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Reef 
 
Chairperson:  Mike DeGrandpre 
 
 
 
  Currently, our understanding of alkalinity (AT) variability in highly dynamic 
environments such as coral reefs is limited by the dearth of AT measurements. In order to 
better characterize these environments, high temporal resolution AT data are needed. This 
work employed the newly developed Submersible Autonomous Moored Instrument for 
Alkalinity (SAMI-alk), a fully autonomous in situ AT analyzer, to study seawater AT 
variability. The main goals of this research were to evaluate the utility of combining the 
SAMI-alk data with currently available in situ measurements of pH and partial pressure 
of carbon dioxide (pCO2) to characterize the inorganic carbon cycle, and to measure AT 
variability and determine what drives it on a coral reef.  
  Autonomous AT and pH sensors (SAMI-alk and SAMI-pH) were deployed along with 
existing pCO2 (MAPCO2) and pH (SeaFET) sensors in Kanoehe Bay, HI from June 4 – 
21, 2013. The results show that the pH – AT combination can provide important 
information about autonomously measured in situ data quality, and that it can be used to 
fully characterize the inorganic CO2 system in seawater. The SAMI-alk data were also 
used to examine AT variability and thereby calcification rates on coral reefs in Kaneohe 
Bay. AT varied by more than 100 µmol kg-1 on a diel basis due to CaCO3 production and 
dissolution. Dissolved inorganic carbon (DIC), calculated from the pH – AT sensor pair, 
varied by more than 200 µmol kg-1, due primarily to biological metabolism on the reef.  
Reef calcification and metabolism dramatically alter the seawater chemistry from the 
open ocean source water and drive the large diel changes in all measured inorganic 
carbon parameters (i.e. aragonite saturation state (Ωarag), pH, pCO2, AT, DIC). This data 
set demonstrates the value of a high-quality in situ AT analyzer in a coral reef 
environment; making it possible to determine combined CO2 system variability with 
unprecedented temporal resolution. These data show that NEC can be consistently 
sustained (net CaCO3 production) until a threshold level of net respiration (NEP) is 
reached, around -50 (mmol m-2 h-1), which corresponds to an AT : DIC ratio of about 1:1. 
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CHAPTER 1 

Introduction 
1.1 Overview 
 

The level of carbon dioxide (CO2) in the atmosphere has increased from 280 to ~400 

µatm due to fossil fuel consumption since the start of the industrial revolution (Takahashi 

et al., 2009; Bates et al., 2014; Sutton et al., 2014) (Fig. 1.1). The oceans have mitigated 

an even greater increase in atmospheric pCO2 by absorbing about 25% of the 

anthropogenic CO2 in the atmosphere (Sabine et al., 2004). This uptake of CO2 has 

decreased pH by ~0.13 pH units changing the inorganic carbon concentration and 

speciation (Broecker et al., 1979; Caldeira and Wickett, 2003; Dore et al., 2009). The 

decrease in pH is called ‘ocean acidification’ (Raven et al., 2005; Hönisch et al., 2012) 

(Fig. 1.1). Ocean acidification changes seawater chemistry speciation, for example 

converting carbonate (CO3
2-) to bicarbonate (HCO3

-), which can negatively affect marine 

ecosystems. Anthropogenic ocean acidification could contribute to a cascade of events 

that harm various ecological mechanisms such as shell building on coral reefs (Kleypas et 

al., 2006) and including services relied upon directly by humankind (Raven et al., 2005). 

The potential impacts of ocean acidification are far reaching, but their full extent is 

unknown.  
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Figure 1:1 Decades long trends in atmospheric (red) and surface seawater pCO2 (green), 
and pH (blue), from the Hawaii Ocean Time-series (HOT) station ALOHA (the Mona 
Loa Observatory Hawaii (atmospheric pCO2). Photosynthetic activity causes seasonal 
CO2 swings particularly in the northern hemisphere where CO2 is consumed in the 
summer and produced in the winter. Figure from the NOAA PMEL Carbon Program. 

 

The carbonate equilibria are presented below in Eqns. (1.1 – 1.5). When CO2 

dissolves in water (Eqn. 1.1) it forms carbonic acid (H2CO3) (Eqn. 1.2). It is difficult to 

experimentally distinguish between CO2 (aq) and H2CO3 so they are combined into one 

theoretical species (H2CO3
*) (Eqn. 1.3). The net result of CO2 dissolved in water is an 

increase in hydrogen ions, hence the term ‘ocean acidification’ (Eqn. 1.4).  
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CO2 (g) ↔ CO2 (aq)      (1.1) 

CO2 (aq) + H2O ↔ H2CO3     (1.2) 

H2CO3
* = CO2 (aq) + H2CO3     (1.3) 

H2CO3
* ↔ H+ + HCO3

-     (1.4) 

HCO3
- ↔ H+ + CO3

2-      (1.5) 

 

 The concentrations of the individual species of the CO2 system in solution cannot 

all readily be measured directly. Instead, there are four parameters that can be measured: 

pH, pCO2, dissolved inorganic carbon (DIC), and total alkalinity (AT). The expressions 

for each parameter are shown in equations 1.5-1.8, where KH is the Henry’s law constant. 

These are used together to obtain a complete description of the CO2 system in seawater 

(Clayton et al., 1995; Lee and Millero, 1995; McElligott et al., 1998; Byrne et al., 1999; 

Lee et al., 2000). 

 

pH = -log[H+]          (1.5) 

pCO2 = [H2CO3
*] / KH        (1.6)  

DIC = [H2CO3
*] + [HCO3

-] + [CO3
2-]      (1.7) 

AT = [HCO3
-] + 2[CO3

2-] + [B(OH)4
-] + [OH-] – [H+] – [HF] – [HSO4

-]  

         + minor nutrient species       (1.8)  
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Each parameter on the left side (pH, pCO2, DIC and AT ) is a commonly 

measured inorganic carbon parameter (Dickson et al., 2007). pH (Eqn. 1.5) is measured 

either spectrophotometrically or with an ion selective electrode. pCO2 is measured by 

equilibrating a sample with a small head space and analyzing it with an infrared (IR) 

analyzer (Eqn. 1.6) or using a membrane with enclosed pH indicator (DeGrandpre et al., 

1995). To determine DIC (Eqn. 1.7), a sample is acidified and the CO2 gas that is 

produced is extracted and measured coulometrically. Alkalinity (AT), defined as the 

number of moles of H+ equivalent to the excess proton acceptors over proton donors, 

(Eqn. 1.8) is measured by a titration with hydrochloric acid (HCl). All of the inorganic 

carbon species can be calculated with any two of these parameters (Lee and Millero, 

1995), but the combined resulting errors in calculating the CO2 system are smallest when 

either pH or pCO2 are combined with either DIC or AT (Clayton et al., 1995; Lee and 

Millero, 1995; McElligott et al., 1998; Byrne et al., 1999; Lee et al., 2000; Cullison Gray 

et al., 2011).  

The DeGrandpre Lab at the University of Montana focuses on the measurement of 

these parameters using autonomous sensors. There are commercially available 

autonomous instruments available to measure pH and pCO2 (DeGrandpre et al., 1995; 

Martz et al., 2003, 2010; Seidel et al., 2008; Sutton et al., 2015). While some progress has 

been made toward autonomous systems for measuring AT and DIC (Watanabe et al., 

2004; Bandstra et al., 2006; Gray et al., 2008; Sayles and Eck, 2009; Li et al., 2013; 

Spaulding et al., 2014), there are no commercial instruments available and, prior to this 

work, AT and DIC were limited to lab-based methods, which require automated or 

manual sample collection and manual analysis.  
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Overview In situ AT  
 

Conventional AT measurements require potentiometric pH and accurate volumetric or 

gravimetric measurement of the sample and HCl titrant (Hansson and Jagner, 1973; 

Dickson, 1981). This process is time consuming and requires that samples be collected in 

the field, transported to the lab for analysis, and manually loaded into the titration cell. In 

some marine ecosystems, such as coral reefs, the CO2 system (including AT) changes 

rapidly throughout the day (Cai et al., 2010), so in order to measure the full daily (i.e. 

diel) cycle many samples must be collected at multiple times of the day and night. This 

makes the task of characterizing short-term AT variability nearly impossible. Continuous 

in situ AT measurements are especially important on coral reefs because they can be used 

to directly quantify ecosystem calcification (Smith and Key, 1975), a key parameter 

reflecting reef health. As part of this project, the DeGrandpre lab, in collaboration with 

Sunburst Sensors (Missoula, MT), developed an autonomous AT system, the Submersible 

Autonomous Moored Sensor for Alkalinity (SAMI-alk). With this sensor, we now have 

the ability to measure AT with unprecedented temporal resolution, and therefore more 

effectively study coral reefs.  

 

1.2 Coral reefs 
 

The decline in ocean pH since pre-industrial times is accompanied by a decrease in 

the concentration of carbonate ions (CO3
2-) (Andersson et al., 2005; Orr et al., 2005). The 
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drop in CO3
2- results in a decreased saturation state for calcium carbonate (CaCO3), 

which makes it more difficult for many calcifying organisms to produce shells (Gattuso 

et al., 1999; Raven et al., 2005; Kleypas et al., 2006; Fabry et al., 2008; Doney et al., 

2009). While anthropogenic CO2 dissolves in the oceans, organisms in the water are 

forming their shells from CaCO3 (Eqns. 1.9 - 10). Aragonite is the key CaCO3 mineral 

organisms use to produce shell and skeleton material. The saturation state of aragonite is 

defined in Eqn. 1.9 where Ωarag is the saturation state for aragonite and Ksp is the 

solubility product for aragonite. Lower pH waters are corrosive to aragonite because of 

the reduced availability of [CO3
2-]. The net reaction of increased CO2 dissolving in 

seawater also leads to an excess of H+ (Eqns. 1.3-1.4) against which calcifiers must 

contend (Hofmann et al., 2010; Jury et al., 2010). Quantifying ecosystem calcification is 

an important step in understanding coral reef health and then making predictions about 

the susceptibility of coral reefs to ocean acidification (Langdon et al., 2000; Doney et al., 

2009; Andersson and Gledhill, 2013; Shaw et al., 2015). Specific contemporary research 

questions regarding corals will be discussed in Chapter 4. 

 

Ωarag = 
!"!

!
!!!!

!

!!"
      (1.9) 

Ca2+ + HCO3
- ↔ CaCO3 + H+    (1.10) 

 

1.3 Objectives 
 

The goals of this research are to utilize novel high temporal resolution AT data to 

fully characterize AT in order to better understand CO2 dynamics in a coral reef 
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ecosystem. We deployed a SAMI-alk along with a suite of other sensors including a 

Submersible Autonomous Moored Instrument for pH (SAMI-pH) in Kaneohe Bay, HI in 

2013. The SAMI-alk analyzed AT hourly for 17 days collecting a total of 263 in situ 

measurements capturing multiple diel cycles of AT and DIC in order to determine 

calcification and production on the reef (Spaulding et al., 2014). To our knowledge, this 

is the longest continuous study of AT variability that has ever been conducted with this 

temporal resolution. The performance of SAMI-alk during this deployment was evaluated 

by Spaulding et al. (2014); however, these data were not interpreted in the context of 

coral reef ecology. Here we present: the 17-day time series of nearly continuous AT, pH, 

and pCO2 measurements. Furthermore, this is the first time that 3 CO2 system parameters 

have been collected together on a mooring. The evaluation will include: 

Chapter 2: Experimental design and methods. 

Chapter 3: Analysis and characterization of the CO2 system, calculated multiple 

ways, and a performance evaluation of four autonomous sensors that measure CO2 

system parameters.   

Chapter 4: Interpretation of the observed variability of calcification and production on 

the reef, to address the drivers of ecosystem calcification. Specifically, how does the 

reef biogeochemistry alter the open ocean source water? What controls the 

relationship between coral productivity (NEC) and inorganic carbon species such as 

H+, CO3
2-, and Ωarag? And is there a baseline relationship between CO2 system 

speciation and NEC that is necessary to maintain current rates of calcification?  

Chapter 5: Conclusions and future work. 
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CHAPTER 2 

Methods 
2.1 Kaneohe Bay 
 

Kaneohe Bay is located on the eastern side of Oahu, HI (Fig. 2.1). In the bay there is 

a large barrier coral reef, patch reefs and fringing reefs. The reef is approximately 2.4 km 

wide, and the bay is 4.3 km wide and 12.7 km long (Shamberger et al., 2011). The bay 

has eleven freshwater stream inputs and the surrounding watershed is affected by 

anthropogenic activities such as urban development (De Carlo et al., 2004, 2007; Ringuet 

and Mackenzie, 2005; Hoover and MacKenzie, 2009). The prevailing wind direction is 

from the northeast (Smith et al., 1981). A circulation model of the bay demonstrates that 

currents are predominately wave-driven (Lowe et al., 2009b, 2009a). The water residence 

time in Kaneohe Bay varies from hours to more than a month (Lowe et al., 2009b) 

depending upon wind speed, wave height and the semidiurnal tides, all of which control 

circulation in the bay. The water at the site is well mixed vertically and horizontally by 

the northeast trade winds (Smith et al., 1981). 
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Figure 2:1 Kaneohe Bay, located on the northeast coast of Oahu. SAMI-alk, SAMI-pH, 
SeaFET and MAPCO2 systems (see text for explanations) were deployed at the CRIMP-
2 instrument platform. The red arrow indicates north and the direction of the Hawaiian 
Ocean Time-series (HOT) station ALOHA. 

 
 
The SAMI-alk was deployed in Kaneohe Bay because there are large daily diurnal AT 

swings in the Bay caused by CaCO3 formation and dissolution on the reef (Shamberger et 

al., 2011). There is an existing instrument platform, the Coral Reef Instrumented 

Monitoring and CO2-Platform (CRIMP-2), on which sensors that measure the pCO2, 

temperature, and salinity were already deployed (21.46 °N, 157.80 °W) (Shamberger et 

al., 2011; Drupp et al., 2013). CRIMP-2 sits in approximately 3 m of water over sandy 

sediment on the inside edge of the barrier reef (Fig. 2.1). Water flow at the buoy is 

unidirectional from the open ocean over the reef (Lowe et al., 2009b, 2009a); water then 
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exits the bay through one of two channels, a deep shipping channel in the northern bay, or 

the Sampan Channel in the central bay (Lowe et al., 2009b, 2009a). We deployed the 

SAMI-alk at the CRIMP-2 (Fig. 2.2) buoy along with a SAMI-pH (Seidel et al., 2008), an 

existing MAPCO2 system (Sutton et al., 2015), a SeaFET pH sensor (Martz et al., 2010), 

and a Seabird CTD which measures salinity, temperature, and depth (Spaulding et al., 

2014). Regrettably, no O2 sensors were deployed. The water chemistry at CRIMP-2 is 

representative of the overall water chemistry on the reef (Drupp et al., 2013).  

 

 
Figure 2:2 Divers at the CRIPM-2 buoy in Kaneohe Bay during the June 2013 SAMI-alk 
deployment. The MAPCO2 system is housed inside the yellow buoy. The SAMI-alk was 
suspended below the buoy, see Figure 2.4. 
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2.2 In situ data: instruments and measurements  

 2.2.1 AT measured by Tracer Monitored Titration  
 

As stated in Chapter 1, conventional AT titrations necessitate accurate volumetric 

or gravimetric measurements of both sample and titrant (Hansson and Jagner, 1973; 

Dickson, 1992). Spectrophotometric pH measurements have improved the accuracy of 

the titration (Breland and Byrne, 1993; Yao and Byrne, 1998). The tracer-monitored 

titration (TMT), based on a spectrophotometric method, uses a spectrophotometric 

indicator in the titrant to quantify a dilution factor for the titrant and sample (Martz et al., 

2006). This removes the necessity of having accurate volumetric or gravimetric 

measurements (DeGrandpre et al., 2011). The SAMI-alk uses the TMT method to 

measure AT autonomously in situ.  

 



 12 

 
Figure 2:3 The prototype of the Submersible Autonomous Moored Instrument for 
alkalinity (SAMI-alk) deployed in this study (Spaulding et al., 2014).  

 

Spaulding et al., (2014) evaluated the performance of a prototype instrument built in 

the DeGrandpre lab, the SAMI-alk, using the TMT methodology (Fig. 2.3). The first in 

situ deployment of the SAMI-alk was done at the Hatfield Marine Sciences Center in 

Newport, Oregon by Spaulding et al., (2014) in January 2013. It was installed in a 100-

gallon tank of continuously flowing Yaquina Bay seawater. The SAMI-alk made hourly 

measurements for 10 days, and was evaluated using discrete samples taken from the tank 

with an accuracy and precision of -2.9 ± 6.4 µmol kg-1 (n = 33).  

For its second in situ evaluation, the SAMI-alk was deployed in Kaneohe Bay, HI. 

The SAMI-alk was deployed with a 5-µm filter on the inlet to reduce the introduction of 
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particles into the stirred flow cell, and was secured in a crate suspended directly below 

the CRIMP-2 platform (Fig. 2.4) from June 4 – June 20, 2013. The SAMI-alk analyzed 

AT hourly, and measured two sequential AT standards each day (Spaulding et al., 2014).  

 
Figure 2:4 Instruments deployed on the CRIMP-2 platform. The MAPCO2 system is 
above water; only the equilibrator is submerged (not shown). The SAMI-pH, SeaFET, 
Seabird SBE37-SMP (on opposite side not shown) were attached on the platform, and the 
SAMI-alk was suspended directly below the platform. The inlet of the SAMI-alk was 
~0.5 m below the instruments on the platform.  

 
 Because this data set was previously published (Spaulding et al., 2014) it is 

included here, rather than in the results section of Chapter 3. The SAMI-alk made 310 

seawater AT measurements (Fig. 2.5) from June 4 – June 20 and an additional 30 

measurements on AT standards. The standards were used to apply a calibration factor to 

the SAMI-alk that was adjusted by ~3% over the course of the deployment (Spaulding et 
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al., 2014). This adjustment was likely necessary due to small changes in the acid 

concentration, de-gassing of the reagent in the warm ocean temperatures, and biological 

activity inside the reagent bag altering the chemistry as discussed in Spaulding et al., 

(2014). A blank filter, discussed in Spaulding et al., (2014), based on the change in blank 

ratio from one titration to the next and discarding titrations with >0.4% change in the 

blank ratio, was applied to the raw AT data reducing the number of AT measurements 

used in this study to 263 samples.   
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Figure 2:5 Data from CRIMP-2 during the SAMI-alk deployment. Top: AT measured by 
the SAMI-alk on an AT standard. Middle: AT measured by the SAMI-alk (black line), 
discrete AT samples (blue dots), and AT calculated from the SAMI-pH and discrete DIC 
samples (red dots) taken over the 17-day time series. Bottom: temperature and salinity. 
Gray bars represent nighttime. Figure from Spaulding et al., 2014. The gap in data 
resulted from an error when re-starting the SAMI-alk after downloading data.  

 

The accuracy and precision of the SAMI-alk during the study was -1.6 ± 15.7 

µmol kg soln-1 based on the difference of the SAMI-alk measurements with the adjusted 
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standard and blank filtered data, and the discrete AT samples. The increased blank noise 

(a blank filter of >0.2% was used in the lab tests), possible build up of small particles in 

the flow cell, and imperfect timing of the discrete sample collection in an environment 

where AT was rapidly changing contributed to the decreased precision of the SAMI-alk 

compared to lab tests of the sensor. The two days of missing AT data (Fig. 2.5) are from a 

software error that occurred while downloading the data. Alkalinity variability on the reef 

is due almost entirely to diel cycles of calcification, where benthic calcifiers decrease AT 

during the day as CaCO3 is formed, and increase AT at night when rates of CaCO3 

formation slows and dissolution occurs (Andersson et al., 2009; Eyre et al., 2014; 

Albright et al., 2015). Because AT variability directly reflects calcification rates it is 

critical to measure the full AT cycle of coral reefs (Ohde and Woesik, 1999; Bates et al., 

2010; Gray et al., 2012; Shaw et al., 2012).  A primary goal of this thesis is to interpret 

this novel data set.   

 

 2.2.2 pH: SAMI-pH and SeaFET 
 
 The SAMI-pH (Fig. 2.4) executed pH measurements every 10 minutes throughout 

the deployment. The accuracy of the SAMI-pH is ± 0.003 pH units with a precision of ± 

0.001 based on laboratory analysis (Seidel et al., 2008). It employs a spectrophotometric 

pH measurement described in Seidel et al., (2008). The SeaFET employs an ion-sensitive 

field effect transistor (ISFET) to make potentiometric pH measurements (Martz et al., 

2010). It sampled every three hours until June 10 and then hourly until 1200 hrs on June 

16, when the sensor fouled due to a calcium carbonate deposit accumulating on the 
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ISFET chip. The accuracy of the SeaFET is estimated as ± 0.05 pH units with a precision 

of ± 0.005 based on laboratory analysis (Martz et al., 2010).  

The SAMI-pH was set to sample every 10 minutes, ensuring that we have 

temporally meaningful points with which to compare each SAMI-alk value. Additionally, 

it confirms that hourly temporal resolution captures the full range of the carbonate 

chemistry. The SeaFET pH sensor was deployed at the CRIMP-2 site two months before 

the SAMI-alk and SAMI-pH. The SeaFET measured pH every three hours until June 10, 

and then hourly for the rest of its deployment. Its period of data collection overlapped 

with that of the SAMI-alk and SAMI-pH by 12 days before it became clear that 

biofouling was affecting the SeaFET pH measurements.  

 

 2.2.3 MAPCO2 
 
 The MAPCO2 system (Fig. 2.2) uses a LICOR-820 infrared analyzer to measure 

atmospheric CO2 (pCO2air) and sea surface pCO2 (Sutton et al., 2015) from an in situ air-

water equilibrator. It recorded data every three hours until June 10 when it was switched 

to hourly measurements. The data was transmitted daily via Iridium satellite to 

NOAA/PMEL and were posted at www.pmel.noaa.gov/co2. The MAPCO2 system self 

calibrates with a zero CO2 gas and a high CO2 gas each measurement, and each 

measurement takes ~20 minutes with pCO2 recording 17 minutes after the sample is 

taken and CO2air recorded right after pCO2. The accuracy of the CO2 measurements is 

conservatively estimated to be within 2.5% of the measured value (Sutton et al., 2015). 

More details on the scheme of this system can be found in Shamberger et al., (2011), 

Massaro et al., (2012), and Sutton et al., (2015).  
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2.2.4 Temperature and Salinity 
 
 The SAMI-alk, SAMI-pH, and SeaFET all recorded temperature with integrated 

thermistors. Additionally, a Sea-Bird conductivity temperature depth sensor (SBE37-

SMP) was mounted on the CRIMP-2 platform and recorded temperature and salinity 

hourly during the study (Fig. 2.5). The MAPCO2 system also makes an oxygen 

measurement as percent oxygen of the surface seawater divided by percent oxygen of the 

atmosphere at 4 feet above the water surface (% O2); the measurements are made in the 

equilibrated air. However, the oxygen does not come to complete equilibrium, and the 

rapidly changing oxygen due to biological activity is not captured (Sutton et al., 2015). 

Sutton et al. (2015) recommends that these O2 data not be used as quantitative 

measurements and were not used in this study.   

  

2.3 Discrete samples 
 

Discrete samples were taken throughout the deployment during different times of 

the day in order to capture the full diel range of CO2 chemistry on the reef and for data 

quality control (QC). Samples were taken more intensively (hourly) from June 10 – 12. 

Samples were collected in 300-mL borosilicate bottles and were fixed with 200 µL of 

saturated HgCl2 to prevent biological activity from altering water chemistry.  

 AT samples (n=59) were analyzed in a local lab by open-cell potentiometric 

titration (Dickson et al., 2007). Seawater certified reference materials (CRMs) analyzed 

daily determined an accuracy and precision of -0.4 ± 4.7 µmol kg soln-1 for the bench top 

CRM measurements (n = 44) (Spaulding et al., 2014). The field samples were analyzed in 
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duplicate with a precision of ± 4 µmol kg soln-1. Discrete samples taken during June 10 – 

12 were also analyzed for DIC by coulometric titration (n = 9) (Johnson and Sieburth, 

1987; DOE, 1992). The accuracy of the DIC, also established with CRMs, was ~1 ± 2 

µmol kg soln-1.   

 

2.4 Physical parameters 
 
 Data for wind (m s-1), tides (m), and light (photosynthetically active radiation, 

PAR) (µEinsteins m-2 s-1) from the Hawaii Institute of Marine Biology (HIMB) weather 

station on Coconut Island in Kaneohe Bay were used for this analysis. Wave height data 

were obtained from the Coastal Data Information Program (CDIP) buoy 098 located 6 

km southwest of Mokapu Point (~21.414 °N, 157.679 °W).  

 

2.5 Data Analysis 

 2.5.1 Carbon system calculations 
 
 As discussed above, the CO2 system in seawater can be fully calculated with two 

of the measurable parameters. In this study, we fully characterize the seawater CO2 

system of Kaneohe Bay four ways: (1) with SAMI-alk and SAMI-pH, (2) with SAMI-alk 

and SeaFET pH, (3) with SAMI-alk and MAPCO2, and (4) SAMI-pH – MAPCO2. Each 

set of calculations used the same temperature and salinity data. All calculations were 

made using the carbonate equilibrium program CO2SYS (Lewis and Wallace, 1998). The 

equilibrium constants used in these calculations were determined by Mehrbach et al. 

(1973) refitted by Dickson & Millero (1987). pH on the total hydrogen ion scale was used 

with the sulfate constant determined by Dickson et al. (1990). Based on the observed 
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alkalinity changes, associated changes in calcium concentration are not significant 

relative to the overall calcium concentration. Accordingly, the conservative-salinity based 

estimate was used for calcium concentration in saturation state (Ωarag) calculations. The 

results from each pair of measured parameters are analyzed and compared in the 

following chapter.   

The third measurable parameter of the seawater CO2 system, DIC, was calculated 

four ways: with the AT + SAMI-pH, AT + SeaFET, AT + pCO2, and SAMI-pH + pCO2 in 

CO2SYS (Lewis and Wallace, 1998). The SAMI-pH + AT, pCO2 + AT, and SeaFET + AT 

calculated DIC data sets were compared to the nine discrete DIC samples taken during 

two days of the study (Fig. 3.2). The discrete samples covered the full range of DIC on 

the reef during this deployment. 

  

2.5.2 Gas exchange with the atmosphere 
 
 Gas exchange between the ocean and the atmosphere affects the pH, pCO2, and 

DIC of the seawater. The air-sea flux (FCO2) calculation is shown in Equation 2.6. The 

solubility of CO2 (s) is a function of temperature and salinity (Weiss, 1974). The gas 

transfer velocity (k) was calculated from a wind speed dependent model (Ho et al., 2006). 

The difference between the pCO2 of the seawater (pCO2sw) and the partial pressure of 

CO2 in the atmosphere (pCO2air) is calculated from surface ocean seawater and the air in 

Kaneohe Bay. A positive FCO2 represents a net flux of CO2 from the water to the 

atmosphere. Gas exchanged is used in net ecosystem production calculations as discussed 

below.  
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FCO2 = k s (pCO2sw – pCO2air)         (2.6)  

 

 2.5.3 Net ecosystem calcification 
 

For measurements of Net Ecosystem Calcification (NEC) and Net Ecosystem 

Production (NEP) AT and DIC were normalized to salinity = 35 (nAT and nDIC). The 

average salinity of the open ocean source water (HOT) and at CRIMP-2 was the same 

(35.2) indicating that terrestrial effects did not alter the AT of Kaneohe Bay. 

AT is primarily a measure of [HCO3
-] and [CO3

2-] (Eqn. 1.8). Calcification and 

dissolution on the reef alter the AT in the water by removing or adding CO3
2-. NEC is the 

rate at which the reef community alters the seawater chemistry due to calcification and 

dissolution (Eqn. 2.7). NEC was calculated using the alkalinity anomaly technique (Smith 

and Key, 1975). Calcification and dissolution on a coral reef change the alkalinity of the 

surrounding seawater; for every one mole of CaCO3 formed by calcification, DIC 

decreases by one mol (Eqn. 1.7) and AT decreases by two moles (Eqn. 1.8).   

 

NEC = ΔAT h ρ / 2Δt           (2.7) 

ΔAT = AT(HOT) – AT(CRIMP)          (2.8)  

 

ΔAT is the difference between open ocean source water AT(HOT) and bay water 

overlying the reef at CRIMP-2 (Eqn. 2.8). In Equation 2.7 h is the average depth of the 

water on the reef (2 m), ρ is the density of seawater (kg m-3), and Δt is the residence time 

of the water on the reef at CRIMP-2. NEC is expressed in mmol CaCO3 m-2 h-1. The 

typical seasonal value of AT measured at the Hawaiian Ocean Time-series (HOT) station 
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ALOHA was used to represent open ocean source water. These data was accessed 

through the HOT Data Organization and Graphical System (HOT-DOGS). The mean AT 

from May – August 2013 of 2309 ± 10 µmol kg-1 was used for AT(HOT) in the NEC 

calculations.  

The residence time of the water (Δt) was estimated using the width of the reef (2433 

m) (Shamberger et al., 2011) and current velocity (m s-1). Wave height was converted to 

current velocity using a linear relationship given in Lowe et al., (2009a). A distinct tidal 

signal remained in Δt when Δt was calculated this way, so the calculated values were 

averaged, resulting in a residence time of 4 hours that was used for the duration of this 

study. The four hour average was comparable to the June residence time of 4.5 hours 

reported in Shamberger et al., (2011), and resulted in similar calculated NEC and NEP to 

those reported in other studies of Kaneohe Bay (Kinsey, 1985, Shamberger et al., 2011). 

This method of an average Δt still results in a tidal signal in the NEC and NEP records 

where the reef alters the chemistry of the water as the tide comes in and again when it 

goes out. It is important to recognize that these are averaged values for Δt that do not 

account for hourly deviations due to differences wave height, wind and wave direction, 

wind speed, and tidal amplitude (Lowe et al., 2009a). 

 

 2.5.4 Net ecosystem production 
 

Unlike AT variability, changes in the DIC are affected by photosynthesis, 

respiration, and gas exchange. Net ecosystem production (NEP) is calculated by 

removing NEC and gas exchange contributions to the ΔDIC (Eqn. 2.9). ΔDIC is the 

difference in DIC between the source water (HOT) and the bay (CRIMP-2 site) (Eqn. 
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2.10). The mean salinity normalized DIC value from June – August 2013 from HOT was 

1998 ± 5 µmol kg-1. NEP is expressed in units of mmol C m-2 h-1.  

 

NEP = (ΔDIC h ρ / Δt) – NEC + FCO2        (2.9) 

ΔDIC = DIC(HOT) – DIC(reef)        (2.10)  

 

 Ecosystem respiration rates (R) were calculated as the average of the hourly 

nighttime NEP (when PAR = 0) from the preceding and following nights multiplied by 

24 (Falter et al., 2001) (Eqn. 2.11). This approach assumes that rates of daytime and 

nighttime respiration are equal, an assumption consistent with ecosystem production rates  

(P) and R calculations on reef flats including Kaneohe Bay (Gattuso et al., 1998; Falter et 

al., 2011). Gross primary production (GPP) was calculated by integrating daily NEP 

when PAR > 0 and adding that to hourly rates of community respiration (Eqn. 2.12).  

      

R = (ΔDIC h ρ / Δt) - Residual nighttime NEC – FCO2     (2.11) 

GPP = NEP + R                (2.12) 

 

 

2.5.5 Statistical Analysis 
 

Analysis in Matlab of measurements or variables that should have the same value, 

e.g. two measured pH time series, or measured vs. calculated pCO2, was done using 1:1 

lines, lines of best fit, slopes, and residual errors. When comparing possibly unrelated 

variables, linear regression analysis was performed in Matlab to examine the variance in 
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e.g. NEC, NEP, and the inorganic carbon speciation. Best-fit (least squares) functions 

were determined using ‘fitlm’ in matlab. Pearson correlation coefficients were used to 

identify correlation between paired variables such as light, temperature, Ωarag, and NEP 

with p-values to assess the significance of each correlation coefficient.  
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CHAPTER 3 

In situ data and the CO2 System 
3.1 Overview 
 
 As stated above, the CRIMP-2 buoy platform had four autonomous sensors 

measuring three of the CO2 system parameters during this deployment. Heretofore, only 

pH and pCO2 could be measured in situ; this combination does not accurately estimate 

AT or DIC in a reef environment. With three measurements, we can more rigorously 

address the question of sensor performance by comparing the calculated and measured 

values. More specifically, we took this unique opportunity to (1) examine the robustness 

of the sensor measurements, (2) compare the resulting CO2 system calculations from each 

possible combination of sensors, and (3) assess these comparisons to determine the best 

data sets to use in further examinations of the biogeochemistry of the reef during this 

study.  In Chapter 4, I evaluate the AT data in terms of reef calcification and productivity. 

pH and pCO2 vary congruently because they are largely controlled by the same processes 

of production and gas exchange (Cullison Gray et al., 2011). H2CO3 regulates H+ and is 

regulated by H+. These processes of NEP and gas exchange affect AT very little, and AT 

variability is mostly due to the balance of precipitation and evaporation, calcification and 

water mass movement. When using any two parameters to calculate the carbonate 

equilibria, the combination of parameters DIC or AT with either pH or pCO2 minimize 

errors (Clayton et al., 1995; Lee and Millero, 1995; McElligott et al., 1998; Byrne et al., 

1999; Lee et al., 2000; Cullison Gray et al., 2011), so the SAMI-alk data was used in all 

three of the possible combinations with pH and pCO2 (Sami-alk with SAMI-pH, SeaFET, 

and MAPCO2). Carbonate equilibrium calculations using pH and pCO2 were also 
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evaluated in order to further explore the consensus that they are not an appropriate 

combination of measurements in a coral reef environment.  

 

3.2 Results 

 3.2.1 Measured parameters  
 
 Despite our best attempts at timing the sensors so that they sampled the same 

seawater, all four sensors sampled at slightly different times. For this comparison the 

SeaFET and MAPCO2 data were interpolated to the time of the SAMI-alk samples. This 

was not necessary for the SAMI-pH because it sampled at such a high rate that it did 

sample at the same time as the SAMI-alk. The measured (not interpolated) pCO2 and 

both measured (not interpolated) pH records are presented in Fig. 3.1.   
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Figure 3:1 AT measured by the SAMI-alk (purple) with discrete samples (black dots), pH 
measured by the SAMI-pH (red), SeaFET with the applied offset (see text) (green), and 
pCO2 measured by the MAPCO2 system (blue) during the study June 4 – 21. The SAMI-
pH measuring every 10 minutes captured short-term variability missed by the instruments 
measuring hourly as seen in the MAPCO2 record, e.g. around 6/14/ see the greater 
variability in pH compared to pCO2. 
  

8.2

8.1

8.0

7.9

se
aF

ET
 p

H

8.2

8.1

8.0

7.9

SA
M

I-p
H

600

500

400

300

M
AP

CO
2 

pC
O 2

   
(µ

at
m

)

6/6/13 6/11/13 6/16/13 6/21/13

2320

2300

2280

2260

2240

2220

2200SA
M

I-a
lk 

A T
  (
µm

ol
 k

g-1
)



 28 

3.2.2 Calculated parameters: AT, DIC, pH and pCO2 
 
 The three calculated DIC data sets are plotted in Figure 3.2. In addition to the two 

measured pH records, pH was calculated using the AT + pCO2 combination. Similarly, 

pCO2 was measured (MAPCO2) and calculated two ways: AT + SAMI-pH and AT + 

SeaFET. The calculated and measured DIC, pH and pCO2 are plotted in Figure 3.2. 
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Figure 3:2 pH measured from the SAMI-pH and SeaFET, and calculated from the pCO2 
+ AT (top), pCO2 measured from the MAPCO2 system and calculated from SAMI-pH + 
AT, and SeaFET + AT (middle), and DIC calculated from the SAMI-pH + AT, SeaFET + 
AT, and pCO2 + AT (bottom) with discrete DIC points in black. The two days of missing 
data are from a SAMI-alk software error. 
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hours instead of hourly. With the large diel swings observed in this study, interpolation 

over 3 hours was not representative of the measured variability.  

AT was also calculated using the SAMI-pH + pCO2 combination and compared to 

the measured AT from the SAMI-alk and the discrete AT samples (Fig. 3.3). As stated 

above, the pH + pCO2 pair results in the largest errors when calculating carbonate 

equilibria as shown in Figure 3.3.  Large and unrealistic values of AT are created from a 

lack of correlation between pH and pCO2, that is, if pCO2 changes but pH does not, e.g. 

due to an error in pCO2, then this has to result in a large change in AT to account for this 

uncorrelated change. These can be created by, for example, measurement timing 

differences during rapidly changing signals. As shown in Figure 3.3, some very large 

errors are present, rendering the data unusable, when the signals are changing rapidly. 

Statistics from these differences are presented below. 
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Figure 3:3 AT measured from the SAMI-alk (blue) and calculated from the SAMI-pH + 
pCO2 (grey), with discrete AT points (black).  
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SAMI-pH we expect the slope to be very close to 1 unless there is drift or biofouling. The 

SAMI-pH and the pH calculated from the AT + pCO2 combination has the least amount 

of scatter (r2 = 0.96) and a slope of 0.79, which significantly deviates from the 1:1 line 

specifically at high pH. The relationship between the SeaFET and the pH calculated from 

the AT + pCO2 is farthest from 1:1 with a slope of 0.77, (r2 = 0.94). The two combinations 

with the SeaFET have slightly lower r2 values (Table 3.1). The SeaFET also has the most 

scatter in the data; it has a lower reported accuracy and experienced biofouling.  
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Figure 3:4 Comparisons of SAMI-pH vs. pH calculated from pCO2 + AT (top), SAMI-pH 
vs. SeaFET (middle), and SeaFET vs. pH from pCO2 + AT (bottom). Dashed line 
represents 1:1. 
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Table 3.1 Summary of slope and r2 values of three pH comparisons. 

 slope r2 n 

SAMI-pH vs. pH from pCO2 + AT  0.79 0.96 215 

SAMI-pH vs. SeaFET 0.98 0.94 123 

SeaFET vs. pH from pCO2 + AT 0.77 0.94 123 

 
 

3.2.4 pCO2 
 
 The best agreement between pCO2 data sets comes from the calculated pCO2 from 

the SAMI-alk and either pH sensor (Fig. 3.5, Table 3.2). This relationship has a slope of 

0.99 and an r2 = 0.95. The slope of the relationship between the measured MAPCO2 and 

pCO2 calculated from the SAMI-pH + AT is 0.85 and r2 = 0.97. The slope of the 

MAPCO2 pCO2 and the pCO2 from the SeaFET + AT is 0.83 and r2 = 0.95. These results 

are summarized in Table 3.2. Note that the linear relationship between measured pCO2 

(MAPCO2) and calculated (SAMI-pH or SeaFET + AT) pCO2 lies closest to the 1:1 line 

at high values of pCO2 and deviates at low values of pCO2. 

 
Table 3.2 Summary of slope and r2 values of three pCO2 comparisons. 
 
 slope r2 n 

pCO2 from SAMI-pH + AT vs. MAPCO2 0.85 0.97 215 

pCO2 from SAMI-pH + AT vs. pCO2 from 

SeaFET + AT 

0.99 0.95 123 

pCO2 from SeaFET + AT vs. MAPCO2 0.83 0.95 123 
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Figure 3:5 Comparisons of pCO2 (µatm) from SAMI-pH +AT vs. MAPCO2 (top), pCO2 
from SAMI-pH + AT vs. pCO2 from SeaFET + AT (middle), and pCO2 from SeaFET + 
AT vs. MAPCO2 (bottom). Dashed line represents 1:1. 
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3.2.5 DIC  
 

I compared the calculated DIC values with each other (Fig. 3.6) in addition to 

comparing the three calculated DIC data sets with measured DIC from bottle samples 

(Fig. 3.7, 3.13). Figure 3.6 shows each comparison plot and Table 3.3 summarizes the 

slope and r2 values. The DIC from the SAMI-pH + AT vs. the DIC from the SeaFET + AT 

have a slope of 0.98 and an r2 = 0.97. The DIC from the SAMI-pH AT vs. the DIC from 

the pCO2 + AT have a slope 0.85 and an r2 = 0.98. The DIC from the SeaFET + AT vs. the 

DIC from the pCO2 + AT have a slope of 0.85 and an r2 = 0.97. We can assume that any 

error generated by the SAMI-alk is the same in all three DIC calculations so the 

differences in DIC are caused by something else. 

 

 
Table 3.3 Summary of slope and r2 values of three DIC comparisons. 
 

 slope r2 n 

DIC from SAMI-pH + AT vs.  
DIC from pCO2 + AT 

0.85 0.98 215 

 

DIC from SAMI-pH + AT vs.  
DIC from SeaFET + AT 

0.98 0.97 123 

 

DIC from SeaFET + AT vs.  
DIC from pCO2 + AT 

0.85 0.97 123 
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Figure 3:6 Comparisons of DIC (µmol kg-1) calculated from SAMI-pH + AT vs. DIC 
from pCO2 + AT (top), DIC from SAMI-pH + AT vs. DIC from SeaFET + AT (middle), 
and DIC from SeaFET + AT vs. DIC from pCO2 + AT (bottom). Dashed line represents 
1:1. 
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3.2.4 DIC by calculation and measurements of discrete samples 
 
 We took 9 discrete seawater samples and analyzed them for DIC over the course 

of June 10 – 12. These 9 samples covered the full diel cycle, including points at both high 

and low DIC (Fig. 3.7). The three calculated DIC data sets are compared with the 

measured DIC in Figure 3.7 (top and bottom). The mean difference (measured-calculated 

± SD) between the sample DIC and the calculated DICs are shown in Table 3.4. (Fig. 3.7, 

Table 3.4). 
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Figure 3:7 48 hours of DIC (µmol kg-1) calculated from AT and SAMI-pH, SeaFET, and 
MAPCO2 with 9 discrete measured DIC samples (top), and DIC calculated from AT and 
SAMI-pH, SeaFET, and MAPCO2 subtracted from discrete DIC samples (measured-
calculated) (n = 9) (bottom). 
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standard 
deviation 

DIC from SAMI-pH + AT  - 11 ± 9 (n = 9) 

DIC from SeaFET + AT  - 9 ± 15 (n = 9) 
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3.3 Discussion 

 3.3.1 pH – pCO2 pair calculations 

 
Figure 3:8 DIC calculated four ways plotted with discrete DIC samples (black dots). 

 
 
 
 As demonstrated above (Figs. 3.2, 3.8), the carbonate system calculations from 

the pH + pCO2 pair result in the largest calculation errors. With this approach, calculated 

DIC and AT differed from measured (by discrete sample) DIC and AT by up to 300 and 

500 µmol kg-1, respectively. This calculation pairing even failed at times to predict the 

proper diel phase of AT and DIC; calculated DIC and AT increased while measured DIC 

and AT decreased (Figs. 3.2, 3.8). pH and pCO2 are temperature, pressure, and salinity 

dependent so calculations with this pair will predict erroneous results when pH and pCO2 

do not track with temperature, salinity or pressure (Millero, 2007).  
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Figure 3:9 AT measured by the SAMI-alk vs. AT calculated from the SAMI-pH + 
MAPCO2 pair (pH + pCO2). Dashed line represents 1:1. 

 
 

In this study, the pH + pCO2 calculations are particularly sensitive because 

processes such as calcification and production drastically alter the seawater chemistry on 

a short, hourly timescale. Calculation errors will result any time pH and pCO2 are not 

correlated, or when they are changing rapidly (Cullison Gray et al., 2011). This happens 

frequently and thus the AT calculated from the pH and pCO2 plotted vs. measured AT 

(from the SAMI-alk) do not fall on a 1:1 line (Fig. 3.9). The pairing can still be useful 

where the AT of the ocean is conservative with salinity (Cullison Gray et al., 2011), but in 

a reef ecosystem where AT changes rapidly due to calcification pH and pCO2 cannot be 

used in combination to calculate AT or DIC.  

 There is one potential useful aspect of the pH + pCO2 paring in CO2 system 
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present as CO3
2-, calculations such as aragonite saturation state (Eqn. 1.9) (Ωarag) are less 

sensitive to errors using the pH + pCO2 combination (Cullison Gray et al., 2011). Figure 

3.10 shows Ωarag calculated two ways. The Ωarag using the pH – AT combination agrees 

closely with the Ωarag using the pH + pCO2 pair at all but high values of Ωarag. These high 

values correspond to low values of pCO2 where there is potential error in the MAPCO2 

system’s measurements, as discussed below. The mean difference ± standard deviation of 

the Ωarag from the pH – AT pair minus the pH – pCO2 pair is -0.25 ± 0.27. If the high 

values of Ωarag (low values of pCO2) are removed from the SAMI-pH + pCO2 pair, the 

mean difference improves (-0.12 ± 0.15). Measured pCO2 errors are discussed in detail 

later in this chapter. Because the Ωarag from the pH + pCO2 combination matches the Ωarag 

from the SAMI-pH + AT combination, the pH + pCO2 pair may provide reasonable 

estimations of Ωarag, but is not conclusive because of the issues with the MAPCO2 

measurements discussed below.  
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Figure 3:10 Ωarag calculated using the SAMI-pH – SAMI-alk pairing (pH – AT, purple), 
and the SAMI-pH – MAPCO2 pairing (pH – pCO2, yellow).  

 
 
 

 3.3.2 AT + pH and AT + pCO2 pair calculations 
 
 The quality of the AT data has an influence on the other three calculation pairs (AT 

with SAMI-pH, SeaFET, and MAPCO2). An evaluation of the accuracy of the SAMI-alk 

is included in Spaulding et al., (2014). If there were a systematic error in AT it would 

show up in all three calculated data sets and thus be hard to detect. But we would also see 

it when comparing the calculated DIC using the SAMI-alk data with the sampled DIC 

(Fig. 3.7). Errors in AT propagate as errors of the same magnitude in DIC (a 10 µmol kg-1 

error in AT will result in a ~10 µmol kg-1 error in DIC at the same pH or pCO2). Whereas, 

a pH error of 0.02 or a pCO2 error of 20 µatm could result in a DIC error of 150 µmol kg-
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DIC) between the discrete sample DIC and any of the 3 calculated DIC data sets is not 

present in these data (Fig. 3.7); they agree better at high DIC for DIC calculated from the 

pCO2 + AT pair, but not for the other two pairings (Fig. 3.13).  

The three plotted pCO2 time series reveal an interesting feature – while the pCO2 

calculated from the SAMI-alk and both pH sensors overlaps over the full diel cycle, the 

MAPCO2 measured pCO2 does not drop as low each day (Fig. 3.2 middle); the calculated 

pCO2 from the two pH + AT combinations is at times 60 µatm lower than the measured 

pCO2 (Fig. 3.2 middle, blue line). This is also apparent in the calculated pH and DIC 

from the pCO2 + AT calculations: the calculated pH is not as high as the measured pH 

(Fig. 3.2 top) and the calculated DIC does not drop as low as the DIC calculated from the 

two other sensor calculations (Fig. 3.2 bottom). The discrepancy is only observed when 

the pCO2 changes from decreasing to increasing, not simply when it is below a certain 

value (Fig. 3.11). The discrepancy also occurs when the pCO2 is both below and above 

atmospheric pCO2 (dotted line on Fig. 3.11). The SeaFET was calibrated to the SAMI-pH 

so it is expected that they agree very well, however that calibration would not affect the 

range of variability measured by the SeaFET. The range of variability measured by the 

SeaFET and SAMI-pH is the same, but the range of variability from the MAPCO2 is not. 
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Figure 3:11 Expanded view of pCO2 measured or calculated. Dashed line shows 
atmospheric pCO2.  Arrows indicate differences in measured pCO2 (MAPCO2) and 
calculated (pH – AT) pCO2 both below and above atmospheric pCO2.  

 
 
 
 The mean difference between each set of measurements (SAMI-pH, MAPCO2, 

SeaFET) for each CO2 system parameter (pH, pCO2, DIC) is presented in Table 3.5, 

where the largest differences come from parings involving the MAPCO2 system. 

Remember the SeaFET time series was truncated because of biofouling. These trends are 
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positive: ((SAMI-pH) – (pCO2 + AT pair) > 0. This difference is greatest at high pH, 

where the SAMI-pH measures higher than the pH calculated from MAPCO2. The offset 

at high pH corresponds to low pCO2; the highest SAMI-pH measurements correspond to 

the lowest pCO2 measurements – where the MAPCO2 is not measuring as low as the 

other sensors (Fig. 3.11, Fig. 3.12 middle).  

 
 
Table 3.5 Mean differences in pH, pCO2 and DIC as measured directly or calculated from 
pH – AT, or pCO2 – AT  pairs from each of the three sensors reported as mean ± standard 
deviation. 

 pH pCO2 DIC n 
SAMI-pH – MAPCO2 0.020 ± 0.023 -21 ± 25 -12 ± 14 215 

SAMI-pH –SeaFET 0.006 ± 0.022 -8 ± 25 -3 ± 13 123 

SeaFET –MAPCO2 0.016 ± 0.027 -16 ± 29 -10 ± 17 123 
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Figure 3:12 Top: difference in pH from the SAMI-pH – (pCO2 + AT) pair (blue), SAMI-
pH – SeaFET (black), and SeaFET – (pCO2 + AT) pair (green). Middle: difference in 
pCO2 from the (SAMI-pH + AT) pair – MAPCO2 (blue), (SAMI-pH + AT) pair – 
(SeaFET + AT) pair (black), and (SeaFET + AT) pair – MAPCO2 (green). Bottom: 
difference in DIC from the (SAMI-pH + AT) pair – (pCO2 + AT) pair (blue), (SAMI-pH + 
AT) pair – (SeaFET + AT) pair (black), and (SeaFET + AT) pair – (pCO2 + AT) pair 
(green). 
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In Figure 3.13, the calculated DIC values are again compared with the sample 

DIC. For the pCO2 + AT pair, the calculated DIC falls off the 1:1 line when DIC is low 

because the DIC calculated from the pCO2 + AT pairing is too high at low DIC (Fig. 3.2 

bottom). This corresponds to the low values of pCO2 where the measured pCO2 from the 

MAPCO2 system is higher than the pCO2 calculated from both pH – AT pairs (Fig. 3.2 

middle). We see the same deviation from the 1:1 line in Figures 3.7 and 3.8 comparing 

the calculated DIC and measured and calculated pCO2 data sets with each other. The data 

matches the 1:1 line at high DIC and pCO2 better than at low DIC and pCO2 as said 

previously. When the two low values of discrete sample DIC are removed from Figure 

3.13 the slope and r2 of the DIC comparisons between sample DIC and DIC calculated 

from the pCO2 + AT improve from 0.82 to 0.92 and r2 from 0.97 to 0.99 (n = 9 and n = 7, 

respectively). The mean difference +/- standard deviation between the measured DIC and 

the DIC calculated from the pCO2 + AT drops from -25 ± 19 (Table 3.4) to -17 ± 8 when 

the two low values of discrete DIC are removed. The correlations of the DIC samples and 

the DIC calculated from the SAMI-pH and SeaFET were made worse by removing data. 

This analysis suggests that the MAPCO2 is recording systematically high pCO2 values 

when the pCO2 is changing from decreasing to increasing pCO2. Some possible sources 

of error are presented in the following paragraph. 
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Figure 3:13 Sample DIC (µmol kg-1) vs. DIC from (SAMI-pH +AT) (red), slope = 0.97, r2 
= 0.98. Sample DIC vs. DIC from (pCO2 + AT) (blue), slope = 0.82, r2 = 0.97. Sample 
DIC vs. DIC from (SeaFET + AT) (green), slope = 1.03, r2 = 0.97. Dashed line represents 
1:1. 
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10 minutes for each CO2 measurement (Sutton et al., 2015). Each seawater CO2 

measurement is a result of integrated seawater CO2 levels during that 10-minute 
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(Fig. 3.1 bottom), but if the observed low pCO2 offset were a simple issue with rate of 
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applied using the standard gas as a point along the curve from zero. The shape of that 

curve could fit well at high pCO2 values – values around and above the standard gas – but 

not fit well at low values based on similar calibrations our group has run. However, errors 

of this magnitude are not expected from this type of calibration. If this is the case, the 

high and mid range values would be very accurate and the low values would be off as we 

see during this study, but all of the lower pCO2 values would be off below a certain pCO2 

threshold, which is not the case here. The system is also verified with six gas standards 

ranging from 0 – 800 ppm both before and after the deployment (Sutton et al., 2015) and 

no correction was necessary for this deployment.  

The seawater pCO2 value is highly variable relative to atmospheric pCO2 in 

Kaneohe Bay (Drupp et al., 2013). Low pCO2 values are observed when biological 

activity on the reef consumes CO2 and produces oxygen (Drupp et al., 2011; Shamberger 

et al., 2011). When oxygen is oversaturated in the water due to productivity, a positive 

pressure could form in the equilibrator and then vent by bubble bursting. This would 

result in a measured pCO2 that is lower than pCO2 at equilibrium (Schneider et al., 2007). 

That loss of gas would require makeup gas to accurately measure pCO2. If this is the case 

we could see full equilibration during the measurements at high pCO2, but not when the 

pCO2 is low due to a loss of gas in the equilibrator. Unfortunately, this cannot fully 

explain the observed differences because we see the pCO2 discrepancy even at values 

where we can calculate negative NEP during the day (June 19-20, respiration calculations 

discussed further in chapter 4).  
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3.4 Conclusions 
 

These results show that the in situ AT from the SAMI-alk provides an excellent 

inorganic carbon parameter from which other parameters can be accurately and precisely 

calculated. As previously known, we can conclude that the pH + pCO2 pairing is 

inadequate for CO2 system calculations in this highly variable coral reef environment, 

although the Ωarag from the pH + pCO2 pairing could still be useful. The DIC from the 

SAMI-pH + AT combination has a much higher accuracy than the pCO2 + AT 

combination with the same number of samples and a similar, though slightly lower 

accuracy to the SeaFET + AT combination with more samples (Table 3.4). The 

comparison between the sample DIC and the three calculated DIC data sets shows that 

the DIC calculated from the SAMI-pH +AT combination has the highest precision (Table 

3.4). The best pH comparisons came from those including the SAMI-pH (SAMI-pH vs. 

SeaFET and SAMI-pH vs. pH from pCO2 + AT). The SeaFET did not sample during the 

second half of the deployment due to biofouling, and an offset had to be applied to the 

data. The pH calculated from the pCO2 + AT combination missed the peak pH each day. 

The pCO2 measured from the MAPCO2 system did not drop as low each day as the pCO2 

calculated from the AT and either of the pH sensors. For these reasons, CO2 system 

calculations from the AT + SAMI-pH combination were used for further analysis of the 

reef biogeochemistry in Chapter 4. 

Lastly, these data highlight the challenges in quality control (QC) of in situ data. 

The in situ AT, combined with pH two ways, and pCO2 allowed us to rigorously compare 

the measured data and to verify the data quality. The MAPCO2 system was carefully 
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calibrated both before and after the deployment and the resulting data was submitted to 

rigorous post deployment QC but were unable to characterize or correct for the observed 

errors. The discrepancies observed in the measured and calculated pCO2 would not have 

been apparent if either pH or discrete DIC had not also been measured and then used to 

examine the CO2 system calculations. It is important to note that while the infrared 

analyzer accuracy is validated using CO2 standards, there is no practical way to account 

for errors in the equilibration process (Kortzinger et al., 2000). MAPCO2 systems are 

widely used, globally, 36 moored stations with MAPCO2 systems are in operation today 

(Sutton et al., 2018) and so further evaluation of their performance is critical. The 

autonomous measurement comparisons presented in this chapter highlight the importance 

of field validation of instrument accuracy. Finally, the autonomous AT measurements 

made by the SAMI-alk were crucial because the pH + pCO2 pairing did not accurately 

estimate DIC or AT in this environment.      
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CHAPTER 4 

Kaneohe Bay: AT variability on a coral reef 
4.1 Overview 
 
 Coral reef ecosystems rely on marine organisms that use CaCO3 to build their 

skeletons. When CO2 reacts with seawater it decreases the availability of [CO3
2-]; as 

ocean pH declines so do the saturation states of calcite (ΩCa) and aragonite (Ωarag), the 

two mineral forms of CaCO3 (Eqn. 1.9). Reef ecosystems may be especially vulnerable to 

the effects of ocean acidification (Langdon et al., 2000; Doney et al., 2009; Andersson 

and Gledhill, 2013; Shaw et al., 2015) because acidification makes it more difficult for 

calcifying organisms to produce shells (Gattuso et al., 1999; Silverman et al., 2007). The 

seawater chemistry in a coral reef ecosystem is naturally altered by organic production 

and inorganic calcification resulting in large diel fluctuations in the seawater chemistry 

(Ohde and Woesik, 1999; Bates et al., 2010; Shamberger et al., 2011; Gray et al., 2012). 

In fact, reefs experience daily conditions that vary more widely than mean pre-industrial 

to present pH conditions (Hofmann et al., 2011; Gray et al., 2012; Shaw et al., 2012; 

Albright et al., 2013). Metabolism and calcification alter the water chemistry over the 

reef, which are in turn controlled by light, temperature, water-mass movement, tides, 

nutrient availability, community composition, and other physical parameters (Falter et al., 

2008, 2013; Anthony et al., 2013). The physical and biological drivers of this background 

variability must be studied and understood in order to make projections on the 

susceptibility of reef ecosystems to future changes in seawater chemistry due to ocean 

acidification (Silverman et al., 2012; Falter et al., 2013; Albright et al., 2015; Shaw et al., 

2015). 
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 Non-conservative AT variability is primarily due to calcification (Fig. 4.1), and 

therefore AT is a key indicator of reef NEC. Past calcification studies have been limited 

by the ability to measure calcification in situ on a temporal scale that captures the full 

range of variability. Studies have been conducted on smaller scales with mesocosm 

experiments (Gattuso et al., 1998; Andersson et al., 2009). In situ studies have been 

limited to shorter periods of time with one or two days of intense sampling (Falter et al., 

2008; Shamberger et al., 2011), or with only a few samples per day e.g. every day at low 

tide for a month to capture one 24-hr diel cycle (Falter et al., 2008; Shamberger et al., 

2011; Albright et al., 2015; Shaw et al., 2015). The 17-day AT time series presented here 

provides unprecedented resolution of day and night calcification on the reef (Spaulding et 

al., 2014). The objectives of this study were to characterize the full range of CO2 

chemistry on the reef and to attempt to identify the primary controls of net ecosystem 

calcification by examining correlations between parameters. The relative importance of 

these drivers may be misunderstood in an in situ setting without high temporal resolution 

data, and resolving these drivers will be key in predicting the future of reef health in the 

world’s oceans under changing conditions.  
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Figure 4:1 AT plotted vs. salinity; there would be a clear trend if AT were conservative 
with salinity as it is in the open ocean.  

 
 

4.2 Results 

4.2.1 Physical 
 

The physical parameters are plotted in Figure 4.2, data sources are listed in 

Chapter 2. Water temperature varied only 3 °C during this study, from 23.9 – 27.0 °C and 

averaged 25.6 ± 0.7 (Fig. 4.2). The average salinity was 35.2 ± 0.04 (Fig. 4.2). There was 

no rainfall during this study. The daily tides ranged from 0.20 – 0.95 m. The 

predominantly northeast trade winds varied between 2.9 – 8.2 m s-1 with an average wind 

speed of 6.1 ± 0.9 m s-1. Wind and wave height remained constant over the first several 

days of the deployment, and then increased to a maximum on June 13 before steadily 

decreasing to a minimum at the end of the time series.  
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Figure 4:2 Temperature, salinity, wind speed, wave height and tides in Kaneohe Bay 
during this study. The dashed line represents the average HOT salinity.  
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4.2.2 Measured in situ trends  
 
The diel water chemistry varied widely and is summarized in Table 4.1. The pH 

and pCO2 mirrored each other, with pH reaching a minimum at dawn and a maximum in 

the afternoon around 2pm. DIC and Ωarag also vary in opposition to each other; DIC is 

highest at dawn and Ωarag is highest in the early afternoon, and vice versa (Fig. 4.3). 

Aragonite saturation states ranged from 2.33-4.71 and the peak magnitude varied day to 

day. Reports of mean Ωarag for Kaneohe have varied widely from 2.84-3.62 (Kinsey, 

1985; Shamberger et al., 2011); the mean Ωarag from this study (3.22) falls within that 

range. The reef both increases and decreases the DIC from the open ocean source water 

(HOT); while the AT on the reef is almost always lower than the source water AT.   

 
Table 4.1 Average values recorded over the study reported as mean ± standard deviation 
followed by the range. Asterisk (*) indicates measured parameters. 
 

 mean ± SD range 

Temperature (°C)* 25.64 ± 0.69 23.9-27.0 

Salinity* 35.2 ± 0.1 35.0-35.3 

AT (µmol kg-1)* 2263 ± 30 2187-2325 

pH* 8.008 ± 0.084 7.847-8.218 

DIC (µmol kg-1) 1978 ± 74 1823-2121 

pCO2 (µatm) 467 ± 90 291-672 

Ωarag 3.22 ± 0.53 2.33-4.71 
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Figure 4:3 Salinity-normalized AT (nAT) from the SAMI-alk (pink) (dashed line 
represents average salinity-normalized HOT AT), nDIC calculated from SAMI-alk – 
SAMI-pH (blue) (dashed line represents average salinity-normalized HOT DIC), pCO2 
from the MAPCO2 (purple) (dashed line represents atmospheric pCO2 from the 
MAPCO2), pH from the SAMI-pH (red), and Ωarag calculated from the SAMI-alk – 
SAMI-pH (green). Shaded bars represent nighttime.  

 
 

There is a time-series trend in the maximum pH and the minimum pCO2; pH 

maxima increase while pCO2 minima steadily decline until June 15, and then pH maxima 

decrease through the rest of the study, while minima pCO2 mirror this trend (Fig 4.3). 

This trend is also seen in the DIC and Ωarag, but not in the AT. There is no long-term trend 

in either the temperature or salinity. To show the pH and pCO2 variability due to 

temperature, constant values for AT and DIC were used with in situ temperature in 

CO2SYS to calculate pCO2 and pH (Fig. 4.4). These results will be examined in the 

Discussion section below.  
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Figure 4:4 pH (red) and pCO2 (purple) measured in situ (top), calculated with in situ 
temperature and constant AT and DIC (middle), and the difference (bottom) shows the 
temperature dependence of pH and pCO2 measurements. 
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primary production (GPP, Eqn. 2.11) over the time series was 43.4 ± 18.3 mmol C m-2 d-

1, and the rate of community respiration (R) was 38.1 ± 18.8 mmol C m-2 d-1.  

 

 
Figure 4:5 Time series of NEC (top), NEP (middle), and PAR (bottom). 
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Pearson’s correlations (r) are presented in Table 4.2. NEP is correlated with NEC 

with r = 0.73 (Table 4.2). NEP also has a better correlation with temperature (r = 0.91) 

than PAR (r = 0.48), but the parameters used to calculate NEP (pH and pCO2) are 

temperature dependent. 

 

Table 4.2 Correlations displayed as Pearson’s r values all with p values < 0.05. 
(n = 263 for each parameter) 
 

 NEC NEP 

pH 0.60 0.98 

Ωarag 0.56 0.97 

PAR 0.31 0.48 

temperature 0.73 0.91 

wind speed 0.30 0.42 

[H+] 0.63 0.99 

NEC/NEP 0.73 0.73 

tides 0.55 0.56 

   

 

 

 4.2.4 Net Ecosystem Calcification 
 

AT values below the HOT source water value of 2309 µmol/kg mean net 

calcification was occurring, while values of AT above the HOT AT indicate net 

dissolution. Three instances of net dissolution were measured on the reef, occurring as 
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single points on the nights of June 12, June 14, and June 16 (seen on figure 4.5 where 

NEC dips below zero for one measurement on each of these days). Daytime NEC was 

integrated when PAR > 0 and nighttime NEC was integrated when PAR = 0. With the 

exception of these three points, the reef was always net calcifying with an average 

integrated daytime NEC of 19 ± 3 mmol m-2 h-1 and an average nighttime NEC of 12 ± 3 

mmol m-2 h-1.  

NEC is best correlated with NEP (r = 0.73) (Table 4.2). NEC is less correlated 

with temperature (r = 0.73), and PAR (r = 0.31) than NEP. Like other studies (Ohde and 

Woesik, 1999; Silverman et al., 2007; Andersson et al., 2009; Shamberger et al., 2011) 

NEC is also correlated with Ωarag (r = 0.56).   

 
 
 

4.3 Discussion 

4.3.1 Time-series trends 
 

The following discussion will focus on June 10 – 20 where data from the entire 

24-hour diel cycle were available (Fig. 4.3). Wind, waves, tides, and precipitation control 

the physical properties of seawater in Kaneohe Bay (Smith and Key, 1975; Ringuet and 

Mackenzie, 2005). Wave height and wind speed reached a maximum on June 14 and 

decreased to a minimum at the end of the study, and the tidal range was the smallest from 

June 14 – 19 (Fig. 4.2). Because of this decreased water movement, the average residence 

time of 4 hours may have underestimated actual residence times on those days. The 

largest tidal swings occurred during the last two days of the study, June 20-21, where the 

4 hour average residence time may be an overestimation, thus dampening the NEP and 

NEC signals. The tidal signal also shows up in the biogeochemical time series as a 
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shoulder particularly on days where the tidal range was small (Figs. 4.3 and 4.5, see small 

shoulder right at mark for June 11). Using an average residence time to calculate NEC 

and NEP smoothed this but did not eliminate it (Fig. 4.5). Additionally, all measured CO2 

system parameters and temperature were correlated with the tidal signal (e.g. daily high 

pH and temperature each corresponded to daily high tide, daily low pCO2 corresponded 

to daily high tide, Table 4.2). This shows that the processes of NEP and NEC are 

sensitive to water movement driven by tides, but also that during this study high tide 

occurred on or near peak PAR and temperature each day.  

The time series trend in pH, pCO2, DIC, and hence NEP demonstrates that NEP is 

a primary driver of seawater chemistry on the reef. Calcification also significantly affects 

the seawater chemistry, resulting in diel AT changes of up to 100 µmol kg-1. The average 

ratio of NEP to NEC is 5:1 (Fig. 4.6). Because primary production rates are much larger 

than calcification rates, NEP is a more dominant control of seawater chemistry than 

calcification. This finding is consistent with studies conducted on other reef systems, 

(Shaw et al., 2012, 2015; McMahon et al., 2013; Albright et al., 2015) and mesocosm 

studies (Gattuso et al., 1998; Langdon and Atkinson, 2005; Langdon et al., 2003).  
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Figure 4:6 NEP (blue) and NEC (pink) plotted on the same scale. Data from Figure 4.5.  

 

 
NEP is the parameter best correlated to NEC (Table 4.2), supporting that the 

strongest driver of calcification on the reef is NEP. In an attempt to see if observed net 

ecosystem production could predict NEC, a linear regression of NEC as a function of 

NEP was determined (Eqn. 1).  

 

NEC = (16.9 ± 0.4 mmol CaCO3 m-2 h-1) + (0.17 ± 0.01 mmol CaCO3 m-2 h-1 

mmol C  m-2  h-1   ) � NEP     (4.1) 

 

This equation explains 54% of the variance in NEC. A correlation between and NEC and 

Ωarag has been reported in Kaneohe Bay (Shamberger et. al., 2011), and on other reefs 

(McMahon et al., 2013; Shaw et al., 2015; Decarlo et al., 2017), so Ωarag is included on 

the plot of NEC and predicted NEC from Eqn. 1 in Figure 4.7. If Ωarag were an important 

factor in explaining diel calcification, NEC would be greater than predicted by Eqn. 4.1 

at high Ωarag and less than predicted by Eqn. 4.1 when Ωarag is low. Figure 4.7 shows that 
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this is not the case, predicted NEC is both higher and lower than observed NEC at high 

values of Ωarag. The predicted NEC also differs from observed NEC on days when NEC 

and NEP are decoupled from each other and peak PAR (e.g. June 11) and when observed 

daytime peak NEP was low, but NEC remained high (e.g. June 19-20).  

 

 

 
Figure 4:7 Measured NEC (mmol m-2 h-1) (blue) shown with NEC predicted from Eqn. 
4.1 (red) on left axis, and Ωarag on right axis.  

 
 
 

Additionally, NEP and NEC are decoupled on hourly time scales (Fig. 4.8) 

throughout the study. This phenomenon has been observed before both in Kaneohe Bay 

(Shamberger et al., 2011) and elsewhere (Falter et al., 2012) where for example peak 
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parameter (e.g. average daily PAR, peak PAR, temperature, tides). It may be that the reef 

is calcifying above some threshold where diel NEC is not directly affected by diel 

variability in NEP and PAR; this is the first example of this from this data set, but more 

will be discussed in the following sections. This is an example of where long-term high 

temporal resolution records are necessary to determine how frequent or infrequent these 

decoupling events are in a coral reef environment.   

 

 

 
Figure 4:8 72 hours of NEP (red) and NEC (blue) demonstrating phase coherence and 
short-term decoupling.  

 
 
 

4.3.2 Controls of diel variability 
 

There are chemical feedbacks between NEC and NEP that potentially contribute 

to their high correlation. The formation of CaCO3 by NEC produces CO2, which is 

consumed by photosynthesis. NEC and NEP are linked because the products of one are 
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the reactants of the other. Additionally, in any in situ coral reef study a number of 

parameters that can affect NEC and NEP covary, e.g. light, temperature, currents, diel 

winds, Ωarag, and nutrient availability. The linear regression model (Fig. 4.7) explains the 

phase of NEC (highest rates occur during the day, rates decline at night), but not 

necessarily the absolute rate of calcification. Average daily calcification rates vary by 

16% (19 ± 3 mmol m-2 h-1) from day to day, while average daily NEP varies by 50% (23 

± 11 mmol m-2 h-1) during the study (Fig. 4.9). The changes in NEP amplitude do not 

show a corresponding change in NEC amplitude. The last two days of the study, for 

example, have much lower daytime integrated rates of NEP; in fact there is daytime net 

respiration on June 19. Yet, daily-integrated rates of NEC over those two days are within 

± 3 mmol m-2 h-1 of the average daily NEC (Fig. 4.9), and integrated PAR on June 18 is a 

daily maximum for the study. There is no correlation between daily-integrated NEC or 

NEP and PAR, thus daily light availability is not a good predictor for daily rates of NEC 

or NEP.  
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Figure 4:9 Daytime integrated ΣNEP and ΣNEC (mmol m-2 h-1) defined as the area under 
the curve of NEP or NEC when PAR > 0, and daily integrated ΣPAR (mol photons m-2 d-

1) shown on days where the full diel cycle was measured for NEP and NEC. Error bars 
indicate standard deviations. 

 
 

Both exponential and linear relationships between light and NEP (exponential) or 

NEC (exponential and linear) on coral reefs have been established in previous studies 

(Gattuso et al., 1996; Falter et al., 2012; Albright et al., 2013; Takeshita et al., 2016). 

However, in this study there are low correlation coefficients between NEP and PAR (r = 

0.48) and NEC and PAR (r = 0.31) during this study (Table 4.2). Hourly binned NEP and 

NEC rates (the same hour each day was averaged) are plotted with daily-integrated PAR 

in Figure 4.10. The composite plot also includes all measured data (Fig. 4.5). Instead of 

the expected exponential relationship, a diel hysteresis emerged where the morning NEP 

rates are lower than afternoon NEP rates at similar PAR. The hysteresis suggests that 

there is another variable not accounted for in the NEP – PAR relationship. It could be in 
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part a result from the offset of peak PAR and peak NEP in Kaneohe Bay, but is likely a 

signal in the residence time of the water from the diel tides. It demonstrates that caution 

should be used when applying a previously established exponential relationship between 

NEP and PAR in order to predict NEP, especially because wide variability has been 

shown between reefs (Albright et al., 2013; Takeshita et al., 2016), and seasonally on the 

same reef (Falter et al., 2012).  

 
Figure 4:10 NEC (blue, mmol m-2 hr-1) and NEP (red, mmol m-2 hr-1) vs. PAR (µmol 
photons m-2 s-1). Individual measurements shown in shaded circles, hourly binned 
averages shown in solid circles.  

 
 

It could also be that in Kaneohe Bay, morning production must overcome a night 

of net respiration; production is lower in the morning because it is transitioning from 12 
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hours of net respiration. Whereas, late afternoon production, at the same PAR as morning 

production, follows hours of higher rates of net production. Unlike NEP, net calcification 

continues throughout the hours of zero PAR; average integrated nighttime NEC is 12 ± 3 

mmol m-2 h-1. NEC rates are high enough to draw down Ωarag if they were the only process 

occurring (absent NEP). Instead high Ωarag values were observed at high NEC rates 

because production sustains the high Ωarag by consuming CO2 and producing CO3
2- (Fig. 

4.11). At night during net respiration, net dissolution was only observed for three 

measurements all corresponding to NEP rates between -40 to -60 mmol m-2 h-1. A similar 

threshold has been observed on other reefs, where NEC crosses from net calcification to 

net dissolution at high rates of net respiration. This same threshold of NEC = 0 at NEP of 

-50 mmol m-2 h-1 was observed on the Dongsha Atoll, northern South China Sea in June 

2014 (Decarlo et al., 2017), -25 mmol m-2 h-1 in the winter and -50 mmol m-2 h-1 in the 

summer on the Davies Reef flat in the central Great Barrier Reef, (Albright et al., 2013) 

and NEP values between 0 mmol m-2 h-1 and -20 mmol m-2 h-1 on Heron Island and One 

Tree Island Great Barrier Reef (Shaw et al., 2015; McMahon et al., 2018). Though the 

point of intersection varies between reefs and seasons, there is some consistency with 

very similar thresholds observed from widely different locations.  
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Figure 4:11 Relationship between Net Ecosystem Calcification (NEC) and Net 
Ecosystem Production (NEP). Points shaded with Ωarag (colorbar). Horizontal dashed line 
represents net calcification (above) and net dissolution (below), vertical dashed line 
represents net production (right) and net respiration (left). 

 
 

NEC appears to be at some threshold where calcification rates on the reef are not 

affected by small, short-term changes in NEP. This could be explained if heterotrophic 

processes are a greater influence on calcification than autotrophic processes in Kaneohe 

Bay especially at night. The stability in NEC even when there are changes in NEP, light, 

and currents also supports model and incubation studies that conclude that marine corals 

affect carbonate chemistry at the site of calcification to produce internal conditions that 

are more favorable for calcification than those of the surrounding water (McCulloch et 

al., 2012; Venti et al., 2014; Cyronak et al., 2016). 
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4.3.3 AT – DIC relationship 
 

The diel changes in DIC and AT measured directly at CRIMP-2 can also be used 

to examine community metabolism without quantifying residence times. A Deffeyes 

diagram (Deffeyes, 1965) plotted in Figure 4.12 shows the relative ratio of calcification 

to photosynthesis. Here the AT – DIC relationship is used to explore the extent to which 

benthic community carbon fluxes alter the aragonite saturation state of the overlying 

water (Deffeyes, 1965; Suzuki and Kawahata, 2003; Andersson and Gledhill, 2013). The 

theoretical effects of photosynthesis – respiration, gas exchange, and calcification – 

dissolution are plotted as vectors. One mole of DIC is consumed for every mole of 

organic carbon produced through photosynthesis while AT is negligibly affected. For 

every mole of CaCO3 produced by calcification, AT decreases by 2 moles and DIC 

decreases by 1 mole. Hence, The theoretical calcification vector has a slope of two 

(Suzuki and Kawahata, 2003). Air – sea CO2 flux affects the DIC, but not the AT, shifting 

the midpoint of the AT-DIC line horizontally. Lines of constant Ωarag are shown as 

colored isopleths The observed AT – DIC slope of 0.33 corresponds to the higher rates of 

NEP than NEC seen in this study (NEP:NEC = 5:1), further supporting that NEP is a 

more dominant control of the water chemistry than calcification. Here the AT – DIC 

relationship crosses the Ωarag isopleths (the slope of the AT-DIC best fit line is less than 

the Ωarag isopleths) meaning that biological production drives an increase in the saturation 

state during the day, allowing for high rates of NEC.  
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Figure 4:12 Salinity normalized AT versus DIC (µmol kg-1), data from Figure 4.3, where 
black data points are time series data from the reef. The linear-least squares best-fit line 
(solid white) has a slope of 0.33. The red dot represents open ocean source water from 
HOT. Vectors representing calcification – dissolution (slope of 2:1), photosynthesis – 
respiration (Redfield ratio), and gas exchange (horizontal) are shown as dashed lines. 
Colors correspond to Ωarag.   

 
 

During this study, the AT – DIC slope varied daily from 0.21 – 0.48 (Fig. 4.13) an 

observation that has not been reported in other studies on this reef (Falter et al., 2011; 

Shamberger et al., 2011; Drupp et al., 2013) or on other reefs (Gattuso et al., 1998; 

Albright et al., 2013, 2015; Lantz et al., 2013; McMahon et al., 2013). Figure 4.13 shows 

the two daily extremes of the AT – DIC slope. Establishing a baseline AT – DIC 

relationship can serve as a ruler for how future ocean conditions may perturb the NEC – 
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NEP balance, however, the slope of the daily AT – DIC relationship is not correlated with 

daily-integrated PAR.  

 

 
Figure 4:13 nDIC (µmol kg-1) versus nAT (µmol kg-1) plots for June 17 and June 19. 
Measured points are colored with Ωarag. Lines represent a linear fit through the data with 
the slope shown.  

 
 

Unlike studies on other reefs (Suzuki and Kawahata, 2003; Andersson and 

Gledhill, 2013) where it was found that reefs decreased DIC from the source water, here 

the reef almost always decreased AT from the open ocean source (HOT), but both 

increases and decreases the DIC (Fig. 4.12). DIC values significantly higher than the 

HOT value mean net respiration. An AT – DIC slope of 1.1 corresponds to the previously 

discussed threshold values of NEC = 0 mmol m-2 hr-1 and NEP = -50 mmol m-2 hr-1 using 

the same values for source water AT and DIC (HOT) and residence time (4 hr) that were 

used in this study. The days during this study with a higher AT – DIC slopes (e.g. June 

19, Fig. 4.13) also corresponded to lower observed values of Ωarag. Consequently, as the 

measured ratio of AT – DIC approaches 1 on this reef, and potentially others, the reef 

may change over from net calcifying to net dissolving.  
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4.3.4 Other Kaneohe Bay studies 
 
 This study found the reef in Kaneohe Bay to be net autotrophic, with a primary 

production-to-respiration ratio (P/R) of 1.2 ± 0.4. Falter et al. (2011) reported a P/R of 

1.04 during October 2006 in Kaneohe Bay. The magnitudes of NEP above and below 

zero in this time series are similar, further illustrating that most carbon fixed during the 

day is rapidly metabolized at night, and that increases in production drive increases in 

respiration. R is correlated with P (r2 = 0.67), and this study displayed a similar short-

term coherence between P and R as that seen in the Falter’s October 2006 data (Falter et 

al., 2011). Unlike Falter et al., (2011), daily integrated P during this study does not vary 

linearly with daily integrated PAR (r2 = 0.1).  

 
 
Table 4.3 Comparison of average daily values of temperature, salinity, Ωarag, pCO2, NEC 
and NEP of four studies conducted in Kaneohe Bay.  
 

Kaneohe 
Bay 

Temp  
(°C) 

Salinity Ωarag pCO2 
(µatm) 

NEC 
(mmol m-2 h-1) 

NEP 
(mmol m-2 h-1) 

Study 

Winter 24.6 35.0 3.26 325 9.0 -3.1 Kinsey, 1985 

Summer 27.1 34.9 3.62 328 11.4 -14.2 Kinsey, 1985 

Winter 23.4 34.9 2.84 392 12.2 -2.3 Shamber et al., 

2011 

Summer 26.3 35.2 2.86 394 9.8 -6.6 Shamber et al., 

2011 

Summer 25.6 35.2 3.22 398 16.3 3.5 This study 
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Average daily summertime NEC rates reported during the summer of 1970 in 

Kaneohe Bay were 11.4 mmol m-2 h-1 (Kinsey, 1985). A 48-hr study at CRIMP-2 

conducted in 2011 measured lower average daily NEC (9.8 mmol m-2 h-1) in the summer, 

but a higher rate of NEC during the winter (12.2 mmol m-2 h-1) (Shamberger et al., 2011). 

Average daily NEC during this study was higher than both (16.3 ± 2.4 mmol m-2 h-1). The 

atmospheric pCO2 in 1970 was substantially lower than the pCO2 today, 328 ppm and 

398 ppm respectively (Table 4.3). The average Ωarag was higher in 1970 than in 2011 

(3.61 and 2.86, respectively), but Ωarag measured during this study fell between these 

values. The relatively high, steady rates of NEC measured could imply the robustness of 

calcifiers in Kaneohe Bay even under drastically different CO2 system conditions. By 

contrast, NEC rates have reduced by ~44% over the same time period on One Tree Island 

reef on the Australian coast (Silverman et al., 2012; Albright et al., 2013). But as we have 

shown, there are many factors that affect NEC and no direct connection between 

atmospheric pCO2 and NEC can be drawn from these three isolated studies. High rates of 

nutrient uptake like those observed in Kaneohe (Falter et al., 2004) can reduce sensitivity 

of NEC to changes in aragonite saturation state (Silverman et al., 2007). A concurrent 

increased presence of H+ from ocean acidification could result in a larger proton gradient 

at the site of calcification against which calcifiers must contend (Roleda et al., 2012). 

NEC is correlated with H+ (r = 0.63, Table 4.2), but as the reef was always net calcifying 

during this study, this is likely not significantly affecting calcification rates.   
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4.4 Conclusions 
 

The SAMI-alk allowed autonomous characterization of diel AT for 17 days on a 

coral reef in Kaneohe Bay (Spaulding et al., 2014). The study demonstrated the SAMI-

alk is an important tool for characterizing calcification and improving our understanding 

of the controlling biogeochemical processes in situ. Using the SAMI-alk in targeted 

studies on reef calcification and metabolism will aid in assessing the potential future 

impacts of ocean acidification on coral reefs. The AT – DIC relationship has previously 

been used as a baseline for reefs (Andersson and Gledhill, 2013) (Fig. 4.12), but high 

resolution data from this study show that it can change daily (Fig. 3.13). While there is a 

relationship between production, calcification, and light, they decouple from day to day 

(Fig. 4.8), and from morning to afternoon (Fig. 4.10). Daily-integrated PAR does not 

predict high daily-integrated rates of NEP or NEC (Fig. 4.9). These differences would not 

have been observed without the high temporal resolution of the SAMI-alk.    

The natural trends in carbonate chemistry in Kaneohe Bay vary widely over diel 

cycles. NEP, and to a lesser extent NEC, controlled the seawater chemistry. A strong 

relationship between NEC and NEP was observed, suggesting that production drives 

NEC, although it is not the only parameter necessary for calcification as high rates of 

NEC were observed on days with low productivity (Figs 4.6 and 4.9). Because so many 

factors influencing NEP and NEC covary, no relationship between only two factors (e.g. 

PAR, Ωarag, NEP, NEC) completely explained the observed variability. The natural diel 

variability of NEC in Kaneohe Bay is greater in magnitude than predicted changes in 

NEC due to ocean acidification (Langdon et al., 2000; Shaw et al., 2015) mean levels will 
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change and they might regulate everything. Anthropogenic changes may be lost in the 

noise of this natural variability unless the natural variability is well characterized. 

Additional long-term studies using the SAMI-alk could establish more robust 

relationships for the biogeochemistry on coral reefs. 
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Chapter 5 

Summary and Future Work 
5.1 Summary 
 
 Over 250 individual AT measurements were made during the first deployment of 

the autonomous instrument for alkalinity, the SAMI-alk between June 4, 2013 and June 

21, 2013. This allowed us to capture the full diel variability during the 17-day time series 

(Fig. 4.3). Additional continuous measurements of pH, and pCO2 made during the study 

were used in the analysis of the seawater CO2 system in Kaneohe Bay. The composite 

data set is the most comprehensive continuous evaluation of the biogeochemistry on a 

coral reef. 

  The SAMI-alk was deployed with a SAMI-pH on the CRIMP-2 buoy in Kaneohe 

Bay with an existing MAPCO2 system, SeaFET (pH) and Sea Bird CTD. The main focus 

of this deployment was to assess the ability of the SAMI-alk to autonomously measure 

AT in situ in a highly variable environment. Discrete samples were taken throughout the 

study and analyzed for AT to determine the accuracy of the SAMI-alk as -1.6 ± 15.7 µmol 

kg soln-1. The objectives of this research, as presented in the previous chapters, were to 1) 

evaluate the internal consistency of the CO2 system using three in situ parameters (pCO2, 

pH, and AT); and 2) use the AT data to assess the relationship between coral production 

and environmental conditions.   

 The seawater CO2 system in Kaneohe Bay was fully characterized four ways (Fig. 

3.2) during the study using the combination of the SAMI-alk with (1) a SAMI-pH, (2) a 

SeaFET (pH), and (3) a MAPCO2 system, and (4) with the pH- pCO2 combination (Fig. 

3.3) from the SAMI-pH and MAPCO2 to do the equilibrium calculations. This gave us 
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another way to evaluate the performance of each instrument individually and compare the 

possible combinations. The SAMI-pH measured more frequently and has the highest 

reported accuracy of the pH sensors. Both pH sensors agreed to within 0.006 ± 0.022 pH 

units (Table 3.5), but the SeaFET fouled seven days into the study, and required an offset 

to correct the data post deployment (Fig. 3.1). The pCO2 time series decoupled with the 

two calculated pCO2 data sets at low values of pCO2 when the seawater pCO2 changed 

from decreasing to increasing each day (Fig. 3.11). This systematic error propagated 

through the equilibrium calculations, and is likely a design issue specific to the 

equilibration that takes place during each measurement in the MAPCO2 system. For 

these reasons we determined that the SAMI-pH – SAMI-alk combination for calculating 

CO2 system equilibria was the most robust and therefore used it in the rest of our analysis 

(Fig. 4.3).  

Kaneohe Bay experiences dynamic pH, pCO2, DIC, and AT fluctuations each day 

(Fig. 4.3). Production and respiration decrease and increase the DIC, respectively, from 

the open ocean source water, resulting in daily pH changes of ~0.1 pH units. 

Calcification draws down the source water AT. The pCO2 is altered by both biology and 

gas flux, as its range is both below (291 µatm) and above (672 µatm) atmospheric pCO2 

(398 µatm). Net ecosystem production and net ecosystem calcification were evaluated as 

the most significant drivers of seawater chemistry on the coral reef. Both processes varied 

greatly in their contribution to the diel cycles of inorganic carbon. Time series trends in 

pH, pCO2 and DIC and NEP demonstrate the role of NEP in governing the water 

chemistry on the reef (Fig. 4.3). We determined that NEP is a significant driver of NEC; 

they are correlated and a linear regression model explains 54% of the variance (Fig. 4.7).  
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The correlation of NEC with NEP (Table 4.2), and hence the factors that govern 

NEP such as light, explains the phase of NEC, but not the absolute rates. High rates of 

calcification were observed on days where NEP was relatively low (Fig. 4.5), and NEC 

and NEP became de-coupled on an hourly interval nearly every day (Fig. 4.8). While 

PAR appears to control NEP as expected, it does not follow the established tangential 

relationship shown on other reefs (Fig. 4.10), and there is no relationship between NEC 

and PAR (Fig. 4.9). The observed correlations and de-coupling also suggest that the reef 

is at a threshold of calcification that it can sustain through day-to-day changes in 

production and light availability. Moreover, when NEP dropped to approximately -50 

mmol m-2 h-1, NEC switched from net calcification to net dissolution (Fig. 4.11). This 

appears to be an important threshold for sustaining coral growth, and has been shown on 

other reefs (Albright et al., 2013; Shaw et al., 2015; Decarlo et al., 2018; McMahon et al., 

2018).  

The AT-DIC relationship (Fig. 4.12) represents direct measurements made during 

this study, rather than calculations of NEC and NEP that must account for water mass 

movement, and supports these conclusions because it too varies from day to day (Fig. 

4.13). Previous observations made in Kaneohe Bay (Falter et al., 2011; Shamberger et al., 

2011) and on other reefs (Shaw et al., 2015; Albright et al., 2018; McMahon et al., 2018) 

additionally demonstrate the dramatic range of water chemistry that coral reefs 

experience. Our conclusions are consistent with others that the controls of reef 

biogeochemistry are highly variable both daily and seasonally, and are individual to each 

reef ecosystem. 
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5.2 Future Work 
 
 The SAMI-alk autonomously measured AT for the first time during this study; 

additional SAMI-alk sensors should be built and put through extensive field testing to 

further establish confidence in the reliability of the SAMI-alk and the quality of the AT 

data. More deployments of the SAMI-alk will also be key in evaluating the long-term 

accuracy of the sensor. Preliminary work by Adam Prody (UM DeGrandpre lab) has 

shown promising results of the reproducibility of three SAMI-alk sensors in a controlled 

seawater test tank. These SAMI-alk sensors have since been deployed on a coral reef in 

Bermuda. Continued coral reef studies would ideally be conducted with the sensors in 

different coral cover and biological environments on the same reef to better evaluate the 

effects of NEP on NEC variability. This work should also include off-reef sampling 

during the study on carefully defined transects to better characterize the end-member 

waters and the residence times of the waters affected by reef calcification and production.   

  



 84 

References 
 
Albright, R.; Langdon, C.; Anthony, K. R. N. Dynamics of Seawater Carbonate  

Chemistry, Production, and Calcification of a Coral Reef Flat, Central Great  
Barrier Reef. Biogeosciences 2013, 10 (10), 6747–6758. 

Albright, R.; Benthuysen, J.; Cantin, N.; Caldeira, K.; Anthony, K. Coral Reef  
Metabolism and Carbon Chemistry Dynamics of a Coral Reef Flat. Geophys. Res.  
Lett. 2015, 42 (10), 3980–3988. 

Albright, R.; Takeshita, Y.; Koweek, D. A.; Ninokawa, A.; Wolfe, K.; Rivlin, T.;  
Nebuchina, Y.; Young, J.; Caldeira, K. Carbon Dioxide Addition to Coral Reef  
Waters Suppresses Net Community Calcification. Nature 2018, 555 (7697), 516– 
519. 

Andersson,  a. J.; Kuffner, I. B.; Mackenzie, F. T.; Jokiel, P. L.; Rodgers, K. S.; Tan,  a.  
Net Loss of CaCO3 from a Subtropical Calcifying Community Due to Seawater 
Acidification: Mesocosm-Scale Experimental Evidence. Biogeosciences 2009, 6 
(8), 1811–1823. 

Andersson, A. J.; Gledhill, D. Ocean Acidification and Coral Reefs: Effects on  
Breakdown, Dissolution, and Net Ecosystem Calcification. Ann. Rev. Mar. Sci. 
2013, 5, 321–348. 

Andersson, A. J.; Mackenzie, F. T.; Lerman, A. COASTAL OCEAN AND  
CARBONATE SYSTEMS IN THE HIGH CO 2 WORLD OF THE 
ANTHROPOCENE. Am. J. Sci. 2005, 305 (November), 875–918. 

Anthony, K. R. N.; Diaz-Pulido, G.; Verlinden, N.; Tilbrook, B.; Andersson,  a. J.  
Benthic Buffers and Boosters of Ocean Acidification on Coral Reefs. 
Biogeosciences 2013, 10 (7), 4897–4909. 

Bandstra, L.; Hales, B.; Takahashi, T. High-Frequency Measurements of Total CO2:  
Method Development and First Oceanographic Observations. Mar. Chem. 2006, 
100 (1–2), 24–38. 

Bates, N. R.; Amat,  a.; Andersson,  a. J. Feedbacks and Responses of Coral Calcification  
on the Bermuda Reef System to Seasonal Changes in Biological Processes and 
Ocean Acidification. Biogeosciences 2010, 7 (8), 2509–2530. 

Bates, N. R.; Astor, Y. M.; Church, M. J.; Currie, K.; Dore, J. E.; González-Dávila, M.;  
Lorenzoni, L.; Muller-Karger, F.; Olafsson, J.; Santana-Casiano, J. M. A Time-
Series View of Changing Ocean Chemistry Due to Ocean Uptake of 
Anthropogenic CO2 and Ocean Acidification. Oceanography 2014, 27 (1), 126–
141. 

Breland, J. A.; Byrne, R. H. Spectrophotometric Procedures for Determination of Sea  
Water Alkalinity Using Bromocresol Green. Deep. Res. Part I 1993, 40 (3), 629–
641. 

Bresnahan, P. J.; Martz, T. R.; Takeshita, Y.; Johnson, K. S.; LaShomb, M. Best  
Practices for Autonomous Measurement of Seawater PH with the Honeywell 
Durafet. Methods Oceanogr. 2014, 9 (October), 44–60. 

Broecker, W. S.; Takahashi, T.; Simpson, H. J.; Peng, T.-H. Fate of Fossil Fuel Carbon  
Dioxide and the Global Carbon Budget. Science (80-. ). 1979, 206 (4417), 409–
418. 

Byrne, R. H.; Mcelligott, S.; Feely, R. A.; Millero, F. J. The Role of PHP Measurements  



 85 

in Marine CO -System Characterizations. Deep. Res. 1999, 46, 1985–1997. 
Cai, W. J.; Hu, X.; Huang, W. J.; Jiang, L. Q.; Wang, Y.; Peng, T. H.; Zhang, X.  

Alkalinity Distribution in the Western North Atlantic Ocean Margins. J. Geophys. 
Res. Ocean. 2010, 115 (8), 1–15. 

Caldeira, K.; Wickett, M. E. Oceanography: Anthropogenic Carbon and Ocean PH.  
Nature 2003, 425 (6956), 365. 

De Carlo, E. H.; Beltran, V. L.; Tomlinson, M. S. Composition of Water and Suspended  
Sediment in Streams of Urbanized Subtropical Watersheds in Hawaii. Appl. 
Geochemistry 2004, 19 (7), 1011–1037. 

De Carlo, E. H.; Hoover, D. J.; Young, C. W.; Hoover, R. S.; Mackenzie, F. T. Impact of  
Storm Runoff from Tropical Watersheds on Coastal Water Quality and 
Productivity. Appl. Geochemistry 2007, 22 (8 SPEC. ISS.), 1777–1797. 

Clayton, T. D.; Byrne, R. H.; Breland, J. A.; Feely, R. A.; Millero, F. J.; Campbell, D.  
M.; Murphy, P. P.; Lamb, M. F. The Role of PH Measurements in Modern 
Oceanic CO2-System Characterizations: Precision and Thermodynamic 
Consistency. Deep. Res. Part II 1995, 42 (2–3), 411–429. 

Cullison Gray, S. E.; DeGrandpre, M. D.; Moore, T. S.; Martz, T. R.; Friederich, G. E.;  
Johnson, K. S. Applications of in Situ PH Measurements for Inorganic Carbon 
Calculations. Mar. Chem. 2011, 125 (1–4), 82–90. 

Cyronak, T.; Schulz, K. G.; Jokiel, P. L. The Omega Myth: What Really Drives Lower  
Calcification Rates in an Acidifying Ocean. ICES J. Mar. Sci. 2016, 73 (3), 558–
562. 

Decarlo, T. M.; Cohen, A. L.; Wong, G. T. F.; Shiah, F.-K.; Lentz, S. J.; Davis, K. A.;  
Shamberger, K. E. F.; Lohmann, P. Community Production Modulates Coral Reef 
PH and the Sensitivity of Ecosystem Calcification to Ocean Acidification. J. 
Geophys. Res. 2017, 122, 745–761. 

Decarlo, T. M.; Comeau, S.; Cornwall, C. E.; McCulloch, M. T. Coral Resistance to  
Ocean Acidification Linked to Increased Calcium at the Site of Calcification. 
Proc. R. Soc. B Biol. Sci. 2018, 285 (1878). 

Deffeyes, K. S. Carbonate Equilibria: A Graphic and Algebraic Approach. Limnol.  
Oceanogr. 1965, 10 (3), 412–426. 

DeGrandpre, M. D.; Hammar, T. R.; Smith, S. P.; Sayles, F. L. In Situ Measurements of  
Seawater PC0,. Limnol. Oceanogr. 1995, 40 (5), 969–975. 

DeGrandpre, M. D.; Martz, T. R.; Hart, R. D.; Elison, D. M.; Zhang, A.; Bahnson, A. G.  
Universal Tracer Monitored Titrations. Anal. Chem. 2011, 83 (24), 9217–9220. 

Dickson, A. G. An Exact Definition of Total Alkalinity and a Procedure for the  
Estimation of Alkalinity and Total Inorganic Carbon from Titration Data. Deep 
Sea Res. Part I Oceanogr. Res. Pap. 1981, 28 (6), 609–623. 

Dickson, A. G. The Development of the Alkalinity Concept in Marine Chemistry. Mar.  
Chem. 1992, 40 (1–2), 49–63. 

Dickson, A. G.; Millero, F. J. A Comparison of the Equilibrium Constants for the  
Dissociation of Carbonic Acid in Seawater Media. Deep Sea Res. Part A, 
Oceanogr. Res. Pap. 1987, 34 (10), 1733–1743. 

Dickson, A. G.; Sabine, C. L.; Christian, J. R. Guide to Best Practices for Ocean CO 2  
Measurements; 2007. 

DOE. Handbook of Methods for the Analysis of the Various Parameters of the Carbon  



 86 

Dioxide System in Sea Water. DOE Handb. 1992, 1994 (September), 22. 
Doney, S. C.; Fabry, V. J.; Feely, R. a.; Kleypas, J. a. Ocean Acidification: The Other CO  

2 Problem. Ann. Rev. Mar. Sci. 2009, 1 (1), 169–192. 
Dore, J. E.; Lukas, R.; Sadler, D. W.; Church, M. J.; Karl, D. M. Physical and  

Biogeochemical Modulation of Ocean Acidification in the Central North Pacific. 
Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (30), 12235–12240. 

Drupp, P.; De Carlo, E. H.; Mackenzie, F. T.; Bienfang, P.; Sabine, C. L. Nutrient Inputs,  
Phytoplankton Response, and CO2 Variations in a Semi-Enclosed Subtropical 
Embayment, Kaneohe Bay, Hawaii. Aquat. Geochemistry 2011, 17 (4–5), 473–
498. 

Drupp, P. S.; Carlo, E. H.; Mackenzie, F. T.; Sabine, C. L.; Feely, R. a.; Shamberger, K.  
E. Comparison of CO2 Dynamics and Air–Sea Gas Exchange in Differing 
Tropical Reef Environments. Aquat. Geochemistry 2013. 

Eyre, B. D.; Andersson, A. J.; Cyronak, T. Benthic Coral Reef Calcium Carbonate  
Dissolution in an Acidifying Ocean. Nat. Clim. Chang. 2014, 4 (11), 969–976. 

Fabry, V.; Seibel, B.; Feely, R.; Orr, J. Impacts of Ocean Acidification on Marine Fauna  
and Ecosystem Processes. ICES J. Mar. Sci. 2008, 65 (Dic), 414–432. 

Falter, J. L.; Atkinson, M. J.; Langdon, C. Production-Respiration Relationships at  
Different Timescales within the Biosphere 2 Coral Reef Biome. Limnol. 
Oceanogr. 2001, 46 (7), 1653–1660. 

Falter, J. L.; Atkinson, M. J.; Merrifield, M. a. Mass-Transfer Limitation of Nutrient  
Uptake by a Wave-Dominated Reef Flat Community. Limnol. Oceanogr. 2004, 49 
(5), 1820–1831. 

Falter, J. L.; Lowe, R. J.; Atkinson, M. J.; Monismith, S. G.; Schar, D. W. Continuous  
Measurements of Net Production over a Shallow Reef Community Using a 
Modified Eulerian Approach. J. Geophys. Res. Ocean. 2008, 113 (7), 1–14. 

Falter, J. L.; Atkinson, M. J.; Schar, D. W.; Lowe, R. J.; Monismith, S. G. Short-Term  
Coherency between Gross Primary Production and Community Respiration in an 
Algal-Dominated Reef Flat. Coral Reefs 2011, 30 (1), 53–58. 

Falter, J. L.; Lowe, R. J.; Atkinson, M. J.; Cuet, P. Seasonal Coupling and De-Coupling  
of Net Calcification Rates from Coral Reef Metabolism and Carbonate Chemistry 
at Ningaloo Reef, Western Australia. J. Geophys. Res. Ocean. 2012, 117 (5), 1–
14. 

Falter, J. L.; Lowe, R. J.; Zhang, Z.; McCulloch, M. Physical and Biological Controls on  
the Carbonate Chemistry of Coral Reef Waters: Effects of Metabolism, Wave 
Forcing, Sea Level, and Geomorphology. PLoS One 2013, 8 (1), e53303. 

Gattuso, J.-P.; Pichon, M.; Delesalle, B.; Canon, C.; Frankignoulle, M. Carbon Fluxes in  
Coral Reefs . I . Lagrangian Measurement of Community Metabolism and 
Resulting Air-Sea CO2 Disequilibrium. Mar. Ecol. Prog. Ser. 1996, 145, 109–
121. 

Gattuso, J.-P.; Frankignoulle, M.; Wollast, R. Carbon and  Carbonate Metabolism in  
Coastal Aquatic Ecosystems. Annu. Rev. Ecol. Syst. 1998, 29 (1), 405–434. 

Gattuso, J.-P.; Allemand, D.; Frankignoulle, M. Photosynthesis and Calcification at  
Cellular , Organismal and Community Levels in Coral Reefs  : A Review on 
Interactions and Control by Carbonate. Amer. Zool 1999, 39, 160–183. 

Gray, S.; Ellis, P.; Grace, M.; Mckelvie, I. Underway Determination of Alkalinity in  



 87 

Estuarine Waters by Reagent-Injection Gas-Diffusion Flow Analysis. Talanta 
2008, 77 (2), 533–540. 

Gray, S. E. C.; Degrandpre, M. D.; Langdon, C.; Corredor, J. E. Short-Term and Seasonal  
PH. Global Biogeochem. Cycles 2012, 26 (3), GB3012. 

Hansson, I.; Jagner, D. Evaluation of the Acuracy of Gran Plots by Means of Computer  
Calculations. Application to the Potentiometric Titration of the Total Alkalinity 
and Carbonate Content of Sea Water. Anal. Chim. Acta 1973, 65, 363–373. 

Ho, D. T.; Law, C. S.; Smith, M. J.; Schlosser, P.; Harvey, M.; Hill, P. Measurements of  
Air-Sea Gas Exchange at High Wind Speeds in the Southern Ocean: Implications 
for Global Parameterizations. Geophys. Res. Lett. 2006, 33 (16), L16611. 

Hofmann, G. E.; Barry, J. P.; Edmunds, P. J.; Gates, R. D.; Hutchins, D. A.; Klinger, T.;  
Sewell, M. A. The Effect of Ocean Acidification on Calcifying Organisms in 
Marine Ecosystems: An Organism-to-Ecosystem Perspective. Annu. Rev. Ecol. 
Evol. Syst. Vol 41 2010, 41 (July), 127–147. 

Hofmann, G. E.; Smith, J. E.; Johnson, K. S.; Send, U.; Levin, L. A.; Micheli, F.; Paytan,  
A.; Price, N. N.; Peterson, B.; Takeshita, Y.; et al. High-Frequency Dynamics of 
Ocean PH: A Multi-Ecosystem Comparison. PLoS One 2011, 6 (12), e28983. 

Hönisch, B.; Ridgwell, A.; Schmidt, D. N.; Thomas, E.; Gibbs, S. J.; Sluijs, A.; Zeebe,  
R.; Kump, L.; Martindale, R. C.; Greene, S. E.; et al. The Geological Record of 
Ocean Acidification. Science 2012, 335 (6072), 1058–1063. 

Hoover, D. J.; MacKenzie, F. T. Fluvial Fluxes of Water, Suspended Particulate Matter,  
and Nutrients and Potential Impacts on Tropical Coastal Water Biogeochemistry: 
Oahu, Hawai’i. Aquat. Geochemistry 2009, 15 (4), 547–570. 

Johnson, K. M.; Sieburth, J. M. Coulometric Total Carbon Dioxide Analysis for Marine  
Studies: Automation and Calibration. Mar. Chem. 1987, 21, 117–133. 

Jury, C. P.; Whitehead, R. F.; Szmant, A. M. Effects of Variations in Carbonate  
Chemistry on the Calcification Rates of Madracis Auretenra (= Madracis 
Mirabilis Sensu Wells, 1973): Bicarbonate Concentrations Best Predict 
Calcification Rates. Glob. Chang. Biol. 2010, 16 (5), 1632–1644. 

Kinsey, D. W. Metabolism, Calcification and Carbon Production: 1 Systems Level  
Studies. The Fifth International Coral Reef Congress. 1985, pp 505–526. 

Kleypas, J. A.; Feely, R. A.; Fabry, V. J.; Langdon, C.; Sabine, C. L.; Robbins, L. L.;  
Allemand, D.; Balch, W. M.; Berelson, W. M.; Gattuso, J. P.; et al. Impacts of 
Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for 
Future Research. A Rep. a Work. held 18–20 April 2005, St. Petersburg, FL, 
Spons. by NSF, NOAA, U.S. Geol. Surv. 2006, 88 pages. 

Kortzinger, A.; Mintrop, L.; Wallace, D. W. R.; Johnson, K. M.; Neill, C.; Tilbrook, B.;  
Towler, P.; Inoue, H. Y.; Ishii, M.; Shaffer, G.; et al. Körtzinger et Al. - 2000 - 
The International at-Sea Intercomparison of FCO2 Systems during the RV Meteor 
Cruise 361 in the North Atlanti.Pdf. 2000, 171–192. 

Langdon, C.; Takahashi, T.; Marubini, F.; Atkinson, M.; Sweeney, C.; Aceves, H.;  
Barnett, H.; Chipman, D.; Goddard, J. Effect of Calcium Carbonate Saturation 
State on the Rate of Calcification of an Experimental Coral Reef. Global 
Biogeochem. Cycles 2000, 14(2) (10.1594/PANGAEA.721195), 639–654. 

Lantz, C. a.; Atkinson, M. J.; Winn, C. W.; Kahng, S. E. Dissolved Inorganic Carbon and  
Total Alkalinity of a Hawaiian Fringing Reef: Chemical Techniques for 



 88 

Monitoring the Effects of Ocean Acidification on Coral Reefs. Coral Reefs 2013. 
Lee, K.; Millero, F. J. Thermodynamic Studies of the Carbonate System in Seawater.  

Deep. Res. Part I 1995, 42 (11–12), 2035–2061. 
Lee, K.; Millero, F. J.; Byrne, H.; Feely, A.; Wanninkhof, R. The Recommended  

Dissociation Constants for Carbonic Acid in Seawater. Geophys. Res. Lett. 2000, 
27 (2), 229–232. 

Lewis, E.; Wallace, D. Program Developed for CO2 System Calculations. Ornl/Cdiac- 
105 1998, 1–21. 

Li, Q.; Wang, F.; Wang, Z. A.; Yuan, D.; Dai, M.; Chen, J.; Dai, J.; Hoering, K. a.  
Automated Spectrophotometric Analyzer for Rapid Single-Point Titration of 
Seawater Total Alkalinity. Environ. Sci. Technol. 2013, 47 (19), 11139–11146. 

Lowe, R. J.; Falter, J. L.; Monismith, S. G.; Atkinson, M. J. A Numerical Study of  
Circulation in a Coastal Reef-Lagoon System. J. Geophys. Res. Ocean. 2009a, 
114 (6), 1–18. 

Lowe, R. J.; Falter, J. L.; Monismith, S. G.; Atkinson, M. J. Wave-Driven Circulation of  
a Coastal Reef–Lagoon System. J. Phys. Oceanogr. 2009b, 39 (4), 873–893. 

Martz, T. R.; Carr, J. J.; French, C. R.; DeGrandpre, M. D. A Submersible Autonomous  
Sensor for Spectrophotometric PH Measurements of Natural Waters. Anal. Chem. 
2003, 75 (8), 1844–1850. 

Martz, T. R.; Dickson, A. G.; DeGrandpre, M. D. Tracer Monitored Titrations:  
Measurement of Total Alkalinity. Anal. Chem. 2006, 78 (6), 1817–1826. 

Martz, T. R.; Connery, J. G.; Johnson, K. S. Testing the Honeywell Durafet for Seawater  
PH Applications. Limnol. Oceanogr. Methods 2010, 8, 172–184. 

Massaro, R. F. S.; Carlo, E. H.; Drupp, P. S.; Mackenzie, F. T.; Jones, S. M.;  
Shamberger, K. E.; Sabine, C. L.; Feely, R. A. Multiple Factors Driving 
Variability of CO2 Exchange Between the Ocean and Atmosphere in a Tropical 
Coral Reef Environment. Aquat. Geochemistry 2012, 18 (4), 357–386. 

McCulloch, M.; Falter, J.; Trotter, J.; Montagna, P. Coral Resilience to Ocean  
Acidification and Global Warming through PH Up-Regulation. Nat. Clim. Chang. 
2012, 2 (8), 623–627. 

McElligott, S.; Byrne, R. H.; Lee, K.; Wanninkhof, R.; Millero, F. J.; Feely, R. A.  
Discrete Water Column Measurements of CO2 Fugacity and PH(T) in Seawater: 
A Comparison of Direct Measurements and Thermodynamic Calculations. Mar. 
Chem. 1998, 60 (1–2), 63–73. 

McMahon, A.; Santos, I. R.; Cyronak, T.; Eyre, B. D. Hysteresis between Coral Reef  
Calcification and the Seawater Aragonite Saturation State. Geophys. Res. Lett. 
2013, 40 (July), n/a-n/a. 

McMahon, A.; Santos, I. R.; Schulz, K. G.; Cyronak, T.; Maher, D. T. Determining Coral  
Reef Calcification and Primary Production Using Automated Alkalinity, PH and p 
CO 2 Measurements at High Temporal Resolution. Estuar. Coast. Shelf Sci. 2018. 

Mehrbach, C.; Culberson, C. H.; Hawley, J. E.; Pytkowicz, R. M. Measurement of the  
Apparent Dissociation Constants of Carbonic Acid in Seawater at Atmospheric 
Pressure. Limnol. Oceanogr. 1973, 18 (6), 897–907. 

Millero, F. The Marine Inorganic Carbon Cycle. Chem. Rev. 2007, 107 (Table 1), 308– 
341. 

Ohde, S.; Woesik, R. V. Carbon Dioxide Flux and Metabolic Processes of a Coral Reef ,  



 89 

Okinawa Shigeru Ohde and Robert van Woesik. Bull Mar Sci 1999, 65 (2), 559–
576. 

Orr, J. C.; Fabry, V. J.; Aumont, O.; Bopp, L.; Doney, S. C.; Feely, R. A.; Gnanadesikan,  
A.; Gruber, N.; Ishida, A.; Joos, F.; et al. Anthropogenic Ocean Acidification over 
the Twenty-First Century and Its Impact on Calcifying Organisms. Nature 2005, 
437 (7059), 681–686. 

Raven, J. A.; Elderfield, H.; Hoegh-Guldberg, O.; Liss, P.; Riebesell, U.; Shepherd, J.;  
Turley, C.; Watson, A. Ocean Acidification Due to Increasing Atmospheric 
Carbon Dioxide. R. Soc. 2005, No. June, 68. 

Ringuet, S.; Mackenzie, F. T. Controls on Nutrient and Phytoplankton Dynamics during  
Normal Flow and Storm Runoff Conditions, Southern Kaneohe Bay, Hawaii. 
Estuaries 2005, 28 (3), 327–337. 

Roleda, M. Y.; Boyd, P. W.; Hurd, C. L. Before Ocean Acidification: Calcifier Chemistry  
Lessons. J. Phycol. 2012, 48 (4), 840–843. 

Sabine, C. L.; Feely, R. a; Gruber, N.; Key, R. M.; Lee, K.; Bullister, J. L.; Wanninkhof,  
R.; Wong, C. S.; Wallace, D. W. R.; Tilbrook, B.; et al. The Oceanic Sink for 
Anthropogenic CO2. Science 2004, 305 (5682), 367–371. 

Sayles, F. L.; Eck, C. An Autonomous Instrument for Time Series Analysis of TCO2  
from Oceanographic Moorings. Deep Sea Res. Part I Oceanogr. Res. Pap. 2009, 
56 (9), 1590–1603. 

Schneider, B.; Sadkowiak, B.; Wachholz, F. A New Method for Continuous  
Measurements of O2 in Surface Water in Combination with PCO2 Measurements: 
Implications for Gas Phase Equilibration. Mar. Chem. 2007, 103 (1–2), 163–171. 

Seidel, M. P.; DeGrandpre, M. D.; Dickson, A. G. A Sensor for in Situ Indicator-Based  
Measurements of Seawater PH. Mar. Chem. 2008, 109 (1–2), 18–28. 

Shamberger, K. E. F.; Feely, R. a.; Sabine, C. L.; Atkinson, M. J.; DeCarlo, E. H.;  
Mackenzie, F. T.; Drupp, P. S.; Butterfield, D. a. Calcification and Organic 
Production on a Hawaiian Coral Reef. Mar. Chem. 2011, 127 (1–4), 64–75. 

Shaw, E. C.; McNeil, B. I.; Tilbrook, B. Impacts of Ocean Acidification in Naturally  
Variable Coral Reef Flat Ecosystems. J. Geophys. Res. Ocean. 2012, 117 (3), 1–
14. 

Shaw, E. C.; Phinn, S. R.; Tilbrook, B.; Steven, A. Natural in Situ Relationships Suggest  
Coral Reef Calcium Carbonate Production Will Decline with Ocean Acidification. 
Limnol. Oceanogr. 2015. 

Silverman, J.; Lazar, B.; Erez, J. Effect of Aragonite Saturation, Temperature, and  
Nutrients on the Community Calcification Rate of a Coral Reef. J. Geophys. Res. 
2007, 112 (C5), C05004. 

Silverman, J.; Kline, D. I.; Johnson, L.; Rivlin, T.; Schneider, K.; Erez, J.; Lazar, B.;  
Caldeira, K. Carbon Turnover Rates in the One Tree Island Reef: A 40-Year 
Perspective. J. Geophys. Res. 2012, 117 (G3), G03023. 

Smith, S. V.; Key, G. S. Carbon Dioxide and Metabolism in Marine Environments.  
Limnol. Oceanogr. 1975, 20 (3), 493–495. 

Smith, S. V; Kimmerer, W. J.; Laws, E. A.; Brock, R. E.; Walsh, T. W. Kaneohe Bay  
Sewage Diversion Experiment: Perspectives on Ecosystem Responses to 
Nutritional Perturbation. Pacific Sci. 1981, 35 (4), 279–395. 

Spaulding, R. S.; DeGrandpre, M. D.; Beck, J. C.; Hart, R. D.; Peterson, B.; De Carlo, E.  



 90 

H.; Drupp, P. S.; Hammar, T. R. Autonomous in Situ Measurements of Seawater 
Alkalinity. Environ. Sci. Technol. 2014, 48 (16), 9573–9581. 

Sutton, A. J.; Feely, R. A.; Sabine, C. L.; McPhaden, M. J.; Takahashi, T.; Chav. Natural  
Variability and Anthropogenic Change in Equatorial Pacific Surface Ocean PCO2 
and PH. Global Biogeochem. Cycles 2014, 28, 131–145. 

Sutton, A. J.; Sabine, C. L.; Maenner-Jones, S.; Lawrence-Slavas, N.; Meinig, C.; Feely,  
R. A.; Mathis, J. T.; Musielewicz, S.; Bott, R.; McLain, P. D.; et al. CDIAC Data 
Management and Archival Support for a High-Frequency Atmospheric and 
Seawater PCO 2 Data Set from 14 Open Ocean Moorings. Earth Syst. Sci. Data 
2015, 17 (January), 6864. 

Sutton, A. J.; Feely, R. A.; Maenner-jones, S.; Musielwicz, S.; Osborne, J.; Monacci, N.;  
Cross, J.; Bott, R.; Kozyr, A. Autonomous Seawater PCO2 and PH Time Series 
from 40 Surface Buoys and the Emergence of Anthropogenic Trends. Earth Syst. 
Sci. Data 2018, 1 (August), 1–23. 

Suzuki, A.; Kawahata, H. Carbon Budget of Coral Reef Systems: An Overview of  
Observations in Fringing Reefs, Barrier Reefs and Atolls in the Indo-Pacific 
Regions. Tellus B 2003, 55 (2), 428–444. 

Takahashi, T.; Sutherland, S. C.; Wanninkhof, R.; Sweeney, C.; Feely, R. A.; Chipman,  
D. W.; Hales, B.; Friederich, G.; Chavez, F.; Sabine, C.; et al. Climatological 
Mean and Decadal Change in Surface Ocean PCO2, and Net Sea-Air CO2flux 
over the Global Oceans. Deep. Res. Part II Top. Stud. Oceanogr. 2009, 56 (8–10), 
554–577. 

Takeshita, Y.; Mcgillis, W.; Briggs, E. M.; Carter, A. L.; Donham, E. M.; Martz, T. R.;  
Price, N. N.; Smith, J. E. Journal of Geophysical Research  : Oceans Coral Reef 
Using a Boundary Layer Approach. J. Geophys. Res. Ocean. 2016, 5655–5671. 

Venti,  a.; Andersson,  a.; Langdon, C. Multiple Driving Factors Explain Spatial and  
Temporal Variability in Coral Calcification Rates on the Bermuda Platform. 
Coral Reefs 2014, 979–997. 

Watanabe, A.; Kayanne, H.; Nozaki, K.; Kato, K.; Negishi, A.; Kudo, S.; Kimoto, H.;  
Tsuda, M.; Dickson, A. G. A Rapid, Precise Potentiometric Determination of 
Total Alkalinity in Seawater by a Newly Developed Flow-through Analyzer 
Designed for Coastal Regions. Mar. Chem. 2004, 85 (1–2), 75–87. 

Weiss, R. F. Carbon Dioxide in Water and Seawater: The Solubility of a Non-Ideal Gas.  
Mar. Chem. 1974, 2 (3), 203–215. 

Yao, W.; Byrne, R. H. Simplified Seawater Alkalinity Analysis: Use of Linear Array  
Spectrometers. Deep. Res. Part I Oceanogr. Res. Pap. 1998, 45 (8), 1383–1392. 

 
 
 

 


