Pletneva, E. V. Becoming a Peroxidase: 

Cardiolipin-Induced Unfolding of Cytochrome C. Journal of Physical Chemistry B 2013, 
117 (42), 12878–12886. 

 
(19)  Tuominen, E. K. J.; Zhu, K.; Wallace, C. J. A.; Clark-Lewis, I.; Craig, D. B.; Rytömaa, 

M.; Kinnunen, P. K. J. ATP Induces a Conformational Change in Lipid-Bound 
Cytochrome C. Journal of Biological Chemistry 2001, 276 (22), 19356–19362. 

 
(20)  Hanske, J.; Toffey, J. R.; Morenz, A. M.; Bonilla, A. J.; Schiavoni, K. H.; Pletneva, E. V. 

Conformational Properties of Cardiolipin-Bound Cytochrome C. Proceedings of the 
National Academy of Sciences of the United States of America 2012, 109 (1), 125–130. 

 
(21)  Pandiscia, L. A.; Schweitzer-Stenner, R. Salt as a Catalyst in the Mitochondria: Returning 

Cytochrome c to Its Native State after It Misfolds on the Surface of Cardiolipin 
Containing Membranes. Chemical Communications 2014, 50 (28), 3674–3676. 

 
 
 



 163 

(22)  Hong, Y.; Muenzner, J.; Grimm, S. K.; Pletneva, E. V. Origin of the Conformational 
Heterogeneity of Cardiolipin-Bound Cytochrome C. Journal of the American Chemical 
Society 2012, 134 (45), 18713–18723. 

 
(23)  Kostrzewa, A.; Páli, T.; Froncisz, W.; Marsh, D. Membrane Location of Spin-Labeled 

Cytochrome c Determined by Paramagnetic Relaxation Agents. Biochemistry 2000, 39 
(20), 6066–6074. 

 
(24)  Kawai, C.; Prado, F. M.; Nunes, G. L. C.; Di Mascio, P.; Carmona-Ribeiro, A. M.; 

Nantes, I. L. PH-Dependent Interaction of Cytochrome c with Mitochondrial Mimetic 
Membranes: The Role of an Array of Positively Charged Amino Acids. Journal of 
Biological Chemistry 2005, 280 (41), 34709–34717. 

 
(25)  O’Brien, E. S.; Nucci, N. V.; Fuglestad, B.; Tommos, C.; Wand, A. J. Defining the 

Apoptotic Trigger: The Interaction of Cytochrome c and Cardiolipin. Journal of 
Biological Chemistry 2015, 290 (52), 30879–30887. 

 
(26)  McClelland, L. J.; Mou, T.-C.; Jeakins-Cooley, M. E.; Sprang, S. R.; Bowler, B. E. 

Structure of a Mitochondrial Cytochrome c Conformer Competent for Peroxidase 
Activity. Proceedings of the National Academy of Sciences of the United States of 
America 2014, 111 (18), 6648–6653. 

 
(27)  Rajagopal, B. S.; Silkstone, G. G.; Nicholls, P.; Wilson, M. T.; Worrall, J. A. R. An 

Investigation into a Cardiolipin Acyl Chain Insertion Site in Cytochrome C. Biochimica et 
Biophysica Acta (BBA) - Bioenergetics 2012, 1817 (5), 780–791. 

 
(28)  McClelland, L.; Seagraves, S.; Khan, M.; Cherney, M.; Bandi, S.; Culbertson, J.; Bowler, 

B. The Response of Ω-Loop D Dynamics to Truncation of Trimethyllysine 72 of Yeast 
Iso-1-Cytochrome c Depends on the Nature of Loop Deformation. Journal of Biological 
Inorganic Chemistry 2015, 20 (5), 805–819. 

 
(29)  Muenzner, J.; Pletneva, E. V. Structural Transformations of Cytochrome c upon 

Interaction with Cardiolipin. Chemistry and Physics of Lipids 2014, 179, 57–63. 
 
(30)  Amacher, J. F.; Zhong, F.; Lisi, G. P.; Zhu, M. Q.; Alden, S. L.; Hoke, K. R.; Madden, D. 

R.; Pletneva, E. V. A Compact Structure of Cytochrome c Trapped in a Lysine-Ligated 
State: Loop Refolding and Functional Implications of a Conformational Switch. Journal 
of the American Chemical Society 2015, 137 (26), 8435–8449. 

 
(31)  Bergstrom, C. L.; Beales, P. A.; Lv, Y.; Vanderlick, T. K.; Groves, J. T. Cytochrome c 

Causes Pore Formation in Cardiolipin-Containing Membranes. Proceedings of the 
National Academy of Sciences of the United States of America 2013, 110 (16), 6269–6274. 

 
(32)  Sinibaldi, F.; Fiorucci, L.; Patriarca, A.; Lauceri, R.; Ferri, T.; Coletta, M.; Santucci, R. 

Insights into Cytochrome C-Cardiolipin Interaction. Role Played by Ionic Strength. 
Biochemistry 2008, 47 (26), 6928–6935. 



 164 

 
(33)  Pandiscia, L. A.; Schweitzer-Stenner, R. Coexistence of Native-Like and Non-Native 

Misfolded Ferricytochrome C on the Surfac of Cardiolipin Containing Liposomes. 
Biophysical Journal 2015, 108 (2, Supplement 1), 91a. 

 
(34)  Leung, C. W. T.; Hong, Y.; Hanske, J.; Zhao, E.; Chen, S.; Pletneva, E. V.; Tang, B. Z. 

Superior Fluorescent Probe for Detection of Cardiolipin. Analytical Chemistry 2014, 86 
(2), 1263–1268. 

 
(35)  Hong, Y.; Häußler, M.; Lam, J. W. Y.; Li, Z.; Sin, K. K.; Dong, Y.; Tong, H.; Liu, J.; Qin, 

A.; Renneberg, R.; Tang, B. Z. Label-Free Fluorescent Probing of G-Quadruplex 
Formation and Real-Time Monitoring of DNA Folding by a Quaternized 
Tetraphenylethene Salt with Aggregation-Induced Emission Characteristics. Chemistry - A 
European Journal 2008, 14 (21), 6428–6437. 

 
(36)  Elmer-Dixon, M. M.; Bowler, B. E. Rapid Quantification of Cardiolipin and DOPC Lipid 

and Vesicle Concentration; 2017; Vol. 520. 
 
(37)  Elmer-Dixon, M. M.; Bowler, B. E. Rapid Quantification of Vesicle Concentration for 

DOPG/DOPC and Cardiolipin/DOPC Mixed Lipid Systems of Variable Composition. 
Analytical Biochemistry 2018, 553, 12–14. 

 
(38)  Goldes, M. E.; Jeakins-Cooley, M. E.; McClelland, L. J.; Mou, T. C.; Bowler, B. E. 

Disruption of a Hydrogen Bond Network in Human versus Spider Monkey Cytochrome c 
Affects Heme Crevice Stability. Journal of Inorganic Biochemistry 2016, 158, 62–69. 

 
(39)  Wandschneider, E.; Hammack, B. N.; Bowler, B. E. Evaluation of Cooperative 

Interactions between Substructures of Iso-1-Cytochrome c Using Double Mutant Cycles. 
Biochemistry 2003, 42 (36), 10659–10666. 

 
(40)  Pollock, W. B. R.; Rosell, F. I.; Twitchett, M. B.; Dumont, M. E.; Mauk, A. G. Bacterial 

Expression of a Mitochondrial Cytochrome c. Trimethylation of Lys72 in Yeast Iso-1-
Cytochrome C and the Alkaline Conformational Transition. Biochemistry 1998, 37 (17), 
6124–6131. 

 
(41)  Smolentsev, N.; Lütgebaucks, C.; Okur, H. I.; De Beer, A. G. F.; Roke, S. Intermolecular 

Headgroup Interaction and Hydration as Driving Forces for Lipid Transmembrane 
Asymmetry. Journal of the American Chemical Society 2016, 138 (12), 4053–4060. 

 
(42)  Vequi-Suplicy, C. C.; Riske, K. A.; Knorr, R. L.; Dimova, R. Vesicles with Charged 

Domains. Biochimica et Biophysica Acta - Biomembranes 2010, 1798 (7), 1338–1347. 
 
(43)  Tian, A.; Baumgart, T. Sorting of Lipids and Proteins in Membrane Curvature Gradients. 

Biophysical Journal 2009, 96 (7), 2676–2688. 
 
 



 165 

(44)  Carnie, S.; Israelachvili, J. N.; Pailthorpe, B. A. Lipid Packing and Transbilayer 
Asymmetries of Mixed Lipid Vesicles. BBA - Biomembranes 1979, 554 (2), 340–357. 

 
(45)  Sorre, B.; Callan-Jones, A.; Manneville, J.-B.; Nassoy, P.; Joanny, J.-F.; Prost, J.; Goud, 

B.; Bassereau, P. Curvature-Driven Lipid Sorting Needs Proximity to a Demixing Point 
and Is Aided by Proteins. Proceedings of the National Academy of Sciences 2009, 106 
(14), 5622–5626. 

 
(46)  Tuominen, E. K. J.; Wallace, C. J. A.; Kinnunen, P. K. J. Phospholipid-Cytochrome c 

Interaction. Evidence for the Extended Lipid Anchorage. Journal of Biological Chemistry 
2002, 277 (11), 8822–8826. 

 
(47)  Soffer, J. B.; Fradkin, E.; Pandiscia, L. A.; Schweitzer-Stenner, R. The (Not Completely 

Irreversible) Population of a Misfolded State of Cytochrome c under Folding Conditions. 
Biochemistry 2013, 52 (8), 1397–1408. 

 
(48)  Frey, T. G.; Renken, C. W.; Perkins, G. A. Insight into Mitochondrial Structure and 

Function from Electron Tomography. Biochimica et Biophysica Acta - Bioenergetics 
2002. 

 
(49)  Heimburg, T.; Angerstein, B.; Marsh, D. No Title. Biophysical Journal1 1999, 76 (5), 

2575–2586. 
 

 



 166 

Chapter 6: Curvature Dependent Binding of Cytochrome c to Cardiolipin 

 

6.1. INTRODUCTION 

Cytochrome c (Cytc) resides at low millimolar concentrations (0.5 – 1 mM) in the intra-

cristal compartments and the intermembrane space.1 The primary functions of Cytc are as an 

intermediary in the electron transport chain and as a signaling agent in the intrinsic pathway of 

apoptosis. The earliest signal in the intrinsic pathway of apoptosis involves oxidation of the 

cone-shaped, non-bilayer forming lipid, cardiolipin (CL) by Cytc on the inner mitochondrial 

membrane (IMM) of the intermembrane space (IMS).2,3 The IMM, particularly in the intra-cristal 

compartments, contains many concave surfaces.4 After oxidation of CL, Cytc is released from 

the IMM, exits the mitochondria and forms part of the apoptosome in the cytosol, initiating 

apoptosis.3,5 Because Cytc-CL binding is a preemptive step to apoptosis, work has been 

performed in an effort to elucidate the nature and extent of this interaction. Studies have 

investigated the role of lipid composition in protein binding but have only minimally addressed 

the role membrane curvature plays in the interaction.6–9 Here, we investigate protein binding to 

the concave inner surface of pure (100%) CL vesicles to assess the role of membrane curvature 

in Cytc binding to CL.  

 

6.2. MATERIALS AND METHODS 

6.2.1. Sample Preparation. 

 Wild-type yeast iso-1-cytochrome c (iso-1-Cytc) was expressed from Escherichia coli BL21 

DE3 cells  (BioRad, Phage T1-resistant strain) and purified following previously reported 

methods.10 Protein was concentrated to concentrations between 0.5 and 5 mM in 20 mM TES, 
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0.1 mM EDTA, 0.1 mM NaCl, pH 8. For each titration point, three aliquots of 100% cardiolipin 

(Avanti Polar Lipids, Inc) (CL) (minimally 5 mg each) were mixed with the ionophore Nonactin 

in a 1:100 ratio of Nonactin:CL, and the mixtures were dried individually under compressed 

nitrogen for approximately 2 hours to remove chloroform. The lipid/nonactin mixture was then 

combined with the concentrated protein solutions to form vesicles. Mixing was performed at low 

speeds on a vortexer. Vortexing was sufficiently vigorous to thoroughly mix the protein with the 

CL/nonactin but not so vigorous that formation of bubbles occurred. Protein/lipid/nonactin 

mixtures were extruded to 100 nm using an Avanti Mini Extruder where two 100 nm membrane 

supports were used for extrusion and samples were passed through the extruder 11 times. After 

extrusion, samples were loaded onto a washed (20 mM TES buffer, 0.1 mM EDTA, pH 8) CM 

Sepharose Fast Flow column (GE Healthcare Life Sciences) and run down the column in the 

mobile phase. Cytc external to the vesicles bound to the CM-sepharose cation-exchange resin 

while the negatively-charged vesicles filled with Cytc eluted off the column. Eluent containing 

Cytc filled vesicles was collected and concentrated to <1 mL using Amicon Ultra-15 Centrifugal 

Filter Units with 50k MWCO (EMD Millipore, Sigma). Samples were diluted to 15 mL in 20 

mM TES Buffer, 0.1 mM EDTA, pH 8 and set to equilibrate on an orbital shaker for 8 hours at 4 

°C. Conductivity was periodically measured to follow the flow of NaCl from inside the vesicles 

via the nonactin channels. When conductivity stabilized, indicating that the flow of NaCl out of 

the interior of the samples was complete, the CL vesicles loaded with iso-1-Cytc were again run 

down a CM Sepharose column in 20 mM TES Buffer, 0.1 mM EDTA, pH 8, collected and 

concentrated using the same 50k MWCO ultrafiltration devices. Conductivity at equilibrium was 

approximately the conductivity of 20 mM TES, 0.1 mM EDTA buffer at pH 8. The concentration 

of iso-1-Cytc was measured with a Beckman Coulter DU800 using previously reported 
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extinction coefficients,11 and taking into account scattering off of the vesicles. A Malvern 

Zetasizer was used to perform Dynamic Light Scattering on all samples to determine vesicle 

size. Vesicle size was measured to be 100 nm ± 5 nm for all replicates at all titration points. 

Vesicle size was later used to calculate lipid concentration and determine exposed lipid to protein 

ratio (LPR) for each protein concentration point. Samples were then diluted or concentrated as 

needed to either 5 µM or 10 µM iso-1-Cytc concentration, as appropriate, for spectroscopic 

measurements. 

 

6.2.2. Circular Dichroism Spectroscopy.  

Soret CD spectra were measured using previously reported methods.10 Briefly, CD data were 

acquired using an Applied Photophysics Chirascan Spectrophotometer to measure the spectral 

region from 350 nm – 450 nm, scanning in 1 nm steps with a 3 second/nm scan rate and 1.8 nm 

bandwidth. Samples were contained in a 4 mm by 10 mm Hellma cuvette (Hellma Analytics) 

utilizing the 4 mm pathlength. Spectra were smoothed with a 6-point Savitsky-Golay smoothing 

function and data were analyzed using the difference between the positive maximum near 405 

nm and negative minimum near 420 nm as the signal amplitude, as previously described. 

 

6.2.3. Tryptophan Fluorescence Spectroscopy.  

Trp59 fluorescence measurements were performed using previously reported methods.10 

Briefly, fluorescence data were acquired using an Applied Photophysics Chirascan 

Spectrophotometer modified for fluorescence data acquisition using a scanning emission 

monochromator (Applied Photophysics). Samples were excited at 295 nm (5 nm bandwidth) and 

fluorescence was measured at 90o with a 305 nm cutoff filter (Newport Corp) in-line to limit 
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excitation bleed through. Emission was measured from 320 nm to 500 nm in 1 nm steps, with 0.5 

sec per step and a 2.5 nm bandwidth. A 5 mm by 5 mm Hellma fluorescence cuvette was used 

for measurements. Spectra were smoothed a 6-point Savitsky-Golay smoothing function and data 

were analyzed to extract fluorescence peak emission intensity as previously reported.  

 

6.2.4. Data Fitting.  

A one site cooperative Langmuir-type equation (eq 6.1) was used to fit CD and fluorescence 

data, where the spectroscopic value, s(x) 

 𝑠(𝑥) =
𝑠𝑜+𝑠1(

𝑥
𝐾𝑑(app)

)
𝑛

1+( 𝑥
𝐾𝑑(app)

)
𝑛         (eq 6.1) 

corresponds to the amplitude measured at the exposed lipid to protein ratio (LPR), x, in the 

titration and s0 and s1 are the amplitudes of the initial (free protein) and final (lipid bound 

protein) states, respectively. Here, Kd(app) is the apparent dissociation constant corresponding to 

the exposed LPR required to induce half occupancy of the conformation associated with site A 

binding to CL and n is the associated Hill coefficient.  

 

6.2.5. Lipid to Protein Ratio Calculations.  

Lipid to protein ratio was calculated for concave binding using the initial protein 

concentration (protein concentration during vesicle formation) and the lipid concentration on the 

vesicle inner leaflet associated with vesicle size measured using DLS. After vesicle formation 

and removal of excess protein from the exterior of vesicles, DLS was run to measure vesicle size. 

Using bilayer thickness of CL(3.67 nm)12, average surface area of an inner leaflet was calculated. 

Headgroup surface area of CL (1.298 nm2)12 was then used to determine the number of lipids on 
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the concave surface of the vesicle. Taking into account bilayer thickness, the average inner 

volume of a vesicle was calculated and the initial protein concentration was used to find the total 

number of proteins present on the interior of a vesicle. The LPR was calculated using both 

populations for each sample at each concentration point for each trial.  

 

6.3. RESULTS AND ANALYSIS 

In previous work, we showed that yeast iso-1-Cytc binds to the convex surface of 100 nm, 

pure CL vesicles and reported the associated binding parameters for cooperative, one-site, 

Langmuir-type binding (Eq. 6.1, Table 6.1)10.  These studies were carried out at pH 8, conditions 

selective for binding to the anionic site, A-site,10 which has long been attributed to electrostatic 

binding to lysines 72 and 73,13,14 and possibly lysines 86 and 87 (See Figure 6.1, top).13–15 We 

assigned the two distinct apparent dissociation constants, Kd(app), found using Soret circular 

dichroism (CD) and fluorescence spectroscopy, to a two-step conformational rearrangement on 

the surface of the pure CL vesicles. If we interpret the Kd(app) in terms of exposed lipid to 

protein ratio (LPR) as reflecting the space required on the membrane surface, the first step 

requires the surface area of ~10 CL headgroups (~13 nm2; CL headgroup surface is 1.298 

nm2,12). This surface area requirement is only slightly larger than the 9.1 nm2 of membrane 

surface area the native state of Cytc is expected to require,16,17 suggesting only a modest 

structural rearrangement in the first step. 
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Figure 6.1. TOP: Yeast iso-1-Cytc (PDB entry 2YCC) showing lysines 72, 73, 86 and 87, which 

are commonly assigned as constituents of the A-site (top panel, prepared using MacPymol) 

Neighboring lysines 54, 55 and 89 are also shown. Trp59 is shown in green behind the heme. 

The heme and its ligands, Met80 and His18, are also shown. BOTTOM: Schematic 

representation of spatial constraints on binding iso-1-Cytc to the convex outer surface versus the 

concave inner surface of a pure CL vesicle.  
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The second step requires ~23 CL headgroups (~30 nm2) indicative of a more significant 

conformational rearrangement. Fluorescence resonance energy transfer studies of partial 

unfolding on the surface of 1:1 CL:DOPC vesicles, which show that the C-terminal helix moves 

away from the heme at high LPR,18 are qualitatively consistent with the additional membrane 

surface area indicated by the Kd(app) of the second conformational rearrangement we observe on 

pure CL vesicles.  The associated Hill coefficient for each step (n ~2) suggests that the iso-1-

Cytc interacts directly with 2 lipid headgroups (4 negatively charged phosphates) as part of each 

step of the conformational rearrangement. 

 

 

 

 

 

 

 

 

 

  

Table 6.1. Thermodynamic parameters for iso-1-Cytc binding to 

100% CL vesicles. 

 CD Fluorescence 

Membrane 
Curvature 

Kd(app), 
Exposed 

LPR 
n 

Kd(app), 
Exposed 

LPR 
n 

Concave 54.8 ± 3.3 4.4 ± 1.0 58.2 ± 4.2 4.7 ± 1.2 

Convex10 10.2 ± 0.2 2.2 ± 0.1 23.4 ± 0.8 2.3 ± 0.2 

Reported in exposed (leaflet) lipid to protein ratio (LPR). Error 

corresponds to the standard error in the fit of the parameter 



 173 

We have recently shown that CL partitions preferentially to the inner leaflet of CL-containing 

DOPC vesicles (See Chapter 5). This preferential localization suggests a variation in CL packing 

on concave and convex surfaces with a strong favorability for CL to pack well in vesicle inner 

leaflets. Conformational rearrangements of proteins on a concave membrane surface differ in two 

respects relative to those on a convex surface. The concave surface will cause globular proteins 

on the surface to tilt toward each other, rather than away from each other as on a convex surface 

(Figure 6.1, bottom). Thus, more surface area is expected to be necessary for protein binding to a 

concave membrane surface. The concave membrane surface will also better match the curvature 

of a globular protein, so, one might expect that more of the protein could interact with the 

membrane perhaps increasing the number of lipids which directly bind to the protein and thus the 

cooperativity of binding and/or structural rearrangements on the membrane surface. 

To examine protein binding to concave membrane surfaces, we performed CL-binding 

titrations for iso-1-Cytc encapsulated within 100 nm, pure CL vesicles, so, that they only see the 

concave surface of the bilayer (For preparation of vesicle with iso-1-Cytc trapped inside, see 

Supporting Information). Vesicle titrations of Cytc binding to the concave exterior surface of CL-

containing vesicles are typically done at a constant protein concentrations between 5 and 10 

PM10,19–21 in the presence of increasing amounts of vesicles. Our previous work on iso-1-Cytc 

indicates that at this protein concentration, both Soret CD and Trp59 fluorescence monitor 

conformational rearrangements of iso-1-Cytc already bound to pure CL vesicles.10 Thus, 

titrations are best evaluated as a function of exposed LPR (available membrane surface area). For 

titrations as a function of exposed LPR for iso-1-Cytc trapped inside vesicles, iso-1-Cytc 

concentration must be changed to vary exposed LPR. To achieve exposed LPR across the same 

range as for titrations with iso-1-Cytc to the convex outer surface of vesicles, the vesicles must 
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be formed in the presence of iso-1-Cytc at concentrations ranging from 0.5 – 5 mM. Thus, the 

concentration of iso-1-Cytc in the lumen of the pure CL vesicles in this study is similar to that 

observed physiologically in the IMS of mitochondria.  

To monitor local and global structural rearrangement as a function of exposed LPR, Soret CD 

and Trp59 fluorescence spectroscopy, respectively, were used (see Supplementary Information 

for sample preparation and experimental methods). Soret CD is sensitive to the local heme 

environment, particularly heme-Met80 ligation19 and the proximity of Phe82 to the heme.22 

Trp59 fluorescence depends on the Trp59-heme distance and is used to monitor changes in 

tertiary structure of Cytc.23 For binding titrations followed by Soret CD, the CL vesicle titration 

evaluated iso-1-Cytc binding from a low exposed LPR (high iso-1-Cytc concentration, Figure 

6.2, top, blue spectrum) to a high exposed LPR (low protein concentration, Figure 6.2, top left, 

red spectrum) to assess the effect of the binding density of iso-1-Cytc on the concave CL surface 

on the local heme environment. The amplitude of the CD signal (''H = 'H406 – 'H420) was 

plotted versus exposed LPR and fit to a one-site cooperative Langmuir binding model (Eq. S1) to 

determine Kd(app) and n (Figure 6.2, bottom left panel, Table 6.1). Compared to binding 

titrations on the external convex surface of pure 100 nm CL vesicles, Kd(app) obtained from 

Soret CD measurements on the concave inner surface of pure CL vesicles is much higher (Table 

6.1), indicating that more space is required for the Soret CD-monitored conformational change 

on a concave versus a convex surface. The associated Hill coefficient, n, is also twice the value 

reported for binding on a convex membrane surface. Trp59 fluorescence as a function of exposed 

LPR on the concave inner surface of the pure CL vesicle also is shown in Figure 6.2 (top right). 

The increase in Trp59 fluorescence intensity at the emission maximum (341 nm) was plotted 

versus exposed LPR and fit to Eq. 6.1 to obtain Kd(app) and n (Figure 6.2, bottom right, Table 
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6.2). The Kd(app) and n values obtained for binding on the concave inner surface of pure CL 

vesicles from Trp59 fluorescence data are approximately double the magnitude of the values 

obtained  for Cytc-CL binding on the convex exterior surface of pure 100 nm CL vesicles (Table 

6.2). Whereas the Kd(app) and n parameters obtained from Soret CD versus Trp59 fluroescence 

data are significantly different for binding to convex membrane surfaces, they are essentially 

identical for binding to concave surfaces. Thus, conformational rearrangement of iso-1-Cytc is 

concerted on the concave inner surface and stepwise on the convex outer surface of 100 nm pure 

CL vesicles (Figure 6.3).  
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Figure 6.2.  Soret CD spectra of 10 PM iso-1-Cytc (top left panel) prepared from low exposed 

LPR (high iso-1-Cytc concentration in vesicle lumen; blue spectrum is iso-1-Cytc in the absence 

of vesicles) to a high exposed LPR (Red, low iso-1-Cytc concentration in vesicle lumen) inside 

100 nm, 100% CL vesicles formed in 20 mM TES buffer, 0.1 mM EDTA at pH 8. Vesicle 

concentration was adjusted, so that iso-1-Cytc concentration was 10 PM in all samples. Average 

Soret CD amplitude (''H = 'H406 – 'H420, solid black circles) as a function of exposed LPR 

(bottom left panel) fit to eq 6.1 (solid red curve). Trp59 fluorescence signal of 5 PM iso-1-Cytc 

prepared at lipid concentrations ranging from a low exposed LPR (Blue) to a high exposed LPR 

(Red) inside 100 nm, 100% CL vesicles formed in 20 mM TES buffer, 0.1 mM EDTA at pH 8. 

Average Trp59 fluorescence peak signal at 441 nm as a function of exposed LPR (solid black 

circles) fit to Eq. 6.1 (solid red curve). Error bars of data points in the bottom panels are the 

standard deviation from three independent trials.   
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Figure 6.3. Overlay of the titration curves for WT iso-1-Cytc obtained by Soret CD (blue 

circles) and Trp59 fluorescence (red squares) for binding to the interior concave surface of pure 

CL vesicles showing that binding as monitored by both spectroscopic probes is concerted. 

 

The amplitude of the CD signal (''H = 'H406 – 'H420) was plotted versus exposed LPR and fit 

to a one-site cooperative Langmuir binding model (Eq. 6.1) to determine Kd(app) and n (Figure 

6.2, bottom left panel, Table 6.1). Compared to binding titrations on the external convex surface 

of pure 100 nm CL vesicles, Kd(app) obtained from Soret CD measurements on the concave 

inner surface of pure CL vesicles is much higher (Table 6.1), indicating that more space is 

required for the Soret CD-monitored conformational change on a concave versus a convex 

surface. The associated Hill coefficient, n, is also twice the value reported for binding on a 

convex membrane surface. Trp59 fluorescence as a function of exposed LPR on the concave 

inner surface of the pure CL vesicle also is shown in Figure 6.2 (top right). The increase in Trp59 

fluorescence intensity at the emission maximum (341 nm) was plotted versus exposed LPR and 

fit to Eq. 6.1 to obtain Kd(app) and n (Figure 6.2, bottom right, Table 6.1). The Kd(app) and n 
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values obtained for binding on the concave inner surface of pure CL vesicles from Trp59 

fluorescence data are approximately double the magnitude of the values obtained for Cytc-CL 

binding on the convex exterior surface of pure 100 nm CL vesicles (Table 6.1). Whereas the 

Kd(app) and n parameters obtained from Soret CD versus Trp59 fluorescence data are 

significantly different for binding to convex membrane surfaces, they are essentially identical for 

binding to concave surfaces. Thus, conformational rearrangement of iso-1-Cytc is concerted on 

the concave inner surface and stepwise on the convex outer surface of 100 nm pure CL vesicles 

(Figure 6.3).  

The lowest exposed LPR in the titration followed by Soret CD in Figure 6.2 gives a spectrum 

similar to the spectrum of iso-1-Cytc free in solution at pH 8 (Figure 6.4). At pH 8 when not 

bound to vesicles, wild type (WT) iso-1-Cytc expressed from Escherichia coli (unlike protein 

expressed from the native host, Saccharomyces cerevisiae, Lys72 is not trimethylated causing the 

pKapp of the alkaline transition of iso-1-Cytc to decrease to 8)24 gives a Soret CD spectrum 

consistent with significant population of the alkaline conformer of iso-1-Cytc. By contrast at an 

exposed LPR near 13, the negative band of the Soret CD of iso-1-Cytc near 420 nm, typical of 

the native conformer free in solution, reappears when WT iso-1-Cytc is bound to the convex 

exterior surface of pure CL vesicles (Figure 6.4). Thus, initial structural rearrangement that 

occurs on the outer surface of pure CL vesicles, which appears to make the structure of iso-1-

Cytc more nativelike, does not occur on the concave inner surface of pure CL vesicles. Instead, 

the protein appears to maintain a heme environment that is more similar to that of the protein 

free in solution up to an exposed LPR of almost 40. 
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Figure 6.4. Soret CD signal corresponding to 10 µM unbound Cytc in the concave (Black) and 

convex (Red) systems as well as signals corresponding to 10 µM bound Cytc in the concave (--) 

and convex (--) systems. 

 

The concerted partial unfolding on the concave inner surface occurs at about twice the 

exposed LPR (Kd(app) of ~56.5, Table 6.1) of the second conformational rearrangement (partial 

unfolding) on the convex outer surface of pure CL vesicles. This Kd(app) corresponds to a 

surface area of ~73 nm2 for partial unfolding on the concave inner surface of pure CL vesicles, 

more than twice the surface area needed for this conformational rearrangement on the convex 

outer surface of pure CL vesicles. The Hill coefficient, n, is approximately the sum of the 

individual steps observed for binding to a convex membrane surface indicating that a similar 

total number of lipids (~4.5) interact with iso-1-Cytc when it unfolds on the concave inner 

surface of pure CL vesicles. One factor that may lead to the concerted (concave surfaces) versus 

the stepwise (convex surfaces) mechanism for structural rearrangement of iso-1-Cytc on 

membrane surfaces is that the concave surface is more stable because the cone-shape of CL is 

better adapted to a concave surface. Our recent studies showing that CL preferentially partitions 
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to the inner leaflet of 100 nm vesicles supports this contention. A more stable surface would be 

less prone to deformation and thus require more points of contact to initiate structural 

rearrangement of iso-1-Cytc. The larger surface area (Kd(app)) needed for partial unfolding of 

iso-1-Cytc on a concave versus a convex membrane surface likely has a number of contributing 

factors. One factor, as illustrated in Figure 6.1, is that proteins on a concave surface effectively 

tilt toward each other leading to more excluded volume on a concave surface and thus a 

requirement for more lipid surface area to allow structural rearrangements. The concave 

curvature may also facilitate simultaneous contact with lysine residues in or near the A site 

because the curvature on the surface allows for closer contact with more of the surface of iso-1-

Cytc. The convex exterior surface of a vesicle, by contrast, curves away from the surface of the 

protein. Thus, the concave surface may facilitate interaction with a broader group of lysines, in 

or near the A-site, permitting a more extensive concerted partial unfolding of the protein that 

occurs at a higher Kd(app) (larger membrane surface area). 

Our recent work on the effect of Lys→Ala variants of iso-1-Cytc on binding to the convex 

outer surface of pure CL vesicles shows that at least four lysines govern binding at the A site 

(Lys72, Lys73, Lys86, and Lys87). The results also indicate that neighboring lysines (Lys54, 

Lys55 and Lys89) also could be involved in A site binding. Thus, a large surface of lysines likely 

contributes to electrostatic binding via site A.  The better shape complementarity between the 

concave inner surface of a CL vesicle and the surface of iso-1-Cytc may facilitate contact with a 

larger group of these lysines and the negatively-charged CL headgroups leading to a larger 

structural rearrangement on a concave versus a convex membrane surface.  Further investigation 

of which lysines contribute to A-site binding will be important, as will determination of whether 
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the relative importance of each lysine contributing to the A-site is the same on convex versus 

concave surfaces.  

Through their work on binding of horse Cytc to the concave surface of reverse micelles 

titrated with CL, Wand and colleagues found no evidence of partial unfolding of Cytc. This 

conclusion was based on the observation that there are only small changes in the 1H-15N HSQC 

of horse Cytc during the CL titration.7 The diameter of the reverse micelles in this study was 

about 4 nm. If the entire surface area of the reverse micelle was replaced by CL during the 

titration, maximally 35 – 40 CL could be accommodated on the available surface area. At the 7 

mM concentration of horse Cytc used in these experiments, each reversed micelle would contain 

no more than one Cytc molecule. Thus, the maximal value for the exposed LPR would be 35 – 

40 and is probably less. Our data (Figure 6.2, bottom panels) also shows minimal structural 

perturbation to iso-1-Cytc at exposed LPR values less than 40. For mitochondria in the orthodox 

state, the diameter of the cristae and the cristae junctions are near 30 nm.4,25,26 The intra-cristal 

regions make up most of the surface area of the IMM available to Cytc, providing substantial 

surface area with negative curvature.26 The negative curvature of the cristae fall in between that 

of the 4 nm reversed micelles used by Wand and colleagues and the 100 nm CL vesicles used 

here. Both experiments indicate that at exposed LPR below 40 partial unfolding does not occur 

on concave CL-containing membrane surfaces. However, our data show that at physiological 

concentrations of Cytc (0.5 – 1.0 mM, high exposed LPR in our study), it is possible that partial 

unfolding could occur on the concave surfaces in the intra-cristal compartments of the IMM.   
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6.4. CONCLUSION 

Our findings indicate that, Cytc partially unfolds on both convex and concave surfaces of 

pure CL vesicles. However, the membrane surface area required for partial unfolding is larger on 

concave than on convex membrane surfaces. The unfolding process is also more cooperative on a 

concave versus a convex membrane surface. The larger surface area required on the concave 

versus the convex surface suggests that the extent of protein unfolding on concave surfaces may 

be more extensive than for convex surface binding. Our results suggest that the concave 

curvature of the IMM will have an important impact on the conformational rearrangements of 

Cytc on CL-containing membranes and thus in controlling the peroxidase activity of Cytc in the 

early stages of apoptosis.  
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CHAPTER 7: Summary 

 

7.1. Quantification of Lipids Enables Analytical Protein-Lipid Binding Analysis 

 A tool to rapidly quantify lipid concentration is required to approach protein-lipid binding 

quantitatively. With the intent of performing an in-depth analysis of both variant dependent and 

amino acid dependent lipid binding, we created a calculator that uses absorbance measurements 

acquired from a UV-Visible spectrophotometer and first calculates the number of vesicles in 

solution, then employs a lipid density measurement to approximate the total lipid concentration 

of the system of interest. This technique was first developed for pure lipid systems.1 With the 

intent of expanding protein-lipid analysis to mixed lipid systems like those commonly employed 

to study the Cytc-CL interaction, we modified our lipid calculator technique to make accessible 

lipid concentration measurements of varying compositions and concentrations of lipids.2 Both 

the pure and mixed lipid calculators enable rapid quantification of lipids essential for analytical 

analysis of protein-lipid binding. 

 

7.2. Evolutionary Comparison of Cytochrome c Variants Demonstrates Divergence of 

Protein Function. 

 Recent work has extended the role of Cytc from an electron shuttle in the electron transport 

chain to a constituent in the pre-apoptotic pathway specifically in mammals.3,4 In both cellular 

roles, Cytc associates with CL on the outer leaflet of the inner mitochondrial membrane. In this 

work, we investigated the electrostatic protein-lipid interaction of both yeast and human Cytc to 

determine if differing binding mechanisms exist that may explain the development of apoptotic 

precursor for human Cytc. Our findings show that both protein variants initially dock on the 
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membrane and remain in a folded state at low lipid to protein ratios (when space is population 

limited) and display a biphasic response to binding. This biphasic response arises as the lipid to 

protein ratio increases, freeing up space on the membrane. Our variant dependent analysis 

showed that human Cytc had an attenuated dissociation constant consistent with more lipid 

required to generate unfolding on the membrane surface than its yeast homologue. Further, we 

showed that the amino acid generally assumed to be responsible for this interaction (Lys72) did 

not contribute substantially to lipid binding, suggesting a complete characterization of 

electrostatic binding constituents on Cytc is required to further understand the interaction being 

investigated.  

 

7.3. Alanine Screening Characterizes Anionic Binding Site Constituents and Shows 

Concentration Charge Dependence of Lysines on Cardiolipin Binding. 

 As evidenced from variant dependent analysis of CL binding in chapter 3, an investigation 

into the constituents of the anionic site A was needed to fully understand the electrostatic 

interaction between Cytc and CL during protein-lipid docking. To determine amino acid 

contribution, alanine screening was performed in and around the A site (Figure 1.2) of Cytc and 

CL binding studies were used to assess the contribution of each substituted lysine of interest. 

Through these studies, we found that several lysines in the region of the A site (Lys72, Lys73, 

Lys86 and Lys87) had varying contributions to binding. Interestingly, complete removal of all 

four lysines did not completely terminate electrostatic binding suggesting that these four lysines 

do not completely account for electrostatic binding in this region of the protein.  
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7.4. Cardiolipin Membrane Distribution Demonstrates Preference of the Lipid for Concave 

Surfaces.  

 A concern in designing protein-lipid binding experiments is what exactly is being 

investigated especially in more complex systems where different mixtures of lipids are used. 

Specifically, CL is known to reside on concave surfaces but when used in binding experiments, it 

is assumed that the lipid homogeneously distributes itself between the concave and convex 

surfaces of vesicles. Further, most published work studying the Cytc-CL interaction study the 

interaction on the convex outer leaflet of vesicles, ignoring any potential lipid driven distribution 

inhomogeneity. In chapter 4, we assessed the distribution of anionic lipids in mixed lipid systems 

comprised of the neutral lipid DOPC. To do this, we used the anionic lipid detecting fluorophore 

TTAPE-Me and found that CL prefers the concave interior of vesicles generated an 

inhomogeneity of lipid composition between vesicle membrane leaflets. This preferential 

localization is directly due to CL’s structure, specifically it’s four acyl chains. In comparison, 

when we assessed lipid distribution of DOPG (structurally similar to CL but possessing half the 

number of hydrophobic tails), we found that no preferential distribution of the anionic lipid 

exists. Using these findings, we then analyzed Cytc-CL binding to both 100% DOPC and 20% 

CL/80%DOPC systems and found that protein-lipid binding was extensively attenuated. Binding 

did not occur appreciably in pure DOPC titrations and only modest binding was detected in the 

mixed lipid system. These findings further suggest that CL prefers the concave interior of 

vesicles, giving rise to the possibility that binding of Cytc to CL on the outside of a vesicle may 

be intrinsically different that binding to CL on the interior of the vesicle.  
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7.5. Curvature Dependent Binding Analysis Demonstrates the Role of Membrane Structure 

in Cytochrome c-Cardiolipin Binding.  

 Because Cytc-CL binding is known to occur on concave membrane surfaces, our last point of 

analysis of this binding interaction was to elucidate the role of membrane curvature in the 

protein-lipid interaction. In chapter 3, we demonstrated that a concentration dependent biphasic 

response to lipid exposure occurred in both yeast and human mutants exposed to convex 

surfaces. In comparing these findings with yeast Cytc exposed to concave membrane surfaces, 

we have been able to show that the biphasic nature of the binding event is wholly conditional, 

dependent on membrane structure. This loss of biphasic binding strongly suggests that the 

membrane’s curvature plays a direct role in the facilitation of protein docking and concerted 

unfolding.  

 

7.6. Future Directions 

 Our findings presented in this work provide impetus for several future directions of 

investigation. Current work hypothesizes four potential binding sites on Cytc. Given the 

relatively small size of the protein and in coordination with our findings that a biphasic binding 

event is observed under certain conditions, it is probably more likely that the four hypothesized 

binding sites are actually different aspects of a smaller number of binding domains. Experimental 

design and environmental conditions may be such that different aspects of each domain are 

intermittently probed but the physiological behavior of the entire domain is not seen using 

current methods. Alanine screening would provide insight into population of amino acids 

involved in lipid docking and binding. Further, a repetition of concave binding analysis using 



 190 

alanine mutants would aid in elucidating the role of each amino acid involved in either docking 

or unfolding the protein.  
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Appendix I.1: INSTRUCTIONS FOR USING THE MVCC 
 
Below is the MVCC.m file for vesicle and lipid quantification for TOCL. To use file, copy from 
top green ‘%’ line to bottom ‘%’ line into blank .m file in Matlab and save as MVCC.m in the 
Matlab directory.  
 
To run MVCC file in Matlab, open Matlab and in command line, type ‘MVCC’ and press enter. 
An ‘options’ window will appear allowing you to choose the lipid of interest (TOCL, DOPC, 
POPC or POPG) if file has been copied and saved correctly. Select the lipid you wish to 
measure. Next a popup window will appear. Input wavelength in nanometers and absorbance in 
A.U. For spectrophotometer pathlengths not equal to 1 cm, scale absorbance accordingly. Input 
vesicle diameter in nanometers. Press enter. Calculation output will appear in command window. 
Output specifies first, vesicle concentration in mol/L and secondly, TOCL lipid concentration in 
mol/L.  
 
 
Modifying Calculator for different lipids: 
This calculator can be modified to calculate lipid concentration for other lipids as well. To 
modify the MVCC to measure a different lipid, change the following parameters: HDSA, BT and 
RI. These correspond to headgroup surface area (HDSA), bilayer thickness (BT) and refractive 
index (RI) and can be found in lines 31-33 once the code is copied into the .m file.  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%               MVCC.m (Matlab Vesicle Concentration Calculator) 

% 
%               Written by: Margaret Elmer-Dixon 
%               Last Editted: 9/19/2016 
% 

%   The MVCC Calculates concentration of TOCL lipid using data input taken  
%   from a UVVis spectrophotometer at a known wavelength. Vesicle diameter  
%   must be specified. To calculate lipid concentration from vesicle 

%   scattering, follow dialog box prompts. Output is in command window. 
%                                
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

clear all 

  

% Construct a questdlg with three options 
choice = menu('Select Lipid Composition', ... 

    'TOCL','DOPC','POPC','POPG'); 
% Handle response 
switch choice 

    case 1 %'TOCL' 
      lipidchoice = 'TOCL' 
      HDSA = 1.298; % nm^2 (Pan, Soft Matter, 2015) 

      BT = 3.67;% nm (Pan, Soft Matter, 2015) 
      RI = 1.46; %(Maniti, Biochimica et Biophysica Acta, Biomembranes, 

       %1808(4):1129-1139, 2011) 

                

    case 2 %'DOPC' 
      lipidchoice = 'DOPC' 

      HDSA = .674; % nm^2 (Pan, Soft Matter, 2015) 
      BT = 3.87;% nm (Pan, Soft Matter, 2015) 
      RI = 1.375;%1.375;% (JF Popplewell, Biochemicia et Biophysicia Acta    

     %1768 (2007) 13-20) 

                    

    case 3 %'POPC' 
      lipidchoice = 'POPC' 

      HDSA = .627; % nm^2 @20C (Kucerka, Biochemia et Biophysicia Acta      

                   % 1808(2011) 2761-2771) 
      BT = 3.98; % nm (Kucerka, Biochemia et Biophysicia Acta 1808(2011)   

                 % 2761-2771) 
      RI = 1.376; % 1.376(JF Popplewell, Biochemicia et Biophysicia Acta 1768   

                  % (2007) 13-20) 

                    

    case 4 %'POPG' 
      lipidchoice = 'POPG' 

      BT = 3.73;% nm @20C (Pan, Biochemicia et Biophysicia Acta 2012, 

                % 1818(9):2135-2148) 
      HDSA = .644;% nm^2 @20C (Pan, Biochemicia et Biophysicia Acta 2012,      

                  % 1818(9):2135-2148) 
      RI = 1.45;% (Murray. J Struct. Bio. 2009, 168(1):183-189) 
  end 
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prompt = {'Wavelength of Absorbance','Absorbance Measurement (A.U.)',… 
'Vesicle Diameter (nm)'}; 

dlg_title = 'MVCC Input'; 
num_lines = 1; 
defaultans={'300','1.08','100'}; 

answer = inputdlg(prompt,dlg_title,num_lines,defaultans); 
            Wavelength = str2num(answer{1,1}); 
            AbsorbanceMeasured = str2num(answer{2,1}); 

            diameter = str2num(answer{3,1}); %nm 
            radius = diameter/2; %nm 
            radiusM= radius/10^9; %radius in meters 

           

          

            %calculate lipid specific vesicle characteristics  

            radiusInner = radius-BT; %using bilayer thickness, calculate 

                                     %inner radius 
            SAvesicle=4*pi*(radius^2+(radiusInner)^2); %SA of Outer and Inner        

                                                       %bilayer in nm^2 

            LipidDensity = SAvesicle/HDSA; %lipids per vesicle 

  

            %calculate refractive index for each wavelength 

            m1 = 1.31848+6.662./(Wavelength-129.2); % equation from 'Water  

%refractive index in dependence on temperature and wavelngth: a 

%simple approximation' Bashkatov and Genina, Optics Department 

%Saratoc state university 
            m = RI+i.*1.1*10^-7;%1.45 taken from sucrose index matching 

%(Ardhammar,2002) 

  

%calculate x parameter fommo equation 4 
k = 2.*pi./Wavelength; %convert to angular wave number  

xx = 2*pi*radius*m1./Wavelength;%defines size parameter  

  

%calculate extinction efficiencies for each wavelength based on Bohren 1983. 

x=xx; 

  

    if x==0 % To avoid a singularity at x=0 

    Eff=[real(m) imag(m) 0 0]; 
    elseif x>0 % This is the normal situation 
    nmax=round(2+x+4*x^(1/3)); 

    n1=nmax-1; 
    n=(1:nmax);cn=2*n+1; c1n=n.*(n+2)./(n+1); c2n=cn./n./(n+1); 
    x2=x*x; 

  

  

            %finding ABCD 

            nu=(n+.5); 
            z=m.*x; 
            m2=m.*m; 

  

            sqx=sqrt(0.5*pi./x); 
            sqz=sqrt(0.5*pi./z); 

  

            bx=besselj(nu,x).*sqx; 
            bz=besselj(nu,z).*sqz; 

            yx=bessely(nu,x).*sqx; 
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            hx=bx+i*yx; 
            b1x=[sin(x)/x,bx(1:nmax-1)]; 

            b1z=[sin(z)/z,bz(1:nmax-1)]; 
            y1x=[-cos(x)/x,yx(1:nmax-1)]; 
            h1x=b1x+i*y1x; 

            ax=x.*b1x-n.*bx; 
            az=z.*b1z-n.*bz; 
            ahx=x.*h1x-n.*hx; 

            anABCD=(m2.*bz.*ax-bx.*az)./(m2.*bz.*ahx-hx.*az); % this 

            %corresponds to an in Eqn 3a 
            bnABCD=(bz.*ax-bx.*az)./(bz.*ahx-hx.*az); %this corresponds to bn          

            %in Eqn 3b 

            cnABCD=(bx.*ahx-hx.*ax)./(bz.*ahx-hx.*az); 
            dnABCD=m.*(bx.*ahx-hx.*ax)./(m2.*bz.*ahx-hx.*az); 

  

             

            f =[anABCD;bnABCD;cnABCD;dnABCD];%ABCD Values required for Qext 

%calculation 

  

    anp=(real(f(1,:))); anpp=(imag(f(1,:))); 
    bnp=(real(f(2,:))); bnpp=(imag(f(2,:))); 

    g1(1:4,nmax)=[0; 0; 0; 0]; % displaced numbers used for 
    g1(1,1:n1)=anp(2:nmax); % asymmetry parameter, p. 120, Bohren 
    g1(2,1:n1)=anpp(2:nmax); 

    g1(3,1:n1)=bnp(2:nmax); 
    g1(4,1:n1)=bnpp(2:nmax); 
    dn=cn.*(anp+bnp); 

    q=sum(dn); 
    Qext=2*q/x2;% this corresponds to Cext in eqn 2 

  

    Eff=[real(m) imag(m) x Qext]; 

  

    end 

  

            

     

            area= pi*radiusM^2; %area of scattering centers in m^2 
            pathlength=.01; %pathlength in meters 
            N = AbsorbanceMeasured./Qext./area./pathlength; %finds  

   %N=2.303*A/Q/area/d and converts to Mol 

            

            Nmol=N/6.022e23 %convert N avg to moles  

  

fprintf('this is the vesicle concentration in M/L'); 

  

            lipid=Nmol*LipidDensity %lipids total 

  

fprintf('this is the lipid concentration in M/L'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix I.2: INSTRUCTIONS FOR USING THE MLC 
 
MATLAB CODE Installation and User Instructions: 

1) In matlab, copy and paste the following page of code (starting with the Green commented 
region ‘%’) into a .m file and save it as ‘MLC.m’ in the Matlab directory.  

2) To run: 
a. Type ‘MLC’ into the command line and press ‘Enter’  
b. Open MLC.m and press ‘Run’ at the top of the page view window.  

3) The running program initiates with the following pop-up window, where the mole 
fraction/fraction of DOPG, DOPC and Cardiolipin (TOCL) can be specified. Note that 
three component systems may be calculated but have not been validated. Further, any 
number of absorbances and their corresponding wavelengths can be specified provided 
they are space separated.   

 
 

4) The output after pressing ‘OK’, will show up in the command window in table format. 
Standard deviations will be output for total lipid concentration and vesicle concentration 
if more than one absorbance is provided. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

%               Mixed Lipid Calculator 

% 

%               Written by: Margaret Elmer-Dixon 

%               Last Edited: 3.14.2018 

% 

%   The Mixed Lipid Calculator calculates concentration of lipid using data input taken  

%   from a UV-Vis spectrophotometer at a known wavelength. Vesicle diameter  

%   must be specified. To calculate lipid concentration from vesicle 

%   scattering, follow dialog box prompts. Lipid Mixture Concentrations must be specified.  

%   Output is in command window. 

%                                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

clear all 

  

prompt={'Mole % DOPC','Mole % TOCL','Mole % DOPG','Absorbance wavelengths','Associated Absorbance 

Scattering','Vesicle Diameter (nm)'}; 

dlg_title='Mixed Lipid Calculator'; 

num_lines = 1; 

defaultans = {'80','20','0','400 425 450','.5124 .3894 .2911','100'}; 

answer=inputdlg(prompt,dlg_title,num_lines,defaultans); 

  

A=str2num(answer{1,1}); 

B=str2num(answer{2,1}); 

C=str2num(answer{3,1}); 

nm=str2num(answer{4,1}); 

Absorbance=str2num(answer{5,1}); 

Diameter=str2num(answer{6,1}); 

  

XA=A./(A+B+C); 

XB=B./(A+B+C); 

XC=C./(A+B+C); 

  

      %DOPC 

      HDSAa = .674; % nm^2 (Pan, Soft Matter, 2015) 

      BTa = 3.87;% nm (Pan, Soft Matter, 2015) 

      RIa = 1.375;%1.375;% (JF Popplewell, Biochemicia et Biophysicia Acta 1768 (2007) 13-20) 

      Va =HDSAa*BTa; %nm^3 

       

      %Cardiolipin 

      BTb= 3.67;% nm (Pan, Soft Matter, 2015) 

      HDSAb= 1.298; % nm^2 (Pan, Soft Matter, 2015) 

      RIb= 1.46; %(Maniti, Biochimica et Biophysica Acta, Biomembranes, 1808(4):1129-1139, 2011) 

      Vb=HDSAb*BTb; 

       

      %DOPG 

      HDSAc = .694; %nm^2 @20C (Pan, Biochemicia et Biophysicia Acta 2012, 1818(9):2135-2148) 

      BTc = 3.63; %nm @20C (Pan, Biochemicia et Biophysicia Acta 2012, 1818(9):2135-2148) 

      RIc = 1.359; %(JF Popplewell, Biochemicia et Biophysicia Acta 1768 (2007) 13-20) THIS IS FOR PG 

      Vc = HDSAc*BTc; 

 

      %SA Percent HD (surface area percent by headgroup) 

      %Average HDSA (headgroup surface area) taking into account mole fraction 

      HDSA = (XA*HDSAa+XB*HDSAb+XC*HDSAc); 

       

      %Percent surface area covered by each molecule 

      PA = XA*HDSAa/HDSA; %percent surface area comprised of DOPC 

      PB = XB*HDSAb/HDSA; %percent surface area comprised of CL 

      PC = XC*HDSAc/HDSA; %percent surface area comprised of DOPG 

       

      %Refractive index based on the surface area occupation of each lipid  

      RI = RIa*PA+RIb*PB+RIc*PC; 

       

      % Bilayer thickness based on the weighted surface area occupation of 

      % each lipid 

      BT = BTa*PA+BTb*PB+BTc*PC; 

       

      %calculate lipid specific vesicle characteristics  

      diameter = Diameter;%%nm 

      radius = diameter/2; %nm 

      radiusM= radius/10^9; %radius in meters 

      radiusInner = radius-BT; %using bilayer thickness, calculate inner radius 

      SAvesicle=4*pi*(radius^2+(radiusInner)^2); %SA of Outer and Inner bilayer in nm^2 
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      LipidDensity = SAvesicle/HDSA; %lipids per vesicle 

  

                 

      for ii = 1:length(nm) 

RIi(ii) = RI;       

            %set indep vars 

            Wavelength = nm(ii);%nm 

            AbsorbanceMeasured = Absorbance(ii);%arbitrary units 

  

            %calculate refractive index for each wavelength 

            m1 = 1.31848+6.662./(Wavelength-129.2); % equation from 'Water refractive index in        

%dependence on temperature and wavelngth: a simple approximation' Bashkatov and Genina, Optics 

%Department Saratoc state university 

            m = RI+i.*1.1*10^-7;%1.45 taken from sucrose index matching (Ardhammar,2002) 

  

%calculate x parameter from equation 4 from Elmer-Dixon and Bowler 2017 

k = 2.*pi./Wavelength; %convert to angular wave number  

xx = 2*pi*radius*m1./Wavelength;%defines size parameter  

  

%calculate extinction efficiencies for each wavelength based on Bohren 1998. 

x=xx; 

X(ii)=x; 

    if x==0 % To avoid a singularity at x=0 

    Eff=[real(m) imag(m) 0 0]; 

    elseif x>0 % This is the normal situation 

    nmax=round(2+x+4*x^(1/3)); 

    n1=nmax-1; 

    n=(1:nmax);cn=2*n+1; c1n=n.*(n+2)./(n+1); c2n=cn./n./(n+1); 

    x2=x*x; 

  

  

            %finding ABCD 

            nu=(n+.5); 

            z=m.*x; 

            m2=m.*m; 

  

            sqx=sqrt(0.5*pi./x); 

            sqz=sqrt(0.5*pi./z); 

  

            bx=besselj(nu,x).*sqx; 

            bz=besselj(nu,z).*sqz; 

            yx=bessely(nu,x).*sqx; 

            hx=bx+i*yx; 

            b1x=[sin(x)/x,bx(1:nmax-1)]; 

            b1z=[sin(z)/z,bz(1:nmax-1)]; 

            y1x=[-cos(x)/x,yx(1:nmax-1)]; 

            h1x=b1x+i*y1x; 

            ax=x.*b1x-n.*bx; 

            az=z.*b1z-n.*bz; 

            ahx=x.*h1x-n.*hx; 

            anABCD=(m2.*bz.*ax-bx.*az)./(m2.*bz.*ahx-hx.*az); % this corresponds to an in Eqn 3a from 

            %Elmer-Dixon and Bowler 2017 

            bnABCD=(bz.*ax-bx.*az)./(bz.*ahx-hx.*az); %this corresponds to bn in Eqn 3b from Elmer 

            %Dixon and Bowler 2017 

            cnABCD=(bx.*ahx-hx.*ax)./(bz.*ahx-hx.*az); 

            dnABCD=m.*(bx.*ahx-hx.*ax)./(m2.*bz.*ahx-hx.*az); 

  

             

            f =[anABCD;bnABCD;cnABCD;dnABCD];%ABCD Values required for Qext calculation using Eqn 2 

            %from Elmer-Dixon and Bowler 2017 

  

    anp=(real(f(1,:))); anpp=(imag(f(1,:))); 

    bnp=(real(f(2,:))); bnpp=(imag(f(2,:))); 

    g1(1:4,nmax)=[0; 0; 0; 0]; % displaced numbers used for 

    g1(1,1:n1)=anp(2:nmax); % asymmetry parameter, p. 120, Bohren 1983 

    g1(2,1:n1)=anpp(2:nmax); 

    g1(3,1:n1)=bnp(2:nmax); 

    g1(4,1:n1)=bnpp(2:nmax); 

    dn=cn.*(anp+bnp); 

    q=sum(dn); 

    Qext=2*q/x2;% this corresponds to Cext in eqn 2 from Elmer-Dixon and Bowler 2017 

  

    Eff=[real(m) imag(m) x Qext]; 

  

    end 
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Qx(ii)=Qext; 

    

            area= pi*radiusM^2; %area of scattering centers in m^2 

            pathlength=.01; %pathlength in cm 

            N = AbsorbanceMeasured./Qext./area./pathlength; %finds N=2.303*A/Q/area/d and converts to      

    %Mol 

            

            Nmol(ii)=N/6.022e23; %convert N avg to moles  

            % fprintf('this is the vesicle concentration in M/L'); 

  

            lipid(ii)=Nmol(ii)*LipidDensity; %lipids total            

            % fprintf('this is the lipid concentration in M/L'); 

      end 

  

 lmean = mean(lipid)*10^3;%convert from M to mMol  

 lstd = std(lipid)*10^3; 

  

  

 Nmean = mean(Nmol)*10^9;%convert from M to nMol 

 Nstd = std(Nmol)*10^9; 

  

  

 DOPCcon=XA*lmean; 

 CLcon=XB*lmean; 

 DOPGcon=XC*lmean; 

  

  

DataName = {'Mole Fraction DOPC','Mole Fraction CL','Mole Fraction DOPG','mM DOPC Lipid',... 

'mM CL Lipid','mM DOPG Lipid','mM Total Lipid','nM Vesicles'}; 

Mean = [XA; XB; XC; DOPCcon; CLcon; DOPGcon; lmean; Nmean]; 

STD = [0; 0; 0; 0; 0; 0; lstd; Nstd]; 

T= table(Mean,STD,'RowNames',DataName) 
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Appendix II: Tables 
 
Table A.1. 
Comparison of Cardiolipin and DOPC content in vesicles from phosphorous analysis versus 
Mie scattering analysis. 

Date 

Vesicle 
Lipid 

Content  
 

Phosphorous,† 
mg/L 

Lipid 
Concentration,† 

mM, 

Calculated 
Lipid 

Concentration,‡ 
mM 

% error 

2/27/15 TOCL 59.7 0.995 0.957 4.0 

5/14/15 TOCL 201 3.35 3.20 4.7 

4/8/16 TOCL 32.2 0.537 0.515 4.3 

4/8/16 TOCL 60.5 1.01 1.01 0.0 

4/8/16 TOCL 112 1.87 1.87 0.0 

10/27/16 DOPC 53.4 1.72 1.73 0.6 

11/4/16 DOPC 48.4 1.56 1.59 1.9 

11/6/16 DOPC 50.6 1.63 1.68 3.0 
 †Based on phosphorous content obtained from ICP measurements after phosphorous digest. 
‡Calculated using Matlab vesicle concentration calculator. 
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Table A.2. 
Comparison of DOPC content in vesicles from phosphorous analysis versus concentration 
calculation using initial manufacturer specified concentration 

Date 

Vesicle 
Lipid 

Content  
 

Volume 
Lipid 
Dried 
(µl) 

Phosphorous,† 
mg/L 

Cardiolipin,† 
mM, 

Cardiolipin,‡ 
mM  

% error 

2/27/15 TOCL* 160 59.7 0.957 1.07 12 

5/14/15 TOCL* 1000 201 3.20 3.3 3.1 

10/27/16 DOPC§ 160 53.4 1.72 2.00 16 

11/4/16 DOPC§ 160 48.4 1.56 2.00 28 

11/6/16 DOPC§ 160 50.6 1.63 2.00 23 
†Based on phosphorous content obtained from ICP measurements after phosphorous digest. 
‡ Based on Manufacturer specified concentration. Samples were prepared with the intended 
concentration based on manufacturer labeling (Cardiolipin: 5 mg/ml, DOPC: 10 mg/ml) 
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Table A.3. 
Wavelength Ranges for testing Various Vesicle Sizes 

Vesicle Size 
(nm) 

Wavelength Range for Testing (nm) 
Cardiolipin DOPC POPC POPG 

50 200 - 350 200 - 325 200 - 325 200 - 350 
100 200 - 690 200 - 650 200 - 650 200 - 690 
200 200 - 1000 200 - 1000 200 - 1000 200 - 1000 
400 275 - 1000 260 - 1000 260 - 1000 275 - 1000 
1000 690 - 1000 650 - 1000 650 - 1000 690 - 1000 

Calculations based on reported Index of refractions using Eqn. 4 from the main text. 
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Table A.4. 
Comparison of lipid concentration in pure DOPG vesicles from lipid mass versus phosphorous 
and Mie scattering analyses 
Expected lipid 
concentration 
based on lipid 
mass, mM* 

Expected 
phosphorus 
content based on 
lipid mass, 
mg/mL* 

Phosphorous 
content from ICP, 
mg/L† 

Total Lipid 
Concentration 
from ICP, mM† 

Calculated DOPG 
Concentration 
(MVCC), mM‡ 

% Error 
lipid mass 
versus 
ICP§ 
 

1.48 45.9 36.0 1.16 1.14 ± 0.02 27.5 
1.00 30.6 29.2 0.94 0.89 ± 0.05 6.38 
0.25 7.65 6.16 0.20 0.21 ± 0.01 25.0 
*Based on manufacturer reported lipid mass. 
†Based on phosphorous content obtained from ICP measurements after a cold digest to release phosphorous (see ref. 
[1]). 
 ‡Calculated using Matlab Vesicle Concentration Calculator (MVCC). Error is the standard deviation from 
scattering data at multiple wavelengths. 
§% Error for manufacturer reported lipid mass relative to ICP. 
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Table A.5. 
Comparison of mixed lipid content in vesicles from phosphorous analysis versus Mie 
scattering analysis 
Vesicle 
Mixed 
Lipid 
Content* 

Expected lipid 
concentration 
based on lipid 
mass†, mM 

Expected 
phosphorus 
content based 
on lipid mass, 
mg/L† 

Phosphorous 
content from 
ICP, mg/L‡ 

Total lipid 
concentration 
from ICP, 
mM‡ 

Calculated 
total lipid 
concentration 
(MLC), mM§ 

% Error 
lipid mass 
versus 
ICP‖ 

20% CL 1.00 37.2 34.6 0.93 0.95 ± 0.03  7.64 
20% CL 1.50 55.8 46.8 1.26 1.37 ± 0.04  19.2 
20% CL 3.36 104 85.0 2.28 2.47 ± 0.08 22.5 
50% CL 0.66 31.0 27.0 0.58 0.54 ± 0.03 15.0 
50% CL 0.45 21.0 16.4 0.35 0.35± 0.03 28.2 
20% 
DOPG 

1.12 34.7 33.1 1.07 1.09± 0.01 4.83 

20% 
DOPG 

0.37 11.5 11.8 0.38 0.37± 0.01 3.13 

20% 
DOPG 

0.75 23.3 23.4 0.75 0.79± 0.03 0.47 

50% 
DOPG 

1.12 34.7 32.7 1.06 1.08± 0.02 6.11 

*Mole percent, the remainder being DOPC. 
†Based on manufacturer reported lipid mass.  
‡Based on phosphorous content obtained from ICP measurements after a cold digest to release phosphorous (see 
ref. [1]).  
§Calculated using the Mixed Lipid Calculator (MLC) using Mie scattering data. Error is the standard deviation 
from scattering data at multiple wavelengths. 
‖% Error for manufacturer reported lipid mass relative to ICP. 
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Table A.6. Sense primer sequences for preparation of iso-1-Cytc variants.  
Variant Primer sequence 
K73A TCAGAGTACTTGACTAACCCAAAAGCCTATATTCCTGGTACCAAGATGGCC 

K72|73A GAGTACTTGACTAACCCAGCCGCATATATTCCTGGTACCAAGAT 
K86A GATGGCCTTTGGTGGGTTGGCGAAGGAAAAAGACAGAAAC 
K87A GGCCTTTGGTGGGTTGAAGGCGGAAAAAGACAGAAACGAC 

K86|87A TCGTTTCTGTCTTTTTCCGCCGCCAACCCACCAAAGGC 


