
Theoretical Computer Science 313 (2004) 447–462
www.elsevier.com/locate/tcs

Assembling molecules in ATOMIX is hard
Markus Holzera;∗ , Stefan Schwoonb

aInstitut f�ur Informatik, Technische Universit�at M�unchen, Arcisstra�e 21, M�unchen D-80290, Germany
bInstitut f�ur Formele Methoden der Informatik, Universit�at Stuttgart, Universit�at sstr. 38,

70569 Stuttgart, Germany

Received 30 April 2002; received in revised form 16 September 2002; accepted 4 November 2002

Abstract

It is shown that assembling molecules in the ATOMIX game can be used to simulate 0nite
automata. In particular, an instance of ATOMIX is constructed that has a solution if and only if
the non-emptiness intersection problem for 0nite automata is solvable. This shows that the game
under consideration is PSPACE-complete, improving a recent result of H5u6ner et al. (Lecture
Notes in Computer Science, Vol. 2174, Springer, Vienna, Austria, 2001, pp. 229–243). Moreover,
the given reduction shows that there are ATOMIX games which have exponentially long optimal
solutions. We also give an easy construction of ATOMIX game levels whose optimal solutions
meet the worst case.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Finite automata, Intersection emptiness, Block sliding puzzle; PSPACE-completeness

1. Introduction

ATOMIX is a solitaire game invented by G5unter Kr5amer in 1990 and 0rst published
by Thalion Software. The game takes place on a rectangular 0nite two-dimensional
grid, the board. Every cell of the board is either a wall, contains an atom, or is free.
Walls cannot be changed, and atoms can be of di6erent types. A move consists of
pushing an atom along the x-axis or the y-axis. When an atom is pushed, it continues
moving until it reaches a wall or another atom. The game is won when all atoms are
arranged in a given “molecule” goal pattern. An instance of an ATOMIX game assembling
the water molecule is depicted in Fig. 1—walls are represented by black squares,

∗ Corresponding author.
E-mail addresses: holzer@informatik.tu-muenchen.de (M. Holzer), schwoosn@fmi.uni-stuttgart.de

(S. Schwoon).

0304-3975/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2002.11.002

mailto:holzer@informatik.tu-muenchen.de
mailto:schwoosn@fmi.uni-stuttgart.de

448 M. Holzer, S. Schwoon / Theoretical Computer Science 313 (2004) 447–462

H

H

O

H H

O

(a) (b)

Fig. 1. An ATOMIX problem assembling the water molecule, (a) ATOMIX board, (b) molecule.

free space by white squares, and atoms by labelled circles with connections. A non-
optimal sample solution within 16 moves of the ATOMIX puzzle from Fig. 1 is shown
in Fig. 2. We encourage the reader to 0nd the optimal 11 moves solution. Implementa-
tions of certain ATOMIX variations are available on the Internet; e.g., for the X Window
System a version under the terms of the General Public License (GPL) can be down-
loaded from www.informatik.uni-oldenburg.de/∼pearl/gnome/atomix.html. It
is worth mentioning that this program also contains a level editor. A JavaScript version
can be played online at www.sect.mce.hw.ac.uk/∼peteri/atomix/.
Formally the ATOMIX problem is de0ned as follows: given an ATOMIX board and a

molecule, is there a sequence of moves to assemble the atoms on the board to form
the given molecule? Obviously, this problem can be formalised as a state space search
problem, which recently was done by H5u6ner et al. [8]. There, di6erent heuristic search
methods were presented. ATOMIX falls into the category of sliding block puzzles as,
e.g., PushPush [3], Sokoban [2,4], or 15-Puzzle [10], where time and space complexity
was, and still is, subject of intense research. Though seemingly trivial, most variations
are at least NP-hard, and contained in PSPACE; some are even PSPACE-complete—
we refer the reader to, e.g., BalcNazar et al. [1] for further details on computational
complexity. H5u6ner et al. [8] actually have shown that ATOMIX is NP-hard and con-
tained in PSPACE, while the exact complexity was stated as an open problem. In
this paper we solve this open problem and improve their result showing the following
theorem.

Theorem 1. ATOMIX on an n× n board is PSPACE-complete.

To this end we show that ATOMIX game puzzles can simulate deterministic or non-
deterministic 0nite automata. In particular, we construct an ATOMIX instance that is
solvable if and only if the non-emptiness intersection problem for 0nite automata,
a problem known to be PSPACE-complete [6,9], has a solution. Observe that most
importantly the proof of the above given theorem will show that there are ATOMIX
instances which have exponentially long optimal solutions.

mailto:www.informatik.uni-oldenburg.de/~pearl/gnome/atomix.html

M. Holzer, S. Schwoon / Theoretical Computer Science 313 (2004) 447–462 449

H

H

O

(a)

H

H

O

(d)

H

H

O

(e)

H

H

O

(f)

H

H

O

(g)

H H

O

(h)

H H

O

(i)

H

H

O

(b)

H

H

O

(c)

Fig. 2. A sample solution within 16 moves, (a) initial con0g., (b) 1st–3rd move, (c) 4th move, (d) 5th–6th
move, (e) 7th move, (f) 8th–10th move, (g) 11th–15th move, (h) 16th move, (i) solution.

The paper is organised as follows: In Section 2 we introduce the basic building
blocks of our solution. Then in Section 3 we present how ATOMIX puzzles can simu-
late non-deterministic 0nite automata and how synchronisation between 0nite automata
can be achieved. Section 4 shows how to implement an n-bit counter using ATOMIX.
These puzzles have exponentially long optimal solutions. Finally, Section 5 contains
our conclusions and pointers to related papers.

450 M. Holzer, S. Schwoon / Theoretical Computer Science 313 (2004) 447–462

A BH A BH

Fig. 3. One-way device.

HA

B1

B2

HA

B1

B2

Fig. 4. Non-deterministic choice.

2. Basic devices

The construction given in this paper relies on a number of basic devices with special
properties. In the 0gures below, walls are represented by dark squares and free spaces
by white squares. Occasionally, free spaces will be shaded to indicate areas of special
importance. Atoms are represented by labelled circles with certain connections; the
labelling has no special signi0cance.

2.1. One-way device

The 0rst device is the one-way box shown in Fig. 3. Its purpose is to allow the
passage of atoms from the entry A to the exit B but not vice versa. Both of the shaded
areas in the 0gure should be extended until they are large enough to hold all the atoms
in the puzzle.
Any atom can enter the device at A and leave at B. Atoms entering the device at

B will end up in the “blind alley,” the light shaded area. If the blind alley is large
enough, the atoms can never 0ll it up completely, and thus no atom is able to go back
to A. Similarly, when atoms move back from the alley, they must not be able to 0ll up
the dark shaded area. Note, that in our constructions later on it will often be enough
to use a blind alley of size one or two.

2.2. Choice and merge

The second device is the choice device whose inner part is depicted in Fig. 4. An
atom can enter at A and exit at either B1 or B2; additional one-way devices at each
gate ensure entry only at A and exit only at B1 or B2. Multiple devices of this type

M. Holzer, S. Schwoon / Theoretical Computer Science 313 (2004) 447–462 451

HA1

A2

A1

A2

B

H

B

Fig. 5. Merge device.

can be used in sequence to allow a set of choices S; we call such a construction a
choice device over S.
The merge device in Fig. 5 implements the reverse; atoms can enter at either A1 or

A2 and exit at B; again we assume appropriate one-way devices at the entries and the
exits. The merge device can be extended to accommodate more than two entries.

2.3. Catalyst chamber

The fourth device is slightly more complicated. Consider the catalyst chamber shown
in Fig. 6(a). Again, there are one-way devices at the entries and exits to ensure that
entry is only possible at A, and that exit is only possible at B1 and B2. The device has
the following properties: 1

(1) If one atom enters the catalyst chamber alone, it can never exit,
(2) if two atoms enter the catalyst chamber, both of them can leave the chamber

through di6erent exits, and
(3) if two atoms enter the catalyst chamber, they cannot leave through the same exit.
Property 1 is easy to verify; once an atom enters the chamber alone, it can only

move from corner to corner but never enter the exit corridors. Property 2 is shown by
the example sequence shown in Fig. 6, parts (b)–(d). Observe, that the device does not
guarantee that a particular atom leaves through a particular exit. However, this is not
important for our constructions. We prove Property 3 by showing that the following
property is an invariant, provided that there are only two atoms in the chamber, both
of which enter at A:
(3′) The shaded areas in Figs. 6(e) and (f) never hold two atoms simultaneously.
Property 3 then immediately follows from 3′. The Property 3′ holds when the atoms

0rst enter the chamber. Moreover, from any situation in which both atoms are outside
a shaded area, we can bring at most one of them into the area with one move. Assume
therefore that there is already one atom inside one of the shaded areas, and the other
outside of it. However, there is no such con0guration that would allow the outside
atom to be moved into the area; the reader can easily verify this by trying all the
possibilities.

1 We have constructed a 0nite automaton simulating the behaviour of the catalyst chamber. This has
resulted in a machine with 324 states (177 of them were reachable) and 1570 transitions. Finally, we have
veri0ed the stated properties using the symbolic computation environment Grail+ [11]. After some inspection
of the 0nite state automaton we have found a simple proof for Property 3, which is given below.

452 M. Holzer, S. Schwoon / Theoretical Computer Science 313 (2004) 447–462

A

B1

B2

H OA

B1

B2

H OA

B1

B2

HOA

B1

B2

A

B1

B2

A

B1

B2

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Catalyst chamber, (a) catalyst chamber, (b) Property 2: 1st and 2nd move, (c) Property 2: 3rd–6th
move, (d) Property 2: 7th–9th move, (e) Property 3′: 1st region, (f) Property 3′: 2nd region.

2.4. Wires and planar crossings

To connect the devices presented previously, we also need to provide “wires” and
a way to cross wires in two dimensions. Fortunately, both are trivial to implement; a
wire is constructed by a line of free spaces Panked by walls on both sides; bent wires
are also possible. Crossing wires is equally simple. Both devices are shown in Fig. 7.
The property of the wire is simply that an atom can pass from A to B and vice

versa. The property of the crossing is that if an atom enters at A1 it can only exit
at B1 and that entry at A2 forces exit at B2 and vice versa. In our constructions later
on this property will be ensured by the fact that both the horizontal and the vertical
wire can never hold more than one atom at any given time. Therefore no “arm” of the
device can be 0lled up and allow illegal passages. Another (simple) way of preventing
0lling the wires is making them long enough.

M. Holzer, S. Schwoon / Theoretical Computer Science 313 (2004) 447–462 453

(a) (b)

HA B

O

HA1 B1

A2

B2

Fig. 7. Two simple devices, (a) wire, (b) crossing.

3. ATOMIX is PSPACE-complete

In this section we show that ATOMIX on an n× n board is PSPACE-complete.
Obviously, the problem is contained in PSPACE. For the convenience of the reader we
recall the simple argument given by H5u6ner et al. [8]. Given an instance of ATOMIX a
non-deterministic Turing machine can solve it by repeatedly applying a legal move until
a goal is reached. The number of possible ATOMIX board con0gurations is limited by
n2!; hence the machine can announce that the game is unsolvable after having applied
more moves without 0nding a solution. Since an encoding of an ATOMIX con0guration
needs polynomial space, it follows that ATOMIX is in NPSPACE=PSPACE.
For the hardness we argue as follows. First we show how an ATOMIX puzzle can

simulate the behaviour of a 0nite automaton. The puzzle is constructed in such a way
that the puzzle has a solution exactly if the language of the automaton is not empty.
In the second part of the proof we extend the construction such that synchronisation
on an input symbol can be simulated. Given a sequence of 0nite automata, we can
then create a puzzle that has a solution exactly if there is a word which is accepted by
all automata. The constructed puzzle is polynomial in the size of the automata. Since
by Galil [6] and Kozen [9] it is PSPACE-complete to check if the intersection of an
arbitrary number of regular languages, given by deterministic or nondeterministic 0nite
automata, is non-empty, this proves PSPACE-hardness of the solvability question for
ATOMIX puzzles.
To simplify the presentation we use diagrams for the basic devices presented in

Section 2. The diagrams are shown in Fig. 8. Throughout the diagrams, we use simple
lines for wires.
Fig. 8(a) represents a choice device with one entry and one exit for each element

of the set S; Fig. 8(b) is a generalised form where |R| multi-choice devices over
S are placed in parallel such that an atom entering at a gate labelled r ∈ R can
exit at some gate labelled (r; s)∈R× S. Figs. 8(c) and (d) are the analogous merge
devices; Fig. 8(c) has one entry for each element of the set S, and Fig. 8(d) has one
entry for each tuple in R× S and one exit for each element of R. An atom entering

454 M. Holzer, S. Schwoon / Theoretical Computer Science 313 (2004) 447–462

S

(a)

R S

(c)

R

(d)

S

S

S

S

(e)

S

R

S

R

(g)

S
s

(h)

S

(i)

R × S

R × S

(b)

SS

S

(f)

S'

Fig. 8. Basic diagrams: (a) choice device, (b) generalised choice, (c) merge device, (d) generalised merge,
(e) synchronisation box, (f) 0lter, (g) crossing box, (h) initialisation box, and (i) reaction chamber.

Fig. 8(d) at the gate (r; s) exits at the gate labelled r. The synchronisation box in
Fig. 8(e) essentially consists of |S| catalyst chambers, one for each element of S; there
are two sets of entries (left and upper side) and two sets of exits (right and lower side)
for all elements of S. The entries and exits for s ∈ S connect to the catalyst chamber
for s. Two atoms entering the box on the left and at the top can leave the box only if
they enter at the same element of S. Fig. 8(f) has the function of a =lter. Entries are
labelled with elements of the set S; for convenience, we provide two entries for each
element at the top and left of the box. Exits (on the right) are also labelled with S,
except for a special exit at the bottom. An atom entering the box at either entry s ∈ S ′,
where S ′ is some subset of S, can choose to leave at the exit s or at the special exit.
An atom entering at s ∈ S\S ′ can only leave at the normal exit s. Such a 0lter can
easily be built with the standard devices presented before; we omit the details. The
crossing box is shown in Fig. 8(g) and it allows atoms to pass through without any
interaction, i.e., an atom entering at s∈ S (r ∈ R, respectively) leaves the gate at exit s
(r, respectively). Next, Fig. 8(h) shows the initialisation box. It contains one oxygen
atom as shown in Fig. 9(a) and one exit for each element of the set S; the atom can
leave the box only at the exit labelled s, for some s ∈ S. If S is a singleton set, the
box simply designates the position of one atom in the initial con0guration. Finally,
Fig. 8(i) depicts the reaction chamber. It contains two hydrogen atoms as shown in

M. Holzer, S. Schwoon / Theoretical Computer Science 313 (2004) 447–462 455

O H H H O H H O O H

(a) (b) (c) (d)

Fig. 9. Atoms and molecules, (a) oxygen, (b) hydrogen, (c) water, (d) H2On molecule.

F

δ
Q

q0

Q
Q X Σ

Fig. 10. Symbolic diagram of an automaton.

Fig. 9(b) and entries for each element of the set S; atoms in the box cannot leave
since the entries are protected by appropriate one-way devices and are used to form
the molecule goal pattern. Hence, atoms are forced to enter the reaction chamber in
order to assemble the goal molecule.

3.1. Simulating a =nite automaton

Fix a 0nite automaton A = (Q;�; ; q0; F) for the rest of the section where Q is a
set of states, � the input alphabet, : Q×� → 2Q the (non-deterministic) transition
function, q0 the initial state, and F the set of 0nal states. We shall construct an ATOMIX
puzzle that has a solution exactly if the language of A is non-empty, i.e., L(A) �= ∅.
Almost all of the “computation” will be carried out by a single atom. The puzzle can
be solved if the atom can enter the reaction chamber in which it can combine with
other atoms to form the goal molecule; this is the water molecule shown in Fig. 9(c).
The main part of the construction consists of the simulation of , i.e., a device that,

given a tuple (q; a) ∈ Q×�, yields a successor state q′ ∈ (q; a); see Fig. 10. In
ATOMIX terms, an atom can enter at a gate labelled by (q; a) and exit at a gate labelled
by q′. Each entry gate in the device is connected to a choice device over (q; a). All
exits from the choice devices that belong to the same successor state are then merged
at the respective exit. In the following we shall represent such a transition device by
a box labelled .
The complete puzzle for the automaton is symbolically shown in Fig. 10. The dashed

box has |Q| entries on the left indicating the state of the automaton before reading an
input symbol. An atom traversing the box 0rst selects an input symbol, then simulates
the transition function to 0nd the successor state. Each pass of the atom through the box
simulates the processing of one input symbol chosen arbitrarily by the atom. Moreover,
if the atom is in an entry belonging to a 0nal state, the 0lter enables it to stop reading
input and enter the reaction chamber. The puzzle is completed by connecting each exit

456 M. Holzer, S. Schwoon / Theoretical Computer Science 313 (2004) 447–462

Σ

Σ

�Q Q

Q × Σ

Fig. 11. Interaction between synchronisation process and automaton.

of the box to the corresponding entry of the 0lter and placing an atom at the entry
belonging to the initial state. The puzzle can be solved if the atom is able to reach the
reaction chamber, i.e., if there is a word accepted by the automaton.

3.2. Simulating an arbitrary number of =nite automata

Now that we know how to simulate one deterministic or non-deterministic 0nite
automaton we can solve the main problem. Given a sequence A1; : : : ; An of 0nite au-
tomata, with Ai = (Qi; �; i; qi; Fi), all using a common alphabet �, the non-emptiness
intersection problem consists of checking whether the intersection of the languages of
all n automata is non-empty, i.e.,

⋂n
i=1 L(Ai) �= ∅. The basic idea of the construction

is to create puzzles for each automaton 0rst, and to connect them all to a common
reaction chamber such that the puzzle can be solved if each computation atom can
enter the chamber. However, we are only interested in solutions where all automata
accept the same input, therefore additional machinery is needed.
We create a so-called synchronisation process inhabited by a single atom, the syn-

chronisation atom. In each step of the computation, this atom either chooses to termi-
nate or selects the next input symbol to be processed. It then interacts with the puzzles
created from the automata and makes sure that all of them have made the same choice,
otherwise the puzzle will be left in an unsolvable state. The interaction of the syn-
chronisation process with a single automaton takes place in two phases and is shown
in Fig. 11. The dashed box shows the processing of a single input symbol; again, the
box has |Q| entries (left) and exits (right) to indicate the state the automaton is in.
The other control structures of the automaton have been omitted for clarity.
In the 0rst phase, the synchronisation atom enters at one of the |�| entry gates at the

top left and leaves through the corresponding gate on the bottom left. The computation
atom of the automaton 0rst chooses an input symbol, trying to “guess” the same symbol
as the synchronisation atom, whereas the synchronisation atom guesses the state that
the computation atom is in. If both guesses are right, then both atoms can pass through

M. Holzer, S. Schwoon / Theoretical Computer Science 313 (2004) 447–462 457

the synchronisation box in the left of the 0gure. The computation atom can then pass
through the transition function while the synchronisation atom goes on to perform the
0rst phase with other automata. The second phase takes place after the synchronisation
process has interacted with all automata and made sure that all of them selected the
same input symbol. The synchronisation atom now starts a second pass through all
automata, entering Fig. 11 on the bottom right and guessing the successor state of
the automaton. If the choice was right, it passes through the synchronisation box on
the right, leaving at the gate in the top right of the 0gure. This step makes sure that the
computation atom of the automaton really simulates the transition function; without this
step the computation atom would be allowed not to leave the 0rst synchronisation box
and wait for the synchronisation atom to come back in the next round, thus skipping
one input symbol.
An overview of the synchronisation process is given in Fig. 12. Every traversal of the

synchronisation process corresponds to reading one input symbol. The synchronisation
atom starts at the top of the 0gure, selects an input symbol, then interacts with the
automata in two passes and returns to the beginning. In each step, the synchronisation
atom is also allowed to enter the reaction chamber instead of “reading” a symbol.
Similarly, the atoms within the automata are allowed to enter the chamber if they
are in a 0nal state before reading a symbol. All entries to the reaction chamber are
protected by one-way devices. Therefore, the (arti0cial) goal molecule 2 H2On+1, which
is of a very simple structure and shown in Fig. 9(d), can be assembled if and only
if all automata reach a 0nal state at the same time. More precisely, this happens after
all automata have processed the same input, which accomplishes the reduction to the
non-emptiness intersection problem.
Note that the construction relies on atoms making the right “guesses” during the

synchronisation process. If any of these guesses is wrong, the puzzle will be left in an
irrecoverable state. Similarly, all atoms have to terminate the computation at the same
time. However, we can ignore wrong guesses since we are only interested in the mere
existence of a solution.

4. On exponentially long optimal solutions

From the proof of the main result in the previous section we conclude that there
exist ATOMIX game instances which have superpolynomially, or to be more precise,
exponentially long optimal solutions. Although most constructions we used are much
like those in the popular game, it is a tedious exercise to construct a particular ATOMIX
instance with this property based on the construction of the previous section. In this
section, we give an easier construction for puzzles with exponentially long optimal
solutions. To this end we realize a pseudo n-bit counter in ATOMIX.
The main part of the construction consists of the simulation of a single bit, i.e.,

a device that stores a bit, changes it, and produces a carry bit if triggered by an

2 Instead of using hydrogen and oxygen one might use any other atoms as, e.g., uranium, which might
be dangerous in case it exceeds the critical mass. Do not try this at home.

458 M. Holzer, S. Schwoon / Theoretical Computer Science 313 (2004) 447–462

Q1

q1

F1

Qn

qn

Fn

Automaton A1 = (Q1,Σ,�1,q1,F1)

Automaton An = (Qn,Σ,�n,qn,Fn)

Σ

Fig. 12. Overview of synchronisation process.

increment event. Before we describe the bit device in more detail, we must give some
further details on the counting process. In order to obtain an easy device, i.e., with
a small number of basic gates, we implement a pseudo-counting process. This means
that the stored 0 bit can, but need not, be changed to 1 and produces no-carry by an
increment event, while a 1 bit must be changed to 0 and produces a carry bit. This
slight di6erence to ordinary counting will allow us to save some gates. The complete
puzzle for the bit device is symbolically shown in Fig. 13. In ATOMIX terms, a single
atom trapped in one of two catalyst chambers can store binary information; we call this
atom the storage atom. Another atom, the increment atom, can enter at gate labelled
by incr and exit at a gate labelled carry or no-carry depending on the element the
device has stored. Moreover, there is also the possibility that the storage atom may
leave the device at exit labelled clear and enter the reaction chamber.

M. Holzer, S. Schwoon / Theoretical Computer Science 313 (2004) 447–462 459

0

1

clear

incrcarry

no-carry

Fig. 13. Symbolic diagram of a bit device.

Bit n–1 Bit 0

0

Fig. 14. Overview of a pseudo-n-bit counter.

The bit device is initialised by moving the storage atom to the catalyst chamber
labelled 0. An increment atom enters at entry incr at the right and 0rst chooses a bit,
trying to “guess” the bit stored by the storage atom in the device. If the guess is right,
then both atoms can pass through the appropriate catalyst chamber. In case both atoms
have met in catalyst chamber labelled 0 one atom may leave through the gate labelled
no-carry on top. To ensure that both atoms leave the catalyst chamber labelled 1 an
“after-burn” catalyst chamber is needed. Then one atom can leave through the carry
gate on the left while the other one can choose between catalyst chamber labelled 0
or the clear gate on the bottom. Observe that the missing after-burn catalyst chamber
for the sub-device labelled 0 is the reason that the constructed device implements a
pseudo-bit counter.
An overview of the pseudo n-bit counter is given in Fig. 14. The increment atom

starts at the right of the 0gure triggering an increment operation on the n-bit number.
The atom traverses the bit devices in sequence until it exits at a gate labelled no-carry,
and returns to the beginning. Each storage atom is only allowed to enter the reaction

460 M. Holzer, S. Schwoon / Theoretical Computer Science 313 (2004) 447–462

CH H

H

H

C

H

H

(c) CnH2n+2 alkane.

CH H

H

H

CH H

H

H

C

H

H

(a) Methane. (b) Ethane.

Fig. 15. More natural molecules.

chamber via the clear gate; this is only allowed if the bit value Pips from 1 to 0. The
only way the increment atom may reach the reaction chamber is through the carry gate
from the (n − 1)th bit position (highest bit). All entries to the reaction chamber are
protected by one-way devices. Therefore, the arti0cial goal molecule H2On+1 shown
in Fig. 9(d), can be assembled if and only if one counts from 0 up to 2n. Thus, the
optimal solution to the puzzle is of exponential length.

5. Conclusion

In this paper we have shown that the ATOMIX game is PSPACE-complete by reduc-
ing the non-emptiness intersection problem for deterministic or non-deterministic 0nite
automata to the problem under consideration. This solves an open problem stated by
H5u6ner et al. [8], and the reduction proves that there exist ATOMIX game instances
which have exponentially long optimal solutions. Moreover, we have also presented an
easy construction to design quite complicated ATOMIX game levels.
It is worth to mention, that from the proof of the main result on the PSPACE-

completeness one concludes that the atom type as well as the form of the goal molecule
is not important for the construction. Hence, the computational complexity of ATOMIX
stems from the labyrinth structure. Nevertheless, a point of critics on our result may
be the usage of the arti0cial goal molecules H2On. It is obvious, to alter the given
construction, that it works for more natural goal molecules as, e.g., the alkanes. The
alkanes—paraTns—are the simplest homologous series of organic compounds of hy-
drogen and carbon, where all atoms are linked by single bonds. The alkane with the
simplest structure is methane, CH4. It consists of a central carbon atom, surrounded
by four hydrogen atoms and is shown in Fig. 15(a).
Each succeeding member of the alkane series has a further methylene group, –CH2–,

in the chain; ethane follows methane and is depicted in Fig. 15(b). More generally,
the formula for the alkane series of hydrocarbons is CnH2n+2 and the corresponding
molecule is depicted in Fig. 15(c).
Finally, in Table 1 we summarise some complexity results on block sliding puz-

zles, into which ATOMIX falls. As already mentioned in the introduction most of these

M. Holzer, S. Schwoon / Theoretical Computer Science 313 (2004) 447–462 461

Table 1
Computational complexity of some block sliding puzzles summarised

Game 1. 2. 3. 4. 5. 6. 7. 8. 9.
Robot Pull Blocks Fix. No. Path Slide Dim. Complexity

PushPush3D + − Unit − 1 + + 3D NP-hard [12]
PushPush + − Unit − 1 + + 2D NP-hard [3]
Push-* + − Unit − k − − 2D NP-hard [7]
Sokoban+ + − 1× 2 + 2 − − 2D PSPACE-compl. [4]
Sokoban + − Unit + 1 − − 2D PSPACE-compl. [2]
15-Puzzle − Unit − 1 − − 2D NP-hard [10]
ATOMIX − Unit + 1 − + 2D PSPACE-compl.
RushHour − 1×{2; 3} − 1 + − 2D PSPACE-compl. [5]

problems are NP-hard and contained in PSPACE; some of them are even PSPACE-
complete. The following table is taken from Demaine et al. [3], extended by the cat-
egory of games where blocks are pushed by an external agent not presented on the
board. The columns mean:
(1) Are the moves done by a robot on the board, or by an outside agent?
(2) Can the robot pull as well as push?
(3) Are all blocks unit squares, or may they have di6erent shapes?
(4) Are there 0xed blocks, or are all blocks movable?
(5) How many blocks can by pushed at a time?
(6) Does it suTce to move the robot/a special block from s to t, instead of pushing

all blocks into storage location?
(7) Will the blocks “keep sliding” when pushed till they hit an obstacle?
(8) The dimension of the puzzle: is it 2D or 3D?
(9) Computational complexity: hardness or completeness?

Acknowledgements

Thanks to Peter Rossmanith and Falk H5u6ner for fruitful discussions and to the
anonymous referees for their valuable comments on the subject.

References

[1] J.L. BalcNazar, J. DNWaz, J. GabarrNo, Structural Complexity I, in: EATCS Monographs on Theoretical
Computer Science, Vol. 11, Springer, Berlin, 1988.

[2] J. Culberson, Sokoban is PSPACE-complete, in: Internat. Conf. on Fun with Algorithms, Proc. in
Informatics 4, Carleton Scienti0c, Waterloo, Canada, Elba, Italy, 1999, pp. 65–76.

[3] E.D. Demaine, M.L. Demaine, J. O’Rourke, PushPush and Push-1 are NP-hard in 2D, in: Proc. 12th
Annual Canadian Conf. on Computational Geometry, Fredericton, New Brunswick, Canada, 2000,
pp. 17–20.

[4] D. Dor, U. Zwick, Sokoban and other motion planning problems, Comput. Geom. Theory Appl. 13 (4)
(1999) 215–228.

462 M. Holzer, S. Schwoon / Theoretical Computer Science 313 (2004) 447–462

[5] G.W. Flake, E.B. Baum, RushHour is PSPACE-complete, or Why you should generously tip parking
lot attendants, Theoret. Comput. Sci. 270 (1–2) (2002) 895–911.

[6] Z. Galil, Hierarchies of complete problems, Acta Inform. 6 (1976) 77–88.
[7] M. Ho6mann, Motion planning amidst movable square blocks: Push-* is NP-hard, in: Proc. 12th Ann.

Canadian Conf. on Computational Geometry, Fredericton, New Brunswick, Canada, 2000, pp. 205–209.
[8] F. H5u6ner, S. Edelkamp, H. Fernau, R. Niedermeier, Finding optimal solutions to Atomix, in: Proc.

Joint German/Austrian Conf. on AI: Advances in Arti0cial Intelligence, Lecture Notes in Computer
Science, Vol. 2174, Springer, Vienna, Austria, 2001, pp. 229–243.

[9] D. Kozen, Lower bounds for natural proof systems, in: Proc. 18th Annual Symp. on Foundations of
Computer Science, 1977, pp. 254–266.

[10] D. Ratner, M.K. Warmuth, The (n2 − 1)-puzzle and related relocation problems, J. Symbolic Comput.
10 (2) (1990) 111–137.

[11] D. Raymond, D. Wood, Grail: A C++ library for automata and expressions, J. Symbolic Comput. 11
(1995) 1–10.

[12] J. O’Rourke, the Smith Problem Solving Group, PushPush is NP-hard in 3D, Technical Report 064,
Smith College, Northampton, MA, November 1999.

	Assembling molecules in ATOMIX is hard
	Introduction
	Basic devices
	One-way device
	Choice and merge
	Catalyst chamber
	Wires and planar crossings

	ATOMIX is PSPACE-complete
	Simulating a finite automaton
	Simulating an arbitrary number of finite automata

	On exponentially long optimal solutions
	Conclusion
	Acknowledgements
	References

