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Electrokinetic chromatography (EKC) is a prevalent analytical separation technique first 

introduced by Terabe et al. in 1984. EKC is a modification of capillary electrophoresis in which 

analytes are separated via selective interactions between analytes and an ionic pseudostationary 

phase (PSP) dispersed in the background electrolyte (BGE) buffer which fills the capillary. 

Application of an electric field of several hundred volts per cm on the capillary induces 

electroosmotic flow (EOF) of the BGE and mobility of the PSP. Various ionic PSPs are capable 

of fast, selective, and efficient analytical separations. 

Latex nanoparticle (NP) PSPs consisting of amphiphilic block copolymers produced through 

Reversible Addition-Fragmentation chain Transfer (RAFT) controlled polymerization have 

shown promising results as PSPs. These NPs are self-assemblies of the amphiphilic copolymers 

less than 150 nm in diameter, consisting of copolymers with ionic moieties on one end of the 

polymer and hydrophobic moieties on the other. The RAFT synthetic approach allows 

unprecedented control over ionic head group chemistry, hydrophobic core group chemistry, 

degree of polymerization of hydrophilic and hydrophobic polymer blocks, and overall size of the 

NP. Control of NP architecture and chemistry have been predicted to provide access to unique 

PSP selectivities and allow optimization of NP performance.  

Motivated by a desire to gain greater fundamental understanding of the structure-performance 

relationships for these NP PSP materials, the RAFT synthetic approach was refined and utilized 

to study the effects of these parameters on NP PSP performance. Many novel NPs were 

synthesized utilizing 2-acrylamido-2-methylpropane sulfonic acid (AMPS) monomer to form the 

ionic shell and butyl-, ethyl-, and methyl- acrylate to generate the hydrophobic core. 

This dissertation reports the mobility, methylene selectivity, efficiency, linear solvation 

relationship (LSER) parameters, and practical chromatographic performance of a large set of NP 

PSPs and develops the first empirical relationships between NP architecture and 

chromatographic performance of NP PSPs in EKC.  

It is found that under typical EKC conditions ionic block chemistry has little effect on 

performance for 5-10 mer blocks. Solute-PSP interactions appear to be localized on the 

hydrophobic block of the copolymer with the length of alkyl chains on the hydrophobic block 

controlling the cohesively and hydrophobicity of the PSP. Small (<50 nm) NPs provide higher 

efficiency than do large (>100 nm) NP PSPs with small hydrophobic NP PSPs providing the best 

overall performance. 

This work provides the fundamental understanding of the behavior of RAFT polymerized NP 

PSPs essential for their further development and application in electrokinetic chromatography.  
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Chapter 1 Introduction 
 

Once upon a time a man by the name of Mikhail Tswett recorded an experiment in which 

a mixture of chemicals were separated from one another. Using a tube filled with sand he 

washed a mixture of pigments extracted from tree leaves through the sand, separating the 

pigments from one another. The pigments that stuck to the sand most strongly washed 

through slowest, and so the mixture of pigments separated out into bands of color in the 

tube according to the stickiness of the pigments on the sand. Tswett coined the term 

chromatography to describe the process using the Greek words chroma, color, and 

graphein, to write1. We still use the same word to describe a system of separating 

compounds from one another: Chromatography [1]. 

 

Tswett first utilized what would come to be known as normal phase adsorption 

chromatography at the beginning of the twentieth century. By the beginning of the twenty 

first century, the field of chromatography encompassed a vast array of techniques utilized 

to separate innumerable compounds for both analysis and production. Chromatography 

has become one of the great enabling sciences that is utilized in almost all other fields of 

physical science, and many fields of biology and engineering.  

 

1.1 Types of Chromatography  
Chromatography techniques are broadly classified by either the phase in which they 

operate or by the primary type of interaction they utilize to induce a separation. Three 

fundamental types are noted here to introduce the underlying principles and terms: 

 

1.1.1 Gas Chromatography 
In gas chromatography (GC) volatile analytes are carried through the system by an inert 

carrier gas. Hydrogen and helium are the most common and best performing gasses for 

GC. The separation is induced by molecular interactions between the analytes in the 

carrier gas and a thin film deposited on the interior surfaces of the tube or “column” 

through which the carrier gas flows. Because the film is fixed to the column, it is referred 

to as the “stationary phase” of the system. The stickiness, or “retention,” of the stationary 

phase towards a given analyte is determined by the difference in free energy of solvation 

of an analyte in the two phases. An analyte’s solvation energy is the Gibbs free energy of 

solvation (G) of the specific analyte at a specific pressure and temperature in a specific 

phase as shown in Equation 1-1:  

 

 𝐺(𝑝,𝑇) = 𝐻 − 𝑇𝑆 1-1 

 

Intermolecular interactions between an analyte and the stationary phase are considered by 

the enthalpy of the interaction (H). These are dependent on the type and strength of 

intermolecular interactions. The influence of the entropy term (S, the tendency toward 

                                                 
1 He also effectively named the process after himself; his name is the Russian word for color.  
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energy dispersal, influences the ability of the analyte to diffuse into a less ordered 

configuration of particles) is described in conjunction with the temperature (T) of the 

system. When an analyte particle is adsorbed into the stationary phase it will be restricted 

in available energy states and orientations and S will be relatively low; therefore the free 

energy of solvation will be dominated by the enthalpy of the intermolecular interactions 

between the analyte and stationary phase described by the H term. However, when the 

volatile analyte is in the carrier gas, the inert gas will provide no intermolecular 

interactions, and H will equal zero. The molecule has relatively few restrictions on 

movement, providing more states to disperse energy amongst, and the entropy will be 

relatively high. The free energy of solvation in the mobile phase will, therefore, only 

depend on the entropy and temperature. 

 

Employing these principles the chromatographer can configure the GC system to separate 

an analyte of interest from unwanted species: operating at higher temperatures will 

increase the entropic contribution and lead to lower free energy in the carrier gas. 

Selecting a stationary phase chemistry that provides unique enthalpies of interaction for 

the analyte(s) or matrix will cause the analyte(s) to be retained in the stationary phase to 

different degrees. These effects cause analytes to elute at different times based on the 

amount of time each analyte is retained in the stationary phase rather than being moved 

through the column by the carrier gas.  

 

This is the mechanism of Partition Chromatography. During its elution through the 

column, analytes will partition between the stationary phase and carrier gas a vast number 

of times. The time an analyte requires to elute is therefore the time it spends in the carrier 

gas plus the time it spends in the stationary phase, and the greater the free energy of 

solvation in the stationary phase, the greater the time that the analyte will stay in that 

phase. Therefore, greater enthalpy in the intermolecular interactions between the 

stationary phase and the analyte result in greater analyte retention in the column.  

 

Gas chromatography most often employs micrometer thick hydrophobic stationary phase 

coatings on fused silica (SiO2) capillary columns. Columns are thirty meters long or more 

to provide sufficient time for even very slight differences in enthalpy to result in the 

complete separation of small volatile molecules as they elute at different rates. The entire 

system is maintained at a few hundred degrees Celsius to maintain the volatility of the 

analyte(s). High sensitivity detectors such as mass-spectroscopy and flame-ionization-

detectors are employed to detect and characterize analytes as they elute from the capillary 

column.  

 

1.1.2 Liquid Chromatography 
The same chromatography principles based on free energy of solvation apply to liquid 

chromatography (LC), the other ubiquitous chromatographic technique. However, as the 

name implies, LC utilizes a liquid carrier for analytes, called the mobile phase. This 

results in several fundamental differences. First, the enthalpy of interactions between an 

analyte and the mobile phase is no longer zero and can be controlled by changing the 

composition of the mobile phase. Second, the greater viscosity of liquids means diffusion 
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cannot be relied on to transport analytes as great of distances within the mobile phase to 

reach a stationary phase surface as that of gas chromatography. Third, the temperature 

range in which most liquids can be manipulated is very limited compared to GC; LC is 

generally held constant at, or near, room temperature. 

 

Utilizing these differences allows chromatographers to control the intermolecular 

interactions at the heart of chromatography in even more ways. The low operating 

temperature mitigates the potential for thermal degradation of the analyte that can be 

problematic in GC. Liquid mobile phases also allow for analysis of high molecular mass 

and nonvolatile analytes, allowing a broad range of compounds to be analyzed or purified 

by LC that cannot be analyzed by GC because they are nonvolatile or unstable. 

 

The reduced rate of diffusion in the liquid mobile phase necessitates that columns have 

very narrow flow paths to ensure that analytes consistently interact with the stationary 

phase and are not marooned in the middle of a flow channel where they cannot physically 

interact with the stationary phase. This is achieved by packing a tubular column with 

porous or semi-porous particles of 1 µm to 10 µm diameter, much as Tswett packed the 

glass tubes he used with sand, to provide a massive surface area on the particles and 

narrow flow paths between particles.  

 

The surface of sand (and silica oxide, SiO2, its more homogenous modern replacement) is 

naturally functionalized by acidic silanol sites that provide dipole-dipole, hydrogen 

bonding, and ionic interactions for analyte molecules. Often, a thin layer of water adsorbs 

to the silica surface, providing an aqueous stationary phase. In this system analytes are 

separated based on their polarity, and hydrophobic mobile phases like hexane are used to 

contrast the polar stationary phase. This system of polar stationary phase and non-polar 

mobile phase has become known as “Normal” phase chromatography, as it was the 

original system developed.  

 

The inverse system of a polar mobile phase and a non-polar stationary phase was 

therefore named “Reversed” phase chromatography. In reversed phase chromatography 

the silica particles in the column are generally modified with alkyl hydrocarbon chains. 

The resulting hydrophobic coating provides analyte interactions through London 

dispersion forces. This allows reversed phase chromatography to be a more general 

technique as all molecules interact to some level with London dispersion forces, while 

not all molecules are susceptible to polar interactions.  

 

The relative strength of the interactions can be selected in two ways: by alkyl chain 

length and mobile phase polarity. Functionalizing the column packing with alkyl chains 

two carbon links long (C2 chain) provides minimal interaction strength, while C18 

functionalized columns (chains eighteen carbon atoms long) provide the maximum 

potential hydrophobic interactions [2], [3].  

 

The greatest asset of reversed phase chromatography though is the ease with which the 

free energy of solvation can be adjusted through the mobile phase. Water is the most 
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common reversed phase mobile phase; its high polarity contrasts well against the non-

polar stationary phase. By modifying the aqueous mobile phase with less polar, more 

organic, additives the overall polarity of the mobile phase can be precisely selected to 

provide the desired analyte retention. The pH of the mobile phase and the use of additives 

such as ion pairing reagents can also have significant impacts on retention and selectivity. 

 

The improved control of chromatographic selectivity provided by LC and wider range of 

analytes that can be separated by it, are balanced by a few intrinsic limitations. The 

narrow flow paths in packed columns and viscous mobile phases generate large back 

pressures that require high-pressure pumps, sample injection systems, and plumbing to 

operate at the flow rates required for timely analysis of a sample. Analytes with solubility 

extremes towards either organic/hydrophobic or aqueous/polar phases prove problematic: 

some proteins are infamous for permanently adsorbing onto reversed phase columns, 

rendering the column useless.  

 

However, the advantages of LC are more than great enough to justify the effort and 

expense required to overcome the limitations. For example, High Performance Liquid 

Chromatography (HPLC) systems typically employ pumps capable of operating at 9000 

psi (600 atm) to drive water/acetonitrile mobile phases through columns several mm wide 

and several cm long packed with 3-10 µm particles coated with C18 alkyl chains. Almost 

every known detection system has been used with HPLC, but the most common are UV-

Vis, mass-spectroscopy, and refractive index detectors.  

 

1.1.3 Capillary Electrophoresis  
Capillary Electrophoresis (CE) is unique from other systems in two ways: first, CE 

separates charged analytes based on their mobility in an electric field rather than by their 

retention in a stationary phase, and second, capillary electrophoresis utilizes 

electroosmotic flow rather than pressure-driven flow to carry analytes through the 

column. This provides a number of intrinsic advantages, although CE on its own is 

limited to the separation of ionic compounds. 

 

Fundamental principles 
In a typical CE instrument a 20,000-30,000 Volts Direct Current (VDC) potential is 

applied across a 30-90 cm long fused silica capillary as illustrated in Figure 1. The 

resulting 200-1000 V cm-1 electric field along the capillary causes ions in the solution to 

migrate towards one of the potentials based on the charge and size of the ion: Cations (+ 

charged ions) migrate toward the cathode (- potential), and anions (- charged ions) 

migrate towards the anode (+ potential). 
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Figure 1 Capillary Electrophoresis instrumental layout [4]. 

The mobility of an ion (µep) is based on the sum of the electrostatic attraction of the ion 

towards an electrode and the opposing force of drag the ion experiences as it migrates 

through the solution in the capillary. The resulting function contains terms for the overall 

charge of the ion (z), the viscosity of the solution (η), and the Stokes radius of the ion (r) 

as seen in Equation 1-2. 

 

 
𝜇𝑒𝑝 =

𝑧

6𝜋𝜂𝑟
 1-2 

 

The Stokes radius is based in turn on the experimentally determined diffusion coefficient 

of the ion (D), the temperature (T) and Boltzmann constant (kB), along with the viscosity 

of the solution (η) as given in Equation 1-3. 

 

 
𝑟 =

𝑘𝐵𝑇

6𝜋𝜂𝐷
 1-3 

 

From these equations the velocity (𝑣) of an ion in an electric field (E) can be shown to be 

a linear function of the field strength, the charge of the ion, and the diffusion coefficient 

at a given energy (kBT) as seen in Equation 1-4.  

 

 
𝑣𝑒𝑝 = 𝐸𝜇𝑒𝑝 =

𝐸𝑧𝐷

𝑘𝐵𝑇
 1-4 

 

Equation 1-4 shows the fundamental properties that underlay CE chromatography. First, 

CE will only separate ions, and the velocity of ions will increase with their charge (z). 

Any neutral compounds (z=0) will elute together, having no electrophoretic mobility of 

their own and a 𝑣ep of zero. Second, the size of the analytes will determine their 

electrophoretic velocity. The diffusion coefficient increases with decreasing mass, so 
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smaller ionic analytes will migrate with higher velocity than larger ions of the same 

charge. Third, the velocity of migration is directly related to the electric field strength; 

higher field strength results in higher velocities. Higher velocities generally result in 

shorter analysis times. 

 

In addition to the velocity of the ions arising from their own mobility in the electric field, 

the potential induces a bulk flow in the capillary as well. This Electroosmotic Flow 

(EOF) arises from charges on the wall of the capillary. Under non-acidic conditions the 

terminal silanol sites on the surface of the SiO2 fused silica capillary are deprotonated. 

These anionic sites provide a negative zeta potential on the walls of the capillary, 

attracting a diffuse layer of cations in the 10-20 nm of solution incident to the capillary 

wall (See Figure 2B). This diffuse layer of cations has mobility towards the cathode when 

a potential is applied, and they sweep the rest of the bulk solution along with them as 

shown in Figure 2A. 

 

 
Figure 2 Electroosmotic Flow profile. A) Mobility at the capillary wall induces linear flow across the entire capillary 

(adapted from [5]). B) The mobility at the capillary wall arises from a diffuse layer 10-20nm thick of cation rich 

solution (figure adapted from [6]). 

 

Because the bulk solution is being swept along by the solution in the diffuse layer at the 

walls of the capillary, the effects of drag from the wall is restricted to the diffuse layer. 

The rest of the solution migrates with a linear flow profile, meaning that there is no radial 

velocity gradient. The effects of the velocity gradient in the diffuse layer are negligible, 

as it only comprises a few thousandths of the diameter of the capillary.  

 

This flat flow profile of EOF provides a great advantage over pressure driven flow. In a 

pressure driven system friction between the wall and the bulk solution induces a 

parabolic flow profile where the velocity varies from zero at the wall to twice the average 

velocity in the center of the channel (Figure 3). In pressure driven systems the peak 

broadening that results from this non-uniform flow must be accepted as part of the 

process, but in EOF driven systems this source of broadening is eliminated, allowing 

better resolution separations.  
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The velocity of the analytes in the capillary will be the sum of the velocity of the analyte 

(𝑣ep) and the velocity of the EOF (𝑣eof) as shown in Figure 4. For cations injected at the 

anode end of the capillary, this means that they will rapidly elute through the capillary, 

allowing for rapid analysis. However, anions will migrate away from the detector. If the 

EOF is great enough, they may be swept past the detector eventually, but many small, 

highly charged anions have greater mobility than the EOF, and will elute out of the 

capillary at the anode. Simply reversing the potential on the capillary would allow anions 

with high mobility to elute past a detector on the capillary, however, the system would be 

inefficient as long analysis times would be required for even very high mobility anions to 

migrate against the EOF.  

 

 
Figure 4 Mobility in CE is additive. Cations elute at the velocity of the EOF (veof) plus the velocity provided by their 

own mobility (vep). Neutral analytes have no intrinsic mobility and are therefore swept along at the velocity of the EOF. 

Because the mobility of anionic analytes is in the opposite direction from the EOF (vep) they will elute at the difference 

in their velocities (vtot). Reproduced from [6]. 

 

To analyze anions it is therefore necessary to reverse the velocity of the EOF by 

switching the zeta potential of the capillary walls from anionic to cationic. This is often 

achieved by adsorbing a layer of cationic liposome or polymer onto the capillary wall. 

The cationic material binds to the wall through ionic interactions on one side of the 

material, and provides cationic zeta potential on the other side, attracting anions to 

Figure 3 Flow velocity profiles for a) pressure driven 

flow and b) EOF. 

http://upload.wikimedia.org/wikipedia/commons/0/05/Flowprofile.gif
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provide the diffuse layer, and reversing the direction of the EOF to flow towards the 

anode. 

 

Types of analysis 
Recalling the layout of a CE system from Figure 1, a typical CE separation can now be 

understood: the capillary is flushed with a buffer to ensure a uniform zeta potential on the 

capillary walls; a sample of ions is typically injected into the anode end of the capillary; a 

potential is applied, inducing EOF of the buffer and migration of the ions; the ions are 

detected with on-capillary detection by UV-VIS or conductivity detectors, or by post-

column detection with mass spectrometry; and finally, the capillary is flushed with fresh 

buffer to prepare it for the next run.  

 

Analysis of cations is conducted with normal EOF and anions with reversed EOF by 

coating the capillary with cationic material. Atomic and small molecular ions in simple 

low ionic strength matrixes are often analyzed by on-column conductivity detection. 

However, CE really shines as a preliminary separation for analysis of larger molecules by 

mass spectrometry (MS). A number of devices have been employed to interface CE with 

MS. Electrospray Ionization (ESI) is the most widely used MS interface. This is further 

developed in the 5.6.3 Detector Compatibility section on page 5-105. The incredible 

power of CE-ESI-MS as an analytical detection/ characterization technique will be seen 

to motivate much of the work in Chapter 2 - The Development of the PSP. 

 

Limitations 
The obvious limitation of CE is that it is only applicable to ions. Neutral, uncharged, 

analytes are swept through the capillary by the EOF, but CE on its own provides no 

mechanism to separate them from one another.  

 

CE also utilizes injection volumes as small a few nL: this small injection volume is 

typically an advantage because less sample is required, but it does mean that high 

sensitivity detectors must be employed to detect the extremely small amounts of analyte 

that are separated by CE. The zeta potential of the capillary is effected by the pH of the 

buffer as well, so the operational pH may be limited to a particular range to provide the 

desired EOF or analyte ionization. 

 

1.2 Electrokinetic Chromatography 
To recap, Capillary Electrophoresis (CE) provides a number of significant advantages 

over other LC techniques even with the few limitations it has; the separations are 

generally very fast, very little sample is needed, no complicated (and expensive) pumps 

or valves are required, and the system is both very rugged and amenable to 

miniaturization as a field-portable device. In laboratory settings the ability to pair CE 

with many detection systems and extremely fast reconditioning time between runs is 

valuable. Another intrinsic advantage is the linear flow profile provided by the EOF. This 

allows CE to reach levels of separation efficiency far above even the best HPLC systems. 

However, CE is unable to separate neutral analytes. 
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In 1984 Shigeru Terabe and coworkers at Kyoto University, Japan, introduced 

Electrokinetic Chromatography (EKC) as a technique to separate neutral analytes using a 

CE instrument [7]. The technique Terabe demonstrated employs anionic micelles 

(discussed in detail on page 2-20) to provide hydrophobic selectivity for neutral analytes. 

The charged micelles in turn provided electrophoretic mobility to retained analytes. As 

illustrated in Figure 5, the anionic micelles migrate against the EOF with about half the 

velocity of the EOF. This results in the micelles being swept towards the cathode. 

 

This velocity difference is translated to neutral analytes based on the fraction of the time 

they spend in the micelle (partition coefficient) between the buffer and the micelles: 

analytes that do not interact with the micelle are swept out of the capillary at the velocity 

of the EOF, while analytes with high affinity for the hydrophobic micelle cores are 

retained in the micelles, and elute at the slower velocity of the micelle. 

 

 
Figure 5 Electrokinetic Chromatography with anionic PSP. Bulk EOF caries analytes and PSP towards the cathode 

with velocity 𝜇𝐸𝑂𝐹 while the mobility of the PSP provides a velocity 𝜇𝑃𝑆𝑃 towards the anode. The overall elution 

velocity of the PSP is thus 𝜇𝐸𝑂𝐹 − 𝜇𝑃𝑆𝑃. Analytes will elute at velocities between that of the EOF and PSP based on 

their affinity to the PSP.  

 

Because the micelle produces a separation by retaining and slowing analytes, it is 

analogous to the stationary phase in LC. However, unlike LC stationary phases, the 

micelles are not fixed to a stationary surface; while they elute at a reduced velocity, they 

still elute from the capillary. For this reason the phase is called a Pseudo Stationary Phase 

(PSP).  

 

1.2.1 Fundamental principles 
EKC separates analytes by differences in elution velocity. The fastest velocity a neutral 

analyte can have is that of the EOF, while the slowest velocity is that of the PSP. While 

most compounds have some retention in the PSP, a few, such as acetone, methanol, and 

dimethyl sulfoxide, have such weak interactions that they can be considered to migrate at 

the velocity of the EOF and are therefore used to mark the elution time of the EOF. This 

time is referred to as t0.  
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The minimum velocity can be measured directly by observing the elution time of a 

compound that is very highly retained by the PSP such as naphthalene or Sudan III, or by 

iterative numerical methods from a homologous series of analytes (see 4.1.2 

Chromatographic characterization on page 4-56). Both methods give tPSP, the elution time 

of the PSP. These times are denoted on the chromatogram in Figure 6. 

 

 
Figure 6 EKC separation of six phenones reproduced from [8]. t0 is acetone, 1. acetophenone (k=1.1), 2. 

propiophenone (k=2.4), 3. butyrophenone (k=5.4), 4. valerophenone (k=12), 5. hexanophenone (k=30), 6. 

heptanophenone (k=72). 50 mM SDS in 20 mM TRIS buffer at pH 7.0. 

 

The velocity, and thus the retention time (tr), of any neutral analyte is therefore based on 

the fraction of time the analyte spends in the background electrolyte vs the time it spends 

in the PSP. This fraction is measured by the retention factor (k) given in Equation 1-5. 

 

 
𝑘 =

𝑡𝑟 − 𝑡0

𝑡0 (1 −
𝑡𝑟

𝑡𝑃𝑆𝑃
)
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All of the times measured to determine the retention factor in Equation 1-5 include the 

effects of the EOF velocity, and the EOF is highly dependent on the zeta potential of the 

capillary. The zeta potential is known to vary enough to significantly impact results from 

run to run. Unfortunately it is not practical to measure tPSP on every run to normalize for 

these variations in potential. To mitigate this, chromatographers determine the mobilities 

of each component of the system and calculate retention factor from the mobilities.  

 

The mobility of the PSP is independent of the EOF and only depends on the charge and 

size of the PSP (Equation 1-2). It is typically about half the magnitude of the EOF and in 

the opposite direction. Once the mobility of the PSP (µPSP in Equation 1-7) is determined 

from an accurate measurement of t0 and tPSP from the same run, the µPSP can be 
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considered constant in that specific buffer system. The apparent “mobility” of the neutral 

analytes is a function of the µPSP and the retention factor of the analyte in the PSP arising 

from the difference in the free energy of solvation between the buffer and PSP (Equation 

1-1).  

 
𝜇𝐸𝑂𝐹 =

𝐿𝐷 ∙ 𝐿𝑡

𝑉 ∙ 𝑡0 ∙ 60
∙ 104 1-6 

 
𝜇𝑃𝑆𝑃 = (

𝐿𝐷 ∙ 𝐿𝑡

𝑉 ∙ 60
) (

1

𝑡𝑃𝑆𝑃
−

1

𝑡0
) ∙ 104 1-7 

 
𝜇𝑟 =

𝐿𝐷 ∙ 𝐿𝑡

𝑉 ∙ 𝑡𝑟 ∙ 60
∙ 104 1-8 

 

Term Value Units 

𝜇𝑟 Mobility of an analyte  10−4(𝑐𝑚2 𝑉 ∙ 𝑠⁄ ) 

𝐿𝐷 Capillary length to detector cm 

𝐿𝑡 Total capillary length cm 

𝑉  Voltage applied VDC 
Table 1 Mobility units and factors. 

This means that by describing tr and tPSP in terms of their mobilities, the variations in 

EOF can be fully quantified by measurement of only t0. Although variations in t0 from 

fluctuation in zeta potential will appear in the tr used in Equation 1-8 as well, the µr term 

experiences co-dependent variance with the µEOF, effectively accounting for the variation 

in tr. The retention factor can thus be defined in terms of mobility in Equation 1-9. 

  

 𝑘 =
𝜇𝐸𝑂𝐹 − 𝜇𝑟

𝜇𝑟 − (𝜇𝐸𝑂𝐹 + 𝜇𝑃𝑆𝑃)
 1-9 

 

By using the retention factor, selectivity between different analytes can be quantified by 

the ratio between their retention factors. This is the selectivity term (α) given in Equation 

1-10 where k1 is the retention factor of the less-retained analyte, and k2 is that of the more 

strongly retained and later eluting analyte. This convention assures that α will always be 

greater than one. This begs the question “how much selectivity is needed to separate two 

analytes?” To answer this, efficiency and resolution must be introduced.  

 

 
𝛼 =

𝑘2

𝑘1
 1-10 

 

While selectivity quantifies the separation between two compounds, efficiency (N) 

considers how wide of a band the analyte has diffused into at the point of measurement. 

This can be measured in a number of ways in units of time or distance, but what the 

different forms shown in Equation 1-11 all share is that they measure of how far the 

compound has moved as measured by the length of the capillary to the detector (LD) or 

retention time (tr) divided by how wide the concentration band has become. This width 

can be described by the variance (σ2), product of diffusion and time (D tr), or by the width 

of the peak (w).  
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Efficiency is one of the terms that begins to illustrate the power of CE based separations. 

High efficiency means that analytes with even very small differences in selectivity can be 

resolved from one another because the analytes remain in narrow bands that only require 

slight separation to no longer overlap one another. While GC can have an efficiency of N 

≥ 100,000 in a few minute separation, CE and EKC can do the same in a liquid phase in 

the same time or less. This eclipses HPLC that typically can only generate an efficiency 

of 20,000 in a normal ten-minute run.  

 

The separation between two bands of analyte can be quantified by using these 

chromatographic terms in the master resolution equation (1-12). A resolution value of 

zero means the compounds are not separated from one another at all, while a resolution of 

1.5-2 means there is just base line resolution between the peaks (ex. between peaks 5 and 

6 in Figure 6). To achieve an Rs of 1.5 or above, Equation 1-12 shows there must be 

some retention (k≠0), some difference between k1 and k2 (α≠1), and as little broadening 

as can be achieved (N>>0). 

 

 
𝑅𝑠 =

√𝑁

4
∙

𝛼 − 1

𝛼
∙

𝑘

𝑘 − 1
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The master resolution equation must be modified for EKC however. In traditional affinity 

chromatography increasing retention factor always increases retention time. However, in 

EKC, no matter how great the retention factor becomes, the retention time can never 

exceed the tPSP. This means that another term must be added to the master resolution 

equation to relate the maximum retention that can be achieved in EKC to the mobility of 

the PSP as shown in Equation 1-13.  

 

 

𝑅𝑠 =
√𝑁

4
∙

𝛼 − 1

𝛼
∙

𝑘2

𝑘2 − 1
∙

1 −
𝑡0

𝑡𝑃𝑆𝑃

1 + (
𝑡0

𝑡𝑃𝑆𝑃
) 𝑘1
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The consequence of this fourth term can be seen when the product of the third and fourth 

terms are plotted in Figure 7 as a function of k for various ratios of tPSP /t0. In the case of a 

true stationary phase tPSP = ∞ (it never elutes) and Equation 1-13 reduces to Equation 

1-12. The contribution of retention to overall resolution in this case is given by the red 

line in Figure 7. Beyond a retention factor of ~ k = 10 (the analyte spends ten times more 

time in the PSP than the mobile phase) there is limited contribution to resolution from 

increasing k.  
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Figure 7 Contribution of third and fourth terms of Equ 1-13 plotted as a function of retention factor (k). 

 

However, for an EKC system where tPSP ≠ ∞, increasing retention factor beyond an 

optimum value will decrease the resolution of the separation as the highly retained 

analytes begin to clump together against the end of the separation window at tPSP. 

Therefore, for EKC there exists an optimum retention factor that places the analyte in the 

middle of the separation window between t0 and tPSP and maximizes the retention factor 

contribution to the overall resolution of the separation. Figure 7 also illustrates that 

increasing the mobility of the PSP, thus increasing the tPSP/t0 ratio, enables a greater 

contribution to the overall resolution to be achieved. This illustrates an advantage 

provided by PSPs with high mobility relative to the EOF.  

 

In addition, Figure 7 illustrates the advantages that changing mobile phase composition in 

LC and EKC can provide: by adding more organic non-polar solute to the mobile phase 

the retention factor for analytes can be controlled to provide optimum retention for fast 

separations. While the overall contribution of the retention term can be maximized 

through controlling the retention factor, higher mobility PSPs will also provide a wider 

separation window that will provide better resolution at the cost of increased analysis 

time. 

 

The effect of the selectivity term is straightforward: the greater the difference in 

selectivity, the greater the difference in analyte elution velocities, and the further apart 

the resulting peaks will be on a chromatogram. In context of the master resolution 

equation, the main question chromatographers are interested in is how little selectivity 

can still provide a baseline resolution of Rs = 1.5? This is significant because differences 

in retention factors, and thus selectivity, arise from differences in chemical structures of 

the analytes that provide differing levels of free energy of solvation. Thus the less 
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selectivity that is needed to achieve a resolution of 1.5, the less differences there must be 

in the analytes to separate them by chromatography.  

 

Thus we see that the master resolution equation allows us to correlate how the 

chromatographic performance terms inter-relate and impact one another. From this 

framework the design objectives for a PSP can now be described. The ability of the PSP 

to perform chromatography will depend on these four terms (µPSP, k, α, and N) for a 

given set of analytes.  

 

1.3 Pseudostationary phase properties  
To chemically govern the chromatographic terms µPSP, k, α, and N chromatographers 

may use a number of techniques; modifying the mobile phase with an organic solvent to 

govern the retention factor is one of the examples already noted.  

 

An ideal PSP will be compatible with all such techniques and the capability of the PSP 

can be broadly described by its performance in seven categories. 

 

1. Mobility – µPSP is a function of the charge on the PSP. A PSP with highly ionized 

moieties that remain ionized over a wide pH range enables the pH of the mobile 

phase to be changed to facilitate separations. Increasing PSP mobility also 

improves the tPSP/t0 ratio. 

2. Stability – The stability of the PSP in organic modifiers and detectors effects the 

level of control that can be exerted on retention factor and may enable or preclude 

the use or some detectors such as ESI-MS.  

3. Conductivity – The impact of the PSP on the overall conductivity of the solution 

in the capillary is the primary limiting factor of the electric field strength that can 

be employed, and thus, of the overall speed of EKC. Excessive conductivity leads 

to Joule heating that cases loss of efficiency [9]. 

4. Mass Transfer – Mass transfer of analytes between the PSP and mobile phases 

must be rapid and consistent to avoid peak broadening [10]. 

5. Mono-dispersity – The PSP must be uniform in terms of mobility, stability, and 

permeability; the presence of two phases of PSP with inconsistent behavior could 

result in broadening and loss of efficiency [10]. 

6. Detector compatibility – The PSP must be compatible with the desired detectors. 

For UV-Vis the PSP must not contain chromophores or scatter light; for mass 

spectroscopy detectors the PSP should not suppress analyte ionization or interfere 

with detection. 

7. Selectivity – The PSP must be able to solvate the analyte and provide unique 

solvation energy based on analyte structure. 
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1.3.1 Mobility  
The mobility of the PSP arises from acidic or basic moieties on the PSP that are ionized 

under EKC conditions. For anionic PSPs theses are often carboxylic acids or sulfonic 

acids and for cationic PSPs ammonium moieties are most often employed. When 

considering or designing a material for use as PSP, care must be taken that the material 

will remain ionized at the intended operational pH; ideally it will remain ionized over a 

very broad pH range so one PSP material may be employed in a variety of EKC 

conditions. For example, the low pKa of sulfonic acid moieties allows PSPs with such 

chemistry to operate from basic conditions to moderately acidic pH without loss of 

mobility from protonation of the acid.  

 

1.3.2 Stability  
One of the advantages of liquid based chromatography is the control of retention factor it 

affords chromatographers through changing the composition of the mobile phase. This is 

an advantage as it allows one stationary phase material to be used in the separations of 

analytes with vastly different enthalpies of interaction with the stationary phase by simply 

adjusting the composition of the mobile phase to provide comparable enthalpies towards 

the mobile phase as needed from one analyte to the next. The same can be done with 

EKC only if the PSP is stable in the organic modifiers that are employed.  

 

Stability also affects the types of detectors that can be used with EKC. Because the PSP 

elutes through the detector in EKC, unstable PSPs can interfere with the operation of 

some detectors or contaminate the detected spectra. Surface active surfactant based PSPs 

in particular can suppress ionization and may interfere with detection in electrospray 

ionization mass spectroscopy (ESI-MS) detectors. The lack of structural stability for 

these PSPs limits them from being used with MS detectors.  

 

1.3.3 Conductivity  
The conductivity of the buffer solution provides the primary limit on the electrical 

potential that can be applied to the capillary, and thus to the maximum velocities in the 

system. As conductivity in the capillary increases the power dissipated from the capillary 

as heat must also increase based on the power law. Beyond some point the capillary can 

no longer dissipate the heat fast enough to maintain a uniform temperature throughout the 

capillary. When this occurs, a radial temperature gradient is formed with elevated 

temperatures in the core of the capillary, impacting the partition coefficient of the analyte 

towards the PSP, as well as the viscosity of the mobile phase. This causes analytes to 

experience different elution velocities depending on their radial location in the capillary, 

leading to significant band broadening and loss of efficiency [9]. 

 

This effect is called Joule Heating and it effectively limits the maximum electrical field 

strength that can be successfully applied to an EKC separation. The requirement for low 

conductivity therefore favors PSPs with a strong affinity for analytes as they can function 

at low concentrations so they have less impact on the overall conductivity. This also 

means that PSPs that do not introduce excess counter ions or highly conductive 

monomers are also preferred.  
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1.3.4 Mass Transfer 
Mass transfer describes the ability of analytes to partition in and out of a PSP. The PSP 

should allow an analyte to rapidly transition from the mobile phase to the PSP and back 

again relative to the time scale of its axial movement through the capillary. Slow analyte 

partitioning results in loss of efficiency as discussed in greater detail in on page 5-87. The 

ionic moieties should also not inhibit the movement of analytes between the phases.  

 

1.3.5 Mono-dispersity  
Mono-dispersity in PSP performance and analyte interactions (measured by the variance 

in chromatographic terms µPSP, k, α, and N) is required to provide uniform behavior. This 

is most directly achieved by reducing polydispersity in PSP size and ensuring uniform 

chemical composition of the PSP. Large variance coupled with poor permeability can 

result in large magnitudes of band broadening and poor peak shape [10]. 

 

1.3.6 Detector compatibility  
As discussed above in stability, surface active and surfactant based PSPs have serious 

compatibility concerns with ESI-MS detection. Detector compatibility is a broader 

concept than just which detectors can or cannot be used however. For UV-Vis detectors 

the intensity of light passing through the capillary, and therefore the PSP too, must be 

accurately measured. Therefore PSPs should not contain chromophores that interfere with 

the absorption spectra of the analytes. In addition, the PSPs must be small enough to 

avoid Mie scattering of light in the UV region of the spectrum. This effectively limits 

PSP particle diameters to 150 nm or less. 

 

1.3.7 Selectivity  
The final characteristic of a PSP considered here is selectivity. The desired selectivity for 

a PSP is determined by the nature of the analyte, or type of analytes, that the PSP is to be 

used to separate by EKC. The conceptual goal of chromatographic selectivity is to 

provide moderate retention to the analyte of interest and either no retention or very high 

retention to everything else that may be present. This would cause any impurities or 

matrix that impedes identification and quantification of the analyte to elute before or after 

the analyte, allowing measurement of the pure analyte without interference.  

 

More realistically though, chromatographers typically wish to separate and quantify a 

mixture of many analytes simultaneously. To do so by EKC the PSP must provide 

retention to all the analytes of interest, but that retention must vary just enough from 

analyte to analyte to allow them to be separated from one another, as well as from the 

sample matrix. The most broadly applicable type of interaction is van der Waals forces 

present between molecules. These are most noticeable in neutral hydrophobic compounds 

where there are no stronger types of interactions, like hydrogen bonding, available to 

over-shadow them. Van der Waals forces include dipole-dipole interactions, dipole-

induced dipole, and London dispersion forces from instantaneously induced dipoles.  
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So for exactly the same reasons as reversed phase LC, EKC employs hydrophobic PSPs 

to separate analytes in an aqueous mobile phase. The hydrophobic PSP interacts with 

analytes through van der Waals forces while generally avoiding stronger interactions with 

the analytes.  

 

1.4 Advantages and applications of EKC 
Electrokinetic Chromatography shows promise for a large number of the areas HPLC 

chromatography is employed in. Although a great deal of excitement and attention was 

focused on EKC for more than a decade after its 1984 introduction, EKC remains one of 

the lesser known chromatographic tools. The excitement was due to the many 

chromatographic advantages EKC offers, while the limited application EKC has 

experienced is primarily a result of irreproducibility in the technique that has proven 

extremely difficult to overcome.  

 

Still, EKC offers unique capabilities that are advantageous for specific applications and 

for several developing fields of chromatography. The relatively simple CE instrument can 

be highly robust and lends itself well to miniaturization. This is of particular value for 

security applications such as explosives detection or drug analysis in the field. 

Miniaturization can go as far as etching flow paths onto glass slides to provide 

separations on a system a few cm in size as in lab-on-a-chip applications.  

 

The high efficiency of EKC enables separations to typically be conducted much faster 

than in HPLC, and for compounds with less selectivity. This is possible through the 

elimination of many of the mechanisms of band broadening that exist in HPLC. For 

example, a consequence of the linear flow profile provided by EOF is the elimination of 

band broadening from pressure-driven flow. This is an immense advantage as the primary 

source of band broadening that remains in EKC is expected to be analyte diffusion. The 

elimination of any additional “plumbing” between the injection of a sample at one end of 

a capillary and the detection at the other eliminates extra-column band broadening from 

fittings and valves that are required in HPLC.  

 

The relatively high speed of EKC separations makes them particularly useful for near 

real-time monitoring or for high throughput environments where large numbers of 

samples must be analyzed.  

 

Samples are injected by filling the inlet end of the capillary with a mm-to-cm long plug 

of sample solution. EKC capillaries are 25-75 µm in diameter so the volume of sample 

injected is measured in nL. These incredibly small injection volumes can provide a great 

advantage for the analysis of extremely small samples such as individual cells [11] or 

micro-scale synthesis products.  

 

These advantages have led to the use of EKC in the pharmaceutical industry for rapid 

analysis of synthetic products and qualification of final products; security services look to 

CE and EKC for detection and identification of explosives and controlled substances, 

often in mobile, field based labs; environmental analysis of pollutants and natural 
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systems continues to be researched; and recently the newer fields like metabolomics have 

begun to employ EKC and CE as preparatory separations for analysis by MS.  

 

However, the limited separation “window” between t0 and tPSP does limit the peak 

capacity of EKC and the diversity of analytes that can be separated in a single run. Thus, 

the real power of EKC is in the rapid separation of around ten analytes of similar 

structure and chemistry.  

 

1.5 Limitations 
Despite the many advantages of EKC, the technique has seen limited application in 

industry. The primary limitation of EKC is the poor reproducibility of the technique in 

comparison to the existing standard of HPLC. Because the velocity of both the EOF and 

PSP are related to their degree of charge (Equations 1-2 and 1-4) the retention time of an 

analyte is heavily influenced by the buffer conditions; even subtle variations in pH or 

ionic strength of the buffer from run to run result in significant variations in retention 

times for t0, tr, and tPSP. Under optimum conditions a run-to-run retention factor RSD of at 

more than one percent is typical, and five or even ten percent RSD is not uncommon for 

analytes with either very high or low retention factors. 

 

To mitigate this, chromatographers calculate apparent mobilities for analytes rather than 

using retention times to identify species. This accounts for variations in the EOF from 

changing zeta potential on the capillary wall, but it does not account for variations in the 

mobility of the PSP (µPSP) as discussed with Equation 1-9. To minimize this effect the 

PSP must be designed to be relatively insensitive to its chemical environment. Even with 

stable PSP chemistry, EKC should be expected to have some variability in EOF and µPSP 

from run to run.  

 

The variability in elution velocities excludes retention time alone as the method of 

identifying analytes as is typical in HPLC. This variability further recommends the use of 

highly selective detectors (like MS detectors) for use with CE and EKC as the selective 

detector can be relied on to definitively identify the analytes despite the variability in 

apparent mobility. Unfortunately, coupling an instrument valued for its simplicity and 

robustness (CE) with the most complex and expensive detectors on the market (MS) is 

not an optimum solution; the disadvantages of the detector void many of the advantages 

of the instrument.  

 

Finally, CE is a purely analytical instrument. Unlike HPLC that can be scaled up to 

preparatory scale separations of grams or even kg of a sample, CE based techniques are 

intrinsically limited to ng scales of sample due to the minute volume of the capillary 

column.  
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1.6 Conclusions  
Separations are one of the cornerstones of scientific investigation in physical science and 

fields as diverse as engineering and cosmetics. The same fundamental principles of 

retention based on free energy of solvation apply to the various techniques that are 

utilized to separate mixtures of analytes either to purify a particular compound or to allow 

the identification and quantification of the compounds present in the sample. 

 

Among the many techniques, CE is particularly suited to rapid analysis of ions. CE 

provides extremely high separation efficiency because of the linear flow profile generated 

by the EOF. On-column detection with UV-Vis or conductivity detectors further 

maintains the high efficiency of the technique by eliminating extra-column band 

broadening sources. CE can also be paired with MS detectors to provide high sensitivity 

and high selectivity detection. These advantages make CE-MS a valuable tool for some 

of the most challenging separations undertaken today in proteomics and metabolomics, 

although it is not applicable for in-field or miniaturized analyses.  

 

EKC extends the advantages of CE to analysis of neutral analytes while simultaneously 

providing alternate selectivity to charged analytes as well. At the heart of EKC is the 

PSP. The chemistry and behavior of the PSP determine the contrast in free energy of 

solvation between the mobile phase and the PSP which elute at alternate velocities. The 

properties the PSP should possess or provide can be summarized in the seven terms 

discussed above: mobility, stability, conductivity, mass transfer, mono-dispersity, 

detector compatibility, and selectivity.  

 

The need for PSPs that can simultaneously perform well in all seven categories has 

always been the greatest challenge facing EKC. Chapter 2 provides a history of the 

development and refinement of PSPs through the last thirty years of literature leading to 

this work in which the behavior and performance of the most advanced generation of PSP 

yet is reported.  
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Chapter 2 The Development of the PSP 
 

The pseudo stationary phase is the heart of electrokinetic chromatography. From the 

introduction of EKC in 1984 to the present, PSP development has remained the core area 

of research, and the fundamental source of limitations, for EKC. To fully understand the 

motivations and significance of this work, this chapter will review the evolution of PSP 

technology over the last thirty years that culminates in this investigation of the 

fundamental relationships between PSP architecture and performance in the most 

advanced PSPs yet developed.  

 

Many reviews have been published detailing the incremental development of PSPs [8], 

[12]–[17] and MS detectors and applications [18]. In this chapter the developments will 

be set out by each class of PSP to better illustrate the progressive nature of those 

developments and the way each as leveraged the successes of the earlier generations of 

PSPs.  

 

2.1 Micelles 
The original report of EKC by Terabe and coworkers utilized micelles of sodium 

dodecylsulfate (SDS) surfactant as the PSP to conduct what is called micellar 

electrokinetic chromatography (MEKC) [7]. Above the critical micelle concentration 

(CMC) surfactants (such as SDS) aggregate to form micelles in aqueous solutions. This 

aggregation is driven by the favorable change in free energy experienced by the 

hydrophobic tails of the surfactant molecules when segregated from water in the core of a 

micelle, rather than in the bulk aqueous solution, as illustrated in Figure 9. This favorable 

free energy change is opposed by the electrostatic and/or steric repulsion between the 

ionic/polar head groups of the surfactant and their associated water [19].  

 

 
Figure 8. SDS surfactant. 

 

The core of the micelle is a dynamic, hydrocarbon-like, volume of randomly oriented and 

intertwined hydrocarbon groups. However, the viscosity of this hydrophobic core may be 

ten times that of a neat sample of a similar mass hydrocarbon [20]. The “shell” of the 

micelle contains the polar moieties, bound counterions, and associated water. This “shell” 

is also a dynamic environment: the net charge on an ionic micelle is less than the 

aggregation number (number of surfactant molecules in the micelle), indicating that a 

significant fraction of counterions remain associated with the micelle.  

 

Features of this zone have been described by a number of researchers using a number of 

terms: some terms are defined here. The Stern layer is comprised of the counterions 

associated with the micelle and extends from the counterions bound to the ionic groups of 
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the surfactant to the hydrodynamic shear surface defined by the interface between water 

molecules that move with a micelle through the bulk solvent and the water that does not 

migrate with a moving micelle. The Gouy-Chapman layer extends further, containing all 

the counterions needed to maintain electrical neutrality.  

 

 

 
Figure 9. Micelle of surfactants aggregate to self-solvate their hydrophobic moieties in the micelle core with ionic 

“shell” on exterior. Generated from [21]. 

 

For SDS in water the CMC is ~5.5 mM [22] with some variation based on the ionic 

strength of the solution. Above this concentration adding further SDS will cause the 

additional SDS to aggregate into micelles. However, as with any micellar system, there 

will always be a background concentration of free surfactant in solution equal to the 

CMC. In water the aggregation number is typically around 65-95 [23], [24] but is 

strongly impacted by the ionic strength of the solution; more counterions provide 

increased shielding of the ionic head groups of the surfactant, allowing tighter packing of 

the surfactant and higher aggregation numbers.  

 

Terabe used a 50 mM SDS solution for his original MEKC work and this has remained 

the standard to which all other PSPs are compared. The reason for this is that SDS is a 

remarkably good PSP that is readily available in high purity and low at cost, and it is 

difficult to improve upon it. In chapter 1 the seven properties of PSP performance were 

introduced (pg. 1-14): mobility, stability, conductivity, permeability, mono-dispersity, 

detector compatibility, and selectivity.  

 

Describing the performance of SDS in these terms, the sulfate ionic groups provide 

outstanding mobility (–4.05  10–4 cm2 V-1 s-1 [25]) and remain ionized to relatively low 

pH. The stability of micellar PSPs however is poor in both organic modifiers and in ESI-

MS detectors. The presence of organic modifiers in a micellar solution reduces the 
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difference in the free energy of solvation for the hydrophobic moiety of the surfactants by 

increasing the solubility of the free surfactant in solution. This raises the CMC at which 

micelles begin to form as shown in Figure 10.  

 

 
Figure 10. Increase in the CMC of SDS as acetonitrile modifier content increases. Reproduced from [22]. “Shape of 

the symbol corresponds to the method of determination; squares: conductivity measurements; solid circles: mobility of 

naphthalene; transparent circles: mobility of the system peak; solid triangles: intensity of coumarin 153; transparent 

triangles: fraction of rhodamine 123.” 

 

The sensitivity of SDS to organic modifiers marks the first limitation of SDS as a PSP. 

The CMC defines the amount of free surfactant in solution, and that free surfactant 

directly affects the conductivity.  

 

A second limitation of SDS stability is that in ESI, surface active surfactants like SDS 

interfere with droplet nucleation and ion transfer to the analytes, suppressing ionization. 

For this reason micellar PSPs are incompatible with ESI-MS detection unless 

complicated partial-filling or filtering techniques are employed to prevent the PSP from 

eluting into the detector [26]–[29].  

 

The third parameter, conductivity, is among the most significant limitations of micellar 

PSPs. The conductivity of the system is based on the total concentrations of ions, 

including free surfactant. For surfactant based PSPs, like SDS, with moderate to high 

CMC, the contribution to conductivity from the PSP is often much greater than the 

contribution of the BGE. For example, a typical 10 mM borate or tris BGE buffer will 

conduct ~7.5 µA through a 50 µm by 50 cm capillary with applied potential of 20 kV. 

The same buffer with 50 mM SDS will conduct ~35 µA. The mechanism by which 

conductivity limits EKC performance is called Joule Heating, and its effect on efficiency 

in EKC has been extensively researched by Davis et al. in several papers [9], [30].  
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During the run the power conducted through the capillary must be dissipated as heat from 

the capillary. Above ~0.2 W/m the capillary cannot dissipate the heat fast enough to 

maintain a uniform temperature profile across the capillary. With active cooling this can 

be improved to ~1 W/m. However, at some point the resulting radial temperature gradient 

begins to affect the behavior of the interaction between the analytes and the PSP. The 

variation in temperature results in a variation in the partition factor of the analytes 

between the mobile phase and PSP as a function of radial position in the capillary, 

meaning that analytes are less retained by the PSP in the hotter core of the capillary than 

they are near the cooler walls of the capillary. Less retention translates to faster migration 

velocities, causing band broadening as analytes in different domains of the capillary 

migrate at different velocities. The solution in the different temperature domains also 

undergoes convective mixing, further broadening the analyte concentration bands as 

shown in Figure 11.  

 

 
Figure 11. The effect of Joule Heating on efficiency of MEKC. Reproduced from work of Joe Davis [9]. Black dots 

show the peak efficiency (N) for perylene as number of theoretical plates vs. electric field strength (E). The black line 

denotes modeled efficiency without Joule Heating, open squares show modeled efficiency considering Joule Heating. 

 

To avoid the severe impact Joule Heating has on the efficiency of the separation, the 

power dissipated by the capillary must be limited to prevent Joule Heating from 

occurring. This can only be done by either limiting the voltage applied to the capillary 

(and thus limiting the overall speed of separation) or by limiting the conductivity of the 



2-24 

 

 

 

BGE (primarily determined by the PSP). Micellar PSPs like SDS contribute a large 

fraction of overall conductivity through the free surfactant in the BGE, effectively 

limiting MEKC to lower electrical potentials and slower runs. Thus the contribution of 

the PSP to overall conductivity indirectly defines the maximum separation speed in 

MEKC. 

 

Rates of mass transfer of analyte partitioning into and out of micellar PSPs are 

outstanding, with estimates suggesting that analytes partition 10 – 100 times faster than 

necessary to avoid measurable band broadening relative to the intrinsic band broadening 

from analyte diffusion [10]. Where exactly solutes interact with the micelle remains an 

open question. A number of techniques have been employed to determine the site of 

interaction: thermodynamic modeling and X-Ray diffraction, spectroscopic (absorption 

and fluorescence), and NMR [31]–[35]. In reality solutes can rapidly diffuse between the 

aqueous BGE, polar/ionic shell, and anhydrous hydrophobic core. In consequence the 

“site” of interaction is a temporal average of the solute’s location. Unsurprisingly, 

hydrophobic saturated hydrocarbons are generally found in the core while polar solutes 

are more often found in the shell.  

 

Because micellar PSPs have dynamic structures even the most strongly solvated solutes 

will be obliged to partition between the bulk BGE phase and the micellar PSP. The 

average residence time of a surfactant in a micelle is reported to be a millisecond or less 

[20], and the lifetime of individual micelles is thus limited, ensuring solute exchange 

between micelles [36]–[38]. The primary chromatographic limitation in this category is 

that the generally small size of micellar PSPs may be unable to fully solvate very large 

analytes, leading to diminishing applicability towards large solutes.  

 

Micellar PSPs also provide good monodispersity and spherical architecture at 

concentrations from the CMC to at least ten times CMC [20]. The surfactant can 

generally be purchased in a pure form as in the case of SDS, or purified before use, 

further enabling uniformity of the resulting micelles. Polydispersity arises in MEKC at 

high concentrations or from the effects of organic additives or electrolytes. Under these 

conditions variation in the micellar architecture into rods, dumbbells, and the like result 

in variation of the aggregation number, or the total number of surfactants that aggregate 

to compose a micelle. For SDS, micelles become ellipsoidal around 70 mM and change 

to rods if the concentration of salts is above 70 mM as well. For higher SDS 

concentrations the salt threshold is lower [39]. 

 

Micellar PSPs provide ideal detector compatibility with UV-Vis detection, but are 

generally incompatible with MS detectors. Most surfactants utilized for MEKC do not 

contain chromophores and are much smaller than the wavelengths of light used for 

detection, providing low background interference and little to no Mie scattering in UV-

Vis detectors. However, most CE instruments employ on-column detection, which 

eliminates extra-column band broadening and possible sources of contamination at the 

cost of reduced path length: MEKC generally utilizes 50 µm ID capillaries resulting in a 

very short path length. Although bubble cells can be used to increase sensitivity by 
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increasing path length, this comes at the cost of reducing resolution between peaks. This 

results in a limit of detection (LOD) of several ppm to several hundred ppm depending on 

the absorptivity of the analyte.  

 

Micellar surfactants complicate the interfacing of EKC with electrospray ionization (ESI) 

and MS detection due to ionization suppression [40] and interference in the m/z range of 

many analytes. The direct coupling of MEKC with SDS to ESI-MS for the analysis of 

basic analytes has been reported, but strong background ions like [(SDS)n +Na]+ are 

observed along with ionization suppression of 90% or more at typical SDS concentrations 

[41]–[43]. For neutral analytes that require the PSP for MEKC separation, the limit of 

detection can be above 20 µM, eliminating much of the sensitivity advantage of MS 

detection [18]. At higher SDS concentrations of 2.33% w/w (81 mM) no peaks can be 

detected at all for an injection of 20 µg/mL doping agents [44].  

 

 
Figure 12 ESI suppression by SDS. Reproduced from [41]. 

 

Because of this, attempts to employ micellar PSPs with MS detection typically require 

complex techniques such as partial filling [26]–[29], [45], where only part of the capillary 

is filled with PSP to prevent elution of the PSPs alongside the analytes, or reverse-

migrating micelles [46].  

 

Selectivity is the final category of micellar PSP performance to consider. As defined in 

Equation 1-10 on page 1-11, selectivity is measured as the ratio between the retention 

factors of two solutes. The goal of the chromatographer is often to achieve sufficient 

selectivity to separate analytes with similar structure and inter-molecular interactions. In 

MEKC this requires the free energy change of solvation in the PSP to be quite sensitive 

to subtle variations in analyte structure and chemistry. Micelles provide some limited 

control over the relative strengths of solvation interactions by changing the chemical 

environment of the shell, but generally offer little control over the actual types of 

interactions offered by the PSP [47], [48].  
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Increasing the ionic strength of the BGE or using stronger counterions increase the 

shielding on the ionic surfactant groups in the micelle shell. This reduces the electrostatic 

repulsion between surfactants and allows the micelle to become denser and more 

hydrophobic. Additionally, increasing the surfactant concentration creates a greater 

number concentration of micelles that exert electrostatic pressure on fellow micelles, 

further compacting the micelles in the solution.  

 

The increased density impacts the hydrophobicity and cohesively of the micelle as well 

as reducing the strength of ionic and polar interactions with the shell due to the increased 

shielding. However, the concentrations of surfactant and salts needed to produce these 

structural changes is so high relative to normal MEKC operating conditions that the 

impacts of the increased ionic strength on efficiency through Joule Heating and increased 

analysis time would dominate any observed changes in practical chromatographic 

performance or selectivity of the system. 

 

Micelle structure and selectivity has also been demonstrated to be significantly altered by 

fluorination of the alkyl chain of the surfactant. Work with lithium 

perfluorooctanesulphonate (LiPFOS) has shown significantly different selectivity from 

other micellar PSPs [49]–[51] with LiPFOS micelles exhibiting more structured and less 

organic-like behavior than other surfactants [49]. One of the unique selectivities of the 

fluorinated LiPFOS PSP is that the highly electronegative fluorine atoms results in 

unusually strong interactions with polar and polarizable solutes compared to all other 

PSPs. The PSP has even been shown to provide stronger polar interactions than water in 

one of the studies [49]. This behavior suggests that even though the core of the micelle is 

very difficult to modify, it also has a significant impact on the selectivity of the micellar 

PSP. 

 

2.2 Molecular micelles  
The limited stability of surfactant-based PSPs in MEKC has driven the development of a 

number of alternate PSPs. One of the first steps in mitigating these limitations was to 

polymerize of the core of a micelle to obtain a PSP with a CMC of zero. By using 

surfactants with vinyl groups on the end of their hydrophobic chain, the surfactants could 

be covalently bound to one another, eliminating free surfactant in solution. This was first 

reported by Palmer and McNair in 1992 utilizing sodium-10-undecylenate (SUA) 

surfactants [52], [53].  

 

The work employed a significant body of research on the polymerization of SUA [54]–

[61] that enable the facile aggregation of SUA surfactants in aqueous media followed by 

thermal initiation by potassium persulfate to polymerize the ten or so surfactants in each 

micelle into a single micelle-like oligomer as depicted in Figure 13.  
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Figure 13 Synthesis of sodium undecylenate (SUA) molecular micelles. Reproduced from [53]. SUA aggregates in 

aqueous media and is polymerization is induced by potassium sulfate. 

 

The resulting molecular micelles (or micellar polymers as they were initially known) 

were shown to solve the stability difficulties intrinsic to traditional micelles. Separations 

of polyaromatic hydrocarbons (PAH) in acetonitrile concentrations as high as 40% have 

been demonstrated [53], and their performance for PAH separations has been 

demonstrated to be superior to several other PSPs in organically modified solutions [62].  

 

Unfortunately, the carboxylic acid head groups of the SUA proved susceptible to loss of 

ionization and lacked the mobility over wide pH ranges afforded by SDS. This was 

addressed by the second generation of molecular micelles developed by Palmer and 

Terabe in 1996 [63], [64]. This set employed sodium undecenyl sulfate (SUS) surfactants 

in the same synthetic processes to yield oligomers with sulfate head groups analogous to 

SDS.  

 

The SUS PSPs were found to provide analogous methylene selectivity and improved 

mobility, even over SDS micelles. The SUS molecular micelles particularly shone in 

terms of their stability in systems with high organic modifier content. The SUS PSPs 

were also demonstrated to provide alternate selectivity from SDS as illustrated by the 

elution order of substituted benzene and naphthalene compounds shown in Figure 14. 
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Figure 14 Separation of subsisted benzene and naphthalene compounds by SUS and SDS. Reproduced from [64].”(A) 

0.83% SUS polymer; (B) 30 mM SDS. Capillary was 50 cm effective length and 57 cm total length, 16.1 kV applied 

potential. A phosphate/borate buffer at pH 7.3 was employed. Key: (1) nitrobenzene; (2) anisole; (3) p-nitroaniline; (4) 

o-xylene; (5) m-xylene; (6) naphthylamine; (7) naphthalene methanol; (8) acenaphthenol; (9) naphthalene; (10) 

naphthaleneethanol; (11) diphenyl ether.” 

 

While these initial reports of molecular micelles demonstrated their ability to solve the 

stability problems that had limited MEKC, the possibility to controlling selectivity as 

well by modification of the head groups rapidly became the primary area of investigation, 

although it was confirmed that different initiators incorporated into the core of the 

molecular micelle did not significantly alter the selectivity of the PSP [65]. 

 

The potential to control the selectivity of both molecular micelles and true micellar PSP 

systems is partially demonstrated through the use of mixed micelles of SUS and sodium 

10-undecenyl leucinate (SUL). The addition of even 20% SUL to SUS micelles resulted 

in a dramatic shift in physicochemical properties of the PSP towards those of SUL 

micelles. Further addition of SUL up to 100% SUL micelles resulted in further gradual 

change amounting to less than half the change induced by the first 20% SUL [66].  
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Figure 15 Changes in physicochemical properties from various compositions of SUL and SUS surfactant. Reproduced 

from [66]. The presence of even small fractions of SLA surfactant has large impact on the MEKC properties. Further 

addition has limited impact. 

 

Variation of the alkyl chain length from eight to eleven carbons on SUS analogs has been 

seen to result in lower PSP polarity as well as providing a larger migration range, most 

likely due to effects on the shell of the molecular micelle [67]. Longer monomer chain 

length resulted in measureable, but not dramatic, variations in the relative strengths of 

interactions as measured by LSER. Longer chain PSPs were less cohesive, less polar, and 

better able to interact with nonbonding and π electrons. However, the correlation between 

the selectivity of the PSPs was better than 0.95 as measured by thirty-six solutes. Coupled 

with the LSER results this can be taken to indicate that while alkyl chain length can 

change the behavior of PSP, it is incapable of inducing a major shift in selectivity [67], 

[68]. Further studies comparing the performance of micellar PSPs formed of monomer to 

their polymerized analogs shows that the overall selectivity is often more dependent on 

the solute than whether or not the surfactants had been polymerized, although for most 

solutes the polymer form provided greater resolution [69].  

 

2.2.1 Functionalization of shell 
The only point on the molecular micelles available for functionalization is the ionic head 

group as exploited above. By switching out the head group to various alternate 

chemistries researchers have demonstrated the ability to alter the behavior of molecular 

micelle PSPs. Relatively simple modifications such as adding an amide moiety (Figure 

16C) were shown to provide significantly higher mobility. Even employing a phosphate 

(Figure 16D) group still allowed the PSP to operate as low as pH 2.5 [70]. However, 

these modifications did not significantly alter the selectivity of the PSP from that of SUS. 
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Figure 16 Selection of surfactant chemistries developed for use as molecular micelles. Adapted from [13]. (A) SUA; (B) 

SUS; (C) SUT; (D) SUP; (E) Amino Acid modified; (F) dipeptide modified. 

 

In contrast, adding an amino acid group as the head group of the molecular micelle has 

been shown to not only alter the selectivity of the PSP, but to even provide chiral 

selectivity. A great deal of this work has been conducted by Prof. Shahab Shamsi, now of 

Georgia State University, and Prof. Issah Warner of Louisiana State University over 

several decades in papers utilizing molecular micelles functionalized by a wide range of 

amino acids (Figure 16E,F). 

 

The use of poly(sodium undecenoly-L-valine) (poly-L-SUV) and a cationic amide 

version was patented in Japan in 1992 [71], [72] but results utilizing them were first 

published in 1994 by the Warner group [73]. The D-valine analog (poly-D-SUV) was 

shown to reverse the elution order of (±)-1,1-di-2-napthal conformations, illustrating 

chiral selection by the chiral center of the amino acid. However, the addition of β- and γ-

cyclodextrin (cyclodextrins are discussed in more detail in a on page 2-37) as a chiral 

selective additive provide greatly improved separations depending on the analyte [74], 

[75], and higher pH also improved the performance due to the PSP taking on a more open 

conformation at pH 10 [56]. 

 

In subsequent work the chiral recognition of the dipeptide version (poly-L-SUVV) was 

reported to be stronger, as shown in Figure 17, at the cost of some loss of 

chromatographic performance through lower mobility [76]. A large number of other 

dipeptide functionalized PSPs have been reported that confirm the behavior [77]–[83]. It 

is also shown that when different amino acids are used, their order in the dipeptide has a 

significant impact on the chiral selectivity as the selectivity is governed by the 

hydrophobic interactions and steric constraints of the PSP and analyte [78], [79], [84], 

[85]. Investigation of oligomer aggregation and temperature dependence of the 

aggregation shows that this class of PSP seems to be limited to 12000 g/mol or less [86].  
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Figure 17 Chiral recognition by poly-L-SUV and poly-L-SUVV PSPs. The dipeptide form provides improved chiral 

resolution. Adapted from [76]. 

 

2.2.2 Detection  
In addition to the improvements to PSP stability, and the new chiral selectivities 

molecular micelles enable, they also provide improvements to detector compatibility. 

Early work utilizing SUS successfully detected tricyclic antidepressants and β-blockers 

with low concentrations of SUS (0.1%), but saw the signal severely diminished by even 

0.5% SUS [87]. The amino acid functionalized molecular micelle PSPs appear to perform 

much better. A large number of papers report the successful separations of chiral analytes 

utilizing a number of amino acid functionalized molecular micelle PSPs detected by ESI-

MS [88]–[93]. There have also been reports demonstrating the functionality of APPI-MS 

with similar PSPs [94], [95].  

 

2.3 Micro emulsions  
While molecular micelles were developed to address the high conductivity of MEKC, 

other approaches focused on improving the selectivity. Microemulsion electrokinetic 

chromatography (MEEKC) was first reported in 1991 by Hitoshi Watarai of Akita 

University, Japan [96]. In MEEKC a stable microemulsion (ME) of immiscible solvents 

is dispersed and stabilized by a surfactant and co-surfactant to form a microemulsion 

whose droplets may then act as a PSP. 

 

While less popular than MEKC, MEEKC has seen extensive research and method 

development, and many reviews are available on MEEKC methods and applications over 

the intervening decades [97]–[101]. Most microemulsions used for MEEKC are oil-in-

water microemulsions. Producing such microemulsions relies on balancing the 

concentrations of the BGE, the immiscible solvent, and the surfactant and co-surfactant to 

provide the desired selectivity and stability. Additional organic modifiers may also be 

added to the BGE to further fine-tune the selectivity. 
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Figure 18 Schematic representation of an oil-in-water microemulsion. The nanometer scale immiscible n-octane 

droplets are stabilized in an aqueous BGE by SDS and 1-butanol. The SDS provides mobility to the droplets. 

Reproduced from [98]. 

 

Typical MEEKC utilizes a composition of about 0.70-0.90% w/v n-octane, 5-7% w/v 

butanol, and 100 mM SDS in a 10 mM borate or phosphate BGE. While the complicated 

nature of the phase behavior [102] is beyond the scope of this review, it has several 

impacts on MEEKC. The microemulsion droplets are less ridged than micelles [103]–

[105] and can better solubilize many analytes, providing a higher rate of mass transfer 

and more efficient separation. This likely contributes to the prevalence of MEEKC in 

pharmaceutical analysis and other bio- or bio-focused work [106] where high molecular 

mass or low solubility analytes are common. 

 

Unfortunately, the combination of many charged species and a high surfactant 

concentration lead to high conductivity in MEEKC, limiting it to low electric field 

strengthens to avoid loss of performance from Joule Heating. This further recommends 

MEEKC more for applications like the analysis of pharmaceuticals where its ability to 

precisely control selectivity is more valuable than minimizing analysis time [107].  

 

The conductivity can be improved somewhat by preparing the microemulsion with a 

solvent like ethyl acetate that has a lower surface tension than oils like heptane or octane. 

The lower surface tension means that less surfactant is needed to stabilize the droplets, 

leading to lower conductivity and faster analysis for compatible analytes [108].  
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One of the primary tools MEEKC employs to control selectivity is the selection and 

concentration of the surfactant. While SDS is the most common surfactant for MEEKC, 

several others are used. Anionic bile salt surfactants like sodium cholate are shown to 

provide alternate selectivity [109], and many others (sulfosuccinic acid bis (2-

ethylhexylester) sodium salt, dodecylsulfonate sodium salt, decylsulfonate sodium salt, 

sodium taurocholate, sodium cholate (SC) hydrate, and sodium deoxycholate) have been 

employed as well [110].  

 

Cationic surfactants like cetyltrimethylammonium bromide (CTAB) have also been used 

[111], especially with cationic analytes, to avoid ionic interactions with the PSP [112]. 

Neutral surfactants like Triton X-100 have also been shown to provide alternate 

selectivity and solubility for analyzing charged analytes while avoiding any 

complications from charges on the PSP [113]. 

 

While surfactant concentrations under 2% w/v for SDS result in unstable microemulsions 

that degrade within hours [114], surfactant concentrations of even 3% w/v SDS are 

reported to be stable for months [101].  

 

The pH of the BGE also has a significant effect on the performance of MEEKC as it 

affects both the ionization of the analytes and the strength of the EOF generated by the 

capillary. BGE at both pH extremes have been used. BGE as acidic as pH 1.2 has been 

used to fully neutralize acidic analytes and suppress EOF [96], [115] while pH 12 BGEs 

have been used to eliminate ionization of basic compounds [115]. 

 

Octane [116], [117] and heptane [118], [119] are generally used as the immiscible oil, 

although octane, hexane, and heptane have all been shown to give similar selectivity 

[120]. Less hydrophobic oils can also be used as already mentioned, but one of the most 

interesting modifications of the oil phase is the use of a chiral oil (2R,3R)-di-n-butyl 

tartrate to provide chiral selectivity [121]. 

 

The extreme contrast in analyte solubility between the aqueous BGE and the hydrophobic 

oil microemulsion can be moderated either through the use of less hydrophobic oils or by 

the addition of an organic modifier to the BGE. However, just as for MEKC, the organic 

modifier can only be used in moderate degrees (<<30% v/v) or it degrades the 

microemulsion. 

 

Finally, 1-butanol is often used as the co-surfactant. It has little impact on the mobility of 

the microemulsion [122], but it does impact the droplet size and the EOF, as well as 

performing much the same role as an organic modifier in the BGE would [119], [123]. 

This provides control of droplet size (and thus charge density) as well as the ability of the 

analyte to partition between the BGE and PSP droplets [101].  

 

These numerous components of the MEEKC system provide a large degree of control 

over MEEKC separations, but the large number of variables makes optimization quite 
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challenging. To overcome this, various experimental design strategies have been utilized 

to control the numerous interdependent variables. Many of these are reviewed in [101]. 

Despite the complexity of optimization and the limitations of high conductivity, MEEKC 

is capable of solvating and separating many analytes that are incompatible with MEKC. 

Proteins are a prime example. While they are generally too large to partition into a 

micellar PSP, they can partition into a microemulsion droplet because to its larger volume 

and less cohesive palisade layer of ionic groups. Analytes such as ribonuclease A, 

carbonic anhydrase II, lactoglobulin A and myoglobulin all show better resolution 

separations by MEEKC than by MEKC [124]. 

 

The value of MEEKC’s compatibility with proteins and other compounds of biological 

importance is attenuated by MEEKC’s incompatibility with mass spectra detectors. For 

example the attempt by Schappler et al. to conduct MEEKC-ESI-MS was unable to 

detected any peaks from a 20 µg/mL injection of doping agents (beta-blockers, etc.) due 

to ionization suppression from a minimal concentration of 2.33% SDS [44]. Just as in 

MEKC the surfactants suppress ionization in MS detection, a valuable tool for 

proteomics and metabolomics research.  

 

2.4 Polymers 
Within a few years of the introduction of molecular micelles, high-molecular mass 

copolymer chains were introduced to investigate the effects of polymer composition and 

mass on PSP performance. These polymers are in contrast to the molecular micelles 

discussed above: while the molecular micelles are formed by polymerization within the 

core of a micelle, the polymer PSPs in this section are polymerized in solution from a 

homogenous solution of free monomers. 

 

While molecular micelles addressed the conductivity limitations of MEKC, like the 

micellar PSPs they are derived from, they must be capable of aggregating into a micelle. 

Thus they are intrinsically based on a ridged core, and the selectivity may only be 

controlled through functionalization of the ionic shell of the particle. This does not 

provide the breadth of selectivity options chromatographers could wish for.  

 

By using random copolymers (in the sense of randomly ordered monomer units within 

the copolymer) as a polymeric PSP, researchers were able to create the desired type of 

PSP chemistries by selecting monomers with those chemistries. This control of PSP 

chemistry allowed for the systematic investigation of the effects of copolymer 

composition (ionic vs hydrophobic groups) on PSP performance as well as the effect of 

PSP hydrophobicity (short vs long alkyl chains on the hydrophobic monomers). This 

work has been summarized in several reviews of PSPs [12]–[16]. 
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Figure 19 Polymer PSP configurations. A) BBMA; B) BMAC; C) Elvacite 2669; D) Acrylate polymers, R=C9, C13, 

C18; E) AMPS copolymers. X=N or O. Adapted from [12]–[14]. 

 

Copolymers of butyl acrylate and methacrylic acid (BBMA, Figure 19A) were the first 

acrylate copolymers to be reported by Terabe and Ozaki in 1994 [125], [126] and later 

used with methanol as an organic modifier [127] and even with MS detection [128]. A 

cationic version was also characterized (BMAC, Figure 19B) [127]. 

 

Elvacite 2669 is another early polymer PSP based on a poly-(methyl methacrylate-ethyl 

acrylate-methacrylic acid) (Figure 19C) [129]. It demonstrated stability in up to 70% 

methanol and was used for LSER studies [130], [131].  

 

Fluorinated polymer PSPs have also been reported with similar behavior to the LiPFOS 

micellar PSPs [51]. As observed with the MEKC experiments the fluorocarbon species 

exhibited more cohesive and ridged behavior with more water-like solvation 

environments than their hydrocarbon analogs [51].  

 

Moving closer to the idea of the NP PSPs investigated in this work, the impact of 

copolymer composition on PSP performance was studied in a series of reports of acrylate 

copolymers with differing alkyl chain lengths and molecular mass (Figure 19D) [13], 

[132], [133]. It was found that for a fixed acrylate/alkyl acrylate mole ratio and similar 

molar mass, methylene selectivity increased with increasing alkyl chain length. The 

shorter alkyl chain PSPs (C9) exhibited greater affinity for polar compounds while the 

polymers with longer alkyl chains (C18) had greater overall interaction with nonpolar or 

hydrophobic compounds [132]. This paper indicates that varying alkyl chain length on 

the monomers used for polymeric PSPs provides control of the methylene selectivity of 

the resulting polymer. 

 

Further work with the acrylate copolymers demonstrated that mixtures of C9 and C18 

phases provide intermediate selectivity in a predictable manner [133]. It was also noted 

that analytes with long alkyl chains were not solvated as well by polymer PSPs with short 

alkyl chains than they were by longer chain PSPs. This implies that polymer PSPs 
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comprised of short alkyl chain monomers are unable to create a large hydrophobic 

domain.  

 

The second area of research on polymer PSPs relevant to this work is a body of literature 

on copolymers containing 2-acrylamido-2-methylpropane sulfonic acid (AMPS) with a 

variety of methacrylate and methacrylamide co-monomers [51], [134]–[138]. The effect 

of the mole fraction of AMPS to lauryl methacrylamide between 0.6 and 1 mole fraction 

AMPS showed increasing mobility with mole fraction of AMPS in the copolymer while 

hydrophobicity and peak symmetry decreased. A mole fraction of 0.8 AMPS was 

determined to provide the best compromise for overall PSP performance [136]. This 

suggests that an abundance of ionic groups are needed to provide the desired mobility, 

but the ionic monomer alone is unable to provide the necessary retention. Inclusion of 

even 20% composition of a hydrophobic monomer in the copolymer provides significant 

advantage as a PSP.  

 

AMPS was also copolymerized with octyl (C8), lauryl (C12), and stearyl (C18) 

methacrylate, with lauryl and dihydrocholesteryl acrylate, with stearyl and t-octyl amide, 

and with lauryl methacrylamide [134], [138]. Significant differences in the selectivity of 

the methacrylamide and methacrylate phases were observed, with acrylamide copolymers 

providing more hydrogen bonding and an overall more polar PSP than the acrylate 

copolymer PSPs [134]. However, the length of the alkyl chain on the hydrophobic 

monomers (C8 vs C12 vs C18) did not affect the overall selectivity of the PSP at the long 

chain lengths studied. This implies that there may be a threshold above which increasing 

alkyl chain length will not change methylene selectivity below C8. This is supported by 

this dissertation (Figure 47 on page 5-86).  

 

In addition, the performance of the AMPS/t-octyl amide polymer and that of the AMPS/ 

dihydrocholesteryl acrylate was quite similar despite the tertiary versus semi-planer 

pendant chemistry of the two PSPs. The semi-planer configuration appeared to only 

provide unique selectivity towards planer polyaromatic hydrocarbon (PAH) compounds 

where it performed quite well with an acetonitrile modified BGE [138].  

 

In combination with the body of copolymer PSP work cited above, this identified AMPS 

functionalized copolymers as a highly promising PSP that provided relatively high 

mobility, low conductivity, low cohesiveness, and low polarity. This combination 

provides good EKC performance for a large range of analytes including large molecules 

like peptides [51]. It is also compatible with higher electric field strengths and the organic 

modifiers needed for fast separations of highly retained compounds like the PAHs shown 

in Figure 20 [138]. 
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Figure 20 Separation of PAH compounds by polymer PSP. “1. acenaphthy-lene, 2. acenaphthene, 3. fluorene, 4. 

phenanthrene, 5.anthracene, 6. fluoranthene, 7. pyrene, 8. chrysene, 9.benz[a]anthracene, 10. benzo[a]pyrene, 11. 

benzo[e]pyrene,12. benzo[k]fluoranthene, 13. benz[e]acephenanthrylene,14. benzo[g,h,i]perylene, 15. 

dibenz[a,h]anthracene. The peak immediately after t0is an impurity.” Separated by dihydrocholesteryl acrylate/AMPS 

polymer PSP (0.72% w/v) in 35 mM sodium borate with 29.6% v/v ACN on a 31.2 cm capillary. 30 kV at 38 µA. 

Reproduced from [137]. 

 

2.5 Cyclodextrin 
While chiral selectivity has been demonstrated by molecular micelles functionalized by 

amino acids and by microemulsions with chiral surfactants as reported above, very few 

PSPs are capable of separating different chiral conformations from one another on their 

own. This is a severe limitation for many fields in which EKC would otherwise prove 

advantageous. To address this, cyclodextrins (CD) have long been used to provide, or 

enhance, chiral selectivity in the PSP.  

 

Cyclodextrins are composed of units of D(+)-glucopyranose linked through an α(1,4)-

glycosidic bonding that produces a molecule shaped like a truncated cone. Three varieties 

of CD are used in EKC: α, β, and γ-CD each having six, seven, or eight units respectively 

(Figure 21). The interior of a CD molecule is hydrophobic while the exterior is 

hydrophilic. This provides both solubility in aqueous BGE and hydrophobic interactions 
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for analytes. The hydroxal groups along the rim of the cone may be derivatized if desired 

to control the chiral selectivity of the CD or modify its mobility. 

 

 
Figure 21 Structure and numbering of glucose units and atoms in CD derivatives. α, β, and γ-CD have  six, seven, or 

eight units respectively. Reproduced from [139]. 

 

This ability to substitute any number of functional groups, either randomly or 

specifically, onto the CD by replacing the hydroxide groups on the rim of the CD allows 

the selectivity of the CD to be tuned to provide a practically infinite number of chiral 

selectivities by altering the substitutions [140], [141]. The reader is directed to the recent 

review by Rezanka et al. for a thorough examination of the modification and application 

of CD, as the wealth of information available is outside the scope of this dissertation 

[139]. 

 

Cyclodextrin is able to provide chiral selectivity for two primary reasons: first, that 

cyclodextrins provide a large number of chiral centers (β-CD has 35), and second, that 

interactions between the CD and analyte are based on “induced adaptation, that is, the 

shape of the CD is changed during the interaction [to conform to the analyte]” [139]. The 

consequence of this relatively low energy change in conformation is that CD usually 

exhibits little stability as a CD-analyte complex, resulting in a low binding constant 

relative to other more ridged PSP materials.  
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These weak interactions are ideal for providing the slight variations in selectivity needed 

to separate two different conformations of a chiral compound from one another, but are 

generally insufficient to separate a range of diverse compounds from one another. For 

this reason CD is most often used as an additive to CE or EKC. In this roll it provides 

additional selectivity to the primary electrophoretic or PSP driven separation.  

 

The combined factors of CD sensitivity to BGE conditions (composition, ionic strength, 

pH), large number of CD types and substituents, and potential parallel system 

optimization for CE or EKC performance provides a challenging method development 

task for chromatographers. While experimental design strategies have been reported 

[142]–[144], some of which are quite detailed [145], method development remains a 

challenge for optimizing chromatography with CD. 

 

Cyclodextrins are an important tool for CE and EKC that can be customized to provide 

specific selectivity. However, they lack the robustness and breadth of analyte 

compatibility needed in a general purpose PSP. Their “induced adaptation” to solvate 

analytes enhances their chiral selectivity, but limits both the retention they may provide 

as a PSP and the types of analytes they can solvate. Because the analyte must be capable 

of entering the hydrophobic interior of the conical CD to interact, analytes larger than di- 

or tripeptides are unable to interact with the CD.  

 

2.6 Nanoparticles  
The final class of PSPs to be discussed are nanoparticle (NP) PSPs comprised of polymer 

chains. The use of a polymer NP as a PSP was first reported by Wallingford and Ewing in 

1989 with Eastman AQ-55 polymer particles as an aside in a review of other techniques 

[146]. While this first NP PSP was found to have significant limitations [12], [147], NP 

PSPs have advanced greatly through the years up to the latest generation reported in this 

work (Results 5-70).  

 

2.6.1 Early examples  
More extensive research on NP PSPs began to be reported in the last fifteen years. Early 

work was mostly focused on molecularly imprinted polymer (MIP) NPs with diameters 

ranging from 100 nm to 500 nm [148]–[152]. Precipitation polymerization was used to 

synthesize emulsifier-free NPs from 1,1-tris(hydroxymethyl)-propane trimethacrylate 

which were imprinted with S-propanolol [148] and (+)-ephedrine [151].  

 

The synthetic and EKC conditions have been investigated [149] and generally show that 

these NPs require high levels of organic modifier in their BGE to maintain solubility, and 

even elevated separation temperatures as high as 60°C. Separations showed enantiomeric 

selectivity for several analytes, although highly retained analytes experienced lower 

efficiency and peak tailing.  

 

This same pattern of lower efficiency for highly retained compounds was repeated in 

lauryl methacrylate, styrene, and divinylbenzene NPs synthesized by soap-free emulsion 
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polymerization with sodium persulfate [153], [154]. Although this yielded smaller 

157±34 nm particles that provided better reproducibility, the authors suggest that the 

continuing loss of efficiency for highly retained compounds may be due to polydispersity 

in the NP size or chemistry. They also report a batch to batch reproducibility in retention 

factor of only 11%.  

 

2.6.2 Detection 
One of the first advantages of NP PSPs to be utilized was their compatibility with MS 

detection. The large size of the early MIP NPs resulted in light scattering in UV-VIS 

detectors and necessitated the use of non-spectrophotometric detectors. Nilsson and 

coworkers have repeatedly demonstrated NP PSPs to perform well with ESI-MS 

detection using an orthogonal ESI interface [150], [155], [156]. They have purposed that 

the large mass of the NP PSP provides sufficient momentum for the NPs to pass the 

skimmer cone of the MS without entering the spectrometer. This allows the MS to detect 

the less massive analytes without interference from the PSP. This is achieved without the 

need for complicated partial filling techniques or other systems to prevent the PSP from 

eluting alongside the analytes.  

 

2.6.3 ACROSS work  
Although early NP PSPs demonstrated some significant advantages, significant 

limitations remained. Precipitation polymerization and soap-free emulation 

polymerization are unable to provide control of NP architecture, and ionic groups were 

only provided by the initiator (in the case of sodium persulfate initiated NPs) or through 

modification of the surface of the NPs after synthesis. 

 

While the work with polymer PSPs had demonstrated the potential for control of PSP 

parameters by changing the composition and chemistry of the polymer, neither free-

radical polymerization nor the techniques used for early NP PSPs could combine the two 

classes of PSP.  

 

Combining the strengths of polymer PSPs with NP PSPs was finally made possible by 

the use of Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization 

(described in its own chapter starting on page 3-43). NP PSPs synthesized by RAFT 

polymerization were first developed at the Australian Center for Research on Separations 

Science (ACROSS) at the University of Tasmania by Christopher Palmer and Emily 

Hilder in 2010. 

 

As described in Chapter 3, RAFT provides control of both the chemistry of the NP 

through monomer selection and control of the architecture of the NP through the 

stoichiometry of the reactions. Using acrylic acid monomer for ionic/ hydrophilic 

character and butyl acrylate for hydrophobic character, Profs. Palmer and Hilder reported 

the synthesis and characterization of diblock copolymers that self-assembled into 63nm ± 

26% NP PSP during synthesis [157].  
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This NP PSP consists of an approximate 5 mer ionic block of poly(acrylic acid) providing 

a charged “shell” around a hydrophobic “core” comprised of the poly(butyl acrylate) 

block of the copolymer. The behavior and selectivity of the NP PSP [158] has been 

reported along with demonstration of good ESI-MS performance [157].  

 

However, the effects of NP architecture and chemistry on PSP performance have 

remained unexplored until this dissertation work. Research on RAFT NP synthesis 

conducted in parallel with this work has been reported in Andre Umansky’s master’s 

thesis [159] and some of the data in this dissertation has previously been published [160].  

 

2.7 Conclusion 
In the last 30 years extensive research has been conducted on pseudostationary phases 

(PSP) for electrokinetic chromatography (EKC) and many new PSPs have been 

introduced. These PSPs have expanded the capabilities of EKC and have individually 

addressed many of the limitations of EKC. Table 2 provides a subjective summary of the 

performance offered by each class of PSP in each of the seven categories of PSP 

performance introduced in chapter 1, 1.3 Pseudostationary phase properties, on page 1-

14. 

 

 Micelles 
Molecular 

Micelles 

Micro 

emulations 
Polymers CD NP 

Mobility +++ +++ ++ ++ -/+ +++ 

Stability - +++ - +++ ++ +++ 

Conductivity - ++ -- ++ ++ +++ 

Mass transfer +++ ++ +++ ++ ++ + 

Mono-

dispersity 
+++ +++ ++ +++ +++ ++ 

Detector 

Compatibility 
+ ++ - ++ ++ +++ 

Selectivity - + +++ ++ ++ ++(+) 
Table 2 Summary of relative qualities of each class of PSP. (-) Denotes an incompatibility, (+) functional performance, 

(++) good performance, and (+++) best performance to date. 

 

Micelles remain the most widely employed class of PSP. They are often cheap, pure, and 

easy to work with, but they are incompatible with MS detection and have several other 

limitations. 

 

Some of the limitations of micelles (for example, conductivity and stability) were 

addressed with molecular micelles, but limitations remain with controlling PSP 

selectivity and compatibility with large analytes.  

 

Micro emulations provide compatibility with even the largest and least soluble analytes, 

but suffer from high conductivity and complicated method development.  
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Polymer PSPs provided an ideal platform for the investigation of the effects of polymer 

composition and size on EKC performance, but have not seen application outside 

academia, most likely because there is no commercial source for the highly specific 

polymers required.  

 

Cyclodextrins are a popular and widely employed additive that provides chiral selectivity 

or even size selectivity to CE and EKC. The ability to selectively modify them provides a 

capacity to fine-tuning selectivity. However, their relatively weak retention and 

sensitivity to analyte size prevents them from operating as a robust general-purpose PSP.  

 

The latest generation of RAFT polymerized NP PSPs have been demonstrated to provide 

high mobility, stability in high organic modifier content, no significant contribution to 

conductivity, good mass transfer, limited dispersity, outstanding detector compatibility, 

and unique selectivity. Many of the advantages of polymer PSPs that were predicted to be 

available to NP PSPs are confirmed in this work including modifying selectivity and 

retention by monomer selection and high mobility provided by strongly ionic monomers. 

Additionally, the stability, detector compatibility, and negligible conductivity of 

molecular micelles are also replicated in NP PSPs. 

 

The ESI-MS detector compatibility of molecular micelles and early NP PSPs has also 

been demonstrated with these NP PSPs, while the use of chromophore-free monomers 

and small NP sizes (<150 nm) ensures compatibility with spectrophotometric detectors.  
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Chapter 3 RAFT Synthesis  
 

In traditional free-radical polymerization an initiator introduces a radical into the system 

and the reaction propagates by addition of monomer units to form a polymer chain as 

shown in Figure 22. The free-radical polymerization process is non-selective and 

continues until the monomer is either consumed or termination events consume the 

radicals. Termination events occur when two polymer chains bond to one another, 

consuming both radicals and producing a dead polymer. Because all growing polymer 

chains are active simultaneously, the probability of self-termination is high. The ongoing 

production of dead polymer throughout the reaction also results in high polydispersity in 

the products. 

 

 
Figure 22 Free-radical polymerization mechanism: polymerization of styrene by benzyl peroxide initiator. 

 

To synthesize NPs with rational and repeatable architecture, controlled polymerization is 

necessary to ensure that NP PSPs provide uniform and repeatable EKC performance. 

Polymerization techniques that provide control of polymer size and composition have 

revolutionized polymer chemistry since their introduction in the last several decades. A 

great deal of progress has been made expanding the techniques to work with a wide range 

of monomers and conditions. The most applicable controlled radical polymerization 

method for our work is reversible addition-fragmentation chain transfer (RAFT).  

 

From its discovery in Australia at a Commonwealth Scientific and Industrial Research 

Organization (CSIRO) lab in 1998 [161], RAFT has been recognized as a powerful and 

versatile synthetic technique. The development and application of RAFT has been 

documented in several comprehensive reviews from CSIRO, first in 2006 [162], second 

in 2009 [163], and third in 2012 [164] by the inventing authors. As a general metric of 

the growth of the technique, the papers each contain 255, 552, and 721 citations 

respectively. A far more concise overview of the capabilities of RAFT is provided by H. 

Mori, a prominent author in the field [165].  

 

RAFT polymerization was selected for this work for its compatibility with a wide range 

of monomers, its compatibility with aqueous solvents, its stability in storage and 

handling, its ease of purification and characterization, and its control of polydispersity 

even with diblock polymers. The availability of a sufficient body of work to guide the 

synthesis of our novel diblock polymer based NP PSPs was also a key asset for this work 
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as described below (page 3-52). The quantification of polydispersity is discussed in detail 

in Results on page 5-735-73.  

 

3.1 RAFT 
The widely accepted mechanism for RAFT polymerization operates by mediating free-

radical polymerization in two ways: first, by rapid exchange of polymers between 

dormant and active states, and second, by carful stoichiometric control of the relative 

concentrations of all reactants in the synthesis.  

 

At the heart of RAFT is the chain transfer agent (CTA), a molecule that initiates most of 

the polymers and then mediates their growth. The CTA consists of three domains as 

illustrated in Figure 23: a “Z” group that controls the reactivity of the CTA, a 

thiocarbonyl about which the RAFT process takes place, and an “R” group that can both 

act as a good leaving group and initiate polymerization of the monomer.  

 

 
Figure 23 RAFT mechanism: The chain transfer agent (CTA) and its three domains in red, green, and blue. The 

polymerization is mediated by rapid exchange of leaving groups (R and R’). Adapted from [163]. 

 

A vast array of CTA molecules have been reported with various R and Z groups for 

different monomers and solvents [162]–[164]. Some are even commercially available 

(Figure 24), although they remain relatively expensive. The most common classes of 

CTA are the dithiobenzoate, trithiocarbonyl, and dithiocarbamates, each of which offers 

reaction kinetics and solubility suited to particular classes of monomer. For this work the 

trithiocarbonyl system was chosen for its improved resistance to hydrolysis and high 

transfer constants that provide rapid synthesis in aqueous solvent. The high reaction rate 

for trithiocarbonyl CTAs also allows us to utilize much lower initiator concentrations 

than required for slower CTAs like the dithiobenzoates. This reduces side reaction 

products, improving polymer purity to the point purification is not generally required 

until the final product is reached. 
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Figure 24 Commercially available CTAs (left column) optimized for various monomers (top row). Reproduced from 

[166]. 

 

3.1.1 Polymerization Mechanism  
The RAFT mechanism begins with the combination of a monomer, a CTA, and an 

initiator in a solvent (typically). Monomer concentration is set at least an order of 

magnitude higher than CTA concentration, with initiator concentration only a tenth or 

twentieth that of the CTA. Initiation can be induced by any number of methods such as 

thermal- or photo- degradation of the initiator or gamma irradiation. The newly formed 

radicals interact with the abundant monomer, forming active monomer-initiator adducts 

with a radical that initiates free-radical polymerization.  

 

 
Figure 25 RAFT mechanism: Initiation. The initiator (I) is decomposed into radical ions (I•) that react with monomer 

(M) and propagate to additional monomer to form polymer chains of n units (Pn•). The radical is conserved on the 

polymer chain as denoted by the dot (•). Reproduced from [167]. 

 

In the second stage of the RAFT polymerization mechanism, growing (active) polymer 

𝑃𝑛
∙  interacts with the thiocarbonyl group in a CTA molecule. The CTA undergoes β-

scission shown in Figure 26 by formation of a Pn-S bond with the radical electron 
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contributed from the 𝑃𝑛
∙  polymer and a π electron from the S=C bond. The second π 

electron is left as a radical localized on the trithiocarbonyl group during the brief lifetime 

of the intermediate. With a properly selected R group the weak S-R bond ensures kβ is 

much faster than k-add, resulting in the radical transferring to the R group with the 

formation of a new S=C π bond. 

 

During the pre-equilibrium stage the the R• groups are released from the CTA as radicals 

and the first polymers formed in solution are bound as a dormant polymers on the CTA 

molecules. The resulting combination of CTA and polymer is now called a macro-CTA 

(mCTA) as the R group of the CTA has been replaced by a much larger dormant polymer 

(Pn). As kadd is >> than k-add (when R and Z groups are appropriately selected), this stage 

of the reaction will proceed until all R groups have been ejected from their parent CTA.  

 

The new S-Pn bond is relatively weak, allowing the dormant polymer to still act as a 

leaving group if attacked by a group of equal or greater strength. This allows the mCTA 

to remain capable of continuing polymerization. 

 

 
Figure 26 RAFT mechanism: Pre-equilibrium. Reproduced from [167]. 

 

The introduction of R• radicals provides a new source of initiators for the reinitiation 

stage. This consists of the R• radicals interacting with the monomer to form further 

radical monomer/R group adducts (R-M•) that begin free-radical polymerization. 

However, the much higher molar concentration of R• radicals compared to I• radicals 

ensures that most of the polymer chains will have been initiated by an R• group rather 

than an I• group. 

 

 
Figure 27 RAFT mechanism: Reinitiation. Reproduced from [94]. 

 

The first three stages of RAFT polymerization take place relatively quickly once 

initiation begins. While the kinetics are complex and depend on reaction temperature and 

concentration, as well as the reactivity of the monomer and CTA, within 30 minutes or so 

it is reasonable to expect the main equilibrium stage in Figure 28 to have begun.  

 

In the fourth stage of RAFT polymerization, called Main Equilibrium or Chain 

Propagation, (shown in Figure 28) the active polymers in the solution and the dormant 

polymers bound to a CTA molecule are rapidly exchanged with one another. The rapid 
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exchange ensures that each of the individual polymers has an equal probability of 

propagating by reacting with monomer in solution while free as an active polymer in 

solution. Figure 28 shows this exchange as the transfer of 𝑃𝑚
∙  from the active state where 

it propagates at rate kp, to the dormant state where it is attached to the thiocarbonyl of the 

CTA. This ejects the previously dormant 𝑃𝑛  polymer as an active polymer that begins 

propagating at the same rate kp. 

 

 

 
Figure 28 RAFT mechanism: Main equilibrium. Reproduced from [94]. 

 

However, at any given moment most polymers will be in the dormant state bound to a 

CTA molecule. Recall that each polymer chain was started by a single radical and that the 

only sources of radicals are the initiator (Figure 25) and the R• groups (Figure 27). 

Because the CTA provides the R• groups, there are exactly as many R• groups as CTA 

molecules. Therefore the same number of polymers that are formed by R• groups can be 

captured as dormant polymers by the CTA molecules. This means that the total number 

of active polymers in solution will be equal to the number of I• groups. Stating the same 

thing mathematically: 

 

 # 𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑙𝑦𝑚𝑒𝑟𝑠 = # 𝑅∙ + #𝐼∙ − #𝐶𝑇𝐴 

Where: #𝑅∙ = #𝐶𝑇𝐴 

Therefore: # 𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑙𝑦𝑚𝑒𝑟𝑠 = #𝐼∙ 

3-1 

 

Because the concentration of active polymer will only be equal to the original initiator 

concentration, the active polymer concentration may be controlled by the amount of 

initiator added. By using much less initiator than CTA the concentration of active 

polymer can be kept low. The low concentration of active polymers ensures that there is 

little probability of diffusion controlled self-termination from two active polymers 

reacting with one another in solution (Figure 29). This results in uniform polymers with 

little polydispersity as the large variations in chain length that arise from self-termination 

in free radical polymerization are not found in RAFT polymerization.  

 

 

 
Figure 29 RAFT mechanism: Termination. Reproduced from [94]. 

 

The Main Equilibrium stage continues until either the reaction is stopped by quenching 

the radicals (typically by exposure to O2) or all the monomer is consumed. The resulting 
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mCTA can then be purified and characterized. These mCTA polymers can be used in 

exactly the same way as a CTA to continue the polymerization with another monomer as 

they still contain the reactive thiocarbonyl moiety. The dormant polymer attached to the 

thiocarbonyl now acts as the R leaving group.  

 

As with traditional free radical polymerization, RAFT polymerization is very sensitive to 

oxygen. Oxygen will react with both propagating radicals and intermediate radicals at 

diffusion-controlled rates [168]. These side reactions can be mitigated by taking the usual 

precautions to exclude air by sparging with an inert gas like N2 or He, or by repeated 

freeze-pump-purge cycles.  

 

3.1.2 Macro Chain Transfer Agent 
The exact quantities of products that will be produced by RAFT polymerization is 

dependent on the relative concentrations of reactants involved, but in theory it will follow 

these ratios:  

 

Assuming 100 mol Monomer (M), 10 mol CTA, and 1 mol Initiator (I) are reacted 

under RAFT control to 90% conversion into polymer (P), then the products 

should be: 

   

 9 mol of R-P(9-x)-CTA “living” polymer initiated by R groups 

 1 mol of I-P(9-x)-CTA “living” polymer initiated by I groups 

 1-x mol of unreacted M 

 0.9 mol of R-P(9-x) “dead” polymer 

 0.1 mol of I-P(9-x) “dead” polymer 

 x mol of P(18-2) self-terminated polymer 

 

By keeping initiator concentrations low, the concentration of active polymers will also be 

kept low. This ensures that very few active polymers will react with one another, keeping 

“x” very small. Unreacted monomer can be easily removed by dialysis if needed. 

Unfortunately, “dead” polymer cannot be separated from the “living” mCTA by dialysis 

because the mass and chemistry are quite similar, but there is little need to do so when 

preparing polymers for further polymerization.  

 

These reaction products can be used directly in the synthesis of additional blocks of 

polymer. The “living” mCTA can be expected to make up ~90% of the mass of solids 

collected from the RAFT polymerization of the mCTA depending on the initiator-to-CTA 

ratio. The other ~10% of the mass is dead polymer that will not react, and can be ignored 

as a spectator, until it is removed during subsequent dialysis of the diblock polymers.  

 

The mCTA can then be utilized in further polymerization. The generation of block 

copolymers by sequential RAFT polymerization of different monomers enables the 

synthesis of many of the complex polymer architectures illustrated in Figure 30. 
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Figure 30 Polymer properties controlled or enabled by RAFT polymerization. Reproduced from [165]. Narrow 

molecular weight dispersion (MWD) and block copolymer composition are the primary synthetic interest of this work. 

 

3.1.3 Diblock 
To form NPs with controlled architecture block copolymers are needed. The synthesis of 

the diblock (literally two block polymer) proceeds by the same principles as for the 

mCTA. The resulting polymer is formally described to as an AB-diblock copolymer: AB 

denoting that monomers A and B are confined to discreet blocks in that order, diblock 

stating somewhat redundantly that there are two blocks composed of different monomers, 

and copolymer (also redundantly) conveying that the polymer is comprised of more than 

one monomer polymerized together into a polymer. While each of these terms provides a 

different level of specificity, “diblock” will generally be used in this work to describe the 

polymers that make up the NPs.  

 

During diblock synthesis the presence of the second monomer does result in more 

complex polymers and a few additional side reactions, including the production of 

polymer chains containing only the second monomer (P(M2)x) shown in Figure 31. 
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Figure 31 RAFT mechanism: Synthesis of block copolymer. Reproduced from [167]. 

 

Again, the concentration of P(M2)x from this side reaction should only be equal to the 

concentration of initiator in the synthesis and can therefore be considered insignificant for 

a properly configured set of synthetic conditions2. 

 

3.2 Emulsion Polymerization  
In this work the mCTA is polymerized in water from either acrylic acid or 2-acrylamido-

2-methylpropane sulfonic acid (AMPS), both strongly hydrophilic monomers. Therefore 

these reactions take place in the bulk solution, and the reactants can be assumed to be 

uniformly distributed in solution. However, the polymerization of the diblock in water is 

more complex [169]. As the hydrophobic monomer of the second block adds to the 

mCTA, the hydrophobic nature of the amphiphilic copolymer increases until cohesive 

hydrophobic interactions drive the self-assembly of the copolymers into micelle-like 

particles.  

 

From the point of self-assembly onwards, the RAFT polymerization effectively takes 

place in an emulsion polymerization environment. As depicted in Figure 32, this 

environment consists of three distinct phases: monomer droplets, monomer dissolved in 

the bulk aqueous solvent, and monomer-swollen micelles that will grow into polymer 

particles during the polymerization.  

 

For a typical hydrophobic monomer like styrene, the monomer concentration in the 

droplets is ~9 M, in the solvent it is ~3.5 mM, and in the micelles it is ~2 M [170]. The 

relative concentration of monomer in each of these three environments, and the flux 

between them, is key to understanding the behavior of reaction and NP formation in the 

copolymer synthesis: polymerization will take place at much higher effective monomer 

                                                 
2 Not all RAFT polymerizations in this work should be considered to be synthetically optimized.  
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concentrations (2 M) than for the mCTA, and; the monomer concentration at the location 

of the reaction is independent of the quantity of solvent the reaction takes place in. 

 

 
Figure 32 Emulsion polymerization with amphiphilic emulsifier. Interval I, formation of particle; Interval II, particle 

growth; Interval III, monomer consumed. Reproduced from [171]. 

 

Under mechanical stirring the monomer will be dispersed into relatively few, and 

relatively large, monomer droplets that are in equilibrium with solubilized monomer in 

the bulk solvent. Within the micelles the growing hydrophobic chains of the copolymer 

are saturated with monomer because the hydrophobic monomer is better solvated by its 

polymer form than by water, and thus concentrates about the micelles of growing 

polymers.  

 

The small size and relatively low aggregation number of the copolymer micelles means 

that there will be vastly more surface area on the numerous micelles than on the few 

monomer droplets, ensuring the flux of monomer and solubilized radicals into the 

micelles is statistically favored over flux into the droplets.  

 

The monomer droplets act as a reservoir that replenishes the growing polymer particles 

with monomer by diffusion through the aqueous solvent. This ensures that so long as the 

flux of monomer from the droplets to the bulk solvent equals the rate of polymerization, 

the polymerization will progress as though at 2 M monomer concentration. For 

monomers such as methyl, ethyl, and butyl acrylate (that possess moderately high 
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solubility in water) this means a rapid growth phase is to be expected. However, 

monomers with very low solubility in water (for example, dodecyl acrylate) will 

polymerize at rates limited by the slow flux of monomer from the droplets into the 

solvent.  

 

The use of water as a solvent, and the relatively benign substances and the low 

temperatures and pressures utilized in these syntheses further recommends RAFT as a 

synthetic technique that exemplifies many of the goals of green chemistry [172].  

 

3.3 Guiding Literature  
As described in detail in chapter 4, RAFT polymerization was used to synthesize AB 

diblock copolymers of poly(acrylic acid) or poly(AMPS) A blocks and poly(methyl, 

ethyl, butyl, or hexyl acrylate) B blocks that underwent self-assembly into latex NPs. The 

synthetic conditions were adapted from the RAFT polymerization of similar copolymers 

in the literature.  

 

The use of RAFT polymerization to synthesize NPs from AB diblock copolymers has 

been demonstrated by Ferguson et al. [173]. Ferguson also reports the performance of 

several different CTAs with acrylates and acrylamides used or considered for this work. 

The process of NP formation proposed by Ferguson is shown in Figure 33 with acrylic 

acid based A blocks [poly(acrylic acid)] and butyl acrylate based [poly(BA)] B blocks. 

 

  
Figure 33 Formation of NPs from AB dobolck polymers synthisized by RAFT polymerizaton. Fergison discribes NPs as 

having an ionic "shell" and hydrophobic "core" with archatectural control provided by RAFT. Reproduced from [173]. 

 

The Ferguson paper provided the basis for the selection of 2-{((Butylsulfanyl)-

carbonothioyl)sulfanyl}propanoic acid, shown in Figure 33 and here after called simply 
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“CTA,” as the CTA for all the RAFT polymerizations in this work. The CTA was 

selected for its good performance with acrylate and acrylamide monomers as well the 

presence of a carboxylic acid moiety in the R group to match the chemistry of the ionic 

block, and a butyl alkyl chain on the Z group to mimic the hydrophobicity of the 

monomers used in the core.  

 

The aqueous RAFT polymerization of AMPS-containing diblock polymers was 

demonstrated by McCormick [174] and the synthesis was adapted from Sumerlin [175]. 

The McCormick report details the RAFT polymerization of numerous monomers by a 

number of CTA agents and illustrates that AMPS can be used to provide improved 

ionization of the hydrophilic polymer blocks while still forming copolymers with 

monomers like butyl acrylate.  

 

Further support for the formation of NPs of appropriate architecture for use as NP PSPs 

was provided by the use of RAFT polymerization to synthesize poly(acrylic acid) 

poly(styrene) copolymer based NPs of versus sizes by stoichiometric control of the 

monomer [176]. This work also utilized the same CTA employed here, further illustrating 

the practicality and compatibility of the CTA with various monomers.  
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Chapter 4 Materials and Methods 
 

As we have seen in Chapter 2, latex nanoparticles provide a generational advancement 

over previous pseudostationary phases. This advancement is possible because of RAFT 

polymerization that provides synthetic control of the PSP as discussed in Chapter 3.  

 

Characterization of polymer based NPs is challenging, and remains a developing area of 

research with many different techniques in use [177]–[181]. While the primary purpose 

of this work is to characterize the chromatographic behavior of NP PSPs in EKC, a basic 

understanding of the architecture of the NP is implicit in that characterization. In this 

chapter the instruments, methods, and materials utilized to make those determinations are 

described.  

 

The materials and methods utilized to characterize the electrokinetic chromatographic 

performance are also reported.  

 

4.1 Instrumentation 

4.1.1 Synthetic characterization  

Bruker NMR 
NMR spectra were collected on a 400 MHz Bruker TopSpin instrument using 5 mg 

mCTA in 0.7 mL D2O. The degree of polymerization was determined by comparison of 

the integrated area for the amide methylene (3.35 ppm) and terminal methyl group on the 

CTA (0.85 ppm).  

 

500 MHz Varian NMR 
NMR spectra were also collected on a 500 MHz Varian instrument controlled by Varian 

Mercury software. All NMR data processing was conducted with ACD Labs NMR 

Processor software. 

 

HPLC 
An Agilent 1260 HPLC with a Poroshell 120 C18 column and 90:10 acetonitrile:H2O 

mobile phase running at 1 mL min-1 was used to measure CTA purity. The trithiocarbonyl 

moiety in the CTA was selectively detected by the PDA UV/VIS detector at 320 nm. 

Hydrocarbon species were detected at 210 nm.  

 

GC 
An Agilent 6890N gas chromatograph equipped with standard 30m DB-5 columns and an 

Agilent 5973N mass spectrometer was used to confirm the purity of any analytes with 

suspected contamination.  

 

MALDI 
MALDI analysis of mCTA was performed on a Bruker microFlex LRF instrument 

equipped with a 337 nm nitrogen laser. 2,5-Dihydroxybenzoic acid (DHB) was used as 
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matrix. Solutions of both DHB and mCTA were made at 10 mg/mL in 70:30 0.1% 

TFA/acetonitrile. Volumes of 1 µL mCTA solution and 1 µL DHB were co-applied on a 

Bruker MSP BigAnchor 96 target plate. Bruker Peptide Calibration Mix II consisting of 

Angiotensin II, Angiotensin I, Substance P, Bombesin, ACTH Clip 1-17, ACTH Clip 18-

39, and Somatostatin 28 was used for mass calibration prior to analysis. Mass spectra 

were acquired in reflectron mode with a reflector gain of 50 and accelerating voltage of 

19 kV. Laser power was set to 90% with a frequency of 60 Hz, and 500 shots were taken 

and summed per spectrum. Mass spectra were collected with Bruker FlexControl 

software, processed with Bruker FlexAnalysis software, and calculations were performed 

in Microsoft Excel. 

 

MALDI-TOF is becoming more common for the analysis of synthetic polymers [182]–

[184], and has been used to analyze polymers similar to AMPS such as polystyrene 

sulfonate [185], [186]. While work utilizing MALDI to characterize polymers has 

indicated that matrix effects can skew results for high molecular mass polymers towards 

lower masses, as MALDI-TOF can sometimes suffer from mass discrimination caused by 

either instrumental factors [187] or sample preparation [188], especially with high 

molecular weight and polydisperse polymer samples. However, the mCTA oligomers 

studied here have low dispersity and their molecular weights are low enough that this 

should not be a concern. 

 

Dynamic Light Scattering 
Malvern Zetasizer Nano ZS dynamic light scattering (DLS) provided the diameter of the 

NPs. The default method for latex NP sizing provided by Malvern was used in which the 

refractive index (RI) is set for polystyrene (1.590), absorption is 0.010, and parameters 

for water at 25.0°C are used for the dispersant: a viscosity of 0.8872 and RI 1.330 with 

dispersant viscosity set as the sample viscosity. Measurements were taken of latex NP 

suspensions prepared in 10 mM Tris buffer at pH 7.2 and 25.0°C to replicate EKC 

solvent conditions. 

 

Chemical Ionization Mass Spectrometry 
Mass spectra were collected with an Agilent 6320 Ion Trap MS with the Agilent 

Atmospheric Pressure Chemical Ionization (APCI) interface and custom 28 mm spacer as 

described in [189] to allow use of a capillary nebulizer assembly. Analytes were detected 

in positive ion mode between 50-350 m/z in Ultra Scan mode with an accumulation time 

of 20.00 ms and Smart Target of 200k ions. Skimmer 40.0V, Capillary Exit 102.3V, 

Octopoll 1 DC 12.00V, Octopoll 2 DC 1.70V, Trap Drive 37.3, Octopoll RF 118.3Vpp, 

Lens 1 -5.0V, Lens 2 -60.0V. The instrument was controlled with 6300 Series Ion Trap 

LC/MS software v6.1 (Build 90). 

 

In the APCI source the capillary was maintained at -2000V, End plate Offset -500V, 

Corona +4000nA. The nebulizer settings are: 25.0 psi, Dry Gas 5.0 L/min, Dry Temp. 

250°C, Vaporizer Temp. 350°C.  
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The coupled CE was an Agilent 61600AX CE. Injections were 100 mbar/s. 25kV was 

applied to a 80 cm  50 µm capillary which was conditioned with 1 M NaOH for 10 min 

before use and flushed with BGE between runs.  

 

4.1.2 Chromatographic characterization 

Capillary Electrophoresis  
All EKC separations were carried out on G1600 Agilent 3DCE instruments with on-

column DAD controlled by Agilent Chemstation software.  

 

A typical EKC run utilized the following procedure. Except when reported otherwise all 

EKC and LSER runs should be expected to follow this procedure: 10 mM Tris (ACROS, 

≥99%%) adjusted to pH 7.20±0.05 using hydrochloric acid (EMD, GR ACS) was 

prepared daily using 18 MΩ nano-pure water (Barnstead D8991). Mixed standards were 

prepared at 4 mg/mL in acetone from analytes obtained in the highest purity available 

(≥98%) from Sigma-Aldrich or ACROS Organics. Analysis samples were prepared by 

dilution of the mixed standards in BGE to 100 µg/mL. 0.3% w/w suspensions of PSP 

were prepared by dilution of concentrated suspensions of PSP in the BGE.  

 

Capillaries were prepared by flushing with 1.0 M NaOH for 10 min followed by BGE for 

10 min before initial use, and re-conditioned as needed with the same method. 

Reconditioning was only required after 50+ runs. Capillaries were flushed with BGE for 

1 min between each injection. The analysis samples were hydrodynamically injected at 

35 mbar for 2 s onto 48.5 cm long 50 µm ID / 360 µm OD fused silica capillaries 

(Polymicro Technologies).  

 

Analytes were detected at 210 nm or 245 nm, 8 cm from the outlet end of the capillary. 

Analyte peaks where identified by spectra and migration time. Ambiguous peaks were 

identified by spiking. The electrophoretic mobilities of the PSPs were measured from the 

elution times of acetone, as a marker for the EOF, and a homologous series of phenones; 

acetophenone, propiophenone, butyrophenone, valerophenone, heptanophenone, and 

hexanophenone, using the method of Bushey and Jorgenson [190] for all but the small 

MAAMPS NP.  

 

The poor performance of the small MAAMPS NP precluded determination of the 

retention times of several of the phenones, so mobility was determined from the elution 

time of an injection of NPs in 50 mM borate BGE. When the other NPs were analyzed by 

this method their mobilities where found to be the same values as when measured by the 

retention method, but the measurement was less precise than the Bushey and Jorgenson 

method.  

 

Linear Solvation Energy Relationships 
The Linear Solvation Energy Relationship (LSER) model was used to investigate the 

solvation properties of the PSPs relative to the BGE. This model, which has been used 

previously to characterize and classify the solvation properties of dozens of PSPs [47], 

[48], [191], [192] including latex NPs [158], [160] provides information on the relative 
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strength of five types of chemical interactions between solutes and the PSP. In the current 

study, the retention times of 39 compounds (listed in Appendix A - LSER on page 8-

136), and acetone as an unretained marker were measured in pentaplicate, and their 

retention factors were calculated. The retention factors were used to calculate the LSER 

parameters of each latex NP PSP by previously reported methods [160], [191]. 

 

4.2 Synthetic methods 

4.2.1 Chemicals  
Synthesis utilized: 

 

2-Acrylamido-2-methylpropane sulfonic acid (AMPS) (Aldrich, 99%),  

4,4-Azobis(4-cyanovaleric acid) (V-501, Aldrich, ≥98.0%),  

Hexyl acrylate (Aldrich, 98%), 

Butyl acrylate (Aldrich, 99%),  

Ethyl acrylate (Aldrich, 99%),  

Methyl acrylate (Aldrich, 99%),  

1-butanethiol (Aldrich, 99%),  

Carbon disulfide (Aldrich, 99.9%),  

2-bromopropionic acid (Aldrich, 99%),  

Hexane (EMD, HPLC Grade),  

Acetonitrile (EMD, HPLC) 

Sodium hydroxide (EMD, GR ACS),  

Hydrochloric acid (EMD, GR ACS),  

Spectra/Por Regenerated Cellulose Dialysis Membrane of 500, 1000, and 2000 MWCO.  

 

All water used in syntheses and chromatography was distilled and DI (18 MΩ) by a 

Barnstead D8991 or EMD Millipore SYNS0HF00. 

 

4.2.2 Chain Transfer Agent 
The chain transfer agent (CTA) is at the heart of RAFT polymerization. Its role is to 

mediate the radical polymerization by capturing and holding radical polymers as dormant 

polymers, while exchanging dormant polymers with active (radical) polymers to ensure 

all polymer chains have an equal degree of polymerization and to reduce the probability 

of self-termination. 

 

Several batches of 2-{((butylsulfanyl)-carbonothioyl)sulfanyl}propanoic acid were 

synthesized as the CTA for this work utilizing the Ferguson procedure with minor 

variations [173]. This variation of the synthesis has been previously reported in the 2014 

Electrophoresis article [160]. The method from this paper is included below (LH-67), and 

the specific variations from this synthesis for the other batches of CTA employed in this 

work are summarized in Table 3. 

 

“4.3 mL of 1-butanethiol (40 mmol), 6.5 mL of 25% NaOH (41 mmol), 

and 2.7 mL of carbon disulfide (61 mmol) were combined in 6.0 mL of 
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water and stirred for 30 min. In an ice bath, 3.7 mL of 2-bromopropionic 

acid (41 mmol) were added slowly with 6.0 mL of 25% NaOH (38 mmol). 

The mixture was stirred at room temperature for 18 h. The CTA was 

precipitated from solution with 10.0 mL of 10 M HCl and extracted into 

hexanes. The organic fraction was evaporated to dryness in vacuo. 

Powdery, bright-yellow CTA was recovered at 90.3% yield. Synthesis of 

the CTA is confirmed by proton NMR with chemical shifts that match 

literature values [32]. Powdery, bright yellow CTA was recovered at 

90.3% yield. Synthesis of the CTA is confirmed by proton NMR with 

chemical shifts that match literature values [173].” 

 

This representative synthesis was one of the several batches used in this work. The values 

for the rest are given in Table 3 below.  

  



4-59 

 

 

 

  

C
T

A
 

B
a
tc

h
 

D
a
te

 

S
y
n

th
es

iz
ed

 

B
u

T
h

io
l 

(m
L

) 

C
S

2
 

(m
L

) 

B
rP

ro
p

 

(m
L

) 

R
x
n

 

T
im

e 

(H
r)

 

T
o
ta

l 

so
lv

en
t 

(m
L

) 

P
u

ri
fi

ca
ti

o
n

 
Y

ie
ld

 

JS
H

 

5
A

 
6
/1

4
/2

0
1
2

 
4
.3

 
2
.7

 
3
.7

 
1
8
 

1
2
.5

 

(n
o
 a

ce
to

n
e)

 

P
p

t 
o

il
 w

/ 
H

C
l,

 e
x

t 
w

/ 
h

ex
an

es
. 

E
v
ap

. 
to

 d
ry

n
es

s.
 N

M
R

, 
H

P
L

C
 

8
.6

0
1
g
 

9
0
.3

%
 

JS
H

 

5
B

 
8
/2

/2
0

1
2
 

4
.3

 
2
.7

 
3
.7

 
1
8
 

1
9
.6

 
E

x
t 

w
/ 

h
ex

an
es

. 
E

v
ap

. 
to

 

d
ry

n
es

s.
 

9
.2

4
g
 

9
7
%

 

JS
H

 

5
C

 
6
/5

/2
0
1
3

 
1
3

 
8
.1

 
1
1
.1

 
O

v
er

n
ig

h
t 

4
5
.5

 
P

p
t 

o
il

 w
/ 

H
C

l,
 e

x
t 

w
/ 

h
ex

an
es

. 

E
v
ap

. 
to

 ½
 v

o
l,

 r
ec

ry
, 

fi
lt

er
ed

. 

7
.1

g
 

~
2
5
%

 

JS
H

 

2
8
 

7
/2

7
/2

0
1
1

 
4
.3

 
2
.7

 
3
.7

 
2
1
 

1
2
.5

 
P

p
t 

o
il

 w
/ 

H
C

l,
 e

x
t 

w
/ 

h
ex

an
es

. 

E
v
ap

. 
to

 d
ry

n
es

s.
 N

M
R

, 
G

C
 

7
.9

6
9
g
 

8
3
.6

%
 

H
N

C
 

2
2
 

6
/4

/2
0
1
5

 
4
.3

 
2
.7

 
3
.7

 
O

v
er

n
ig

h
t 

1
2
.5

 
P

p
t 

o
il

 w
/ 

H
C

l,
 e

x
t 

w
/ 

h
ex

an
es

. 

E
v
ap

. 
to

 d
ry

n
es

s.
 N

M
R

 

3
.4

3
8
g
 

3
6
%

 

L
H

 

6
7
 

1
/7

/2
0
1
3

 
4
.3

 
2
.7

 
3
.7

 
O

v
er

n
ig

h
t 

5
6
.1

 
E

x
t.

 w
/ 

h
ex

an
es

, 
ev

ap
. 
T

o
 

d
ry

n
es

s,
 r

ec
y
 w

/ 
h
ex

an
e.

 

5
.3

9
8
g
 

~
5
7
%

 
T

a
b

le
 3

 N
a

n
o

p
a

rt
ic

le
 s

yn
th

et
ic

 c
o
n

d
it

io
n

s:
 C

T
A

 

 



4-60 

 

 

 

4.2.3 Macro Chain Transfer Agent 
The first polymerization stage is the synthesis of the macro CTA (mCTA) by RAFT 

polymerization of a monomer. 2-Acrylamido-2-methylpropane sulfonic acid (AMPS) 

was utilized as the monomer for the mCTA. AMPS was selected because the sulfonic 

acid group in AMPS remains ionized to very low pH, allowing the poly(AMPS) block to 

provide a charged, hydrophilic character to the final NP. The acrylamide moiety is also 

important as it compares well to the reactivity of the acrylate moieties of the hydrophobic 

monomers used in the core. This is necessary so that one CTA can mediate the 

polymerization of both monomers.  

 

The four batches of mCTA employed in later synthesis are reported here. Ten of the NPs 

reported in the following section were synthesized from the same mCTA batch (JSH-26) 

to ensure uniform shell architecture. Polymerization of the mCTA was run to high 

percent conversion as measured by NMR and the reactions were quenched by freezing to 

prevent excess self-termination. The RAFT polymerization mechanism and synthetic 

concerns are discussed in detail in chapter 3.  

 

Polymer length was stoichiometrically controlled by the ratio of CTA to monomer 

employed. The synthesis of JSH-26 is given as a representative synthesis. For this 

synthesis a 1:8 CTA-to-AMPS ratio was used. 24.030 g (115.95 mmol) AMPS, 3.4632 g 

(14.527 mmol) CTA, 213.9 mg (0.7632 mmol) V-501 (initiator), and 100 mL water were 

combined and sparged with nitrogen for an hour. The solution was heated to 70°C for 4.3 

h while stirring and then quenched by freezing. After lyophilization, 28.490 g (105% 

yield) of yellow powder was recovered. The excess mass is attributed to incomplete 

removal of water due to the hydroscopic nature of the AMPS mCTA. NMR spectroscopy 

shows no hydrocarbon impurities. The mCTA was used without further purification.  
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4.2.4 Diblock / Nanoparticles 
Copolymers were synthesized from mCTA and alkyl acrylates using modifications to the 

Sumerlin procedure [175] with stoichiometric control of polymer length providing 

control of particle diameter. Both round bottom flasks with magnetic stir bar stirrers 

(Figure 34B) and a small reaction vessel with overhead stirring (Figure 34A) were used. 

All dialysis was conducted with Spectra/Por 6 2000 molecular weight cut-off dialysis 

membrane with 20:1 ratio of dialysate-to-dialysis solution. The dialysate solution was 

changed at least twice over two or more days of dialysis for most NP synthesis. 

 

 
Figure 34 Synthetic apparatus for diblock synthesis. A) Overhead stirrer system B) Magnetic stirring system in round 

bottom flask. 

 

LH-5 (BAAMPS, Large) was synthesized from 0.1676 g (0.0650 mmol) mCTA, 8.7 mg 

(0.060 mmol) V-501, and 30 mL water. This mixture was titrated to pH 6.89 and sparged 

with nitrogen for 1.5 hours. The mixture was heated to 70°C for 21 hours and 5.28 mL 

(36.9 mmol) butyl acrylate (569:1 monomer-to-mCTA ratio) were added at 1.0 mL/hour. 

The resulting white suspension was dialyzed. An average NP diameter of 139 nm ± 14% 

RSD was found by DLS in 10 mM pH 7.20 Tris buffer. 

 

LH-111(BAAMPS, Small) was synthesized from 0.3374 g (0.1309 mmol) mCTA, 16.8 

mg (0.031 mmol) V-501, and 30 mL water. This mixture was titrated to pH 7.32 and 

sparged with nitrogen for 1.5 hours. The mixture was heated to 70°C for 30 hours and 

5.04 mL (35.3 mmol) butyl acrylate (270:1 monomer-to-mCTA ratio) were added at 1.0 

mL/hour. The resulting yellow/white suspension was dialyzed. An average NP diameter 

of 17 nm ± 23% RSD was found by DLS in 10 mM pH 7.20 Tris buffer. 

 

LH-12 (EAAMPS, Large) was synthesized from 0.3235 g (0.1255 mmol) mCTA, 16.8 

mg (0.031 mmol) V-501, and 30 mL water. This mixture was titrated to pH 6.86 and 

sparged with nitrogen for an hour. The mixture was heated to 70°C for 22 hours and 2.57 
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mL (24.1 mmol) ethyl acrylate (192:1 monomer-to-mCTA ratio) were added at 1.0 

mL/hour to the reaction vessel. The resulting white suspension was dialyzed. An average 

NP diameter of 115 nm ± 9.5% RSD was found by DLS in 10 mM pH 7.20 Tris buffer. 

 

JSH-17A (EAAMPS, Small) was synthesized as reported [160] from 0.8756 g (0.2907 

mmol) mCTA, 14 mg (0.050 mmol) V-501, and 10 mL water. This mixture was titrated 

to pH 6.94 and sparged with nitrogen for an hour. The mixture was heated to 70°C 

overnight and 1.62 mL (15.2 mmol) ethyl acrylate (51:1 monomer-to-mCTA ratio) were 

added at 1.0 mL/hour to the reaction vessel. The resulting yellow solution was dialyzed. 

An average NP diameter of 12 nm ± 23% RSD was found by DLS in 10 mM pH 7.20 

Tris buffer. 

 

LH-103 (MAAMPS, Large) was synthesized from 0.3372 g (0.1308 mmol) mCTA, 16.4 

mg (0.059 mmol) V-501, and 25 mL water. This mixture was titrated to pH 6.69 and 

sparged with nitrogen for 2 hours. The mixture was heated to 70°C for ≥24 hours and 

3.17 mL (35.2 mmol) methyl acrylate (269:1 monomer-to-mCTA ratio) were added at 1.0 

mL/hour. The resulting yellow gel was sonicated into water to form a milky white 

suspension which was dialyzed. An average NP diameter of 123 nm ± 25% RSD was 

found by DLS in 10 mM pH 7.20 Tris buffer. 

 

LH-11 (MAAMPS, Small) was synthesized from 0.3239 g (0.1257 mmol) mCTA, 16.9 

mg (0.060 mmol) V-501, and 25 mL water. This mixture was titrated to pH 6.89 and 

sparged with nitrogen for 0.7 hour. The mixture was heated to 70°C for ≥20 hours and 

1.59 mL (17.7 mmol) methyl acrylate (141:1 monomer-to-mCTA ratio) were added at 1.0 

mL/hour to the reaction vessel. The resulting clear yellow suspension was dialyzed. An 

average NP diameter of 17 nm ± 19 % RSD was found by DLS in 10 mM pH 7.20 Tris 

buffer. 

 

LH-13 (BAAMPS) was synthesized from 0.3214 g (0.1697 mmol) mCTA, 16.5 mg 

(0.0589 mmol) V-501, and 35 mL water. This mixture was titrated to pH 6.80 and 

sparged with nitrogen for 1 hour. The mixture was heated to 70°C overnight and 3.4 mL 

(24 mmol) butyl acrylate (140:1 monomer-to-mCTA ratio) were added at 1.0 mL/hour. 

The resulting cloudy white suspension was dialyzed. An average NP diameter of 50.77 

nm ± 22% RSD was found by DLS in 10 mM pH 7.20 Tris buffer. 

 

LH-14 (EAAMPS) was synthesized from 0.8709 g (0.4597 mmol) mCTA, 45 mg (0.16 

mmol) V-501, and 35 mL water. This mixture was titrated to pH 6.76 and sparged with 

nitrogen for 1 hour. The mixture was heated to 70°C overnight and 3.43 mL (32 mmol) 

ethyl acrylate (68:1 monomer-to-mCTA ratio) were added at 1.0 mL/hour. The resulting 

clear yellow solution was dialyzed overnight. An average NP diameter of 58 nm ± 46 

RSD was found by DLS in 10 mM pH 7.2 Tris buffer. 

 

LH-7 (EAAMPS) was synthesized from 0.1673 g (0.0883 mmol) mCTA, 8.6 mg (0.031 

mmol) V-501, and 30 mL water. This mixture was titrated to pH 6.91 and sparged with 

nitrogen for 0.7 hour. The mixture was heated to 70°C overnight and 4.01 mL (37.7 
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mmol) ethyl acrylate (427:1 monomer-to-mCTA ratio) were added at 1.0 mL/hour. The 

resulting off white solution was dialyzed. An average NP diameter of 116.1 nm ± 31 RSD 

was found by DLS in 10 mM pH 7.2 Tris buffer. 

 

LH-15 (MAAMPS) was synthesized from 0.5526 g (0.2917 mmol) mCTA, 29.5 mg 

(0.1053 mmol) V-501, and 30 mL water. This mixture was titrated to pH 6.55 and 

sparged with nitrogen for 0.45 hour. The mixture was heated to 70°C overnight and 3.61 

mL (40.1 mmol) methyl acrylate (137:1 monomer-to-mCTA ratio) were added at 1.0 

mL/hour. The resulting clear yellow solution was dialyzed two days. An average NP 

diameter of 26.84 nm ± 25 RSD was found by DLS in 10 mM pH 7.2 Tris buffer. 

 

LH-8B (MAAMPS) was synthesized from 0.3240 g (0.1710 mmol) mCTA, 19.8 mg 

(0.0706 mmol) V-501, and 40 mL water. This mixture was titrated to pH 6.88 and 

sparged with nitrogen for 0.7 hour. The mixture was heated to 70°C for 11 hours and 6.4 

mL (71 mmol) methyl acrylate (413:1 monomer-to-mCTA ratio) were added at 1.0 

mL/hour. The resulting solution was dialyzed. An average NP diameter of 87.73 nm ± 28 

RSD was found by DLS in 10 mM pH 7.2 Tris buffer. 

 

JSH-11A (BAAMPS) was synthesized from 0.496 g (0.262 mmol) mCTA, 8.0 mg (0.029 

mmol) V-501, and 5 mL water. This mixture was titrated to pH 6.01 and sparged with 

nitrogen for 1+ hour. The mixture was heated to 70°C for 13 hours and 1.2 mL (8.4 

mmol) butyl acrylate (28:1 monomer-to-mCTA ratio) were added at 1.0 mL/hour. The 

resulting cloudy white suspension was dialyzed. An average NP diameter of 14.2 nm ± 
7.8% RSD was found by DLS in 10 mM pH 7.20 Tris buffer. 

 

HNC-25 (BAAMPS) was synthesized from 0.2982 g (0.1157 mmol) mCTA, 4.5 mg 

(0.016 mmol) V-501, and 30 mL water. This mixture was titrated to pH 6.68 and sparged 

with nitrogen for 0.75 hour. The mixture was heated to 80°C overnight and 4.5 mL (32 

mmol) butyl acrylate (272:1 monomer-to-mCTA ratio) were added at 1.0 mL/hour. The 

resulting cloudy white suspension was dialyzed. An average NP diameter of 89 nm ± 
12% RSD was found by DLS in 10 mM pH 7.20 Tris buffer. 
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4.2.5 Nanoparticle Size Study  
The RAFT polymerization method allows, in principle, the size of the NP to be 

systematically controlled by variation of the ratio of hydrophobic monomer to mCTA. To 

investigate the relationship between the monomer-to-mCTA ratio and NP diameter, sets 

of latex NPs were synthesized in batches of six reactions prepared and run 

simultaneously to ensure matching synthetic conditions. In a typical synthesis, AMPS 

mCTA (JSH-26) and 400 µg/mL solution of V-501 were titrated to pH 6.7±0.2 with 

NaOH before addition of varied amounts of monomer to separate glass vials.  

 

 
Figure 35 Synthetic apparatus for Size vs Mer studies. 

 

The reactant quantities reported in Figure 36 below were calculated to produce a 

theoretical yield of 2 g of NPs at 90% conversion with a 10:1 mCTA-to-initiator ratio. 

Additional water was added as required to bring all reaction vials to an equal volume of 

23±4 mL. Each set of vials was then simultaneously sparged with nitrogen for 30 min. 

The nitrogen flow was removed before heating to 70°C with magnetic stirring for 20±2 

hours. NPs were characterized by DLS as prepared without additional purification. The 

results are discussed in 5.1.2 Hydrophobic Block Length on page 5-78. 
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4.3 Characterization  

4.3.1 Chain Transfer Agent 
The CTA was characterized by 1H and 13C NMR in CDCl3, and the purity of many 

batches was checked by HPLC using the methods described in 4.1.1 Synthetic 

characterization on page 4-54. The NMR peak assignments are given below and match 

literature values [173].  

 
1H NMR:  δ (ppm) 9.6 (br, 1H, CO2H), 4.875 (q, J = 7.28 Hz, 1H, SCH), 3.38 (t, J = 7.28 

Hz, 2H, CH2S), 1.70 (pent, J = 7.63 Hz, 2H, CH2CH2CH2S), 1.64 (d, J = 7.28 Hz, 3H, 

SCHCH3), 1.45 (sext, J = 7.63 Hz, 2H, CH3CH2CH2), 0.94 (t, J = 7.28 Hz, 3H, CH3CH). 

 
13C NMR:  δ (ppm) 221.9 (C=S), 177.7 (C=O), 47.7 (SCH), 37.3 (CH2S), 30.1 

(CH2CH2CH2), 22.3 (CH3CH2), 16.8 (SCHCH3), 13.8 (CH2CH3). 

 

4.3.2 Macro Chain Transfer Agent 
The number average degree of polymerization was measured by MALDI-TOF MS 

(method on page 4-54). Fifty spectra were collected for each mCTA characterized, and 

the degree of polymerization was calculated for each mCTA as described above. 

Calculations were done in house using a custom calculation program written and operated 

by Julie McGettrick in Microsoft Excel which will be available in an upcoming paper. 

 

Degree of polymerization was also measured by 1H NMR. NMR of polymers is 

inherently more imprecise than MS techniques and is heavily dependent on the selected 

integration ranges as anisotropy causes a great deal of broadening in the spectra of the 

motionally-restricted atoms. Both the MALDI-TOF and NMR found larger molecular 

weights than predicted by the reaction stoichiometry, but the NMR showed the largest 

discrepancy. The breadth of the 1H NMR peaks lead to significant uncertainty in defining 

integration ranges. Due to this uncertainty the 1H NMR should be considered semi-

quantitative.  

 

4.3.3 Diblock 
The self-aggregated diblock polymers are very challenging to characterize. Traditional 

methods for determining polymer mass through size exclusion chromatography (SEC) are 

ineffective due to the aggregation of an unknown number of copolymers in each NP. 

Even when the aggregation number was known, there are no standards available with the 

same ionic character, so no quantitative measure could be made of diblock polymer mass 

by SEC.  

 

Attempts to use MALDI to fragment NPs to analyze individual copolymers has so far 

proven futile using the conditions employed for mCTA analysis.  

 

This leaves NMR as the only remaining option for probing the composition of the diblock 

copolymer within the structure of the NP. In this environment the copolymers are even 
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more motionally restricted, resulting in slow relaxation and anisotropic peak broadening. 

By using relaxation times of 5X T1 relatively quantitative integration can be achieved 

[181]. However, the uncertainty in integration intervals remains a large source of error.  

 

By comparing the peak area for CH2 or CH3 groups unique to each block of the polymer, 

general estimates of block length can be made. However, due to the uncertainty of the 

measurement, NMR estimates of relative block length should also be considered semi-

quantitative at best. 

 

 

4.3.4 Nanoparticles  

Dynamic Light Scattering  
As described above (page 4-55) DLS was used to determine the size of the NPs in typical 

buffer conditions. Z-average diameters are reported throughout this dissertation.  

 

Residual mCTA in NPs 
Several NPs were checked for residual mCTA by CE separation of an injection of NPs 

under conditions developed in the thesis work of Adam Sutton at the University of 

Western Sydney [193]. A capillary 48.5 cm long and 50 µm ID was flushed with 1 M 

NaOH for 10 min, water for 5 min, and 50 mM borate BGE for 10 min before 1.0% w/w 

NP solutions with acetone as a t0 marker were hydrodynamicly injected at 35 mbar for 2 s 

and a potential of 20 kVDC was applied. The NPs eluted past the UV/VIS detector 

around 4-5 min into the run and the poly(AMPS) mCTA eluted around 6-7 min if it was 

detected. The details are in notebook JSH2-86 and chromatograms appear on page 5-90. 

 

Mobility  
The electrophoretic dispersity of the NPs was measured from the separation of an 

injection of NPs by CE (Figure 51). The peak width of the NPs provides the 

electrophoretic dispersity and the time of elution provides an approximant measure of the 

mobility using Equation 1-2. The electrophoretic mobility of the NPs was more often 

calculated by the Bushy and Jorgenson method [190]. The results from both methods was 

found to match each other closely. 

 

The electrophoretic dispersity of the NPs corresponds strongly to the polydispersity in 

their size as measured by DLS. This is discussed on more detail below in 5.1.1 Ionic 

Block Length on page 5-73.   
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Chapter 5 Results 
 

The goal of this research was to determine the effect of NP architecture on EKC 

performance. Since the NP architecture was defined by three factors, this research 

investigated the impact of those properties of the NP on performance as a PSP:  

 

1. The ionic/hydrophilic polymer block chemistry  

2. The degree of polymerization of hydrophobic polymer block and resulting 

changes in NP diameter  

3. The hydrophobicity of the NP PSP core  

With these structural features in mind, synthetic methods were optimized to allow 

multiple NP PSPs with systematic variation in architecture to be generated, characterized, 

and evaluated as PSPs. A novel ionic polymer block with strongly acidic sulfonate 

functionality was introduced, and the performance of these NPs in various buffer systems 

and at high and intermediate pH was evaluated. The bulk of the research is focused on six 

NP architectures; all synthesized using the same ionic polymer block as a mCTA but with 

variations in hydrophobic block chemistry and degree of polymerization. These six NPs 

comprise hydrophobic cores consisting of monomers of increasing hydrophobicity 

(methyl-, ethyl-, and butyl-acrylates), each generated with “large” and “small” diameters 

of approximately 126 nm and 15 nm respectively.  

 

The chromatographic performance of the PSPs is described by the parameters of 

electrophoretic mobility, methylene selectivity, number of theoretical plates generated, 

and the peak capacity of the separation [191], [194]. LSER analysis was also conducted 

for each of the materials that exhibited practical performance in these categories in order 

to more fully characterize structure-induced changes in the solvation environment and 

separation selectivity of the PSPs. The utility of the NP PSPs in various background 

electrolytes (BGE), including BGE containing up to 30% acetonitrile, is demonstrated, as 

is a representative practical application to the analysis of nitroaromatic explosives. 

 

5.1 Structural Properties  

5.1.1 Ionic Block  
 

The primary considerations in selecting a desired length and chemistry of the ionic 

polymer block are that it: A) provide charge to give mobility to the NP PSP; B) 

electrostatically shield NPs from one another; and C) that it not degrade the EKC 

performance of the NP PSP.  

 

The charge provided by a polymer in solution is complex and not fully understood. Once 

polymerized, ionic moieties do not necessarily behave the same as they did in the 

monomer form. It seems reasonable to expect the presence of a large number of ionic 

sites within a relatively small volume along a polymer chain to generate a peculiar 

solvent environment where counter ions are able to be rapidly exchanged or even be 
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shared between ionic moieties. In water it is also expected that the solvent will form a 

hydrating shell around the polymer that further distributes the charge into what will be 

measured as a zeta potential distributed over the stern layer (see 2.1 Micelles section on 

page 2-20) of the polymer or polymeric particle.  

 

Electrostatic shielding of NPs is important as soft colloidal materials like polymer NPs 

should be expected to undergo flocculation (defined by IUPAC as "a process of contact 

and adhesion whereby the particles of a dispersion form larger-size clusters." [195]). 

Much like Oswald ripening in liquid/liquid emulsions where Laplace pressure drives 

small particles to infuse into larger ones, flocculation will cause instability in the NP 

suspension. In this case the ionic section of the diblock provides electrostatic repulsion 

that inhibits NP PSPs from impinging on one another, thus suppressing flocculation.  

 

Finally, while electrostatic repulsion between NPs is required to maintain stable NP 

suspensions, it must not shield the hydrophobic core of the NP from analytes or otherwise 

interfere with the partitioning of a solute between the NP and bulk solution. This can be, 

in large part, achieved by conducting the analysis at a pH where the analyte is not 

ionized. However, this is not always possible or even desired.  

 

As has been shown for poly(acrylic acid) functionalized NP PSPs in the literature [158], 

and will be shown in the 5.5 LSER Characterization 

 section on page 5-92 for poly(AMPS) NP PSPs, the ionic block appears to have little to 

no impact on mass transfer (the partitioning of the analyte between the PSP and bulk 

phase) or to provide any major contribution to NP PSP selectivity. 

 

Chemistry 
The ionic block of the copolymer NPs provides the charge needed for the NP to have 

electrophoretic mobility as shown in Equation 1-2. It was also shown in Figure 7 and 

further explored in the section on 1.3.1 Mobility on page 1-15 how higher mobility 

improves the capability of the PSP to provide good resolution. Latex NP PSPs developed 

in the past employed poly(acrylic acid) as the ionic block, but it has also been reported 

that poly(acrylic acid) has an effective pKa of ~7.4 at 25°C [196]. While the polymer has 

a complex system of conformational and ionic changes associated with neutralization of 

the polymer, poly(acrylic acid) based PSPs can be expected to be limited to neutral or 

basic buffers for EKC to avoid loss of ionization [158].  

 

To improve the mobility and operational pH range of NP PSPs the first aim of this 

research was to replace the poly(acrylic acid) block with a poly(AMPS) block. AMPS 

provides a sulfonic acid moiety with low pKa to ensure that the ionic block of the 

copolymer remains ionized even in acidic buffers.  
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Figure 37 Acid form of ionic monomers. Acrylic acid (left) and AMPS (right). 

 

RAFT polymerization of AMPS was conducted as reported above in the 4.2.3 Macro 

Chain Transfer Agent section starting on page 4-60. Several batches of mCTA were 

produced and used to synthesize diblocks over the course of this work. It was found that 

so long as great care was taken to remove oxygen from the reaction flask, the RAFT 

polymerization of AMPS was facile and repeatable. 

 

The poly(AMPS) mCTAs were found to reach high conversion within 2-3 hours (Figure 

38) at practically the same rate as poly(acrylic acid) (Figure 39).  The overall conversion 

rate was investigated by polymerization of AMPS under identical conditions in three 

separate reactions. Aliquots were analyzed for percent conversion by 1H NMR. Despite 

some variation in time needed for the reaction to start up, all runs illustrate that high 

conversion is reached in two hours and little benefit is had by running a reaction for more 

than three hours under these conditions. 

 

 
Figure 38 RAFT polymerization of poly(AMPS) mCTA: % conversion vs reaction time. Reaction started with 1.75M 

monomer at 400:20:1 molar ratio of Monomer:CTA:Initiator. (♦) JSH-42A, (■) JSH-42B, (▲) JSH-42C. 

 

For poly(acrylic acid) a single RAFT polymerization was monitored to confirm a very 

similar overall reaction time. The slightly longer time needed to reach ~90% conversion 

may be due to a slightly lower molar concentration of acrylic acid in JSH-33A than of 

AMPS in the JSH-42A-C reactions despite a higher relative initiator concentration.  
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Figure 39 RAFT polymerization of poly(acrylic acid) mCTA: % conversion vs reaction time. Reaction started with 

1.375M monomer at 82:9.5:1 molar ratio of Monomer:CTA:Initiator. Reaction JSH-33A. 

 

Because self-termination of polymers occurs at a diffusion limited rate, it will slow 

slightly as polymer mass increases. However, the reaction should be halted as soon as 

possible to reduce the amount of self-terminated polymers that may be formed. In 

addition to the loss of polymer to self-termination, the CTA is known to lose activity 

either through hydrolysis [174] or side reactions with the polymer [197]. To minimize 

these negative effects, the general understanding of the conversion rate provided by these 

studies was used to limit mCTA reaction times to minimize the formation of unwanted 

species.  

 

Length 
The lengths of the ionic polymer blocks were measured by MALDI-TOF MS and NMR 

as described on page 4-68. MALDI-TOF analysis generates an envelope of the polymer 

masses that are produced by RAFT polymerization. The dispersion of this envelope of 

masses is quantified by the polydispersity index (PDI) of the polymer based on the ratio 

of mass averaged molecular mass (Mw) to the number averaged molecular mass (Mn).  

 

The Mn, Mw, and PDI are defined in Equations 5-1, 5-2, and 5-3 respectively as: 

 

 
𝑀̅𝑛 =

∑ 𝑁𝑖𝑀𝑖𝑖

∑ 𝑁𝑖𝑖
 5-1 

   

 
𝑀̅𝑤 =

∑ 𝑁𝑖𝑀𝑖
2

𝑖

∑ 𝑁𝑖𝑀𝑖𝑖
 5-2 
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𝑃𝐷𝐼 =

𝑀𝑤

𝑀𝑛
 5-3 

 

Where Ni is the number or abundance of polymer of mass Mi. The Mn value will 

emphasize the average number of each mass of polymer while the Mw value will 

emphasize the mass distribution among the polymers. The PDI provides a measure of 

how nearly the two values match. A PDI of 1.00 would mean that the envelope of 

polymer masses was perfectly symmetrical as indicated by Mn and Mw being equal. 

However, this is never the case. Polydispersity always results in Mw being larger than Mn 

as self-termination events increase the mass of the resulting polymers by as much as 

twice the mass of the parent polymers. The average degree of polymerization for a given 

polymer can be calculated by subtracting the mass of the end groups from Mn and 

dividing the result by the formula weight of the monomer. 

 

 
Figure 40 MALDI-TOF MS spectra of poly(AMPS) mCTA JSH-26. Collected in reflectron mode. DP=8±12% 

PDI=1.05 Mn=1980. High intensity peaks around 500m/z are matrix components. The paired peaks are mCTA with 

and without the CTA attached from fragmentation during ionization. 

 

Figure 40 shows a representative MALDI-TOF analysis of a poly(AMPS) mCTA. This 

polymer is calculated to have a Mn=1980 g/mol, Mw=2079 g/mol and PDI of 1.05. The 

poly(acrylic acid) mCTA synthesized for the kinetic study was also characterized by 
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MALDI as shown in Figure 41. Considering the polymer distribution in Figure 41, we 

can calculate an Mn of 916.7 u an Mw of 957.8 u and a PDI of 1.045. The low PDI values 

observed here are a further indication that the polymerization proceeded under RAFT 

control; uncontrolled free radical polymerizations typically give much higher PDI ~1.5-

2.0. In contrast, RAFT polymerization can typically provide a PDI of ≤1.1, especially for 

extremely short chain polymers like the mCTA in this work.  

 

 
Figure 41 MALDI-TOF MS spectra of poly(acrylic acid) mCTA JSH-33A. Poly(acrylic acid) mCTA is also easily 

characterized by MALDI, although it may be less prone to loss of the CTA during ionization. Mn=916.7m/z, 

Mw=957.8m/z, PDI=1.045, DP=9.41mer. 

 

Capillary electrophoresis was also used to study the degree of polymerization and its 

effect on the electrophoretic mobility of the poly(AMPS) mCTA used in most of the NP 

syntheses in this project. This approach was introduced, developed and explained in the 

Masters work of Adam Sutton at the University of Western Sydney [193]. In that work 

the separation of charged polymers (polyelectrolytes) was studied under so-called 

“critical conditions” where the mobility of the polyelectrolyte chain is independent of 

molecular mass. Sutton describes this behavior at the critical conditions as coiling of the 

polymer to better utilize shielding from counter ions: 

 

“These critical conditions arise in CE due to interactions of the counter ion with 

the polymer chain [198]. The polymer likely adopts a coiled conformation so that 

the electrostatic friction outweighs the hydrodynamic friction [199]. With the 

addition of each monomer unit the addition of the charge is offset by the 

screening of the counter ion adding to the electrostatic friction [200]. In this 

situation, separation of polyelectrolytes can occur according to structure or end 

groups.” 
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Figure 42 CE separation of JSH-26 poly(AMPS) mCTA in 50mM Borate on a 48.5cm x 50µm (40cm effective) 

capillary. 5g L-1 sample injected for 70 mbar s-1. A) Absorbance vs time, B) Expanded view plotted vs mobility. No 

more than five of the eight dominate chain lengths are resolved: chains with more than 4-5 mer have indistinguishable 

mobility under EKC conditions. Chain length was found to provide even less variation in mobility at lower buffer 

concentrations.  

 

The CE separation of poly(AMPS) JSH 26 is shown in Figure 42, conducted under buffer 

conditions identical to that used in EKC experiments. Above approximately five mer the 

poly(AMPS) reach the critical condition, no further separation of mCTA is observed, and 

individual polymer chains provide relatively consistent mobility. Based on signal 

strength, the majority of the polymer is 5 mer or greater. The breadth of the peak in 

Figure 42B illustrates that there is indeed ~10% variability in mobility of the mCTA 

under EKC conditions. 

 

Nanoparticles synthesized using AMPS mCTAs of differing length and butyl acrylate 

cores were characterized by EKC, and the results are presented in Table 7. The NPs also 

vary in the degree of polymerization of butyl acrylate, complicating interpretation of the 

results. Alterations in the degree of polymerization of the poly(AMPS) block in the range 

of 6 to 11 mers appear to have no dramatic impact on primary EKC characteristics such 

as mobility or methylene selectivity compared to the effects of the size of the NP. The 

data for JSH-26 in Table 7 are of particular note as the mCTA was prepared as a large 
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batch (25 g) and was used in the synthesis of many of the NPs characterized here. The 

use of a single batch of mCTA for the preparation of NPs was preferred when 

investigating the roll of the NP core, as this eliminates any variability that could be 

introduced by variations in mCTA from NP to NP. 

 

BAAMPS NP 
poly(AMPS) 

mCTA 
Poly(AMPS) 

DP 
Size 
(nm) 

µep 

-10-4(cm2/V*s) 

αCH2 

(AU) 

JSH-11A LH-54C2 6-7* 14.2 3.818 3.104 

LH-5 JSH-26 8 139 4.396 3.285 

LH-111 JSH-26 8 17.1 4.005 3.130 

HNC-25 HNC-21 11.3 89 3.946 3.287 
Table 7 Effect of DP of poly(AMPS) mCTA on PSP mobility. At the chain lingths studied here DP has no significant 

impact on mobility compared to the far larger effects of NP size. *Degree of polymerizaton is measureed by MALDI 

except for LH-54C2 where DP is estamated from reaction stoichiometry.  

 

That variations of a few mer have no little impact on NP PSP mobility of a ~10 mer 

polymer block is not surprising. The variability in mobility between different NPs is no 

greater than the variability observed for an individual polymer synthesis (Figure 42B). 

Although EKC conditions are not true critical conditions for poly(AMPS), the ionic 

polymer block will provide sufficiently uniform mobility for the NP PSP for uniform 

EKC behavior. This uniformity is further ensured by individual NPs containing a random 

sample of the available poly(AMPS) chain lengths, which further averages the mobility 

between all NPs. 

 

The data presented here indicate that the synthetic conditions yield poly(AMPS) mCTA 

reproducibly under RAFT control, and that at chain lengths above 5, the electrophoretic 

mobility is independent of degree of polymerization. These results also suggest that the 

length of the ionic polymer block has relatively minor effects on EKC selectivity and 

performance of NP PSPs. Results to be presented below also demonstrate relatively 

minor differences in EKC selectivity for NP PSPs with poly(AMPS) vs poly(acrylic acid) 

shells. Given all of these results, changes in the length of the ionic polymer block was not 

expected to have substantial effects on the EKC selectivity of performance of NP PSPs, 

and this was not studied further. 

 

5.1.2 Hydrophobic Block 
Because past work [157], [158], [160] has suggested that analytes are solvated by the 

hydrophobic block of the diblock polymer nanoparticles, and have little to no interaction 

with the ionic block, most of this work focuses on the hydrophobic block. To understand 

the effect the hydrophobicity of the hydrophobic block has on selectivity, a number of 

monomers, each providing different degrees of hydrophobicity, were employed to 

synthesize NP PSPs.  
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While butyl acrylate has been used for diblock based NP PSPs in the past [158], this 

work compares NPs containing butyl acrylate with ethyl acrylate and methyl acrylate 

hydrophobic blocks to investigate the effects of reducing hydrophobicity, and hexyl 

acrylate to investigate the effect of increased hydrophobicity. Each of these NPs was 

synthesized and characterized with a different degree of polymerization of the 

hydrophobic block, resulting in different NP diameters. 

 

Length and NP Diameter 
To investigate the capacity of RAFT polymerization to control and systematically vary 

NP size, a significant number of NPs were synthesized with various molar ratios of 

monomer to CTA (4.2.5 Nanoparticle Size Study, page 4-66). The results of these studies 

are presented in Figure 43. These results indicate that it is indeed possible to 

systematically control the degree of polymerization of the hydrophobic block, and, in 

turn, the diameter of the resulting NP by control of the synthetic conditions. 

 

There are two additional striking results observed from the results in Figure 43. First, 

there is a linear relationship between NP diameter and the ratio of hydrophobic monomer 

to mCTA. Second, the slope of the linear regression shows that the longer alkyl chain 

butyl acrylate core monomer results in a smaller NP per mer than do the shorter alkyl 

chain ethyl acrylate or methyl acrylate monomers. The synthetic reproducibility is 

relatively poor for the MAAMPS NPs, resulting in significant scatter in that plot, but the 

trend is apparent. However, limited results with hexyl acrylate based HAAMPS NPs 

exhibited the same relationship between polymer length and NP size as BAAMPS, 

suggesting that extending alkyl chain length beyond four methylene units may not 

provide any increase in cohesive intra-polymer forces.  

 

The result that the NP diameter measured by DLS increases linearly with the monomer 

ratio (M-to-mCTA) is highly significant as it illustrates that the polymers do not 

experience sufficient inter-polymer forces within the NP to collapse the polymer chains 

onto one another and exclude the aqueous BGE. If cohesive forces dominated the inter-

polymer interactions, the polymers would be expected to collapse into a relatively dense 

spherical NP composed primarily of polymer chains. In that configuration, NP size 

should correlate to the cube root of monomer ratio; a doubling in monomer would 

produce a doubling of volume and therefore increase the diameter by √2
3

.  
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Figure 43 NP diameter measured by DLS vs moles of monomer per polymer. Plotted for hexyl- (HAAMPS), butyl- 

(BAAMPS), ethyl- (EAAMPS), and methyl- (MAAMPS) acrylate monomers. 

 

It can be inferred from the observed linear relationships that the polymer di-blocks 

remain as relatively straight chains within the NP at the monomer-to-mCTA ratios 

investigated here. The consequence of this is that the NPs should be expected to have 

significant water content within the core. The aqueous content of the NPs should be 

greater for the less hydrophobic core monomers (MAAMPS) than for the more 

hydrophobic core monomers (BAAMPS). A more open, water-solvated, structure for the 

less hydrophobic cores could explain the greater size of those NPs relative to the more 

hydrophobic counterparts. This water-solvated structure does in fact have significant 

impacts on the observed solvation properties of the NP PSPs (page 5-92). 

 

With these data we can begin to visualize the NP structure more accurately. The typical 

NP architecture that is proposed, or at least inferred, in the literature is a relatively dense, 

anhydrous polymer particle. The particle is typically imagined as polymer version of the 

molecular micelles in Figure 13 on page 2-27: an ionic shell surrounding a hydrophobic 

core of polymer collapsed onto its self by the dominance of cohesive forces.  

 

The data shown in Figure 43 confirms earlier suspicions [158] that this model does not 

apply to either the poly(AMPS) or poly(acrylic acid) based NP PSPs. Instead, the NP 

PSPs should rather be visualized as an open and hydrated three dimensional mesh, 
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network, or raft of polymer chains. This structure is currently best envisioned as small 

domains of polymer gel. These rafts of polymer chains are suspected to have a relatively 

homogenous distribution of ionic polymer blocks throughout rather than the earlier 

core/shell model where ionic blocks were believed to be localized on the outer surface or 

“shell” of the NP. 

 

Chemistry 
Six NPs were selected in methyl, ethyl, and butyl acrylate chemistries and in small and 

large sizes for further characterization as EKC PSPs and analysis by LSER (methods: 

page 4-56, results: page 5-92). These six NPs were selected for their consistency in size, 

and all but one (EAAMPS (Small), JSH-17A) were synthesized with the same mCTA 

(JSH-26) to eliminate variations that could arise from the ionic block of the diblocks. The 

synthetic conditions and general properties of the NPs are presented in Table 8. 

 

Two other batches of BAAMPS NPs are also widely employed in this work: JSH-11A 

and HNC-25. Both are used to investigate the effects of pH on mobility (the work with 

JSH-11A has been published in [160]) and HNC-25 is also used extensively to 

demonstrate performance with different buffers and analytes. JSH-11A may be classified 

as a “Small” BAAMPS NP, while the larger 89 nm HNC-25 BAAMPS NP is still smaller 

than the “Large” LH-5 NP used for LSER studies.  

 

The AMPS based NPs are also compared to the BAAA NP from earlier work [157], [158] 

and to JSH-39, a BAAA NP synthesized for this research.  
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5.2 EKC Properties and Performance 
The goal of this research to determine the effects of NP chemistry and size on the 

properties and performance of NPs as PSPs for EKC.  Each of the NPs presented in Table 

8 has been characterized by multiple EKC experiments to quantify and compare 

performance, selectivity, and solvation properties.  The results of these studies are 

presented in Table 9 and are discussed in detail below. 

 

5.2.1 Electrophoretic Mobility  
The electrophoretic mobility of the PSP provides the velocity differential that allows 

separations in the EKC system. As such, greater mobility is directly related to better 

chromatographic performance (Figure 7 on page 1-13); a higher mobility PSP provides a 

larger migration range between the elution time of an unretained analyte and a fully 

retained analyte [201], [202]. A greater migration range also allows for the separation of 

more complex mixtures by providing a higher peak capacity.  

 

Table 9 (above) and Figure 44 (below) present the mobilities of SDS micelles [25], 60 

nm latex NP PSPs with acrylic acid shell and butyl acrylate core (BAAA) [157], and the 

AMPS functionalized NPs. The electrophoretic mobilities of the AMPS NPs, with the 

noteworthy exception of the large BAAMPS NP, are generally somewhat lower than that 

of SDS and are comparable to that of the acrylic acid NP. In general, the sulfonate 

moieties on the anionic NP shell provide comparable mobility and migration range to 

SDS. The size and chemistry of the hydrophobic block are the primary source of 

variation in mobility.  

 

With the exception of the smaller MAAMPS NPs (whose mobility was measured by an 

alternate method discussed on page 4-56), the magnitude of the electrophoretic mobility 

appears to increase with hydrophobic block length and with the hydrophobicity of the 

monomer constituting the hydrophobic core. As discussed above, the electrophoretic 

mobility of the NPs are presumed to be a complex function of the packing structure and 

extent of ionization of the sulfonate moieties in the ionic block which lead to differences 

in charge and charge density on the NP.  

 

While the set of six NP PSPs used for LSER analysis exhibit strong trends in mobility, 

the HAAMPS NP does not continue the trend towards greater mobility with increasing 

hydrophobicity of the hydrophobic block. In addition, the JSH-11A BAAMPS NP 

exhibits somewhat less mobility than the similarly sized LH-111 BAAMPS (Small) NP 

despite having identical hydrophobic chemistry. This difference is highlighted in Table 7, 

and while it may be attributable to the different batch of mCTA employed in the 

syntheses, it is most likely more indicative of the variability from synthesis to synthesis 

that may be expected from variations in both the mCTA and diblock. 

 



5-84 

 

 

 

 
Figure 44 Mobility of NP PSPs determined by retention of a homologues series of alkyl-phenones in 10mM pH 7.20 

Tris BGE. Standard errors shown based on variance in five sequential measurements. 

 

These trends are consistent with the trends in NP cohesivity and overall degree of 

hydration observed in the following sections. More cohesive and more aqueous NPs seem 

to have lower mobility than do less cohesive and hydrophobic architectures. The mobility 

of HAAMPS is one piece of data among many that suggests that the extra methylene 

groups of hexyl acrylate provide little further advantage over butyl acrylate as a PSP.  

 

Effects of BGE Composition and pH on Mobility  
Further study of the effects of BGE composition, ionic strength and pH on mobility 

reveal that the composition and ionic strength of the BGE have as much or more impact 

than pH, as illustrated in Figure 45. The sharp discontinuity in mobility for both BAAA 

and BAAMPS chemistries around pH 7 is attributed to the change in BGE composition 

from Tris to MES buffers. The change in ionic strength between pH~7 Tris buffer 

(SBAAA=8.5 mM, SBAAMPS=9.1 mM) and MES buffer (SBAAA=8.6 mM, SBAAMPS=5.8 mM) 

does not appear to explain the change in mobility as the change in ionic strength between 

Tris at pH~8 (SBAAA=4.9 mM, SBAAMPS=4.3 mM) and pH~7 is much larger yet little 

change in mobility is observed. The effects of buffers on a BAAMPS NP PSP is explored 

in more detail in 5.6.1 BGE and Sample  on page 5-97. 
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Figure 45 Variation in mobility in different buffers and pH. Neither BAAA (JSH-39) nor BAAMPS (JSH-11A) NP PSPs 

lose mobility at low pH. However, both see strong changes around pH 7 between Tris and MES buffers. This suggests 

that the BGE composition and ionic strength does meaningfully effect the ionic shielding available to the ionic polymer 

block. BAAMPS (HNC-25) and SDS show a similar discontinuity between Tris and Bis-Tris. JSH-11A results also 

reported in [160]. 

 

Part of the motivation for synthesizing NPs with AMPS ionic blocks was to improve PSP 

mobility and performance relative to those with acrylate ionic blocks, particularly at low 

pH. The overall mobility of poly(AMPS) functionalized NP PSPs is seen to match or 

exceed that of poly(acrylic acid) functionalized NP PSPs (BAAA) of the same 

hydrophobic block chemistry at neutral to high pH (Figure 44). This might be expected if 

the more acidic sulfonate moieties are ionized to greater extent than the less acidic 

carboxylate groups. 

 

 
Figure 46 Mobility of JSH-39 BAAA NP shown in separations of six phenones in 10mM buffers: Borate (pH 9.47), Tris 

(pH 8.08), Tris (pH 7.32), acetic (5.29). Time is plotted on log scale to retain the visibility of the faster separations, but 

it should be noted that as the EOF drops off the analysis time increases by an order of magnitude or more. 
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However, the mobility of the BAAA NP does not diminish significantly even at the lower 

end of the operational pH range in EKC, suggesting that the extent of ionization remains 

constant.  This is demonstrated by the separation of the six phenones by JSH-39 BAAA 

NP PSP in various buffers as shown in Figure 46. At high pH separations are fast and 

highly efficient, but as the pH decreases the EOF drops off and the analysis time balloons 

from just a few minutes to over half an hour. However, there is no overall loss of 

mobility from the BAAA NP; the mobility at pH 9.47 is –3.84  10-4 (cm2 V-1 s-1) and it 

remains unchanged at pH 5.29 even as the EOF drops from 8.7  10-4 (cm2 V-1 s-1) to 4.2 

 10-4 (cm2 V-1 s-1). Below a pH of 5.29 the mobility of the NP PSP will be greater than 

that of the EOF and the migration direction will reverse for highly retained analytes while 

analytes with a retention factor of ~1 will be retained indefinitely in the capillary. BAAA 

NPs are also reported to lose ionization below this pH [158], but this does not have a 

significant effect in practice. 

 

5.3 Methylene Selectivity 
The relative strength of the hydrophobic interactions between NP PSPs and solutes is 

quantified by methylene selectivity, which is the chromatographic selectivity between 

adjacent solute homologs differing in structure by only one methylene. It was expected 

that increases in the alkyl chain length of the acrylate monomers constituting the core 

would result in increasing hydrophobic character analogous to reversed-phase HPLC 

stationary phases. 

 

 
Figure 47 Methylene Selectivity of NP PSPs determined by retention of a homologues series of alkyl-phenones in 

10mM pH 7.20 Tris BGE. Methylene Selectivity is derived from the slope of the relationship between the log of 

retention factor (k) and the alkyl chain length of the series of alkyl-phenones by taking the anti-log of the slope. 

Standard errors shown based on variance in five sequential measurements. 
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The methylene selectivities for SDS and the NP PSPs are presented in Table 9 and Figure 

47. All of the NP PSPs, with the possible exception of the smallest MAAMPS, have 

significantly higher methylene selectivity and are significantly more hydrophobic than 

SDS micelles. Methylene selectivity does increase with both the alkyl chain length of the 

hydrophobic monomers and with the size of the NP, with the chemistry of the core 

having a greater impact than the diameter of the NP. It is clearly possible to vary the 

hydrophobic character of NP PSPs via systematic variation in size or core chemistry. 

 

5.3.1 Selectivity 
The retention factors of three acids, three bases, three arenes, and three polar compounds 

for five NP PSPs of varied chemistry and size are shown in Figure 48. These compounds 

have been selected to provide some qualitative indication of how the NP PSPs behave 

towards different types of compounds. Changes in selectivity are apparent where the 

connecting lines cross.  There are clearly some differences in separation selectivity 

afforded by the different PSP structures.  Toluene and 3-chlorophenol in particular have 

markedly different retention with BAAMPS (Small) than with the other NP PSPs.  It is 

difficult to see or describe any particular trends or patterns in the results, however. A 

quantitative measure of the differences in selectivity of NP PSPs is reported in the 5.5 

LSER Characterization 

 section starting on page 5-92. 

 

 
Figure 48 Variations in retention between NP PSPs for various classes of analytes from LSER work. Sets in red are 

acidic, yellow are arene, blue are basic, and green are polar. While some variations in selectivity are obvious for 

specific analytes like toluene, most analytes show similar trends in selectivity between NP PSPs.  

 

5.4 Efficiency 
The average plate counts, and resulting peak capacities, for each of the PSPs was 

quantified for the homologous series of alkyl phenones and the results are presented in 

Table 8 and Figure 49. The size and chemistry of the NPs has a significant effect on plate 

numbers and peak asymmetry, with the smaller BAAMPS (LH-111) and EAAMPS (JSH-
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17A) particles generating higher plate numbers than their larger counterparts, and the 

smaller BAAMPS NPs generating the highest plate numbers overall. The NP PSPs in 

general provide somewhat lower plate counts than SDS micelles, with the exception of 

the smaller BAAMPS, which provides significantly higher plate counts. The plate 

number for the smaller MAAMPS (LH-11) is very poor relative to other PSPs. 

 

 
Figure 49 Effect of core chemistry on Efficiency (x104) and Peak Capacity. BAAMPS(Large) LH-5, BAAMPS(Small) 

LH-111, EAAMPS(Large) LH-12, EAAMPS(Small) JSH-17A, MAAMPS(Large) LH-103, MAAMPS(Small) LH-11, 

HAAMPS(Large) HNC-46. 

 

Typical separations for the alkyl phenones using the NP PSPs are presented in Figure 50. 

There are several common features in the separations of these compounds observed with 

all of the NP PSPs. The peaks are often asymmetrical, with significant peak fronting 

observed particularly for phenones with intermediate affinity for the PSPs. Similar 

behavior was previously observed with the BAAA NP PSP [157]. Fronting is either not 

present or is significantly less pronounced for early eluting phenones, and is either less 

pronounced or is less apparent, relative to other broadening mechanisms, for late eluting 

phenones. Fronting is universally observed for alkyl-phenones, but not for all solute 

chemistries; several other solutes were observed to have tailing peaks. The observed peak 

assymetry is the primary cause of lower plate counts observed for most of the NP PSPs 

relative to SDS micelles. Fronting of alkyl phenones is a greater problem for EAAMPS 

(LH-12 and JSH-17A) and MAAMPS materials (LH-103 and LH-11) and is very severe 

for the small MAAMPS (LH-11) material, causing very low plate counts and rendering it 

ineffective as a PSP.  

 

The observed fronting is less severe at higher PSP concentrations and lower solute 

concentrations. This is consistent with solute concentration overload being the cause of 

the peak asymmetry.  Williamson and Davis observed that anti-Langmuir isotherm 

models and concentration overloading could explain observed peak fronting in EKC 
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[203], [204]. Tailing peaks are expected for concentration overload and solutes with non-

linear Langmuir-type isotherms [205]. The affinities of the NP PSPs for all solutes are 

very high, resulting in low NP concentrations for effective separations but making 

concentration overload a common problem. Concentration overload effects appear to be 

more severe for NPs with cores composed of less hydrophobic acrylates with short alkyl 

side chains, and are particularly severe for the small MAAMPS NP (LH-11). 

 

 
Figure 50 EKC chromatograms of the separation of t0. Acetone 1. acetophenone, 2. propiophenone, 3. butyrophenone, 

4. valerophenone, 5. hexanophenone, 6. heptanophenone in  10 mM TRIS buffer at pH 7.2 by A. LH-5 

BAAMPS(Large), B. LH-111 BAAMPS(Small), C. LH-12 EAAMPS(Large), D. JSH-17A EAAMPS(Small), E. LH-103 

MAAMPS(Large), F. LH-11 MAAMPS(Small). 

In the absence of concentration overloading and Joule heating effects, band broadening in 

EKC is expected to be dominated by longitudinal diffusion [9], [30], [206], [207]. 

However, while the late eluting peaks in Figure 50 are relatively symmetrical, they are 

also broad and have relatively low plate counts. The plate counts for late eluting 

compounds are also significantly lower with the larger BAAMPS NP (LH-5) than for the 

smaller BAAMPS NP (LH-111).  Broad and often asymmetrical peaks are generally 

observed for late eluting compounds separated by EAAMPS and MAAMPS NPs. These 

observations are not consistent with longitudinal diffusion being the dominant broadening 

mechanism, since late eluting compounds should have higher plate counts in that case. 
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The current is very low in these systems (<10 µA, see Figure 66 on page 5-109), so Joule 

heating is not significant, and does not explain the low plate counts or the differences in 

plate counts between large and small NPs. 

 

Terabe et al. [10] considered several other potential broadening mechanisms, but 

generally found these to be negligible for micellar systems. Two of these, which are 

expected to result in greater broadening for later-eluting compounds, may need to be 

reconsidered for NP PSPs.  

 

Inter-micellar diffusion is a broadening effect that is expected to scale as the square of the 

inter-NP distance. Using the theoretical mass of the diblock and DLS diameters, the 

calculated inter-NP distances are about 100 nm for small nanoparticles and 700 nm for 

large nanoparticles. These values are ten to seventy times greater for the NP PSPs than 

for SDS micelles due to the lower NP PSP concentrations relative to SDS micelles. The 

inter-NP distances are also greater for larger NPs than for smaller NPs because the 

number concentration of larger NPs is smaller. However, our estimates of broadening 

from inter-NP diffusion for the highly retained phenones, using equation 25 from [10] 

indicate that this should be an insignificant contribution (<10%) to broadening relative to 

longitudinal diffusion.  

 

A second broadening mechanism that has a greater effect for late-eluting compounds is 

the microheterogeneity of the PSP. Polymer NPs have greater microheterogeneity than 

SDS micelles, and there could be significant differences in microheterogeneity between 

large and small NPs. The contribution to broadening from NP microheterogeneity is 

estimated to be about seven or eight times greater than that estimated for SDS micelles 

generated by [10].  

 

 
Figure 51 Separations of NPs by CE. 1.0% NP in 50 mM Borate buffer, 20KV, 48.5cm x 50 um capillary. t0 at 2 min, 

NPs at 3.5-5 min, unreacted mCTA at 6-7 min. 
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The stability of the NPs allows the magnitude and variance in electrophoretic mobility to 

be measured by CE separation just as for the mCTA on page 5-76. Doing so shows that 

the relative standard deviations in NP electrophoretic mobilities are 20% or less, with no 

significant difference between NPs of different average size. The 20% variation in 

mobility is similar to the variation in NP diameter from light scattering studies.  

 

Using equation 38 from [10] the effect of NP electrophoretic polydispersity can be 

estimated. This analysis shows that while there is dispersion in the electrophoretic 

mobility of the NP PSPs, it is not clear that this will translate into significant band 

broadening of the analyte. The analyte is expected to rapidly partition between the PSP 

and bulk solution, averaging the mobility of each NP PSP the analyte interacts with over 

a large number of NPs. 

 

However, there is uncertainty in this analysis because the plate height is also inversely 

proportional to the rate constant for desorption of the solute from the PSP, and this value 

is not known for the NP PSPs. Still, calculations indicate that NP electrophoretic 

polydispersity would contribute 20% or less to the overall band broadening even if the 

desorption kinetics are ten times slower for the NP PSPs than for SDS micelles. The RSD 

in electrophoretic mobility is the same for large and small BAAMPS NPs, so this 

mechanism does not explain our observations unless desorption rates from the NP PSP 

(mass transfer rate or partitioning rate) are also significantly slower for large NPs.  

 

 
Figure 52 Efficiency as a function of NP PSP for analytes of various chemistry from LSER work. Overall efficiency of a 

PSP seems to be influenced by large changes in efficiency of a few analytes. However, the variations do not strongly 

correlate to a given type class of compound. Sets in red are acidic, yellow are arene, blue are basic, and green are 

polar. 

 

While the broadening and loss of efficiency are shown in Figure 50 to correlate strongly 

with increasing retention of a homologous series of alkyl phenones, the effects between 

NP PSPs are also noteworthy. In Figure 52 the efficiency of a number of compounds 

representing acidic, basic, arene, and polar chemistries are shown for various NP PSPs. 

The smaller (and better performing) NP PSPs show significantly better efficiency for a 

few of the compounds, but there is little to no consistency in which compounds 

0

100000

200000

300000

400000

500000

600000

700000

BAAMPS (s) EAAMPS (s) BAAMPS (l) EAAMPS (l) MAAMPS (l)

Th
e

o
re

ti
ca

l P
la

te
s

Phenol

3-Chlorophenol

3-Bromophenol

Benzene

Toluene

Napthalene

4-Nitroaniline

4-Chloroaniline

Indole

Chlorobenzene

Benzonitrile

Nitrobenzene



5-92 

 

 

 

experience different levels of performance. The most evident pattern is in the higher 

theoretical plate count for highly polar compounds (4-nitroanaline and 4-chloroaniline) 

when run with smaller NP PSPs.  

 

Peak asymmetry was calculated as a pseudo-moment by the ChemStation software 

integrator for these compounds. The full method of calculation and relevant equations are 

available in [208]. The calculation effectively compares the ratio of the area in front of 

the maxima to that behind: values greater than one indicate fronting of the peak and 

values less than 1 indicate tailing.  

 

 
Figure 53 Peak Symmetry of twelve compounds from LSER work. The symmetry values (plotted on a log axis) show the 

magnitude of fronting (>1) or tailing (<1) in each NP PSP based on the ratio of the peak area in front of the peak 

maxima divided by the peak area behind (longer retention time) the maxima. 

 

The peak symmetry of these compounds does show consistency between NP PSPs with 

acidic compounds often tailing, and both polar and arene compounds fronting, for all NP 

PSPs. The tailing of 3-bromophenol and 3-chlorophenol is the most consistent among the 

39 compounds used in the LSER studies, suggesting that the halogens, more than the 

phenol moiety, may be the commonality to distinct tailing. Whether this is because the 

halogens lower the pKa of the phenol or because of a direct interaction with the halogen 

is unknown.  

 

5.5 LSER Characterization 
Linear Solvation Energy Relationships (LSER) have long been used in EKC to describe 

the strength and nature of interactions between analytes and the PSP [47], [48], [191], 

[192]. The logarithm of the retention factor provides a measure of the free energy of 

transferring an analyte between the BGE and the PSP. The LSER model allows this to be 

attributed to differences in the free energies of cavity formation and various solute-

solvent interactions in the BGE and PSP respectively.  
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These free energies are modeled by five solute descriptors: the McGowan characteristic 

volume (V), excess molar refraction (E), dipolarity/polarizability (S), and hydrogen bond 

acidity and basicity (A and B respectively). By correlating the known solute descriptors 

V,E,S,A, and B in Equation 5-4 with the logarithm of the experimentally determined 

solute retention factor (log(k)) for a large number of solutes, the relative strength of each 

interaction provided by a PSP is determined.  

 

The strength of each interaction is described by the system descriptors v,e,s,a,b calculated 

by the multiple linear regression between the log(k) measured for each solute and the 

solute descriptors provided in [20], [191], [192], [204], [205], [209], [210] and also 

summarized in Appendix A - LSER on page 8-136. 

 

 

The magnitude of the system descriptors describe the difference in free energy of 

solvation, either positive or negative, between the bulk BGE and the PSP relative to a 

given BGE composition. For LSER results to be fully comparable they must be generated 

in the same BGE conditions.  

 

The LSER results for SDS [53] and five of the AMPS NPs are presented in Figure 54 and 

Table 10. In many cases, the NP phases show significantly different system parameters 

relative to SDS and to one another.  

 

   
Figure 54 LSER system parameters. SDS reported from [25] and as determined in analogous EKC conditions with the 

NP PSPs shows only insignificant  variations from BGE composition. EKC of 39 solutes ran in 10 mM triss at pH 

7.20±0.05 with 0.3% w/w NP PSP. System descriptors are: McGowan characteristic volume (v), excess molar 

refraction (e), dipolarity/ polarizability (s), and hydrogen bond acidity and basicity (a and b respectively). 

 

The NP phases have significantly more positive e, less negative s, and much more 

negative b values than SDS. Parameter v varies from being significantly more positive to 
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being indistinguishable from SDS, while parameter a varies from being more negative to 

being indistinguishable, depending on NP size and chemistry. The results relative to SDS 

indicate that these PSPs provide very different solvation environments, which should 

result in very different separation selectivities, relative to SDS micelles. Additionally, the 

extent of these differences varies between different NP chemistries. 

 

Another interesting observation is that the LSER parameters for the NPs, particularly v, s, 

a, and b, show consistent trends with systematic variation in the NP structure and 

chemistry. In general, the magnitude of these values decreases with reduced alkyl chain 

length of the core monomer and with reduction in the size of the NP core. This 

demonstrates that the synthetic control offered by the RAFT polymerization approach 

allows for methodical variation in the chromatographic selectivity of NP PSPs.  

 

The McGowan characteristic volume system constant (v) represents the difference in free 

energy of cavity formation between the BGE and PSP, as well as any differences in 

residual dispersion interactions between the two phases [211]. The aqueous BGE is a 

relatively cohesive environment due to strong dipole-dipole and hydrogen bonding 

interactions between water molecules. The system descriptor v is positive in all cases, 

indicating that the PSPs are less cohesive then water. Less cohesive PSPs are more easily 

deformed to solvate an analyte and produce higher v terms than do more cohesive PSPs 

that require more energy to form a solvation cavity. 

 

The NP PSPs show a uniform drop in v with alkyl chain length from BAAMPS to 

MAAMPS NPs, consistent with the shorter alkyl chains resulting in more cohesive, 

water-like, NP character. This is consistent with the observations in 5.1.2 Hydrophobic 

Block Length on page 5-78 that water is incorporated into the core of the NPs, with 

greater water incorporation possible for less hydrophobic core chemistries. The v term is 

equivalent to SDS or larger for all tested NPs. This indicates that the nanoparticle cores 

are relatively non-cohesive, and that hydrogen bonding and dipole-dipole interactions 

between water molecules incorporated into the NP core must be relatively weak.  

 

Of course, these results also reflect the nature of interactions with SDS micelles, which in 

many cases may occur by different methods at the micelle-water interfacial region of the 

micelle. The size of the NP also produces significant, though minor, variations in the v 

term with smaller BAAMPS NPs shown to be less cohesive, while inversely, the small 

EAAMPS is more cohesive than their larger counterparts. This variation is not fully 

understood and the results are insufficient to explain the effect.  

 

Excess molar refraction (e) represents the difference between the tendency of the BGE 

and the PSP to interact with polarizable n- and π-electrons on the analyte. The solute 

descriptor is derived from the difference between the molar refraction of the solute and an 

imaginary n-alkane of the same characteristic volume [191]. All measured NP PSPs 

provide double the capacity for these interactions than does SDS with no significant 

difference between the NP PSPs. This illustrates a unique selectivity from SDS provided 
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by the NP PSPs. The increase in (e) might be attributed to the ester moieties in the NP 

PSP core provided by the acrylate monomers. 

 

The dipolarity/polarizability term (s) characterizes the dipole-dipole and induced dipole-

dipole interactions relative to those provided by the BGE [212], [213]. While all the PSPs 

provide weaker dipole type interactions than the aqueous BGE, the NP PSPs do provide 

significant, if limited, increases relative to SDS and as the alkyl chain length of the core 

monomer decreases. This is also consistent with a more water-like environment for NP 

core monomers with shorter alkyl chains, and with greater access to polar or polarizable 

ester moieties in the NP core.  

 

The relative energy of interactions with hydrogen bond acids (a) and bases (b) are a 

measure of the difference in hydrogen bond basicity and acidity, respectively, of the PSP 

vs the aqueous BGE [212], [214]. Note that the analyte parameters A and B are based on 

the acidity and basicity of the analytes, so the complementary system descriptors for the 

PSP necessarily describe the inverse behavior: the (a) term represents the basicity of the 

PSP while (b) represents the acidity.  

 

Water is a strong hydrogen bond donor and acceptor, so most PSPs have negative a and b 

terms. The PSPs, including SDS micelles, prove only slightly less basic than water, 

suggesting that ionic head groups, amide, ester, ketone, or associated water, are able to 

accept hydrogen bonds with only slightly less free energy of solvation than the BGE. The 

(b) term shows that the NP PSPs are far less acidic than the aqueous BGE, and also that 

the NP PSPs are less acidic than SDS. The b term strongly reflects the inverse 

relationship between alkyl chain length and aqueous character with MAAMPS providing 

much less negative b-term than the BAAMPS NP PSPs. 

 

Although there are amide functionalities on the AMPS shell, the NP cores do not have 

hydrogen bond donors. Interactions of hydrogen bond bases, then, would necessarily be 

with NP-associated water. This water is apparently much less able to donate a hydrogen 

bond than water in the BGE or water associated with the sulfate head groups of SDS. 
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5.6 Practical Performance 

5.6.1 BGE and Sample Composition 
The performance of NP PSPs in various buffers, broadly described as the background 

electrolyte (BGE), is rarely reported. Even in this work the performance of a given NP 

PSP was rarely compared between different BGE solutions because the performance 

must be measured in a consistent BGE for results to remain comparable between PSPs. 

 

While some limited comparisons have been conducted with multiple NP PSPs run in 

different BGEs at different pHs as in Figure 45, that work focused on mobility as a 

function of pH, and so some buffers were pushed to the limits of their buffering range. 

This introduced ionic strength as an estimated, but uncontrolled, variable. Careful control 

of each parameter is critical to producing data that can be compared between analyses.  

 

To study the impact of the buffer on EKC performance 100 µg mL-1 (ppm) samples of 

the six alkyl phenones (acetophenone – hexanophenone) in the BGE solution were 

prepared from a single 50 mg mL-1 (ppt) standard in acetone and separated by a 

BAAMPS NP PSP (HNC-25) in six different buffers near their pKa except for Tris (pKa 

8.07) which was run at pH 7.21 to match most previous work with Tris buffer. All other 

parameters are as reported in the 4.1.2 Chromatographic characterization - Capillary 

Electrophoresis section on page 4-56. 

 

Borate (pH ~9.2), CHES (pH 9.26), HEPES (pH 7.5), Bis-Tris (pH 7.20), Tris (pH 7.21), 

and MES (pH 6.12) buffers were used for the BGE at a buffer concentration of 10 mM 

(Bis-Tris therefore was at a molar concentration of 2 mM and borate was 2.5 mM). 

Samples were sequentially spiked with acetone and the increasing acetone concentration 

was found to flatten the baseline for buffers that had abnormal and unstable baselines. 

Abnormal baselines were observed for the NP PSP in CHES, Bis-Tris, and HEPES 

analogous to the chromatogram of CHES shown in Figure 55.  

 

Why changes to the sample composition have such a pronounced effect on the baseline of 

the entire separation is not entirely clear. However, it is hypothesized that the poor 

baseline may be due to adsorption of either analytes or buffer to the capillary wall. It has 

been observed during the LSER studies that 1-napthal and biphenyl will degrade EOF, 

requiring the capillary to be flushed with an organic solvent like ACN to restore the EOF. 

It is likely that the acetone content in the sample performs that roll here, and increasing 

the acetone content provides a more complete reconditioning of the capillary during each 

run.  
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Figure 55 Representative separation of phenones with abnormal baseline in CHES buffer. The baseline was 

dramatically improved by increasing acetone concentration as shown in 1 mL of sample. 

 

The NP PSP performance was compared to that of SDS micelles that were run 

concurrently using injections of the same samples. The NP PSP mobility, methylene 

selectivity, tPSP, efficiency, and the signal to noise ratio of butyrophenone were calculated 

for each run. Mobility remained remarkably consistent and the NP demonstrate 

consistently higher methylene selectivity than SDS micelles in all buffers. However, 

acetone concentration did produce some minor variations that are most likely due to 

different peak shapes at different acetone concentrations shifting the retention times of 

the peaks very slightly. 

 

The measurement of tPSP illustrates that the same separation took much longer with SDS 

than with the NP PSP. Since there is no significant difference in the mobility of the NPs 

vs SDS, this difference in tpsp is due to lower electroosmotic flow, likely caused by higher 

ionic strength, in SDS systems.  Note that these terms are plotted on a log scale in Figure 

56, and thus the NP PSP demonstrates much faster analysis times than the SDS. Finally, 

the signal to noise ratio of butyrophenone illustrates the degree of noise and background 

absorbance provided by each buffer.  
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Figure 56 Relative performance of HNC-25 BAAMPS NP to 50mM SDS micelles in different buffers. Tris at pH 7.2 is 

shown provide the most consistent performance between NP PSPs and SDS micelles. Bis-Tris, Borate, and CHES 

buffers all provide better performance with SDS micelles. The high mobility recorded for the NP PSP with 2uL acetone 

in CHES is attributed to uncertainty in the measurement due to poor baseline rather than a chromatographic cause. 

1

10

100

1000

[Acetone] (uL/mL) µep 10-4(cm2/V*s) αCH2 tPSP (Min) S/N

Borate

Borate NP Borate NP Borate NP Borate NP Borate SDS Borate SDS Borate SDS Borate SDS

1

10

100

1000

[Acetone] (uL/mL) µep 10-4(cm2/V*s) αCH2 tPSP (Min) S/N

Bis Tris

BisTis NP BisTis NP BisTis NP BisTis NP BisTris SDS BisTris SDS BisTris SDS BisTris SDS

1

10

100

1000

[Acetone] (uL/mL) µep 10-4(cm2/V*s) αCH2 tPSP (Min) S/N

CHES

CHES NP CHES NP CHES NP CHES NP CHES SDS CHES SDS CHES SDS CHES SDS

1

10

100

1000

[Acetone] (uL/mL) µep 10-4(cm2/V*s) αCH2 tPSP (Min) S/N

HEPES

HEPES NP HEPES NP HEPES NP HEPES NP HEPES SDS HEPES SDS HEPES SDS HEPES SDS

1

10

100

1000

[Acetone] (uL/mL) µep 10-4(cm2/V*s) αCH2 tPSP (Min) S/N

MES

MES NP MES NP MES NP MES NP MES SDS MES SDS MES SDS MES SDS

1

10

100

1000

[Acetone] (uL/mL) µep 10-4(cm2/V*s) αCH2 tPSP (Min) S/N

Tris

Tris NP Tris NP Tris NP Tris NP Tris SDS Tris SDS Tris SDS Tris SDS

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

N

Tris

Tris NP Tris NP Tris NP Tris NP Tris SDS Tris SDS Tris SDS Tris SDS

0

200000

400000

600000

800000

1000000

1200000

N

Bis Tris

BisTis NP BisTis NP BisTis NP BisTis NP BisTris SDS BisTris SDS BisTris SDS BisTris SDS

0

200000

400000

600000

800000

1000000

1200000

N

Borate

Borate NP Borate NP Borate NP Borate NP Borate SDS Borate SDS Borate SDS Borate SDS

0

200000

400000

600000

800000

1000000

1200000

N

CHES

CHES NP CHES NP CHES NP CHES NP CHES SDS CHES SDS CHES SDS CHES SDS

0

100000

200000

300000

400000

500000

600000

N

HEPES

HEPES NP HEPES NP HEPES NP HEPES NP HEPES SDS HEPES SDS HEPES SDS HEPES SDS

0

100000

200000

300000

400000

500000

600000

N

MES

MES NP MES NP MES NP MES NP MES SDS MES SDS MES SDS MES SDS



5-100 

 

 

 

 

 
Figure 57 Relative performance of 0.3% w/w BAAMPS NP PSP HNC-25 and 50mM SDS in different buffers. Values 

are averages of the four runs in differing amounts of acetone shown above. SDS has higher efficiency and S/N for three 

of the six buffers. However, SDS also requires much longer analysis times as shown by tPSP and offers lower methylene 

selectivity (αCH2) than the NP PSPs. 

 

This work shows that despite the ease of preparing and working with borate buffer, it 

provides much lower performance as illustrated by the low S/N than even CHES provides 

at the same pH. Tris at pH 7.21 is shown to be the most consistent performer between the 

BAAMPS NP PSP and the SDS micelles. This reaffirms the choice of Tris as the buffer 

used for all LSER work.  

 

Curiously, all buffers experience a pattern of change in efficiency with varying acetone 

content in the sample, but the patterns are not consistent. Whether this means that there is 
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an optimum concentration of organic sample modifier for each buffer remains an open 

question.  

 
Figure 58 The BGE composition has minimal effect on NP size as measured by DLS in the 10 mM buffer used in the 

experiments above.  

 

It is also important to note that the BAAMPS NP PSP experienced minimal change in its 

size in the various buffers at the low BGE concentrations needed for EKC. This further 

illustrates that the architecture of the NP remains consistent between buffers.  

 

5.6.2 Organic Solvent stability/ modifiers  
One of the primary categories in which NP PSPs outperform most other classes of PSP is 

stability in the presence of organic modifiers in the BGE. As shown in Figure 10 on page 

2-22, organic modifiers cause high CMC for micellar PSPs leading to other deleterious 

effects. To illustrate the stability of NP PSPs in the presence of organic modifiers, the 

retention factors of many LSER compounds were measured at various concentrations of 

acetonitrile (ACN). The resulting plot (Figure 59) and chromatogram (Figure 60) show 

the NP PSP retention decreases consistently with increasing ACN content while the 

selectivity remains the same. 

 



5-102 

 

 

 

 
Figure 59 Retention factor vs % acetonitrile in BGE for BAAMPS (HNC-25) NP PSP. The reduction in retention is 

uniform and consistent to at least 35% acetonitrile content in the BGE. While the linear relationship between log k and 

% organic modifier that characterizes reversed-phase behavior is not fully observed here, a consistent decrease in 

retention with no change in selectivity is observed.  

 

The data illustrate the capability to control retention with organic modifier content in the 

BGE. Little degradation of the baseline occurs until high ACN concentrations are reached 

(>15%). At high modifier concentrations loss of resolution between compounds with low 

retention is observed, but the reduced retention for highly retained compounds like 

propylbenzene and naphthalene provides improved resolution as predicted in Figure 7 on 

page 1-13 for compounds with more intermediate retention factors.  
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Figure 60 Separations of selected LSER compounds by BAAMPS (HNC-25) in A) 0%, B) 15%, and C) 35% acetonitrile 

organic modifier in 10mM Tris BGE. Compounds used are listed in Figure 59. 
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While some rise in baseline is observed at high modifier percentages, the signal to noise 

ratio and peak shapes remain excellent even at very high ACN content.  

 

 
Figure 61 Change in retention from low levels of organic modifier. Extremely low concentrations of ACN were tested 

to check for concentration of the modifier in the NPs. The lack of any meaningful change in log(k) suggests that the 

modifier is not concentrated in the NPs but remains as a homogenous solution in the BGE.. 

 

In section 3.2 Emulsion Polymerization, the ability of hydrophobic polymers like butyl 

acrylate to better solvate their own monomer than water resulted in the saturation of 

polymer particles with monomer. The behavior of the NP PSPs at very low 

concentrations of ACN in the BGE was investigated to determine if NP PSPs provide a 

hydrophobic environment capable of extracting an organic modifier from the BGE, thus 

modifying the selectivity of the NP by changing the internal solvation environment 

within the NP. 

 

It was found that of the many compounds that were tested only acetophenone showed 

even a slight anomalous response to the modifier concentration before the concentration 

was high enough to provide a significant impact on the solute-solvent interactions 

available in the BGE. This suggests that the organic modifier does not significantly alter 

the environment within the NP PSP and that the changes in retention factor achieved by 

addition of an organic modifier may be attributed to its effects on the BGE rather than the 

NP PSP.  
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5.6.3 Detector Compatibility 

Mass Spectrometer  
Another context in which PSP stability is necessary for good performance is during 

ionization and MS detection. While this is not a research focus of the work reported here, 

some preliminary data has been generated through collaboration with Emily Hilder and 

the Australian Center for Research on Separations Science (ACROSS) at the University 

of Tasmania. Jesse Hyslop spent several months studying the behavior of NP PSPs with 

MS detection at the University of Tasmania in 2014 through the award of an East Asia 

Pacific Summer Institutes (EAPSI) fellowship from the NSF in collaboration with the 

Australian Academy of Science (AAS).  

 

In this research several beta-blockers were analyzed by CE and EKC separations with 

Atmospheric Pressure Chemical Ionization Mass Spectroscopy (APCI-MS). This 

represents the first known report of APCI with NP PSPs, although some similar CE-

APCI-MS work has been reported in the past [189]. More information on the APCI 

device, its history, and integration with CE can be found in the excellent review by 

Hommerson et al. [215]. 

 

 
Figure 62 Effects of 0.3% w/w NP PSPs on MS detection of beta-blocker compounds. The peak area of the most 

abundant ion for each compound is reported as a percentage of the peak area in BGE without NP PSP. Despite 

relatively low sensitivity, the superiority of the small NPs over large NP PSPs is evident, as well as the compatibility of 

all five beta-blockers with the six NP PSPs in EKC-APCI-MS.  

 

While all five beta-blockers can be detected and quantified by NP EKC-APCI-MS, some 

NP PSPs show significantly better peak area arising from better ionization efficiency and 

from better peak shape under the effects of EKC than during elution without the NP PSP. 

Within uncertainty, the small NP PSPs match or exceed the performance of the large NP 

PSP. The BAAMPS NPs provided the most consistent performance, and the enhanced 

signal exhibited by half of the beta-blockers with the small EAAMPS NPs is intriguing 

and warrants further investigation.  
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Figure 63 Extracted ion chromatograms of beta-blockers run in BGE (Top) and separated by Small BAAMPS (LH-11) 

NP PSP (Bottom) and detected with APCI-MS. Note that the NP PSP has little effect on peak height. 80cm x 50µm 

capillary with 50/2 mbar/sec injection 100 ppm samples. EKC at 25kV with 0.3% w/w NP PSP. Peak 1 Nadolol 

(310m/z); Peak 2 Pindolol (249m/z); Peak 3 Alprenolol (250m/z); Peak 4 Proprenolol (260m/z); Peak 5 Labetalol 

(329m/z). 

 

The 20 mM ammonium carbonate buffer (pH 9.99, 10% ACN) did not appear to produce 

excessive noise or interference, but the sensitivity of the analysis was lower than 

expected. Although the APCI parameters were optimized, it is probable that significant 

improvement in sensitivity could be achieved with further optimization of the MS 

settings and sheath flow composition.  

 

While this work should not be construed to demonstrate a rigorous investigation of NP 

PSP performance in NP EKC-APCI-MS, it does represent a robust demonstration of the 

compatibility of these NP PSPs with APCI ionization.  

 

UV-VIS Spectrometer  
To be compatible with UV/VIS detectors NP PSPs must produce minimal light scattering 

from the NPs at the analytical wavelengths and avoid any strong absorbance at those 

wavelengths. Light scattering appears to cause little signal loss as all NPs are relatively 
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small relative to the analytical wavelengths. Most NP PSPs exhibit very similar 

absorbance properties to one another.  

 

 
Figure 64 UV/VIS spectra of BAAMPS (LH-5) 0.00245% w/w in 1 cm cuvette. 

 

The calibration curves used to measure the molar absorptivity of the primary NP 

components and products are available in Appendix B – Molar Absorptivity on page 8-

140. While the NP has very strong absorbance, its presence in EKC at µM concentrations 

(assuming a molar mass of 40,000 u), mitigates its impact on UV-VIS detection 

sufficiently for the analysis of small molecules down to 1-10 ppm LOD. 

 

  200nm 210nm 245nm 310nm 320nm 400nm 

CTA (AU/M*cm) 6651 4946 1543 13399 11884 30 

mCTA (AU/M*cm) 30642 11855 1828 9386 8029 335 

NP (AU/M*cm) 48656661 39776957 20641263 10054435 8977863 4237660 
Table 11 Molar Absorptivity of CTA, AMPS mCTA, and BAAMPS (LH-5) NP. The NP is assumed to have a molar mass 

of 40,000 u.  

 

5.7 Conductivity  
One of the key advantages of NP PSPs is that they do not significantly change the 

conductivity of a BGE. Unlike MEKC where there is always a concentration of surfactant 

equal to the CMC of the surfactant in solution, NP PSPs do not have any associated free 

surfactant to raise the conductivity. Additionally, these NP PSPs operate at lower 

concentrations than most other PSPs due to their strong hydrophobic character and high 

affinity for solutes. Because much less material is needed than for other classes of PSP, 

there are even fewer ionic groups to carry charge introduced by the NP PSP.  
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The conductivity of the BGE and PSP solution is easily measured by the current 

conducted at a given electric field strength in the capillary. Conductivity, the reciprocal 

of resistance, is equal to the ratio of the current to the voltage. Therefore current is a 

direct measure of conductivity in fixed-voltage EKC in capillaries of equivalent 

dimensions.  

 

 
Figure 65 Conductivity of NP PSP (HNC-25) in 10mM Borate as a function of NP concentration and Buffer 

concentration. The conductivity is shown to be dominated by the BGE concentration will only minor contributions from 

the NP PSP. 48.5 cm x 50 µm capillary, 20kV, pH 9.2, 25°C. 

 

The very low conductivity increase associated with a NP PSP is reflected in the 

extremely small increases in current observed with increasing NP PSP concentration 

compared to the current observed from the BGE alone as shown in Figure 65. The 

additional current carried by the NPs is negligible at these typical NP concentrations. 
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Figure 66 Current with NP PSP (HNC-25) and SDS micelles in various 10mM BGEs. 48.5 cm x 50 µm capillary, 20kV, 

25°C. All buffers but Tris (pH 7.2) are at their pKa. 

 

The observed current in several EKC BGEs containing typical concentrations of a NP 

PSP and SDS are shown in Figure 66. In all cases, the NP PSP system carries 

significantly less current, with an average absolute difference in current of 11.3±0.3 µA.  

Depending on the background conductivity of the BGE, this represents a 2.3 to 5.9 fold 

decrease in current when using the NP PSP.  The overall conductivity of the BGE is the 

sum of the background BGE conductivity and the conductivity of the added PSP. The 

background conductivity is a function of the concentration and extent of ionization of the 

buffer components.  

 

The polyprotic buffers Bis-Tris and Borate both provide somewhat lower conductivity 

than zwitterionic buffers of the same pH (HEPES and CHES respectively) despite 

providing identical 10 mM buffer capacity. This suggests that polyprotic buffers do run 

“cooler” than monoprotic buffers. Tris was tested at pH 7.2 where most of the buffer is in 

its conjugate base form, resulting in the observed elevated current over that of the other 

buffers.  

 

5.8 Mixed PSP Separations 
As shown above, each size and chemistry of NP PSP has its own degree of selectivity. 

This suggests that the selectivity could be controlled by mixing two NP PSPs to “tune” 

the selectivity.  

 

A pilot study has been conducted by determining the retention factors of several LSER 

compounds in 0.3% w/w solutions of BAAMPS (LH-5) and EAAMPS (LH-12) NP PSP 

under typical 10 mM Tris conditions as well as in mixed solution of 0.15% BAAMPS 

and 0.15% EAAMPS NP PSP. 
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Analyte 

retention (k) in: 

0.3% 

BAAMPS 

0.15% BAAMPS 

0.15% EAAMPS 

0.3% 

EAAMPS 

Calculated 

Mobility 

Measured 

Mobility 

% Error 

in Mobility 

Acetophenone 0.144 0.131 0.118 -0.455 -0.460 1.1 

Propiophenone 0.525 0.455 0.377 -1.230 -1.244 1.2 

Butyrophenone 1.577 1.339 1.037 -2.249 -2.277 1.2 

Valerophenone 4.770 4.174 3.053 -3.165 -3.208 1.3 

Hexanophenone 13.561 13.223 9.469 -3.644 -3.697 1.4 

Heptanophenone 32.021 35.416 26.521 -3.802 -3.867 1.7 

Benzonitrile 0.191 0.165 0.167 -0.596 -0.563 -5.8 

4-Chloroaniline 0.440 0.410 0.399 -1.157 -1.157 -0.1 

3-Chlorophenol 0.686 0.665 0.647 -1.564 -1.588 1.5 

Chlorobenzene 2.616 2.054 1.821 -2.730 -2.674 -2.1 

Napthalene 8.855 8.165 7.804 -3.501 -3.543 1.2 

Table 12 Variation from modeled retention for mixed NP PSPs shows an average 0.24% error from predicted analyte 

mobility. The average of the absolute values of percent error is 1.7%. 

 

Given the measured retention factors for an individual analyte on each PSP and the 

electrophoretic mobilities for each of the PSPs, an expected electrophoretic mobility for 

that analyte can be predicted and calculated using Equation 5-5.  In this approach, the 

mobility of the analyte is effectively weighted to the affinity and mobility of each PSP by 

summing the fractions of the analyte in each PSP times the mobility of each PSP.  The 

approach assumes that the two PSPs act as independent phases and not as a single mixed 

phase. 

 

 
∆𝜇𝑟(𝑐𝑎𝑙𝑐) =

1

1 + 𝑘𝑃𝑆𝑃1 + 𝑘𝑃𝑆𝑃2

(𝜇𝑃𝑆𝑃1𝑘𝑃𝑆𝑃1 + 𝜇𝑃𝑆𝑃2𝑘𝑃𝑆𝑃2) 5-5 

 

The effect on the mobility of each of eleven analytes was determined from individual 

retention times of the analytes using measured NP PSP mobilities of –4.24  10-4 cm2 V-1 

S-1 for BAAMPS and -3.56  10-4 cm2 V-1 S-1 for EAAMPS.  Experimental 𝜇𝐸𝑂𝐹 values 

were calculated with Equation 1-6 and 𝜇𝑟 was calculated by Equation 1-8 (see page 1-

11).  The experimental analyte mobility by the mixed NP PSP was calculated with 

Equation 5-6 and compared to the calculated mobility from Equation 5-5 using the 

mobility and retention factors of the analytes with each of the NP PSPs. This method is 

reproduced from [133].  The measured analyte mobilities are reported in the measured 

mobility column in Table 12 and the effect predicted by the retention of the analytes in 

the pure NP PSPs using Equation 5-5 is shown in the calculated mobility column. 

 

 𝜇𝑒𝑝,𝑟(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) = 𝜇𝐸𝑂𝐹 − 𝜇𝑟 5-6 

 

The low average error of 0.24% between calculated and measured mobilities shows that 

EKC with a mixture of two NP PSPs performs very much as expected with retention 

operating as a weighted sum of the retention by two independent phases. However, it 
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must be noted that if the two analytes with the greatest errors (benzonitrile and 

chlorobenzene) are excluded, the remaining analytes have a consistent +1.3±0.2% error, 

implying a bias towards the more retentive phase.  

 

Based on this pilot study we may expect consistent retention behavior within mixtures of 

NP PSPs. This allows the expected analyte mobilities provided by a mixture of NP PSPs 

to be calculated a priori, allowing the model to be used to predict conditions that 

maximize resolution between analytes or otherwise optimize the chromatographic 

performance of a mixed NP PSP system. This illustrates an additional method of 

selectivity control provided by NP PSPs. 

 

5.9 Separations  
Separations of compounds of interest to several fields that employ chromatography are 

briefly reported here to demonstrate the application of NP PSPs to practical 

chromatographic tasks. By utilizing the fundamental principles developed in this work, 

future research should be expected to produce even better results. 

 

Explosives  
The rapid detection and identification of explosives is important for a multitude of safety 

and security applications. To illustrate the potential capability of NP PSPs to the analyses 

of these types of compounds a representative separation of seventeen explosive 

compounds and degradation products is shown in Figure 67. These compounds were 

separated by a BAAMPS NP PSP (HNC-25) under typical conditions. A complete study 

of the application of NP PSPs to the analysis of explosives and explosive residues will be 

reported in detail by Julie McGettrick in her forthcoming publications and dissertation. 

 

 
Figure 67 EKC separation of 17 explosive compounds and residues in 5 minutes by BAAMPS (HNC-25) NP PSP. From 

left to right: Acetone, RDX, Nitrobenzene, Dinitrobenzene, Trinitrobenzene, HMX, Dinitroaniline, 4-Nitrotoluene, 3-

Nitrotoluene, 2-Nitrotoluene, 2,6-Dinitrotoluene, 2,4- Dinitrotoluene, 2-Amino, 4,6- Dinitrotoluene, Nitroglycerin, 

Trinitrotoluene, 4-Amino-2,6-Dinitrotoluene, Tetryl. 

 

Figure 67 demonstrates the separation of 16 of 17 compounds, including the 2/3/4-

nitrotoluene series and the nitro-, dinitro-, and trinitrobenzene series in under five 

minutes. Explosives such as RDX, HMX, TNT, and Nitroglycerin are easily resolved. No 

organic solvents were needed aside from acetone to mark t0.  
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PAH 
The compatibility of NP PSPs with organic modifiers allows the retention factor of 

highly hydrophobic analytes to be controlled with modifier content. To demonstrate this a 

number of polynuclear aromatic hydrocarbons (PAH) were separated by NP EKC as 

shown in Figure 68. The relatively low plate counts in this separation are apparently 

characteristic for these large multi-ring PAHs.  This behavior requires further 

investigation to determine whether it is endemic to the NP PSPs.  Separations of other 

compounds in BGEs containing up to 35% acetonitrile showed much higher plate counts, 

suggesting that the low plate counts in Figure 68 are associated with the analytes and not 

the addition of acetonitrile. 

 

 
Figure 68 Separation of 10 PAH compounds by NP EKC in 3 min. 0.3% BAAMPS (HNC-25) in pH 7.23 10mM Tris 

with 30% ACN. 20kV on 32 cm 50 µm ID capillary. 20 ppm sample injected with 70mbar/s pressure. 1) Anthracene, 2) 

Acenaphthylene, 3) Retene, 4) Pyrene, 5) Chrysene, 6) Benz(a)anthracene, 7) Dibenz[a,h]anthracene, 8) 

Benz[e]Acephenanthrylen, 9) Benzo(k)fluoranthene, 10) Benzo(e)pyrene 

 

5.10 Principal Component Analysis 
 

How NP PSPs are related to other classes of PSP is illustrated by including the NP PSPs 

analyzed by LSER alongside 54 other PSPs from the literature in the Principal 

Component Analysis (PCA) of PSPs recently published by Khaledi and coworkers [47]. 

Khaledi identified four “clusters” of PSPs characterized by similar behavior as described 

by their LSER parameters (Figure 69). Including the five NP PSP parameters from this 

work in in Khaledi’s analysis produces an identical classification of the 54 PSPs and 16 

decoy systems from [47] with the five NP PSPs bridging between Cluster II and IV.  
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Figure 69 PCA of 54 PSPs, 16 dummy PSPs(replicate data of SDS), and 5 NP PSPs using the procedures and data 

from [47] with the NP PSP LSER data from this work. The NP PSPs bridge Clusters II and IV. This demonstrates both 

the centrality of the hydrophobic block to the behavior of the PSP and the broad range of behavior that can be 

controlled by monomer selection in NP PSPs. 

 

Khaledi reports that Cluster I consists of a series of fluorinated surfactants (illustrating 

the unique behavior of fluorinated materials as PSPs), Cluster II spans from the cationic 

surfactant hexadecyltrimethyl ammonium bromide (#38) to a group of alkyl 

methacrylate-based polymer PSPs. Clusters III and IV have no clear boundary, indicating 

comparable selectivity. They are therefore differentiated by PSP types: Cluster III is 

mostly comprised of polymer PSPs including Elvacite 2669 (#33) and siloxane-based 

polymers (#40-47). Cluster IV primarily contains micellar PSPs including the “dummy 

PSPs” consisting of SDS parameters measured by many laboratories under various 

conditions. PSP #34 midway between Cluster I and IV is noteworthy as a mixed micelle 

of LiPFOS fluorinated surfactant and LiDS hydrocarbon surfactant that demonstrates 

hybrid behavior.  
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The NP PSPs are primarily distributed by their core chemistry between Clusters II and IV 

indicating that their characteristics are most consistent with the chemically similar alkyl 

methacrylate-based polymer PSPs. However, the more cohesive NPs with shorter alkyl 

chains have behavior that approaches or enters the domain of surfactant based PSPs.  

 

This PCA demonstrates that the NP PSPs provide consistent behavior with polymers 

chemically similar to the hydrophobic block of the NPs as well as demonstrating the 

breath of synthetic control provided by the NP PSP approach. This provides further 

evidence that solute interactions are localized to the hydrophobic block of the polymers 

comprising the NPs.  
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Chapter 6 Summary and Conclusions 
 

Chromatography is a fundamental tool used in most fields of chemistry and biochemistry 

as well as some fields of engineering and physics. As such it is a critical enabling 

technology. Advances in chromatography are rapidly brought into use to speed the 

development of technologies as diverse as drug development in pharmacology, flavor 

analysis in the food sector, and water quality monitoring in environmental monitoring 

and compliance.   

 

Among the many chromatographic systems available today, Capillary Electrophoresis 

(CE) stands out for its simple and rugged instrumental design coupled with unique 

properties that greatly enhance the performance of CE over other chromatographic 

systems like HPLC and IC that can be used for similar tasks. CE’s use of electroosmotic 

flow (EOF) (page 1-4) to provide bulk transport through the capillary column without 

band broadening from parabolic flow profiles intrinsic to pressure driven systems like 

HPLC (page 1-6) is a key advantage. Another is the extremely small injection volumes 

needed—on the order of a few nanoliters. Many other properties are discussed in section 

1.1.3 Capillary Electrophoresis on page 1-4. 

 

However, CE is unable to separate neutral compounds on its own. Electrokinetic 

Chromatography (EKC) is a technique developed in 1984 [7] to separate neutral 

compounds by their retention in a Pseudostationary Phase (PSP), analogous to retention 

chromatography in HPLC (1.2 Electrokinetic Chromatography page 1-8). The PSP is the 

heart of EKC separations and much research has been conducted in the intervening years 

(see Chapter 2: The Development of the PSP).  

 

The advantages of several of the different classes of PSPs that have been previously 

developed have been united in the most recent generation of Nanoparticle (NP) PSPs 

(page 2-40). The synthesis of these NP PSPs is made possible by the use of recent 

advancements in Reversible Addition-Fragmentation chain Transfer (RAFT) 

polymerization (See Chapter 3: RAFT Synthesis). RAFT allows the synthesis of 

copolymers with control of both polymer block chemistry and length, providing control 

over the architecture of the resulting polymer NP PSP (4.2 Synthetic methods page 4-57). 

 

While the performance of this latest generation of NP PSPs has been demonstrated in two 

earlier papers [157], [158] using a single batch of poly(butyl acrylate) /poly(acrylic acid) 

(BAAA) based NP PSP, this work reports the relationship between NP architecture and 

their performance as a PSP in EKC for the first time (Chapter 5: Results page 5-70). 

 

Each component of NP architecture was sequentially investigated. For the ionic block of 

the polymer poly(acrylic acid) and poly(AMPS) (AMPS described on page 4-57) were 

both used with five to ten mer block lengths (Table 7 page 5-77) as measured by MALDI 

(pages 4-54 and 4-60). Poly(butyl acrylate) hydrophobic blocks were used to demonstrate 

that the BAAA and BAAMPS NPs respectively showed little variation in mobility with 

ionic block length between 6 and 11 mer AMPS, and no major difference between the 
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BAAA and BAAMPS chemistries (5.1.1 Ionic Block page 5-70). NPs with AMPS ionic 

blocks were used for the characterization of the remaining architectural properties.  

 

The hydrophobic block of the copolymers was synthesized with hexyl-, butyl-, ethyl-, 

and methyl-acrylate monomers to yield HAAMPS, BAAMPS, EAAMPS, and MAAMPS 

NPs. The hypothesis that increasing the hydrophobicity of the monomer would produce a 

more hydrophobic NP with increased retention for non-polar compounds was confirmed 

up to an alkyl chain length of four (5.3 Methylene Selectivity page 5-86). Methylene 

selectivity, the metric for the strength of hydrophobic interaction, shows that increasing 

alkyl chain length of the monomer increased the strength of the interactions up to 

BAAMPS, where the methylene selectivity seems to plateau (see Figure 47 on page 5-

86), as HAAMPS provides analogous results and the increasing insolubility of the 

monomer makes synthesis more difficult. 

 

The final architectural variable was the size of the NP. This may be controlled by the 

amount of monomer used during the synthesis of the hydrophobic block (5.1.2 

Hydrophobic Block page 5-77 and Figure 43 page 5-79). Using this stoichiometric 

control BAAMPS, EAAMPS, and MAAMPS NPs were synthesized in small (average 15 

nm) and large (average 126 nm) sizes. The EKC performance of this set of six NP PSPs 

was then investigated. The results of this work makes up much of the sections 5.2.1 

Electrophoretic Mobility (page 5-83), 5.3 Methylene Selectivity (page 5-86), 5.4 

Efficiency (page 5-87), and 5.5 LSER Characterization (5-92) as well as being used to 

demonstrate compatibility with APCI-MS detection (page 5-105). 

 

The Linear Solvation Energy Relationship (LSER) studies (page 5-92) show that the less 

hydrophobic or smaller NP demonstrates more aqueous-like solvent behavior than a 

larger NP of the same chemistry or than a NP of more hydrophobic character. This 

pattern is reflected throughout this work, with smaller or less hydrophobic NP PSPs 

exhibiting behavior nearer to the Back Ground Electrolyte (BGE) than larger or more 

hydrophobic NP PSPs.  

 

One peculiar behavior observed in the efficiency of both these NPs and the previously 

reported BAAA NP is that efficiency deteriorates with increasing retention. The degree 

of broadening is greater than that projected for diffusion, and although all major theories 

related to broadening in EKC have been considered (section 5.4 Efficiency page 5-87), 

none of the existing models of band broadening fully explain the observed behavior.  

 

Despite this broadening, the NP PSPs were capable of efficiencies of over half a million 

theoretical plates for a separation taking only a few minutes (Table 9 page 5-82). This 

equates to an average efficiency of more than a million plates per meter during the 

separation of acetophenone, propiophenone, butyrophenone, valerophenone, 

heptanophenone, and hexanophenone. These six phenones span the entire separation 

window and experience the same broadening other compounds do. This peak efficiency 

was obtained with the small BAAMPS NP. Larger and less hydrophobic NP PSPs trend 

around a quarter million theoretical plates on 48.5 cm capillaries.  
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While the smaller NPs typically exhibit better performance than their larger counterparts, 

NP chemistry has greater influence over selectivity than size (Figure 49 page 5-88 and 

Figure 47 page 5-86).  

 

With this in mind, the overall finding is that smaller and more hydrophobic NP PSPs are 

preferred as a general purpose PSP. Specifically, NPs less than 25 nm in diameter and 

with the hydrophobic block of the copolymer comprised of poly(butyl acrylate) give the 

best overall performance.  

 

The NP PSPs are fully compatible with organic modifiers in the BGE (page 5-101) and 

provide no significant contribution to the conductivity of the system (page 5-107). These 

properties enable NP PSPs to be employed in a broad range of separations applications 

because the selectivity of the system can be modified by changing the BGE composition 

without needing many different types of PSP. The low conductivity of NP PSPs allows 

high electric field strengths to be used, reducing the total analysis time.  

 

 
Figure 70 Separation of 22 compounds in under 5 min by NP EKC using BAAMPS (JSH-11A). Peak assignments in 

Figure 71 of Appendix A - LSER. Reproduced from authors paper [160]. 

 

6.1 Future Work 
This work has laid a quantitative foundation to the understanding the behavior of polymer 

NPs as PSPs in EKC that will inform future research and production of NP PSPs. It also 

illuminates where some of the most promising variations on the chemistries employed 

here may be found.  

 

Cationic NP PSPs are a natural extension of this technology. While the anionic NPs used 

in this work function well with neutral analytes, cationic analytes may have unwanted 

interactions with the PSP or may adsorb to the anionic capillary walls. Cationic NP PSPs 

offer to broaden the compatibility of EKC by operating in capillaries coated with cationic 
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material (potentially the PSP its self) to reverse the EOF and prevent adsorption of 

positively charged analytes. This work is currently being pursued in the Palmer research 

group by Julie McGettrick.  

 

The ability to incorporate any desired chemistry into the NP PSPs that can be acquired as 

a monomer and is compatible with RAFT opens up many opportunities to synthesize NP 

PSPs with specific selectivity for a given task. One of the most challenging types of 

selectivity to produce is chiral selectivity for the separation of enantiomers.  

 

By utilizing the methyl ester of amino acids as the hydrophobic monomer in the synthetic 

scheme reported here, it should be possible to synthesize NP PSPs with amino acids 

providing both hydrophobic interactions and chiral centers to provide enantiomeric 

selectivity. Amino acids and dipeptides have been demonstrated to provide chiral 

resolution before (Chapter 2 page 2-29), so this is a promising opportunity. The increased 

methylene selectivity and large number of chiral centers that would be provided by a NP 

comprised of amino acids should greatly improve the magnitude of chiral selectivity. 

This would merge the advantages of CD with those of the NP PSPs reported here. This 

project is currently being pursued in the Palmer research group by Derek Schultz.  

 

Aromatic character is another chemistry that could be incorporated into NP PSPs. Styrene 

NPs (StAMPS) were attempted during this work and synthesis was identified as a 

challenge that will require more optimization. The arene is expected to provide stronger 

π-π and induced dipole interactions. However, the strong absorption of aromatic 

compounds in the UV means that a StAAMPS NP may have limited compatibility with 

UV-VIS detection and require fluoresce or MS detection.  

 

Fluorinated NPs are another alternate chemistry that may provide useful selectivity. 

Fluorinated compounds are known to have higher affinity for fluorinated solvents than 

for the protonated versions of the same solvents [216] and it may be possible to leverage 

this to provide fluorous selectivity. Beyond the several specific selectivities outlined here, 

any number of monomers may be incorporated into polymer NP PSPs.  

 

Moving beyond the development of new selectivities, bringing NP PSPs to the 

chromatography market will require further development of the synthesis to scale up 

synthesis from the 4 g batches in this work to production quantities of tens of kg. As 

RAFT polymerization has become more widely understood and employed throughout the 

polymer industry, no difficulty is anticipated in scaling up synthesis to commercial 

quantities.  

 

The characterization of the RAFT copolymers in terms of molecular mass or degree of 

polymerization is extremely challenging as the copolymers aggregate into particles. This 

precludes traditional approaches such as size exclusion chromatography (SEC) from 

being used to determine the molecular mass. Even if SEC could be applied, no standards 

are available for the unique amphiphilic diblock copolymers that comprise these NP 

PSPs. This provides a novel research opportunity for polymer chemists utilizing alternate 
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instrumentation like NMR or CE and techniques including Melt-State NMR to 

investigate the properties of the copolymer materials [178], [179], [181], [217]–[219].  

  

Finally, the broadening mechanics of NP PSPs have already been noted as an area for 

further investigation and modeling.  
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Peak Solute V E S α β 

21 1-methylnapthalene 1.226 1.344 0.9 0 0.2 
16 1-Napthol 1.1441 1.52 1.08 0.61 0.4 

 3,5-Dimethylphenol 1.057 0.82 0.84 0.57 0.36 
 3-Bromophenol 0.95 1.06 1.15 0.7 0.16 

11 3-Chlorophenol 0.898 0.909 1.06 0.69 0.15 
 3-methyl benzyl Alcohol 1.057 0.815 0.9 0.33 0.59 
 4-Bromophenol 0.95 1.08 1.17 0.67 0.2 
 4-Chloroacetophenone 1.136 0.955 1.09 0 0.44 
 4-Chloroaniline 0.939 1.06 1.13 0.3 0.31 

10 4-Chlorophenol 0.898 0.915 1.08 0.67 0.2 
 4-Chlorotoluene 0.98 0.705 0.67 0 0.07 

9 4-ethylphenol 1.057 0.8 0.9 0.55 0.36 
 4-fluorophenol 0.793 0.67 0.97 0.63 0.23 

6 4-nitroaniline 0.9904 1.22 1.91 0.42 0.38 
 4-Nitrotoluene 1.032 0.87 1.11 0 0.28 

4 Acetophenone 1.014 0.818 1.01 0 0.48 
 Anisole 0.916 0.708 0.75 0 0.29 
 Benzene 0.716 0.61 0.52 0 0.14 

5 Benzonitrile 0.871 0.742 1.11 0 0.33 
2 Benzyl Alcohol 0.916 0.803 0.87 0.33 0.56 
 biphenyl 1.324 1.36 0.99 0 0.22 

15 Chlorobenzene 0.839 0.718 0.65 0 0.07 
 Ethylbenzene 0.998 0.613 0.51 0 0.15 
 Ethylbenzoate 1.214 0.689 0.85 0 0.46 

12 Indole 0.946 1.2 1.12 0.44 0.22 
18 Iodebenzene 0.975 1.188 0.82 0 0.12 

 M-Cresol 0.916 0.822 0.88 0.57 0.34 
 Methyl benzoate 1.073 0.733 0.85 0 0.46 

14 Methyl-o-toluate 1.214 0.772 0.87 0 0.43 
19 Napthalene 1.085 1.36 0.92 0 0.2 
7 Nitrobenzene 0.891 0.871 1.11 0 0.28 
 p-Cresol 0.916 0.82 0.87 0.57 0.31 

3 Phenol 0.775 0.805 0.89 0.6 0.3 
 Phenyl Acetate 1.073 0.661 1.13 0 0.54 

8 propiophenone 1.155 0.804 0.95 0 0.51 
20 Propylbenzene 1.139 0.604 0.5 0 0.15 
17 p-Xylene 0.998 0.613 0.52 0 0.16 

 Resorcinol 0.834 0.98 1 1.1 0.58 
13 Toluene 0.857 0.601 0.52 0 0.14 
1 Acetone N/A N/A N/A N/A N/A 

22 Hexanophenone N/A N/A N/A N/A N/A 
Figure 71 Thirty nine solutes and LSER solute descriptors and retention order in Figure 70.  
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Appendix B – Molar Absorptivity  
 

 

 
Figure 72 Molar Absorptivity of CTA calibration curves. 
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Figure 73 Molar Absorptivity of AMPS mCTA calibration curves. 
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Figure 74 Molar Absorptivity of BAAMPS (LH-5) NP calibration curves. 
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Appendix C – SEM Images  
 

 
Figure 75 SEM image of dried large BAAMPS (LH-5) material. The micro structures are similar in diameter to DLS 

measurements, although desolation appears to have resulted in the flocculation of most of the polymer NPs into an 

amorphous solid.  
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Figure 76 SEM image of large MAAMPS (LH-103) material. If the blobs are infact deslovated NPs they have droped to 

about half the size measured by DLS.  
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    …happily ever after.  


