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Abstract 

Human exposure to biomass smoke is a health concern worldwide. Although many studies have 

measured particulate matter in wood smoke as a health concern, exposure to mutagenic and 

carcinogenic volatile and semivolatile compounds remains understudied. This research 

introduces a novel method of quantitative measurement of exposure to these compounds using 

silicone wristbands. The study developed a method to extract analytes of interest from the 

wristbands and quantify a few volatile organic compounds and polycyclic aromatic hydrocarbons 

with known ill health effects, and then performed linear regressions between extracted levels and 

exposure to those analytes using controlled exposure studies. Results indicate good and 

statistically significant correlations between recovered analytes from the wristbands and average 

exposure over time, making these wristbands a potentially useful tool for quantitatively testing 

exposure to wood smoke.  
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Chapter One: Introduction and Background 

Introduction 

Human exposure to wood smoke remains a major health concern both domestically and 

internationally1,2. Although hazardous industrial emissions receive the bulk of environmental 

attention, wood smoke emissions pose serious health risks through exposure to compounds both 

volatile and solid. This is especially true in rural areas and developing communities that 

primarily rely on wood stoves or cooking fires for heat and food preparation, or in communities 

that experience air quality problems from wild fires.  

Though solid compounds in the form of particulate matter (PM) have been the main focus 

of research in wood smoke exposure, volatile and semivolatile organic compounds, such as 

polycyclic aromatic hydrocarbons (PAHs) or other small aromatic volatile organic compounds 

(VOCs), also pose risks with their carcinogenic and/or mutagenic properties. 

Measuring individual exposure to these volatilized compounds poses difficulties. 

Previous techniques that have been employed, such as breath condensate, blood analysis, urine 

analysis, and skin wipes, are at best a hassle and at worst invasive.  Additionally, inconsistencies 

in metabolism between subjects means these techniques are usually more qualitative than 

quantitative. Mechanical passive and active samplers have also been used, but are often 

expensive, fragile, and difficult to carry. This research proposes and tests a novel passive 

sampler, a silicone wristband, for the measurement of carcinogenic VOCs in wood smoke. The 

wristband is convenient, lightweight, and analytically sound, as well as being already familiar to 

potential test subjects. 
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This research develops a method for using silicone wristbands to quantitatively measure 

carcinogen exposure from wood smoke, and then tests that method against controlled exposure in 

a closed wood smoke chamber. 

 

Background Information 

Composition and Effect of Wood Smoke 

Wood smoke is composed of hundreds of distinct chemical species3. Wood smoke’s 

health effects have been thoroughly documented; inhalation of wood smoke components causes 

inflammation, oxidative stress, and allergenic and carcinogenic effects4. Numerous studies show 

that large-scale vegetation fires in proximity of population groups have correlations to increased 

emergency room and physician visits related to respiratory symptoms and diseases, and 

exacerbation of respiratory disease like asthma or COPD4. Wood smoke exposure has also been 

associated with increased mortality5. 

One of the most abundant involatile components of wood smoke is levoglucosan, a sugar 

anhydride that is considered unique to woodsmoke, as it originates from the pyrolysis of 

cellulose6,78. Levoglucosan exists in woodsmoke as a primary component of PM9. Most studies 

linking health effects to wood smoke are done using measurement of PM, but these 

measurements alone do not take into account the impact of lower-concentration components, 

such as PAHs and VOCs. 

PAHs are released by the incomplete combustion of biomass, and are a common low-

concentration component of woodsmoke10, especially under low-flame smoldering conditions11. 

PAHs come with unfortunate health impacts; many are known carcinogens and mutagens. 

Effects range from the acute—vomiting, respiratory symptoms, oxidative stress—to the longer 
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term—low birth weight and unfavorable pregnancy outcomes, pulmonary and respiratory 

disease, DNA damage, and increased risk of many different cancers12. In general, PAHs with 

high molecular weight, such as pyrene, tend to be more carcinogenic and mutagenic, while PAHs 

with low molecular weight, such as naphthalene, tend to be more toxic in nature13. The more 

toxic PAHs tend to fall into the category of volatile organic compounds (VOCs) or semivolatile 

organic compounds (SVOCs). 

Wood smoke is primarily sourced from wildland burning, where exposure is a concern 

for people living in the vicinity of wildfires, but especially for firefighting personnel. Exposure 

of the latter group has been understudied, despite their increased risk through long hours of 

exertion in close proximity of the fires. Another significant source of woodsmoke is heating 

stoves and cooking fires2. Because these stoves are used in enclosed or partially enclosed spaces, 

they often have an immediate impact on human health. In rural areas, where wood is a primary 

fuel for cooking and/or heating, wood smoke exposure and its associated health effects are of 

particular concern.  

Most studies of the effects of woodsmoke on human health have been epidemiological, 

either large-scale survey-style studies that rely on self-reported data, or studies on individuals 

who already have chronic respiratory illnesses4,14,15. Few studies have been done on individual 

health impacts on otherwise healthy individuals14. The limited number of studies means that 

knowledge of health effects is limited to extreme cases, of very high exposure or extreme effect, 

with little specificity. For individual effects to be measured, however, individual exposure must 

be measurable.  
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Current Sampling Methods 

Several sampling methods have been used to test human exposure to wood smoke. 

Biological sampling methods include blood samples, urine samples, skin wipes, and breath 

condensate, among others. In all cases, the nature of biological sampling requires several regular 

timely samples16. Such methods are typically costly and often invasive and inconvenient. If 

samples are collected by a researcher, participants are less available and more unlikely to 

participate to begin with. If samples are taken by a participant, there is risk of inaccurate 

sampling and contamination. Furthermore, analysis of biological samples faces the added 

challenge of parsing metabolomics, as even physically similar individuals metabolize chemical 

exposures at different rates and to different extents. In the case of wood smoke, many important 

analytes are converted into completely different compounds, or confounded by similar or 

identical compounds introduced by diet17,18.  Finding an adequate number of subjects willing to 

submit to biological sampling is difficult, but finding an adequate number to then draw 

significant conclusions from results is even more challenging.  

Passive samplers, unlike active sampling methods, are often cheaper to both purchase and 

process, less invasive, and more convenient. The core difficulty of passive samplers tends to be 

maintaining consistent and reliable results. Passive samplers must be able to pick up very low 

levels of analytes, and therefore often require long exposure periods in order to be effective. 

Therefore passive samplers for human exposure must be very portable for ease of use, exposed to 

the ambient air, and relatively simple to analyze.  

Many passive samplers are currently in use to measure exposure to air pollutants and 

particles. Some, like the Radiello passive sampler or the Analyst passive sampler, collect air 

samples through a membrane and onto an adsorbant bed, often made of charcoal16. Such devices 
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have changed over time to be more efficient and less expensive, but the overall design has 

largely remained the same for the last fifty years16. Such devices are effective, but fragile, and 

sometimes expensive to deploy, especially to a statistically significant number of people. A more 

technological active sampling option is to use laser-aided particle counters, such as Dusttrak 

personal aerosol monitors or the Lighthouse Solair portable particle counters. These counters are 

more sensitive and reliable, but tend to be bulky and awkward to carry around. The awkwardness 

tends to hamper subjects’ normal movement, leading to a skewed representation of woodsmoke 

exposure, as well as subject noncompliance with sampling protocols. Furthermore, they are 

significantly more expensive than biological sampling methods.  

Many research groups are attempting to develop smaller and simpler passive sampling 

devices. Such devices show comparable performance to traditional passive sampling methods, 

particularly those made of silicone19. 

Silicone Personal Sampling Setups 

The idea of using silicone wristbands as passive samplers has gained headway in recent 

years due to the work of Kim A. Anderson at Oregon State University20,21. The company 

MyExposome, headed by two researchers associated with Anderson’s group, claims to be able to 

qualitatively test for over 1400 discreet chemical species22. Examples of analytical research 

conducted with these wristbands include testing for pesticide exposure in Senegalese farmers and 

children’s exposure to flame retardants in an American elementary school23,24. In this work, we 

use the same tactic, employing silicone rubber wristbands as passive samplers, to study exposure 

to woodsmoke on an individual basis. 

Silicone rubber is an optimal material for this purpose25. Some research is already 

available on their consistency as samplers25. One study found that of thirteen polymers, silicone 



- 6 - 
 

rubber picked up the widest range and largest concentration of hydrophobic organic 

contaminants. Silicone passive samplers have also been tested quantitatively for exposure to 

PAHs, although their use has so far been restricted to aqueous environments26. MyExposome 

claims to be able to test qualitatively for several of the VOCs of interest to this project, and the 

ones that remain untested have structures analogous to previously tested compounds22.  

Combined with the convenience of a lightweight wristband, silicone rubber is a fitting 

sampler to study individual exposure to woodsmoke. 
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Chapter Two: Experimental Methods 

Extraction and Quantification of Analytes from Exposed Wristbands 

This study focused on quantitatively determining exposure to the analytes in Table 1.  

Compound Structure Mass (g/mol) Reference 

Benzene  78.11 1,3,20 

Toluene 
 

92.14 3,20 

Xylenes 
 

106.16 3,20 

Ethyl Benzene  106.17 3,20 

Pyrene 
 

202.25 20 

Phenanthrene 
 

178.23 3,20,27 

Anthracene 
 

178.23 3,20,27 

Naphthalene   128.17 3,27 

Table 1: The analytes of interest. 

These analytes are all VOCs and/or PAHs with known ill health effects and are 

byproducts of the incomplete combustion of wood or biomass. 
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Wristband Specifications 

Wristbands were used from multiple sources, but were all entirely made of silicone 

rubber dyed with unreactive dyes. Wristbands were cleaned by submerging in successive two-

hour solvent baths, placed in an orbital shaker at 30°C and 75 rpm. The solvent baths consisted 

of three rounds of ethyl acetate and hexane (1:1 v:v, 30 mL per wristband), and two rounds of 

ethyl acetate and methanol (1:1 v:v, 30 mL per wristband). This removed contaminants from 

production and transport, as well as any loose low molecular weight siloxane compounds in the 

wristband’s structure. The cleaned wristbands were kept at room temperature in a sealed jar with 

a Teflon-lined lid until use. When ready for use, wristbands did not come in contact with bare 

skin and were exposed to no more ambient air than absolutely necessary. After exposure, 

wristbands were stored in individual amber glass 100 mL jars with Teflon lids at approximately  

-15°C until extraction. 

If wristbands were exposed to wood smoke (as opposed to those which were used for 

method development and optimization with standard concentrations), they were briefly rinsed 

after exposure and before extraction of analytes, twice in distilled water and once in isopropyl 

alcohol. This wash removed PM on the surface of the wristbands and other incidental debris. 

Extraction of Analytes 

After being washed for debris and before extraction, each wristband was spiked with 5 µg 

of an internal standard, naphthalene d-10, to account for losses in extraction, sample 

manipulation, or evaporation, either volatilizing during the extraction process or evaporated off 

during the evaporation process.  

Extraction of the wristbands took place in the same jars in which they were stored, in 

order to minimize loss from contact with the glass. 100 mL of ethyl acetate was added to the jar, 
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which was placed on an orbital shaker for two hours at room temperature and 75rpm. After two 

hours, the extract was removed and replaced with an additional 100 mL of ethyl acetate for 

another two hours. These were combined into an Erlenmeyer flask for evaporation. 

Each extract was evaporated down to 1-3 mL under a stream of cool, filtered air, and 

placed in a conical vial. Erlenmeyer flasks were rinsed with an additional 3-5 mL of ethyl acetate 

that was also added to the conical vial, and then evaporated down to 2 mL. 

Analysis by Gas Chromatography-Mass Spectrometry 

Extracts were run on GC-MS. The gas chromatograph used helium carrier gas, splitless 

injection (2μL), and a temperature gradient to separate the analytes of interest. The gradient 

begins at 33°C, holding for five minutes, then increasing at a rate of 10°C/min to 200°C, holding 

for one minute, and then increasing again at a rate of 10°C/min to 300° and holding for another 

five minutes. The method takes approximately 37 minutes. The flow of gas is constant at 

1mL/min, and the mass spectrometer’s electron impact mode is set to 70 eV. This method is 

adapted from ones found in the literature23–25,28,29 to include the full range of analytes of interest. 

Peaks were located for each analyte using ion extraction of that analyte’s standard ion at the 

mass specified in Table 1, and areas under the peaks were compared to a calibration curve run 

previously. Ethyl benzene and o-xylene emerged at the same time on the spectrograph, and the 

two were grouped along with the other xylenes. 

Standards were prepared in 1.0 mL of ethyl acetate (VWR Chemical, 99.5%) having 0.1-

35µg of each analyte: benzene (VWR Scientific, 99.8%), toluene (JT Baker Chemicals, 99.5%), 

xylenes (Fischer Scientific, 99.9%), naphthalene (Acros Organics, 99.0%), anthracene (Sigma-

Aldrich, 99.0%), phenanthrene (Sigma-Aldrich, TraceCERT certified reference), and pyrene 

(Sigma-Aldrich, TraceCERT certified reference), and 5µg of naphthalene d-10 (Sigma-Aldrich, 
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≥98%). The GC-MS was calibrated using these standards and integrated extracted ion 

chromatograms at the masses specified in Table 1. The relative area of the standard ion to that of 

naphthalene d-10 was plotted as a function of standard concentration.  

Recoveries from non-exposed spiked wristbands were calculated by comparing the area 

of the standard ion from the wristbands (multiplied by two account for the dilution to 2mL) to 

that of an equivalent standard run the same day. The resulting proportion was considered the 

percent recovery for the purposes of method development. 

Mass of each analyte from exposed wristbands, spiked with the internal standard, were 

calculated by comparing the area of the standard ion relative to the area of the internal standard 

Naphthalene-10. Masses were then calculated using the calibration function of standard 

concentration. 

Figure 1: Diagram of the Exposure Chamber. 
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Exposure of Wristbands to Wood Smoke in Controlled Exposure Chamber 

Experimental Design 

For this research, controlled exposure was facilitated by the exposure chamber built and 

maintained by the Center for Environmental Health Sciences at the University of Montana.  

The chamber consists of a sealed box into which wood smoke is piped from a woodstove, 

located in a separate room. Concentration of the smoke’s PM2.5 is monitored by an active 

sampling program, and concentration of the PM2.5 is modified using air pumped into the mixing 

chambers of the system. A diagram of the exposure chamber is shown in Figure 130.  

 By controlling air flow into the mixing chambers, the exposure chamber could aim for particular 

concentrations of PM2.5, although actual averages varied from the aim slightly. Actual averages 

were recorded for each test. Flow rate through the exposure chamber is between 10-20L/min,  

Table 2: Description of exposure trials in exposure chamber. 

Trial # length of 

exposure 

Aimed-for PM2.5 

concentration 

(mg/m3) 

Actual PM2.5 

concentratio

n (mg/m3) 

Notes 

1 2hrs 3.0 5.20 Vent malfunction; aimed conc. 

changed to compensate 

1 4hrs 3.0 4.24  

2 2hrs 5.0 4.60 Repeating first 2hr test to 

compensate for unusual data due to 

malfunction  

3 2hrs 3.0 2.20  

3 4hrs 3.0 2.90  

4 2hrs 4.2 3.00  

4 4hrs 4.2 3.10  

5 2hrs 3.0 3.14 No PTR-MS measurements. 

6 2hrs 1.5 1.54 “ 

6 4hrs 1.5 1.54 “ 

7 2hrs 0.75 0.87 “ 

7 4hrs 0.75 0.83 “ 
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closer to 20L/min unless the air in the air-smoke mixture is decreased to increase smoke 

concentration. To establish a background reading on the wristbands, a few wristbands were 

placed in the lower part of the exposure chamber (see Figure 2) and exposed only to fresh air for 

the duration of the exposure trials. 

The trials were varied in length of exposure time in circumstances as close to constant as 

possible, in order to test how much analytes collected over time, and whether the total amount of 

analyte was correlated to the total time exposed. Trials were also varied in amount of exposure, 

at levels found commonly in wildfire situations (although higher than levels typical of indoor 

wood stoves), in order to test how the total mass of analyte collected correlated with the level of 

exposure. 

Wristbands were hung from steel hooks inside the exposure chamber, not touching the 

walls or rack inside, to minimize exposure to analytes stuck to the chamber itself and to 

maximize surface area exposed to the smoke. For tests 1-4, in addition to PM concentration, the 

analytes of interest were also measured via Proton Transfer Reaction-Mass Spectrometry. 

Proton Transfer Reaction-Mass Spectrometry Analysis 

Proton Transfer Reaction-Mass Spectrometry (PTR-MS) is a real-time, highly sensitive 

mass spectrometry technique, 

with a detection limit that can 

extend down to 1pptv. The 

PTR-MS instrument used in 

this research, kindly lent by 

the Lu Hu group at the 

Figure 2: The PTR-MS (left), and the exposure chamber (right). 
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University of Montana, is a PTR-TOF-MS 4000 (IONICON Analytik). 

The intake of the PTR-MS was inserted through a sealed port in the door of the exposure 

chamber. Intake came through a 2 µm filter to remove PM and ash. Concentration measurements 

of the analytes of interest were taken and 

recorded every thirty seconds during the 

time of exposure. Total flow intake was 0.7-

1.1 L/min, a fraction of which (20 cm3) was 

run for analytes. PTR-MS was calibrated 

after each exposure trial using standard 

VOC gas dynamically diluted into a 

catalyst-generated zero air, sourced from the 

exposure chamber when no smoke was present. Background measurements were taken before, 

after, and approximately every ninety minutes during each trial. During background 

measurements, detection of analytes dropped to zero. To compensate for this, points along the 

curve were approximated using values between the points when detection stopped and resumed. 

Because the PTR-MS differentiates between molar masses but not chemical structures, 

for the purposes of this research, all o-, m-, and p-xylene as well as ethyl benzene were collected 

and analyzed together and grouped as “xylenes,” and anthracene and phenanthrene were 

collected and analyzed together. Measurements taken from the PTR-MS were plotted as 

functions of parts per billion (ppb) of each analyte over time for each trial. The average mass of 

each analyte detected by PTR-MS over time was taken, as well as the total mass of each analyte 

the wristband was exposed to during the trial, found by integration under the plot for the time of 

Figure 3: Close-up of exposure chamber, showing 

wristbands and the PTR-MS intake with filter. 
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exposure. The plots were also integrated at five minute intervals for the last thirty minutes of 

each wristband’s exposure. 

Predicted Exposure from Correlations 

Tests of linear regression were conducted between the measurements of exposure from 

the PTR-MS and the total mass recovered from the wristbands in trials 1-4 to find correlations, if 

any existed. Regressions were conducted with the y-intercept set to zero, as zero exposure was 

expected to yield no analyte on the wrist band. Using the best correlations, approximate 

exposures were predicted for wristbands in trials 5-7, with error propagated using standard 

uncertainty from those correlations. Predicted values were checked against correlations drawn 

between the best measurement of exposure for each analyte and the average measured PM2.5 for 

each trial. 
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Chapter Three: Effectiveness of the Extraction Method 

Recovery of Analytes from the Wristbands 

The first step in evaluating the effectiveness of the extraction method was measuring the 

recovery of analytes from non-exposed spiked wristbands. Extraction effectiveness was tested in 

three iterations of 4-5 different spikes. As mentioned above, recovery from these wristbands was 

calculated from the quotient of the area of the analyte’s standard ion as recovered from the 

wristband, and the area of the analyte’s standard ion in a standard of equivalent mass run on the 

same day. Outliers were tested for by q-test and removed from datasets as appropriate. The 

averages of those recoveries are in Table 3. 

Analyte of Interest Average % Recovery 

(Ax/Astdx x 100) 

Standard 

Deviation 

Toluene 39.4 31.3 

Xylenes 75.3 21.5 

Naphthalene 134.2 18.7 

Phenanthrene/Anthracene 55.5 15.1 

Pyrene 45.9 17.0 

Table 3: Average % Recovery of analytes from spiked wristbands. 

Benzene is not included on this table. In early trials, not even trace amounts of benzene 

were recovered from wristbands, and so it was excluded from further spike testing. The most 

likely explanation for this is that benzene’s boiling point (80.1 °C) and vapor pressure is too 

similar to the ethyl acetate (77.1 °C) from which it was evaporated, and it was thus volatilized 

along with the ethyl acetate rather than concentrated.  

Based on the results above, we see that recovery is poor for all analytes except for 

naphthalene, which has an impossibly large recovery that is most likely due to human error. For 

the purposes of this study, because we are trying to quantify exposure rather than collect all of 

each of the analytes the wristbands were exposed to, total recovery matters much less than 
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reproducibility. However, the large standard deviations for these averages suggest that 

reproducibility is a problem. The extraction and subsequent evaporation process are involved and 

take several hours, so the introduction of uncertainty to the process is almost inevitable. To 

determine at what point, evaporation or extraction, and to what extent this uncertainty was 

introduced, a test was done by introducing mixtures of standards directly to 200mL of ethyl 

acetate, and evaporating immediately. 

 

Sources of Uncertainty 

Evaporation was tested in five iterations each of 4-5 different spikes, with recovery 

calculated as before and outliers tested for by q-test and removed from datasets as appropriate. It 

might be expected that average recovery of analytes would be higher than for the entire process, 

but that was not the case (Table 4). 

Analyte of Interest Average % Recovery 

(Ax/Astdx x 100) 

Standard 

Deviation 

Toluene 24.1 11.5 

Xylenes 75.2 32.8 

Naphthalene 102.9 35.3 

Phenanthrene/Anthracene 116.2 26.4 

Pyrene 110.1 25.5 

Table 4: Average % Recovery of analytes from spiked evaporants. 

While the larger PAHs, phenanthrene, anthracene, and pyrene, do show higher recoveries 

for the evaporation than for the entire method (albeit improbably high), recoveries for the other 

three analytes are actually lower, and the standard deviation for all averages except for toluene is 

much higher. Upon further analysis, toluene also presents a pattern when average percent 
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recoveries are plotted against the concentrations of their respective spikes (Figure 4). The mass 

of toluene present in the spike is inversely related to the amount recovered off of the wristband. 

No other analyte showed such a pattern; in fact, recoveries were generally uncorrelated and 

messy (Figure 4).  

When the same tactic—plotting mass of the spikes against the corresponding percent 

recoveries—is applied to the extraction method trials, the patterns that emerge are more 

distinctive. Again, toluene shows an inverse relationship between the mass in the spike and the 

mass recovered off the wristband, as do the xylenes, while the larger PAHs, 

phenanthrene/anthracene and pyrene show direct relationships (Figure 5). Naphthalene is the 

notable exception, showing little trend or correlation. 
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Figure 4: Plots of percent recovery of analyte given spikes of a particular mass. Toluene (left) 

shows a weak but clear inverse relationship, while the other analytes, such as Pyrene (right) 

show no such correlation. 
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The trends in the smaller VOCs might be explained by their relatively low boiling points. 

It’s clear that a significant portion is lost to evaporation, but the trend may indicate that as 

concentration, and therefore vapor pressure, decreased, less mass of both was lost. The lack of 

trend and consistency in the naphthalene recoveries is more puzzling, but may be due to 

naphthalene’s relatively high vapor pressure, which allows it to sublimate at room temperature, 

making its volatility a little more unpredictable.  

Figure 5: Relationships between average percent recovery and the orignal mass of the spikes for 

each analyte.  
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Evidently, likely because of the lack of control over temperature and airflow speed in the 

described method, the evaporation step is the source of the most uncertainty in method 

development and the greatest losses in recovery of volatile analytes. As for why extraction 

showed patterns that evaporation did not, it is possible that spiked mixtures for evaporation were 

improperly mixed, and the uneven loss of analyte reflects a lack of homogeneity in the 

evaporant. If that is the case, then it makes sense that patterns emerged in the entire extraction 

that were not present in the evaporation step; the spikes on the wristbands had time to soak into 

the structure of the silicone, and therefore the extracted evaporant was much more homogenous. 

This would also explain the relatively low recoveries of the larger PAHs from the entire 

extraction as compared to the evaporation step. Most likely, the large nonpolar PAHs were not 

completely extracted by the slightly polar ethyl acetate, and a portion of the spike was left behind 

in the structure of the silicone. Thus the recovery of the PAHs, much slower to volatilize than the 

smaller VOCs, show a direct relationship to the mass of PAHs in the corresponding spike. 

These trends, while interesting, underline that the recovery of analytes cannot be reliably 

measured against an outside standard; the internal standard must be used in order to control for 

unpredictable evaporation loss, as will be seen in the next chapter. Furthermore, better recoveries 

and reproducibilities could likely be achieved if deuterated standards were used for each target 

analyte, rather than relying on naphthalene d-10 as the sole internal standard. 
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Chapter Four: Results of the Exposure Trials 

Correlations Between PTR-MS Measurements and Extracted Analytes 

The following measurements of exposure were gleaned from the PTR-MS data collected 

for each analyte and each exposure trial: time-integrated exposure over the full length of the trial 

(referred to as “total”), average exposure over time, and time-integrated exposure after the last 

thirty, twenty-five, twenty, fifteen, ten, and five minutes of exposure. Each measurement was 

compared to the amount of analyte extracted from the wristband exposed during the trial to 

check for possible correlations. The extracted measurements were corrected by the internal 

standard as outlined in Chapter Two, by comparing the area under the standard ion to the area 

under the naphthalene d-10 spike (Ax/AIS). Recovered masses were then calculated based on the 

internal standard calibration curve. Phenanthrene and Anthracene were not included in these 

results, because the recovered masses were below the limit of detection for the GC-MS. Since 
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Figure 6: Naphthalene measured over four hours by PTR-MS in the exposure trial done on April 

25th (avg. PM: 4.24 mg/m3). All plots of PTR-MS data can be found in Appendix A.  
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only trace amounts of the two compounds were present in the exposure chamber (see Figures 

A1-A4 and Tables A1-A4, Appendix A), this is not entirely unsurprising. 

Correlations were forced through the point (0,0) because, as expected, the wristbands 

exposed to only fresh air, no smoke, showed no recovery of the analytes of interest. No exposure 

outputs no recovery. 

R-Square 

values  

Total 

expos. 

Avg. 

expos. 

30min 25min 20min 15min 10min 5min 

Toluene 0.725 0.821 0.726 0.682 0.616 0.556 0.511 0.501 

Xylenes 0.573 0.746 0.715 0.683 0.640 0.609 0.592 0.590 

Naphthalene 0.885 0.917 0.877 0.871 0.864 0.854 0.838 0.821 

Pyrene 0.703 0.709 0.706 0.705 0.705 0.698 0.691 0.708 

Table 5: R-Square values for linear regressions between PTR-MS measurements of exposures 

and recovered masses of analytes. 

For each analyte, the strongest correlation was found between the extracted analytes and 

the average exposure (although correlations to each measurement of pyrene exposure were 

approximately equivalent). The best of these correlations was naphthalene’s, where 91.7% of the 

Figure 7: Scatterplots showing weak but extant correlations between average exposure of the 

analytes and total mass recovered from the wristbands. 
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variance between extracted naphthalene and average measured naphthalene can be accounted for 

by correlation (Figure 7). The weakest average correlation was between pyrene measured and 

pyrene extracted, where 70.9% of the variance can be accounted for by correlation. However, in 

every average correlation, the p-value of the linear regressions were less than the significance 

level of the regression’s F-test, so the correlations can be considered significant. 

Although the correlations of total exposure and the correlations of average exposure are 

related and therefore naturally close to each other, correlations between analytes and either total 

exposure or the last few minutes of exposure were weaker than average correlations. The most 

likely explanation is that the analytes of interest were absorbed and volatilized off of the 

wristbands in an equilibrium. If the equilibria were fairly fast, we might expect to see a strong 

correlation between the mass of analytes extracted and the mass of analyte each wristband was 

exposed to in the last five, fifteen, or thirty minutes of exposure, but for each analyte, the 

correlations are weaker in the last few minutes of exposure, not stronger. The adsorption-

desorption kinetics must be relatively slow. 

The plots shown in Figure 7 introduce some interesting ideas. For toluene and xylenes in 

particular, it’s clear why a correlation appeared, as most of the points fall along a fairly linear 

path. Less clear is the point farthest to the left on these plots, both of which correspond to the 

two-hour portion of Trial 3 (see Appendix B for all recovered masses). Although this point does 

not appear out of trend on the plots for naphthalene and pyrene, toluene and xylenes are 

chemically similar enough that a difference in the evaporation process could affect them but not 

naphthalene and pyrene. Alternatively, this pattern could be reflective of the pattern identified in 

Chapter Three, where smaller masses of toluene and xylenes return with higher recoveries. 

Limited by the number of trials, it’s difficult to say for certain. 



- 23 - 
 

Naphthalene shows the strongest correlation both mathematically and visually. This is 

hardly surprising, given our internal standard is naphthalene d-10, and serves to underline that in 

future studies best practice would involve deuterated internal standards for all analytes of 

interest. Pyrene gives the weakest correlation. This is also unsurprising, given that the average 

correlation is only the “best” by a slim margin, but despite the potential for error, we may yet 

find this correlation useful. 

Using these data, we can predict with some measure of certainty the amount of these 

analytes a wristband was exposed to. The potential for error is relatively high, but an 

approximation is possible. The regression equations were used to calculate estimated average 

exposure levels for the exposure trials for which the PTR-MS was not used. Error was 

propagated from each correlation’s standard uncertainty. The results are presented in Table 6. 

Approx. Exposure  Toluene 

(average ppb) 

Xylenes 

(average ppb) 

Naphthalene 

(average ppb) 

Pyrene  

(average ppb) 

Trial 5 2hr 1 8.31 ± 6.23 3.01 ± 2.62 2.17 ± 1.17 0.0499 ± 0.0534 

Trial 5 2hr 2 12.5 ± 5.85 3.07 ± 2.60 2.73 ± 1.11 0.0619 ± 0.0517 

Trial 6 2hr 27.5 ± 12.7 8.52 ± 5.69 2.43 ± 1.14 0.0437 ± 0.0549 

Trial 6 4hr 42.1 ± 22.3 10.7 ± 7.98 0.496 ± 1.56 0.0873 ± 0.0524 

Trial 7 2hr 21.2 ± 8.93 7.13 ± 4.34 1.29 ± 1.35 0.0154 ± 0.0649 

Trial 7 4hr 16.0 ± 6.60 4.50 ± 2.52 1.67 ± 1.26 0.0709 ± 0.0512 

Table 6: Predicted wristband exposures based on the mass recovered from the wristbands. 

These results suggest several things. First of all, note that the first two results are two 

iterations of the same trial, taken from two different wristbands. For the xylenes, naphthalene, 

and pyrene, the predicted exposures are relatively similar, showing no statistically significant 

difference, but the toluene results do differ by about 30%. Likely toluene’s volatility is the 

culprit; inconsistencies in the evaporation step for the two wristbands could cause the toluene to 

volatilize at different rates in different evaporants. 
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Secondly it should not be ignored that the error on every result is fairly large, to be 

expected with correlations that, while evident, are relatively weak. Despite this, however, these 

predictions are not out of the realm of probability. To check, correlations were also drawn 

between average PM2.5 concentration and average concentration of each analyte measured by the 

PTR-MS in trials 1-4. 

R-Square values Toluene avg. 

conc. (ppb) 

Xylenes avg. 

conc. (ppb) 

Naphthalene 

avg. conc. (ppb) 

Pyrene avg. 

conc. (ppb) 

PM2.5 avg. conc. 

(mg/m3) 

0.957 0.956 0.980 0.720 

Table 7: R-Square values of the correlations between average PM concentration and average 

analyte concentration from trials 1-4. 

Because these correlations are fairly strong (with the exception of Pyrene, which 

appeared in very low concentrations at any given point during the trials), we can predict the 

average concentrations of each analyte present in trials 5-7 from the measured PM2.5 for those 

trials. 

 Avg. PM2.5 

(mg/m3) 

Predicted 

Toluene 

(avg. ppb) 

Predicted 

Xylenes 

(avg. ppb) 

Predicted 

Naphthalene 

(avg. ppb) 

Predicted 

Pyrene (avg. 

ppb) 

Trial 5 2hr 3.14 9.23 ± 4.04 3.10 ± 0.910 2.67 ± 0.521 0.0684 ± 0.0498 

Trial 6 2hr 1.57 4.61 ± 15.8 1.55 ± 1.09 1.34 ± 0.581 0.0342 ± 0.0498 

Trial 6 4hr 1.54 4.53 ± 16.1 1.52 ± 1.10 1.31 ± 0.583 0.0336 ± 0.0498 

Trial 7 2hr 0.87 2.56 ± 21.4 0.859 ± 1.23 0.741 ± 0.628 0.0190 ± 0.0498 

Trial 7 4hr 0.83 2.44 ± 21.7 0.820 ± 1.24 0.707 ± 0.631 0.0181 ± 0.0498 

Table 8: Predicted average concentrations of analytes based on average PM2.5 concentrations. 

Because the correlations between average PM2.5 concentration and average 

concentrations of the analytes were not calibrated to very low concentrations, as PM2.5 drops 

below 1mg/m3 (or 2mg/m3 in the case of toluene and pyrene), the errors get large and unwieldy. 

That having been said, in most cases, no statistically significant differences are observed 

between the average values calculated from PM2.5 and those calculated from wristband 
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extractions. Whether the recoveries predicted by the wristbands are specific enough to be useful, 

even with these correlations, will be discussed in the next chapter. 
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Chapter Five: Discussion of Results 

Are Wristbands a Valid Source of Quantitative Data? 

Silicone wristbands have been used for qualitative exposure data in a variety of 

situations, but this study aimed to determine whether they would make a useful tool for 

collecting quantitative data from wood smoke exposure. Having optimized the extraction method 

to the best of our ability and worked around equipment limitations on the evaporation front, this 

research suggests that the answer is yes, with some caveats. 

The first caveat comes from the limitations introduced by the uncertainty in the 

evaporation step. Uneven and unpredictable patterns of evaporation of these volatile and 

semivolatile analytes can be worked around by an internal standard, but even the internal 

standard does not ensure certainty in controlling for the temperature and air flow of evaporation. 

This does not mean this method is without its uses, however. Evaporation may be better 

controlled with equipment that is a little more sophisticated than a hose attached to an air filter. 

We might remove that uncertainty with a more controlled evaporator, or perhaps eschewing 

evaporation entirely in favor of headspace analysis. One of these steps, especially the latter, 

would go far in increasing retention of the more volatile compounds. Headspace analysis would 

also enable quantification of compounds that otherwise volatilize away completely, such as 

benzene. 

The second caveat comes from the uncertainty in predicting actual exposure from 

wristband recoveries. As recovery improves, so should correlations between recovery and 

exposure, but in the case that they do not, more data is required to fill out the best correlations 

and remove uncertainty. Further tests should be run to see if average exposure over time is in fact 

the best measurement of exposure. 
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Even with those caveats, however, the potential of silicone wristbands is unmistakable. 

This research does present definite trends and relationships that, while inexact and limited by the 

relatively small number of studies, are quantitative. This is a tool with potential, not just for 

wood smoke exposure, but for any other analyte that can be absorbed by and extracted from the 

wristbands. 

 

What Circumstances Are the Wristbands Useful For? 

In the case of wood smoke, the data suggests a few best practices for the use of silicone 

wristbands as quantitative passive receptors. 

First, the wristbands ought to be used in areas of high wood smoke concentration, ideally 

higher than 1-2mg/m3 PM2.5 This is 2-4 times higher than the highest point marked by the 

Environmental Protection Agency’s Air Quality Index31, so the use of this wristband for 

residential use—e.g. in neighborhoods affected by wildfires or homes with a wood stove or 

cooking fire—is limited to very extreme cases, unless the predicted values of analytes can be 

calibrated to lower concentrations of PM2.5. The wristbands would be useful in a firefighting 

context, however. They might even be useful for individuals to use in pairs, one inside protective 

clothing and one outside, to test how proof protective clothing is against these small VOCs and 

PAHs. 

Second, the wristbands ought to be used to find average exposures over multiple hours. 

The upper limit of time the wristbands will be useful remains to be discovered, but at least two 

hours seem to be necessary to establish an equilibrium that accurately reflects the concentration 

of exposure. Wristbands are not for very short exposures, but the data they give about average 

exposure might be very useful indeed for understanding cancer risk for firefighting personnel, 
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especially from an epidemiological perspective. To that end, the third best practice, especially 

until the uncertainty in the method is dispelled, would be to deploy multiple wristbands in a 

study, for the fullest understanding of each individual’s exposure and the best idea of a group’s 

average exposure. 

 

Future Directions 

This research can and should be built upon. Improving the extraction method and analysis 

is a matter of controlling or eliminating the evaporation step, the source of the most uncertainty. 

This could be accomplished, as previously mentioned, through a more sophisticated evaporation 

apparatus or through headspace analysis. Becoming surer of recovery from the wristbands 

ensures more certainty in every other step of quantifying exposure data. 

More studies should also be done comparing recoveries from the wristbands to actual 

ambient exposure. If they are both amenable to the idea, this researcher recommends further 

collaboration between the Lu Hu group and Center for Environmental Health Sciences. The more 

exact data collected, the better our correlations between wristband recovery and exposure will 

be. 

More questions remain about the properties of the wristbands as well. What other wood 

smoke markers could they absorb that would be useful for calculating exposure? Is there an 

upper limit to the time it is useful to wear them? How long exactly is needed to establish 

equilibria that provide useful correlation data? As is always the case, more research is required. 
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Appendix A: Exposure Trial PTR-MS Plots and Integrations 

Plots of Analyte Concentrations Over Time 

Figure A1: Trial 1 

 

Figure A2: Trial 2 
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Figure A3: Trial 3 

 

Figure A4: Trial 4 
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Tables of Integrated Values Over Time 

Integrations were taken using Matlab, by finding the area under the curves from the plots 

above. “Total” exposure integrations were taken from minute 0 to minute 120 or 240, as 

appropriate for the time of exposure. Tables of all points along the curve are available on request. 

Table A1: Trial 1 

Trial 1 Exposure 

time (min) 

total last 30 

min 

last 25 

min 

last 20 

min 

last 15 

min 

last 10 

min 

last 5 

min 

toluene 120 2491.2 529.9 503.3 444.7 338.7 198.4 74.8  
240 6796.1 1199.6 1040.7 843.6 598.3 361.8 172.9 

xylenes 120 863.3 234.4 222 195.7 149.3 88 33.7  
240 2334.1 433.7 378.2 308.7 221.7 136 65.8 

naph 120 1070.6 135.2 118.6 99.4 76.1 48.5 21  
240 1799.2 266 229.6 190.3 143 91.7 44 

phen/ 

anth 

120 18.9 5.8 5.3 4.4 3.4 2.3 1 

 
240 59.9 13.5 11.5 9.5 7.2 4.7 2.3 

pyrene 120 5.3 2 1.8 1.5 1.2 0.8 0.4 
 

240 18.2 3.9 3.3 2.7 2.1 1.3 0.6 

 

Table A2: Trial 2 

Trial 2 Exposure 

time (min) 

total last 30 

min 

last 25 

min 

last 20 

min 

last 15 

min 

last 10 

min 

last 5 

min 

toluene 120 3260.5 1477.4 1350.8 1234.2 1053.2 777.6 396 

xylenes 120 916.2 403.8 366.8 332.8 280.4 202.8 101.1 

naphthalene 120 887.4 235.3 200.8 169.3 135.9 96.1 48.3 

phen/anth 120 66.9 16.4 14.6 12.2 9.4 6.4 3.2 

pyrene 120 20.6 5 4.6 3.8 2.9 2 1 

 

 

 

 



- 36 - 
 

Table A3: Trial 3 

Trial 3 Exposure 

time (min) 

total last 30 

min 

last 25 

min 

last 20 

min 

last 15 

min 

last 10 

min 

last 5 

min 

toluenes 120 1329.6 404.7 292.4 181.4 103.2 56.5 28.7 
 

240 3422.3 462.7 340.2 248.9 191.4 148.1 86.2 

xylenes 120 524.9 153.3 112.2 71.7 42.4 23.9 12.1  
240 1437.6 197.7 146 107.3 82.3 63.1 36.4 

naphthalene 120 376.2 86.4 68.9 50 33.4 20 9.1  
240 815.4 109.4 84.8 62.8 45.5 31.3 16.5 

phen/anth 120 39.8 10.3 8.7 6.8 5 3.2 1.5  
240 81.3 10.3 8.4 6.6 4.9 3.3 1.6 

pyrene 120 14.4 3.8 3.2 2.5 1.8 1.2 0.6 
 

240 28.3 3.2 2.6 2.1 1.5 1 0.5 

 

Table A4: Trial 4 

Trial 4 Exposure 

time (min) 

total last 30 

min 

last 25 

min 

last 20 

min 

last 15 

min 

last 10 

min 

last 5 

min 

toluenes 120 2518.3 618.9 531.9 423 314.5 206.1 97.6 
 

240 5264.2 559.5 460.8 338.6 236.1 164.6 90.3 

xylenes 120 780.9 214.6 186.7 150.4 111.8 73.3 34.7 
 

240 1870 237.9 196.1 144.3 100.5 69.4 37.7 

naphthalene 120 705.1 182.2 157.3 127.3 94.7 62 29.4  
240 1580.8 203.1 169.5 130.6 93.1 61.3 31.2 

phen/anth 120 55.4 14.5 12.2 9.8 7.3 4.8 2.3  
240 120.5 19 16 12.8 9.6 6.3 3.1 

pyrene 120 21.9 5.4 4.5 3.6 2.7 1.8 0.8 
 

240 44.3 6.7 5.7 4.6 3.4 2.3 1.1 
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Appendix B: Total Masses of Each Analyte Recovered from Exposed Wristbands 

As outlined above, masses were calculated from calibration curves between the relative 

areas of the analyte and naphthalene d-10 and mass present in a spike. Phenanthrene and 

Anthracene were not included because recovered masses were below the limit of detection for 

the GC-MS. 

Table B1: Recovered masses from exposed wristbands. 

Trial 

# 

Time of 

exposure (min) 

Toluene 

(µg) 

Xylenes 

(µg)  

Naphthalene 

(µg) 

Pyrene 

(µg) 

1 120 0.522793 0.585508 2.124793 0 

1 240 0.738625 0.56336 2.532728 0.07602 

2 120 0.608985 0.75238 1.605224 0.082563 

3 120 1.030217 1.223987 1.353112 0.077318 

3 240 0.5765 0.532136 1.685152 0.098078 

4 120 0.559719 0.409323 1.051695 0.026195 

4 240 0.575341 0.477654 1.264606 0.046637 

5 (1) 120 0.475229 0.502179 1.13855 0.040469 

5 (2) 120 0.715211 0.511653 1.432552 0.050181 

6 120 1.574608 1.421163 1.275962 0.035328 

6 240 2.407165 1.789335 0.260185 0.070755 

7 120 1.209683 1.188086 0.67742 0.012509 

7 240 0.914098 0.750719 0.876688 0.05742 
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