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In this paper, we reformulate the scheme introduced by Bouchitté and Todinca in [1],
which computes treewidth and minimum fill-in of a graph using a dynamic programming
approach. We will call the scheme BT scheme. Although BT scheme was originally designed
for computing treewidth and minimum fill-in, it can be used for computing other graph
parameters defined in terms of minimal triangulation. In this paper, we reformulate BT
scheme so that it works for computing other graph parameters defined in terms of minimal
triangulation, and give examples of other graph parameters.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In [1,2], Bouchitté and Todinca introduced a dynamic programming approach for computing treewidth and minimum
fill-in of a graph, and they showed that, using the dynamic programming approach, treewidth and minimum fill-in can
be computed in polynomial time in the number of minimal separators. We will call the dynamic programming approach
the BT scheme. Although BT scheme was originally designed for computing treewidth and minimum fill-in, it can be used
for computing other graph parameters defined in terms of minimal triangulation. (Note that computing treewidth and
minimum fill-in both can be translated into problems on minimal triangulation.) Indeed, several variants of BT scheme have
been developed to compute other graph parameters/problems parameter by parameter: tree-length [3] via chordal sandwich
problem, treecost [4], and the perfect phylogeny problem [5]. To unify those variants, we reformulate BT scheme so that it
works for computing other graph parameters defined in terms of minimal triangulation.

The importance of establishment of BT scheme is that it unifies the polynomial computability of treewidth and mini-
mum fill-in for the several graph classes: circle graphs [6,7], circular-arc graphs [8,7], cographs [9], chordal bipartite graphs
[10,11], weakly chordal graphs [12], and d-trapezoid graphs [13]. Those graph classes have a polynomial number of mini-
mal separators. In fact, it was conjectured that treewidth and minimum fill-in are computable in polynomial time for the
classes of graphs with a polynomial number of minimal separators [14,15], and Bouchitté and Todinca [1,2] proved that the
conjecture holds.

BT scheme is based on two types of recursive formulas: one is on minimal separators in [16]:
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tw(G) = min
S∈ΔG

max
C∈C(S)

tw
(

R(S, C)
)
,

mfi(G) = min
S∈ΔG

(
fill(S) +

∑
mfi

(
R(S, C)

))
,

and the other is on potential maximal cliques in [1]:

tw
(

R(S, C)
) = min

S⊂Ω⊆(S,C)
max

(|Ω| − 1, tw
(

R(Si, Ci)
))

,

mfi
(

R(S, C)
) = min

S⊂Ω⊆(S,C)

(
fill(Ω) − fill(S) +

∑
mfi

(
R(Si, Ci)

))
,

where S and Ω mean a minimal separator and a potential maximal clique, respectively. (See Section 3 for details.) To modify
BT scheme so as to be able to compute not only treewidth and minimum fill-in but also other graph parameters defined in
terms of minimal triangulation, we reformulate the recursive formulas in Section 3.

It is known that treewidth (tw), minimum fill-in (mfi), and chordal sandwich problem between G1 and G2 (csp(G1, G2))
can be expressed as follows (see Section 2 for the notation):

• tw(G) = minH∈MT(G) maxM∈MC(H) |M| − 1,
• mfi(G) = minH∈MT(G)

∑
e∈FEG (H) 1,

• csp(G1, G2) = minH∈MT(G1)

∑
e∈FEG (H) g(e), where g(e) =

{
0 if e∈E(G2)

1 otherwise.

As we will show in Section 6, tree-length (tl) can be represented as

• tl(G) = minH∈MT(G) maxM∈MC(H) distG(M).

To unify those expressions, we consider two types of graph parameters, one is clique type: graph parameters expressed as
minH∈MT(G) maxM∈MC(H) f (M), and the other is fill-in type: graph parameters expressed as minH∈MT(G)

∑
e∈FEG (H) f (e). The

former corresponds to treewidth and the latter to minimum fill-in. Then, we show that BT scheme works for the graph
parameters of both clique and fill-in types.

2. Definitions and fundamental results

Let G be a graph and U be a subset of V (G).

notation For a vertex v in G , N(v) denotes the neighbor set of v , and N(U ) denotes the set
⋃

u∈U N(u)− U . G[U ] denotes
the subgraph of G induced by U . We denote by CG(U ) the set of connected components of G[V \U ], and by GU the
graph obtained from G by completing U , i.e., by adding an edge between every pair of non-adjacent vertices of U .
For convenience, for a connected component C ∈ CG(U ), we often make no distinction between the component C
and its vertex set V (C), so C be used in the sense of V (C). We will drop the subscript G when it is clear from
the context. For example, we will write simply C(U ) instead of CG(U ). MC(G) denotes the set of maximal cliques
of G . For x, y ∈ V (G), distG(x, y) denotes the distance between u and v in G . We denote by fillG(U ) the number
of non-edges of U in G .

component A component C ∈ CG(U ) is a full component associated with U if for each vertex u ∈ U there is a vertex in v ∈ C
such that {u, v} ∈ E(G).

separator ([2]) A subset S ⊆ V (G) is an a,b-separator of G for two non-adjacent vertices a,b ∈ V (G) if the removal of S
from G separates a and b in different connected components. An a,b-separator S is minimal if no proper subset
of S separates a and b. S is a minimal separator of G if there are two vertices a and b for which S is a minimal
a,b-separator. We denote by ΔG the set of all minimal separators of G .

triangulation ([2]) A graph is chordal if every cycle of length at least four has a chord (i.e. an edge joining two vertices that
are not adjacent in the cycle). A triangulation of G = (V , E) is a chordal graph H = (V , E ∪ F ) such that E ∩ F = ∅,
and F is called the fill-in edges of H . We denote F by FEG(H). H is a minimal triangulation of G if no proper
subgraph of H is a triangulation of G . MT(G) denotes the set of minimal triangulations of G . It is known that
ΔH ⊆ ΔG (see e.g. Theorem 2.9 in [1]).

potential maximal clique ([2]) A vertex set Ω of G is called a potential maximal clique if there is a minimal triangulation
H of G such that Ω is a maximal clique of H . We denote by ΠG the set of all potential maximal cliques of G . For
convenience, we stretch MT(·) slightly as follows: for a potential maximal clique Ω in G , MT(G,Ω) denotes the
set {H | H ∈ MT(G) and Ω ∈ MC(H)}.

block Let S be a minimal separator of G . For C ∈ C(S), we say that (S, C) = S ∪ C is a block associated with S (or simply
block of S). A block (S, C) is a full if C is a full component associated with S . The graph R(S, C) obtained from
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G[S ∪C] by completing S , i.e. R(S, C) = G S [S ∪C], is called the realization of the block (S, C). We also use the term
block for a potential maximal clique: Let Ω be a potential maximal clique of G . For C ∈ C(Ω) and S := N(C) ∩ Ω ,
we say that (S, C) = S ∪ C is a block associated with Ω (or simply block of Ω).

Remark 1. It is known that, for a potential maximal clique Ω of a graph G , {N(C) ∩ Ω | C ∈ C(Ω)} is exactly the minimal
separators of G contained in Ω (see Theorem 3.14 in [1]). It is also known that Ω is a potential maximal clique if and
only if

1. G − Ω has no full components associated to Ω ,
2. GS [Ω] is a clique, where S = {N(C) ∩ Ω | C ∈ C(Ω)}

(see Theorem 3.15 in [1]).

graph parameters The treewidth of G , denoted by tw(G), is the minimum, over all triangulations H of G , of ω(H) − 1,
where ω(H) is the maximum clique size of H . The minimum fill-in of G , denoted by mfi(G), is the smallest value
of |E(H) \ E(G)|, where the minimum is taken over all triangulations H of G . The tree-length of G , denoted by
tl(G), is the smallest integer k for which G has a tree decomposition (see e.g. [16] for the definition) such that the
distance in G between any pair of vertices that appear in the same bag of the tree decomposition is at most k. The
tree-length-sum of G , denoted by tls(G), is defined as the minimum number k for which there exists a triangulation
H of G such that k = ∑

e∈E(H) distG(e).

3. Reformulation of the recursive formulas

We first define two types of graph parameters.

Definition 1 (Clique type and fill-in type). Let G be a graph. A graph parameter fc with a function gc is of clique type if fc can
be described as

fc(G) = min
H∈MT(G)

max
M∈MC(H)

gc(M),

where gc is a function from 2V (G) to positive reals and can be computed in polynomial time in the size of G .
A graph parameter f f with a function g f is of fill-in type if f f can be described as

f f (G) = min
H∈MT(G)

∑
e∈FEG (H)

g f (e),

where g f is a function from V (G)× V (G) to positive reals and can be computed in polynomial time in the size of G . Notice
that g f (e) means g f ((u, v)) for e = (u, v).

For convenience, for a graph G and a set U ⊆ V (G), we denote the value of
∑

{xy: x,y∈U }\E(G) g f (xy) by fillG(U , g f ).
Clearly, treewidth and minimum fill-in can be expressed by the two types of graph parameters: setting gc(M) as |M| − 1
for each clique M and g f (e) as 1 for each edge e, we have fc(G) = tw(G) and f f (G) = mfi(G), respectively. Further-
more, tree-length and tree-length-sum can be also expressed by the two types of graph parameters: setting gc(M) as
maxx,y∈M distG(x, y) for each clique M and g f (xy) as dist(x, y) for each edge xy, we have fc(G) = tl(G) and f f (G) = tls(G),
respectively.

The scheme for computing treewidth and minimum fill-in is based on the following two theorems.

Theorem 1. (See [16].) Let G be a non-complete graph. Then,

tw(G) = min
S∈ΔG

max
C∈C(S)

tw
(

R(S, C)
)
,

mfi(G) = min
S∈ΔG

(
fill(S) +

∑
C∈C(S)

mfi
(

R(S, C)
))

.

Theorem 2. (See [1].) Let (S, C) be a full block of a graph G. Then,

tw
(

R(S, C)
) = min

S⊂Ω⊆(S,C)
max

(|Ω| − 1, tw
(

R(Si, Ci)
))

,

mfi
(

R(S, C)
) = min

S⊂Ω⊆(S,C)

(
fill(Ω) − fill(S) +

∑
mfi

(
R(Si, Ci)

))
,

where (Si, Ci) are the blocks associated with Ω in R(S, C).
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In this paper, we prove that the above two theorems can be extended into a more flexible setting, that is, they can be
reformulated as the next two theorems.

The following theorem is corresponding to Theorem 1, and we call it Minimal Separator Recursion (MSR) theorem.

Theorem (MSR theorem). Let G be a non-complete graph, fc a graph parameter of clique type, and f f with g f a graph parameter of
fill-in type. Then,

fc(G) = min
S∈ΔG

max
C∈C(S)

fc
(

R(S, C)
)
,

f f (G) = min
S∈ΔG

(
fillG(S, g f ) +

∑
C∈C(S)

f f
(

R(S, C)
))

.

The following theorem is corresponding to Theorem 2, and we call it Potential Maximal Clique Recursion (PMCR) theorem.

Theorem (PMCR theorem). Let G be a graph, (S, C) be a full block of G, Ω be a potential maximal clique in (S, C) of G, and (S, C : Ω)

be the blocks associated with Ω in (S, C). Let fc with gc and f f with g f be graph parameters of clique type and fill-in type, respectively.
Then,

fc
(

R(S, C)
) = min

S⊂Ω⊆(S,C)
max

(
gc(Ω), max

(Si ,Ci)∈(S,C :Ω)
fc

(
R(Si, Ci)

))
,

f f
(

R(S, C)
) = min

S⊂Ω⊆(S,C)

(
fillG(Ω, g f ) − fillG(S, g f ) +

∑
(Si ,Ci)∈(S,C :Ω)

f f
(

R(Si, Ci)
))

.

For clique type, a very similar study can be found in [17]. Our proofs for MSR and PMCR theorems on clique type are
essentially the same as the corresponding proofs in [17]. The principal difference between them is as follows. In [17], the
optimal value based on a function f over all tree decompositions of a graph G is considered, where f is a monotone function
(from 2V (G) to non-negative reals) which corresponds to our gc in Definition 1. Since the optimal value is taken over all tree
decompositions of G , it should be calculated over all triangulations (not necessarily minimal) of G . As a result, however,
for determining the optimal value, it is sufficient to check over all minimal triangulations, thanks to the monotonicity
of f . On the other hand, our gc is not necessarily monotone, but the optimal value should be calculated over all minimal
triangulations.

4. Proof of MSR theorem

In this section, we show MSR theorem holds: We first prove for clique type in MSR theorem, then prove for fill-in type.
To this end, we use the following useful lemma which plays an important role.

Lemma 3. (See [16, Lemma 3.1].) Let S ∈ ΔG and let C1, C2, . . . , Cr be the components of G[V \ S]. Suppose H j is a minimal trian-
gulation of R(S, C j) for any j ∈ {1,2, . . . , r}. Then the graph H = (V (H), E(H)) with V (H) = V (G) and E(H) = ⋃r

j=1 E(H j) is a
minimal triangulation of G.

Conversely, let H be a minimal triangulation of G with S ∈ ΔH . Then, H[S ∪ C] is a minimal triangulation of the realization R(S, C)

for each component C of G[V \ S].

Remark 2. Let H be a minimal triangulation of a graph G , S a minimal separator of H , and M a maximal clique of H . Then,
M is a subset of S ∪ C for some component C of H[V \ S] (otherwise, M intersects at least two components C1, C2 of
H[V \ S], but this is impossible because M is a clique).

4.1. Proof of clique type

Theorem (Clique type recursion on minimal separator). Let G be a non-complete graph, and f with g be a graph parameter of clique
type (i.e. f (G) = minH∈MT(G) maxM∈MC(H) g(M)). Then,

f (G) = min
S∈ΔG

max
C∈C(S)

f
(

R(S, C)
)
.

Proof. First, we show that f (G) � minS∈ΔG maxC∈C(S) f (R(S, C)). To show this, we will prove that f (G) =
minH∈MT(G) maxM∈MC(H) g(M) � maxC∈C(S) f (R(S, C)) for some minimal separator S of G . Let Hopt be an optimal trian-
gulation of G with respect to f , i.e., Hopt is a minimal triangulation of G such that f (G) = maxM∈MC(Hopt) g(M). Let S be a
minimal separator of Hopt , i.e., S ∈ ΔHopt ⊆ ΔG . Then,
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f (G) = max
M∈MC(Hopt)

g(M) (by the choice of Hopt)

= max
C∈C(S)

max
M∈MC(Hopt[S∪C])

g(M) (by Remark 2)

� max
C∈C(S)

min
H∈MT(R(S,C))

max
M∈MC(H)

g(M)
(
as Hopt[S ∪ C] ∈ MT

(
R(S, C)

)
by Lemma 3

)

= max
C∈C(S)

f
(

R(S, C)
)
.

Next, we show that f (G) � minS∈ΔG maxC∈C(S) f (R(S, C)). To show this, we will prove that minH∈MT(G) maxM∈MC(H) g(M)

� maxC∈C(S) f (R(S, C)) for any minimal separator S of G . Let S be a minimal separator of G , C1, . . . , Cr the components of
G[V \ S], Hi (1 � i � r) a minimal triangulation of R(S, Ci) such that f (R(S, Ci)) = f (Hi) (= maxM∈MC(Hi) g(M)), and H0
the graph such that V (H0) = V (G) and E(H0) = ⋃

1� j�r E(H j). Then,

f (G) = min
H∈MT(G)

max
M∈MC(H)

g(M)

� max
M∈MC(H0)

g(M)
(
since H0 ∈ MT(G) by Lemma 3

)
= max

M∈⋃
1�i�r MC(H0[S∪Ci])

g(M) (by Remark 2)

= max
1�i�r

max
M∈MC(Hi)

g(M)

= max
1�i�r

f
(

R(S, Ci)
) (

as f
(

R(S, Ci)
) = max

M∈MC(Hi)
g(M)

)
.

Thus, we have f (G) = minS∈ΔG maxC∈C(S) f (R(S, C)).

4.2. Proof of fill-in type

Theorem (Fill-in type recursion on minimal separator). Let G = (V , E) be a non-complete graph and f with g be a graph parameter
of fill-in type. Then

f (G) = min
S∈ΔG

(
fillG(S, g) +

∑
C∈C(S)

f
(

R(S, C)
))

,

Proof. First, we show that f (G) � minS∈ΔG (fillG(S, g) + ∑
C∈C(S) f (R(S, C))). To show this, we will prove that f (G) �

fillG(S, g) + ∑
C∈C(S) f (R(S, C)) for some minimal separator S of G . Let Hopt be an optimal triangulation of G with respect

to f , i.e., Hopt is a minimal triangulation of G and f (G) = ∑
e∈FEG (Hopt)

g(e). Let S be a minimal separator of Hopt (hence,
S ∈ ΔG ). From Lemma 3, for each component C of G[V \ S], Hopt[S ∪ C] is a minimal triangulation of R(S, C). Hence, letting
C1, C2, . . . , Cr be the connected components of G[V \ S],

f (G) =
∑

e∈E(Hopt)

g(e) −
∑

e∈E(G)

g(e)

=
( ∑

1�i�r

∑
e∈E(Hopt[S∪Ci])

g(e) − (r − 1)
∑

e∈E(Hopt[S])
g(e)

)

−
( ∑

1�i�r

∑
e∈E(R(S,Ci))

g(e) − fillG(S, g) − (r − 1)
∑

e∈E(Hopt[S])
g(e)

)

= fillG(S, g) +
∑

1�i�r

( ∑
e∈E(Hopt[S∪Ci])

g(e) −
∑

e∈E(R(S,Ci))

g(e)

)

� fillG(S, g) +
∑

1�i�r

f
(

R(S, Ci)
) (

as Hopt[S ∪ Ci] ∈ MT
(

R(S, Ci)
)

by Lemma 3
)
.

Next, we show that for any S ∈ ΔG , f (G) � fillG(S, g) + ∑
C∈C(S) f (R(S, C)). Let S ∈ ΔG and C1, C2, . . . , Cr be the con-

nected components of G[V \ S]. Furthermore, for each 1 � i � r, let Hi be a minimal triangulation of R(S, Ci) such that
f (R(S, Ci)) = ∑

e∈FER(S,Ci )
(Hi)

g(e) = ∑
e∈E(Hi)

g(e) − ∑
e∈E(R(S,Ci))

g(e). Now, let consider the graph H0 whose vertex set is

V (H0) = V (G) and whose edge set is E(H0) = ⋃r
i=1 E(Hi). From Lemma 3, the graph H0 is a minimal triangulation of G .

Thus,
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f (G) = min
H∈MT(G)

∑
e∈E(H)

g(e) −
∑

e∈E(G)

g(e)

�
∑

e∈E(H0)

g(e) −
∑

e∈E(G)

g(e) (since H0 is a minimal triangulation of G)

=
( ∑

1�i�r

∑
e∈E(H0[Hi ])

g(e) − (r − 1)
∑

e∈E(H0[S])
g(e)

)

−
( ∑

1�i�r

∑
e∈E(R(S,Ci))

g(e) − fillG(S, g) − (r − 1)
∑

e∈E(H0[S])
g(e)

)

= fillG(S, g) +
∑

1�i�r

( ∑
e∈E(Hi)

g(e) −
∑

e∈E(R(S,Ci))

g(e)

)

= fillG(S, g) +
∑

1�i�r

f
(

R(S, Ci)
)
.

5. Proof of PMCR theorem

Before proving the theorem, let us recall some results in [1] which we will use frequently in our proofs.

Lemma 4. (See Corollary 3.12 in [1].) Let Ω be a potential maximal clique of G and let S ∈ ΔG(Ω). Then S is strictly contained in Ω

and Ω − S is in a full connected component associated with S.

Theorem 5. (See Theorem 4.3 in [1].) Let H be a minimal triangulation of G and let Ω be a maximal clique of H. Then for each block
(Si, Ci) associated with Ω in G, the graph Hi = H[Si ∪ Ci] is a minimal triangulation of the realization R(Si, Ci).

Conversely, let Ω be a potential maximal clique of G. For each block (Si, Ci) associated with Ω in G, let Hi be a minimal triangu-
lation of R(Si, Ci). Then H = (V (G), E(H)) with E(H) = ⋃p

i=1 E(Hi) ∪ {{x, y} | x, y ∈ Ω} is a minimal triangulation of G.

Remark 3. Let Ω be a potential maximal clique of a graph G , (S1, C1), . . . , (Sr, Cr) the blocks associated with Ω in G , Hi
a minimal triangulation of R(Si, Ci) for 1 � i � r, and H0 the graph with V (H0) = V (G) and E(H0) = ⋃p

i=1 E(Hi) ∪ E(G).
Then, for a maximal clique M in H0 of G , one of the following two cases holds:

1. M is Ω (by Remark 1) or
2. M is in H0[Si ∪ Ci] for some block (Si, Ci) associated with Ω . Because, any maximal clique cannot intersect more than

one component. Also note that if there is a vertex v ∈ (Ω ∩ M)\Si then M ⊆ Ω (in which case M is Ω).

Lemma 6. (See Lemma 4.6 in [1].) Let R(S, C) be the realization of some full block (S, C) and let H(S, C) be a minimal triangulation
of R(S, C). Then there is a maximal clique Ω of H(S, C) such that S ⊂ Ω and Ω is a potential maximal clique of G.

5.1. Proof of clique type

Theorem (Clique type recursion on potential maximal clique). Let G be a graph, S a minimal separator in G, (S, C) a full block of G,
H(S, C) a minimal triangulation of the realization R(S, C), f with g a graph parameter of clique type. Then,

f
(

R(S, C)
) = min

S⊂Ω⊆(S,C)
max

(
g(Ω), max

(Si ,Ci)∈(S,C :Ω)
f
(

R(Si, Ci)
))

,

where (S, C : Ω) denotes the blocks associated with a potential maximal clique Ω with S ⊂ Ω ⊆ S ∪ C.

Proof. First, we show that, for some potential maximal clique Ω in G such that S ⊂ Ω ⊆ (S, C), f (R(S, C)) �
max(g(Ω),max(Si ,Ci)∈(S,C :Ω) f (R(Si, Ci))) holds. Let H (S,C)

opt be a minimal triangulation of R(S, C) such that f (R(S, C)) =
max

M∈MC(H(S,C)
opt )

g(M). Then, by Lemma 6, there is a maximal clique Ω in H (S,C)
opt such that S is strictly contained in Ω and

Ω is a potential maximal clique of G . Now, for the Ω , let (S1, C1), . . . , (Sr, Cr) denote the blocks associated with Ω in
R(S, C). Then, by Theorem 5, for each (Si, Ci), H (S,C)

opt [Si ∪ Ci] is a minimal triangulation of R(Si, Ci). Thus,

f
(

R(S, C)
) = min

H∈MT(R(S,C))
max

M∈MC(H)
g(M)

= max
M∈MC(H(S,C)

)

g(M)
(
from the setting of H(S,C)

opt

)

opt
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= max
(

g(Ω), max
1�i�r

max
M∈MC(H(S,C)

opt [Si∪Ci ])
g(M)

)

� max
(

g(Ω), max
1�i�r

min
H∈MT(R(Si ,Ci))

max
M∈MC(H)

g(M)
)

= max
(

g(Ω), max
1�i�r

f
(

R(Si, Ci)
))

.

The second to the third line follows from the facts that Ω is a maximal clique in H (S,C)
opt and that any maximal clique

cannot intersect Ci and C j for some 1 � i < j � r. As H (S,C)
opt [Si ∪ Ci] ∈ MT(R(Si, Ci)) by Theorem 5, the fourth line can be

derived.
Next, we show that, for any potential maximal clique Ω in G such that S ⊂ Ω ⊆ (S, C), f (R(S, C)) � max(g(Ω),

max(Si ,Ci)∈(S,C :Ω) f (R(Si, Ci))) holds. Let Ω be a potential maximal clique in G such that S ⊂ Ω ⊆ (S, C). Note that from
Lemma 6 there is such an Ω . For the Ω , let (S1, C1), . . . , (Sr, Cr) denote the blocks associated with Ω in R(S, C). Recall
that MT(R(S, C),Ω) denotes the set of minimal triangulations of R(S, C) in which Ω is a maximal clique. Then,

f
(

R(S, C)
) = min

H∈MT(R(S,C))
max

M∈MC(H)
g(M)

� min
H∈MT(R(S,C),Ω)

max
M∈MC(H)

g(M)
(
since MT

(
R(S, C),Ω

) ⊆ MT
(

R(S, C)
))

= min
H∈MT(R(S,C),Ω)

max
M∈{Ω}∪⋃

1�i�r MC(H[Si∪Ci ])
g(M)

= max
(

g(Ω), min
H∈MT(R(S,C),Ω)

max
1�i�r

max
M∈MC(H[Si∪Ci ])

g(M)
)

� max
(

g(Ω), max
1�i�r

min
H∈MT(R(Si ,Ci))

max
M∈MC(H)

g(M)
)

(by the fact below)

= max
(

g(Ω), max
(Si ,Ci)∈(S,C :Ω)

f
(

R(Si, Ci)
))

.

Since Ω is a maximal clique in H ∈ MT(R(S, C),Ω) and any maximal clique cannot intersect Ci and C j for some 1 � i <

j � r, the third line can be derived from the second line. The fifth line follows from the fact that

min
H∈MT(R(S,C),Ω)

max
1�i�r

max
M∈MC(H[Si∪Ci ])

g(M) � max
1�i�r

min
H∈MT(R(Si ,Ci))

max
M∈MC(H)

g(M).

To show the fact, it is sufficient to prove that there is a minimal triangulation H0 in MT(R(S, C),Ω) such that

max
1�i�r

max
M∈MC(H0[Si∪Ci ])

g(M) = max
1�i�r

min
H∈MT(R(Si ,Ci))

max
M∈MC(H)

g(M).

For each 1 � i � r, let Hi be a minimal triangulation of R(Si, Ci) such that Hi minimizes maxM∈MC(H) g(M) among all
minimal triangulations H of R(Si, Ci). Then, take the graph (S ∪C,

⋃
1�i�r E(Hi)∪ E(R(S, C))) as H0. Note that, by Remark 1,

Ω is a maximal clique in H0, and by Theorem 5 H0 is a minimal triangulation of R(S, C). Hence, H0 is in MT(R(S, C),Ω).
Thus, we have

max
1�i�r

max
M∈MC(H0[Si∪Ci ])

g(M) = max
1�i�r

max
M∈MC(Hi)

g(M)

= max
1�i�r

min
H∈MT(R(Si ,Ci))

max
M∈MC(H)

g(M) (from the setting of Hi).

As a result, we have

f (G) = min
S⊂Ω⊆(S,C)

max
(

g(Ω), max
(Si ,Ci)∈(S,C :Ω)

f
(

R(Si, Ci)
))

.

5.2. Proof of fill-in type

Theorem (Fill-in type recursion on potential maximal clique). Let G be a graph, S a minimal separator, (S, C) a full block of G, Ω a
potential maximal clique in G such that S ⊂ Ω ⊆ (S, C), (S, C : Ω) the blocks associated with Ω in (S, C). Let f with g be a graph
parameter of fill-in type. Then,

f
(

R(S, C)
) = min

S⊂Ω⊆(S,C)

(
fillG(Ω, g) − fillG(S, g) +

∑
(Si ,Ci)∈(S,C :Ω)

f
(

R(Si, Ci)
))

.
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Proof. First, we show that, for some potential maximal clique Ω with S ⊂ Ω ⊆ (S, C),

f
(

R(S, C)
)
� fillG(Ω, g) − fillG(S, g) +

∑
(Si ,Ci)∈(S,C :Ω)

f
(

R(Si, Ci)
)

holds. First let Hopt be a minimal triangulation of R(S, C) such that f (R(S, C)) = ∑
e∈FER(S,C)(Hopt)

g(e). Then, take a maximal
clique Ω in Hopt such that S ⊂ Ω ⊆ (S, C) and Ω is a potential maximal clique in G . (Note that there is such a maximal
clique Ω by Lemma 6.)

From Theorem 5, for each (Si, Ci) ∈ (S, C : Ω), Hopt[Si ∪ Ci] is a minimal triangulation of R(Si, Ci). Thus,

f
(

R(S, C)
) =

∑
e∈FER(S,C)(Hopt)

g(e) (from the setting of Hopt)

=
∑

e∈E(Hopt)

g(e) −
∑

e∈E(R(S,C))

g(e)

=
( ∑

e∈E(Hopt[Ω])
g(e) +

∑
(Si ,Ci)∈(S,C :Ω)

( ∑
e∈E(Hopt[Si∪Ci ])

g(e) −
∑

e∈E(Hopt[Si ])
g(e)

))

−
( ∑

e∈E(G[Ω])
g(e) + fillG(S, g) +

∑
(Si ,Ci)∈(S,C :Ω)

( ∑
e∈R(Si ,Ci)

g(e) −
∑

e∈E(R(Si ,Ci)[Si])
g(e)

))

=
∑

e∈E(Hopt[Ω])
g(e) −

∑
e∈E(G[Ω])

g(e) − fillG(S, g) +
∑

(Si ,Ci)∈(S,C :Ω)

( ∑
e∈E(Hopt[Si∪Ci ])

g(e) −
∑

e∈R(Si ,Ci)

g(e)

)

= fillR(S,C)(Ω, g) − fillR(S,C)(S, g) +
∑

(Si ,Ci)∈(S,C :Ω)

( ∑
e∈E(Hopt[Si∪Ci ])

g(e) −
∑

e∈R(Si ,Ci)

g(e)

)

� fillR(S,C)(Ω, g) − fillR(S,C)(S, g) +
∑

(Si ,Ci)∈(S,C :Ω)

(
min

H∈MT(R(Si ,Ci))

∑
e∈E(H)

g(e) −
∑

e∈R(Si ,Ci)

g(e)

)

= fillR(S,C)(Ω, g) − fillR(S,C)(S, g) +
∑

(Si ,Ci)∈(S,C :Ω)

f
(

R(Si, Ci)
)
.

Next, we show that, for any Ω such that S ⊂ Ω ⊆ (S, C),

f
(

R(S, C)
)
� fillR(S,C)(Ω, g) − fillR(S,C)(S, g) +

∑
(Si ,Ci)∈(S,C :Ω)

f
(

R(Si, Ci)
)
.

So, let Ω be a potential maximal clique in G such that S ⊂ Ω ⊆ (S, C), and let (S1, C1), . . . , (Sr, Cr) denote the blocks
associated with Ω in R(S, C). Again from Theorem 5,

f
(

R(S, C)
) = min

H∈MT(R(S,C))

∑
e∈FER(S,C)(H)

g(e)

� min
H∈MT(R(S,C),Ω)

∑
e∈FER(S,C)(H)

g(e)

= fillR(S,C)(Ω, g) − fillR(S,C)(S, g) + min
H∈MT(R(S,C),Ω)

∑
1�i�r

( ∑
e∈E(H[Si∪Ci ])

g(e) −
∑

e∈R(Si ,Ci)

g(e)

)

� fillR(S,C)(Ω, g) − fillR(S,C)(S, g) +
∑

1�i�r

(
min

H∈MT(R(Si ,Ci))

( ∑
e∈E(H)

g(e) −
∑

e∈R(Si ,Ci)

g(e)

))

= fillR(S,C)(Ω, g) − fillR(S,C)(S, g) +
∑

(Si ,Ci)∈(S,C :Ω)

f
(

R(Si, Ci)
)
.

The third to the fourth line follows from the fact that

min
H∈MT(R(S,C),Ω)

∑ ∑
g(e) �

∑ (
min

H∈MT(R(Si ,Ci))

∑
g(e)

)
.

1�i�r e∈E(H[Si∪Ci ]) 1�i�r e∈E(H)
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Algorithm 1: BT scheme.
Input: a connected graph G , all its potential maximal cliques and all its minimal separators S
Output: fc(G) and f f (G)

1 compute all the full block (S, C) and sort them by the number of vertices;
2 foreach full block (S, C) taken in increasing order do
3 if (S, C) is inclusion-minimal then
4 tw(R(S, C)) := |S ∪ C | − 1; //

replace
−−−−−→ fc(R(S, C)) := gc(S ∪ C);

5 mfi(R(S, C)) := fill(S ∪ C); //
replace

−−−−−→ f f (R(S, C)) := fillG (S ∪ C, g f );
6 else
7 tw(R(S, C)) := ∞; //

replace
−−−−−→ fc(R(S, C)) := ∞;

8 mfi(R(S, C)) := ∞; //
replace

−−−−−→ f f (R(S, C)) := ∞;
9 foreach potential maximal clique Ω with S ⊂ Ω ⊆ (S, C) do

10 compute the blocks (Si , Ci) associated with Ω s.t. Si ∪ Ci ⊂ S ∪ C,

11 tw(R(S, C)) = min(tw(R(S, C)),maxi(|Ω| − 1, tw(R(Si , Ci))));
12 //

replace
−−−−−→ fc(R(S, C)) := min( fc(R(S, C)),max(g(Ω),maxi fc(R(Si , Ci)))),

13 mfi(R(S, C)) = min(mfi(R(S, C)),fill(Ω) − fill(S) + ∑
mfi(R(Si , Ci)));

14 //
replace

−−−−−→ f f (R(S, C)) := min( f f (R(S, C)),fillG (Ω, g f ) − fillG (S, g f ) + ∑
i f f (R(Si , Ci))),

15 let Δ∗
G be the set of inclusion-minimal separators of G;

16 tw(G) = min
S∈Δ∗

G

max
C∈C(S)

tw(R(S, C)); //
replace

−−−−−→ fc(G) = min
S∈Δ∗

G

max
C∈C(S)

fc(R(S, C));
17 mfi(G) = min

S∈ΔG
(fill(S) +

∑
C∈C(S)

mfi(R(S, C))); //
replace

−−−−−→ f f (G) = min
S∈Δ∗

G

(fillG (S, g f ) +
∑

C∈C(S)

f f (R(S, C)));

Fig. 1. Dynamic programming based on MSR theorem and PMCR theorem.

To show the fact, it is sufficient to prove that there is a minimal triangulation H0 in MT(R(S, C),Ω) such that

∑
1�i�r

∑
e∈E(H0[Si∪Ci ])

g(e) =
∑

1�i�r

(
min

H∈MT(R(Si ,Ci))

∑
e∈E(H)

g(e)

)
.

For each 1 � i � r, let Hi be a minimal triangulation of R(Si, Ci) such that Hi minimizes
∑

e∈E(H) g(e) among all minimal
triangulations of R(Si, Ci). Then, let H0 be the graph with V (H0) = S ∪ C and E(H0) = ⋃

1�i�r E(Hi) ∪ {{x, y} | x, y ∈ Ω}.
Clearly, H0 satisfies the above equality. And H0 is in MT(R(S, C),Ω) by Theorem 5 and Remark 1.

As a result, we have

f
(

R(S, C)
) = min

S⊂Ω⊆(S,C)

(
fillR(S,C)(Ω, g) − fillR(S,C)(S, g) +

∑
(Si ,Ci)∈(S,C :Ω)

f
(

R(Si, Ci)
))

.

5.3. Reformed BT scheme: Dynamic programming based on MSR and PMCR theorems

Fig. 1 shows BT scheme (computing treewidth and minimum fill-in) appeared in [18], and from which reformulated BT
scheme can be obtained by replacing the recursive formulas in Theorem 1 and Theorem 2 with the recursive formulas in
MSR theorem and PMCR theorem, respectively (i.e., the comment lines). In [18], Fomin et al. showed that the BT scheme
can be implemented to run in O (n3 · |ΠG |). (Recall that ΠG is the set of potential maximal cliques of G .)

As an immediate consequence of the running time analysis, we have the following theorem.

Theorem 7. Let G be a graph with n vertices. Let fc(G) = minH∈MT(G) maxM∈MC(H) gc(M) be a graph parameter with a function gc ,
from 2n to positive reals, computable in pc(|V (G)|) time. And let f f (G) = minH∈MT(G)

∑
e∈FEG (H) g f (e) be a graph parameter with a

function g f , from V (G) × V (G) to positive reals, computable in p f (n) time. Then, using reformulated BT scheme (that is, the dynamic
programming based on MSR theorem and PMCR theorem), given a graph G, the list of all its potential maximal cliques, and the list of
all its minimal separators, fc(G) can be computed in O ((pc(n) + n3) · |ΠG |) and f f (G) can be computed in O (n3 · p f (n) · |ΠG |).

Proof. First, let us consider the cost of lines 4 and 5 in the reformulated BT scheme. Since the number of the blocks
(S, C) is at most O (n|ΔG |), the total cost of computing gc(S ∪ C) (i.e., line 4) is at most O (n · pc(n) · |ΔG |). As fillG(U , g f )

can be computed in O (n2 · p f (n)) for each U ⊆ V (G) × V (G), the total cost of computing fillG(S ∪ C, g f ) (i.e., line 5) is
O (n3 · p f (n) · |ΔG |).

Next, let us see the total cost of computing fillG(Ω, g f ) and fillG(S, g f ) in lines 14 and 17. The cost for computing
fillG(Ω, g f ) is O (n2 · p f (n) · |ΠG |). The cost for computing fillG(S, g f ) is O (n2 · p f (n) · |ΔG |).

Hence, fc(G) can be computed in O (n · pc(n) · |ΔG | + n3|ΠG |) and f f (G) can be computed in O (n2 · p f (n) · (|ΠG | +
|ΔG |) + n3|ΠG |). From |ΔG | � n · |ΠG |, we have O ((pc(n) + n3) · |ΠG |) for computing fc(G) and O (n3 · p f (n) · |ΠG |) for
computing f f (G).
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The running time depends on the number of the minimal separators |ΔG | and the potential maximal cliques |ΠG |. It is
known that |ΔG | is O (1.6181n) [19] and |ΠG | is O (1.7347n) [20].

In [1], Bouchitté and Todinca showed that given a graph G , the list of all its potential maximal cliques, and the list of all
its minimal separators, treewidth and minimum fill-in of G can be computed in polynomial time in the size of the inputs
G and the lists, using BT scheme (i.e., standard dynamic programming based on Theorem 1 and Theorem 2). In [2], they
proved that the number of the potential maximal cliques of a graph is polynomially bounded in the number of its minimal
separators and in the size of the graph, and that the potential maximal cliques of a graph can be listed in polynomial
time in its size and the number of its minimal separators. By combining those results, it can be concluded that, for classes
of graphs with a polynomial number of minimal separators, the treewidth and the minimum fill-in can be computed in
polynomial time by BT scheme. This gives the next corollary.

Corollary 8. Graph parameters of clique type and of fill-in type both can be computed in polynomial time for classes of graphs with a
polynomial number of minimal separators.

6. Applications

We introduce a new graph parameter fill-in distance, and we show that the new graph parameter coincides with the
tree-length.

Definition 2 (Fill-in distance). Fill-in distance of G , denoted by fid(G), is defined as the minimum number k for which there
exists a triangulation H of G such that distG(u, v) � k for every edge {u, v} in H .

Remark 4.

• fid(G) can be formulated as minH∈MT(G) maxe∈FEG (H) distG(e).
• G is a chordal graph iff fid(G) = 1.
• Because of the fact that for any triangulation H of G there is a minimal triangulation H ′ of G with E(H ′) ⊆ E(H),

fill-in distance can be restated as follows: fid(G) is defined as the minimum number k for which there exists a minimal
triangulation H of G such that distG(u, v) � k for every edge {u, v} in H .

Lemma 9. tl(G) = fid(G).

Proof. Let tl(G) � k. Then, there is a tree decomposition T = (T ,χ) such that distG(u, v) � k for any X ∈ χ and for any pair
{u, v} with u, v ∈ X . Consider a graph H constructed from T by completing each X ∈ χ , i.e., by adding an edge between
pair of non-adjacent vertices in X for each X ∈ χ . Then, it is well known that H is a triangulation of G . Since distG(u, v) � k
for every edge {u, v} in H , fid(G) is at most k.

Let fid(G) � k. Then, there exists a triangulation H of G such that distG(u, v) � k for every edge {u, v} in H . It is well
known that every chordal graph H has a tree decomposition T such that the set of bags in T equals the set of maximal
cliques in H (cf. [21]). Clearly, T is also a tree decomposition of G . For any pair u, v in any clique of H , namely, for any
pair u, v in any bag of T , distG(u, v) � k. Hence, tl(G) is at most k.

The graph parameter fill-in distance (i.e. tree-length) can be viewed as “bottleneck version”. In this sense, tree-length-
sum can be considered as “total-sum version”.

Corollary 10. The graph parameters tree-length and tree-length-sum can be computed by the new scheme.

The following are some further examples.

Problem A. Given a graph G , find the minimum integer k such that there exist a minimal triangulation H of G where each
maximal clique C of H contains at most k fill-in edges.

Problem B. Given a graph G and a subset Z of V (G), find the minimum integer k such that there exist a minimal triangu-
lation H of G where each maximal clique C of H contains at most k vertices of Z .

Problem C. Given a graph G and a proper coloring c of V (G), does there exist a supergraph G ′ of G which is properly
colored by c and which is triangulated? This problem has applications in perfect phylogeny [22].

Each problem above can be solved by using the following expressions:
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Problem A. minH∈MT(G) maxM∈MC(H) |{{x, y} /∈ E(G) | x, y ∈ M}|.

Problem B. minH∈MT(G) maxM∈MC(H) |{x | x ∈ M ∩ Z}|.

Problem C. minH∈MT(G) maxM∈MC(H) |{{x, y} /∈ E(G) | c(x) = c(y)}|.
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