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In TSP with profits we have to find an optimal tour and a set of customers satisfying
a specific constraint. In this paper we analyze three different variants of TSP with profits
that are NP-hard in general. We study their computational complexity on special structures
of the underlying graph, both in the case with and without service times to the customers.
We present polynomial algorithms for the polynomially solvable cases and fully polynomial
time approximation schemes (FPTAS) for some NP-hard cases.
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1. Introduction

A huge number of papers has studied the well known Traveling Salesman Problem (TSP). In the TSP all customers are to
be visited. There exist, however, several practical situations where customers have to be selected among a set of potential
customers on the basis of their profits. The goal is to find an appropriate trade-off between the total collected profit and
the cost of the tour. A survey by Feillet et al. [13] defines these problems as the Traveling Salesman Problems with profits. The
objective function may be the difference between the total profit collected and the cost of the tour (Profitable Tour Problem
or PTP), the maximization of the total collected profit (Orienteering Problem or OP), the minimization of the cost of the
tour (Prize-Collecting TSP or PCTSP). These problems are all NP-hard in general. To further enlighten the computational
complexity of these problems, we investigate their complexity on some classes of instances, characterized by

• customers located on a path exiting from the depot;
• customers located on a cycle;
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• customers located on a star rooted at the depot;
• customers located on a tree rooted at the depot.

These classes of instances correspond to special structures of the underlying graph, namely a path, a cycle, a star, a tree.
We study the computational complexity of the problems on these classes of instances, both in the case a service time is

associated with each customer and in the case without service times. We present polynomial algorithms for the polynomi-
ally solvable cases and fully polynomial time approximation schemes for the NP-hard cases. We also present a reduction to
eliminate service times in general networks.

In the rest of the introduction we define the problems we study, present earlier results and summarize the results of
this paper.

In Section 2 we prove that the TSP with profits we study are intractable already on some rather restricted classes of
instances. These results justify the interest in some even more restricted network topologies. Moreover, at the end of this
section, we present a reduction lemma which transforms a problem instance with service times to one without. In Section 3
we prove solvability in linear time of four cases from which we derive the linear time solvability of a number of special
cases. Fully polynomial time approximation schemes are presented in Section 4 for OP and PCTSP on tree networks that can
be directly applied to star and path networks and easily adapted to cycle networks.

1.1. Problem definitions

We assume that a road network is represented by a connected weighted graph G = (V , E) where the vertices V = {i |
i = 0, . . . ,n} represent road intersections and locations of relevant points like the depot and the customers. We assume
throughout that the depot is indexed by 0 and other vertices are indexed from 1 to n. The edges represent physical con-
nections between pairs of vertices (i, j) and their weights ti, j represent the traveling time from vertex i to vertex j. In
general, visiting a customer i requires a service time si � 0 and offers a profit pi � 0; nevertheless, a customer vertex in the
network can be traversed without visiting it. This means that no service time is spent and no profit is collected. For sake
of uniformity we consider road intersection vertices as customers with no profit and zero service time. In this paper we
assume all parameters ti, j , si and pi to be integers.

The problem can be formulated in different versions. In all cases a subset of customers S ⊆ {1, . . . ,n} has to be selected in
order to optimize different objective functions and satisfy different constraints involving both the total profit P S = ∑

i∈S pi
and the smallest possible time, denoted by TSPS , of visiting all the customers in S , which is calculated from the minimum
time length of a tour starting from (and returning to) the depot plus the total service time ST S = ∑

i∈S si .
We recall the different variants of the problem as reported in the literature (see, for instance, Feillet et al. [13]).

Profitable Tour Problem – PTP

max(P S − TSPS)

Orienteering Problem – OP

max(P S)

such that

TSPS � Tmax

where Tmax is given.

Prize Collecting TSP – PCTSP

min(TSPS)

such that

P S � Pmin

where Pmin is given.

It is worth noticing that there is not a general agreement in the literature about problem naming and formulation.
Namely, what is called Profitable Tour Problem (PTP) by Feillet et al. [13] is called Prize-Collecting problem by authors
like Bienstock et al. [7]. Moreover, PTP is sometimes formulated as a minimization problem: min(TSPS + P S) trying to find
a tour that minimizes the cost and the profit missed for not visiting vertices in S . As pointed out in Johnson et al. [18],
the two formulations are equivalent as optimization problems (complementing each other), but they are not when approx-
imation algorithms are concerned. From now on, in this paper, we follow the terminology proposed above and refer to the
minimization formulation of PTP as PTPmin.
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1.2. Earlier results for connected networks

Note that given any connected network represented by a graph G ′ = (V ′, E ′) an equivalent complete graph G = (V , E)

can be derived.
All problems are obviously NP-hard (see Feillet et al. [13]). Some results are known that concern the possibility to find

approximation algorithms with guaranteed performance.
Bienstock et al. [7] propose a polynomial-time approximation algorithm having a 2.5 performance guarantee for the

PTPmin. Goemans and Williamson [17] improve the above performance guarantee and obtain a (2−1/(n−1))-approximation
algorithm with a purely combinatorial approach.

Arkin et al. [2] give a 2-approximation for the rooted OP for the special case of points that have all the same prize and are
distributed in the Euclidean plane. They find 2 and 3-approximation algorithms when the required output is a path or a tree,
respectively. Bansal et al. [6] obtain a 3-approximation for a more constrained version of OP called “point-to-point OP”, in
which the starting location s as well as the ending location t are fixed. The OP cannot be approximated in polynomial time
to a factor better than 1481/1480, unless P = NP (Blum et al. [8]). Recently, Chekuri et al. [11] studied the point-to-point
OP on directed and undirected graph with time windows. The goal is still to find a walk in the graph which maximizes the
number of visited vertices and satisfying a budget constraint. They propose a (2 + ε)-approximate algorithm that improves
on existing literature.

Awerbuch et al. [5] derive an approximation algorithm for the PCTSP from an approximation algorithm for the
k-minimum-spanning-tree problem (k-MST problem). Their approximation algorithm achieves a factor O (log2(min(n, Pmin)))

for the PCTSP. Several other papers have found approximation results for the k-MST problem, and consequently for the PCTSP
(see Blum et al. [9], Arora and Karakostas [4], Arora [3], Garg [15]). It seems the best known result is a 2-approximation
due to Garg [16]. Most of these results are based on a classic primal–dual algorithm for PCTSP due to Goemans and
Williamson [17].

In literature, there is also a stream of research focusing on the Prize-Collecting Steiner Tree Problem (PCSTP). A Steiner
tree on a graph G = (V , E) is a tree spanning a fixed subset S of the vertices V . This kind of problems arises in fields where
the aim is to create a network connecting relevant points rather than creating routes servicing a set of points from a depot.
When the vertices in S produce profits, but all of them cannot be feasibly or optimally connected due to budget constraints
or cost penalties, the Steiner tree problem gives rise to variants strongly connected to the problems we are dealing with in
this paper. Indeed, for particular graph structures like paths, stars and trees, a tour is obtained by doubling a sub-tree of the
original graph. Even in the case of a circle, besides the possibly feasible tour visiting all vertices clockwise, other tours are
obtained by doubling a tree with at most two main branches. In order to use a Steiner tree problem algorithm to solve the
tour problem on a tree we should halve the traveling times across the edges in the original graph because to have a tour
each edge has to be traversed twice. We briefly report some recent references to the literature on Steiner tree problems.
Klau et al. [20] study a problem where an optimal sub-tree is required on a tree of n vertices and, quite originally, the
objective function is computed as the ratio between profits and edge costs. For this problem they propose an O (n log n)-time
algorithm. On their way, they also propose a linear time algorithm to solve PTP on trees without service time. Feofiloff et
al. [14] slightly improve on the (2 − 1/(n − 1))-approximation in [17] by a (2 − 2/n)-approximation algorithm running in
O (n2 log n) time. Chekuri et al. [10] propose a PTAS for the PTPmin in planar graphs, hence working on trees as well. Archer
et al. [1] solve the unrooted PTPmin providing (2 −ε)-approximation algorithms when a tree/cycle/path subgraph is required
in output. A survey can be found in Costa et al. [12]. However we stress the fact that all these results are obtained for
general input graphs, in our work we address problems where the input graph structure is a path/star/tree/cycle and the
required output is a tour.

1.3. Our results

The contribution of this paper is the classification of PTP, OP and PCTSP according to their computational complexity in a
2-dimensional operational settings. The first dimension accounts for the topology of simple networks like stars, cycles, paths
and trees. The second dimension considers the presence of service times versus the alternative scenario where all service
times are zero.

It will turn out that PTP is solvable in linear time on all considered topologies and service settings. On the other side,
OP and PCTSP are both linearly solvable on linear topologies (paths and cycles) without service times, but become NP-hard
as the topology moves to the simplest tree (a star) or service times are introduced.

We propose a set of pseudo-polynomial algorithms for OP with service times whose complexity change according to the
network topology. Namely, given P as the sum of all profits, we can solve OP in O (nTmax) or O (nP ) time on path networks,
O (n2Tmax) or O (n2 P ) time on cycle networks and O (nT 2

max) or O (nP 2) time on tree networks.
The algorithms will be formulated after a transformation of trees into trees without service times, paths into special

trees without service times, and cycles into a set of problems on paths.
Eventually, we propose an FPTAS that approximates within (1−ε) instances with service times on trees, cycles and paths

in O (n5/ε2), O (n4/ε) and O (n3/ε) time, respectively. An FPTAS on cycles is discussed as corollary of Theorem 12.
Obviously, all pseudo-polynomial algorithms and FPTAS can be applied to problems without service times.
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Table 1
Problem complexity, where P = ∑

pi , T = ∑
ti, j .

PTP OP PCTSP

No_ST With_ST No_ST With_ST No_ST With_ST

Cycle complexity [NP-hard] [NP-hard]
time [O (n)] O (n) O (n) O (n2 Tmax), O (n2 P ) O (n) O (n2 Pmin), O (n2 T )

Path complexity NP-hard NP-hard
time [O (n)] [O (n)] [O (n)] O (nTmax), O (nP ) [O (n)] O (nPmin), O (nT )

Star complexity NP-hard [NP-hard] NP-hard [NP-hard]
time [O (n)] [O (n)]

Tree complexity [NP-hard] [NP-hard] [NP-hard] [NP-hard]
time [O (n)] O (n) O (nT 2

max), O (nP 2) O (nP 2
min), O (nT 2)

Table 2
FPTAS complexity, where P = ∑

pi , T = ∑
ti, j .

FPTAS

OP (1 − ε)-approx PCTSP (1 + ε)-approx

Path with service times O ( n3

ε ) O (n2(ln T )/ε)

Cycles with service times O ( n4

ε ) O (n3(ln T )/ε)

Tree with service times O ( n5

ε2 ) O (n3(ln T )2/ε2)

Problem PCTSP shares the same type of complexity with OP. In particular, given T as the sum of all edge traversing
times, we show that the problem can be solved in O (nPmin) or O (nT ) time on paths, in O (n2 Pmin) or O (n2T ) time on
cycles and in O (nP 2

min) or O (nT 2) time on trees. Furthermore an FPTAS is proposed for PCTSP so that tree, cycle and path
instances can be approximated within (1 + ε) in O (n3(ln T )2/ε2), O (n3(ln T )/ε) and O (n2(ln T )/ε) time, respectively.

The results are summarized in Tables 1 and 2. We present the approximation ratio α as a constant such that H � α · OPT
for minimization problems, and H � α · OPT for maximization problems, where H and OPT are the heuristic and optimal
value, respectively. Please note that we get α � 1 for minimization problems and α � 1 for maximization problems. Our
notation for the maximization problems differs from the one used in the above cited literature. The cited approximation
ratios have to be interpreted in our notation as 1/α.

In Table 1 we report the complexity of the problems for different networks and service time settings. Results not em-
braced in brackets are directly proved in the paper with the exception of case of PTP on trees that has been solved by [20] in
the more general framework of Steiner trees. Those between brackets are derived from results proven either by restrictions
(in case of polynomial complexity) or generalizations (in case of NP-hardness). Inheritance flow for algorithm complexity is:
Tree → Path, Tree → Star, Cycle → Path, With_ST → No_ST. Inheritance flow for NP-hardness is the reverse.

In Table 2 the complexity of approximation algorithms proposed in the paper for the NP-hard cases is summarized.

2. NP-hardness and service time reduction

In this section we prove that the three problems defined above, PTP, OP, and PCTSP, are intractable already for some
rather restricted classes of instances. These results justify why some even more restricted network topologies should be
studied in detail, as it will be done in later sections. From another point of view, at the end of this section we present a
reduction lemma which transforms a problem instance with service times to one without, with a very little change in the
structure of network.

It will turn out that OP and PCTSP represent similar complexity level, but different from PTP. Therefore here we deal with
the former two, and prove that they are intractable already on rather restricted instances. In the NP-hardness reductions we
shall apply the following two basic optimization problems.

Max Knapsack

Input: A set S of n items where each item i has value vi and weight wi , i = 1, . . . ,n, and an integer B .
Output: A subset S ′ ⊆ S such that

∑
i∈S ′ wi � B and such that

∑
i∈S ′ vi is maximized.

Min Knapsack

Input: A set S of n items where each item i has value vi and weight wi , i = 1, . . . ,n, and an integer B .
Output: A subset S ′ ⊆ S such that

∑
i∈S ′ wi � B and such that

∑
i∈S ′ vi is minimized.

Both of these problems are well known to be NP-hard [19].
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2.1. Tree networks without service times

Here we show NP-hardness of OP and PCTSP on trees. In fact, the following even more restricted result is valid.

Theorem 1. OP and PCTSP are NP-hard even on stars without service times.

Proof. For OP we construct a polynomial reduction from the decision version associated to Max Knapsack problem. Given
an input I of Max Knapsack with n items where each item i has value vi and weight wi , i = 1, . . . ,n and two integers b
and k, we construct an instance I ′ of OP as follows: we consider a star with the center 0 and leaves 1, . . . ,n. The traveling
time from 0 to i is wi and the profit of customer i is vi . It is clear that there exists a subset S ′ ⊆ S such that

∑
i∈S ′ wi � b

and such that
∑

i∈S ′ vi � k if and only if there exists a tour visiting 0 and S ′ of time-length at most 2b and profit at least k.
For PCTSP one can apply a similar argument starting from Min Knapsack. �

2.2. Path and cycles networks with service times

Here we prove that service times make OP and PCTSP hard already on the simplest class of network topology.

Theorem 2. OP and PCTSP are NP-hard on paths with service times.

Proof. Similarly to Theorem 1, it suffices to give detailed proof for OP. We construct a polynomial reduction from the
decision version associated to Max Knapsack problem. Given an input I of Max Knapsack with n items where each item i
has value vi and weight wi , i = 1, . . . ,n and two integers b and k, we construct an instance I ′ of OP as follows: we consider
a path on n + 1 vertices with edges (i, i + 1), i = 0, . . . ,n − 1. The traveling time from i to i + 1 is 0, the service time of
customer i is wi and the profit of customer i is vi . It is clear that there exists a subset S ′ ⊆ S such that

∑
i∈S ′ wi � b and

such that
∑

i∈S ′ vi � k if and only if there exists a tour starting from 0 and visiting exactly S ′ of time-length at most b and
profit at least k. �
Corollary 3. OP and PCTSP are NP-hard on cycles with service times.

Proof. The cycle network reduces to a path when one edge entering the depot has traveling time +∞. �
2.3. Service times reduction

Here we prove another kind of reduction, which describes a complexity equivalence between instances with and without
service times. Assume an instance G = (V , E), a connected graph with V = {0,1, . . . ,n} where 0 represents the depot, the
edges (i, j) ∈ E are assigned with time length ti, j for 0 � i, j � n, and the service time and customer profit at i is si and pi ,
respectively, for i = 1, . . . ,n. For each customer i where the inequality si > 0 holds, the network graph will be augmented
by creating a new vertex i′ and connected to the graph according to the following procedure.

Definition 4. Given a problem instance G above, we define the leaf extension G+ = (V +, E+) of G as the problem instance
without service times, derived from G in the following way. Let

• V + = V ∪ {i′ | si > 0},
• E+ = E ∪ {(i, i′) | si > 0},

and assign the following costs for all i′ ∈ V + \ V :

• set si′ = 0, pi′ = pi , ti,i′ = si/2,
• redefine si = 0, pi = 0.

All ti, j remain unchanged for (i, j) ∈ E , and so do the pi for all i whose original service time is zero.

Clearly, for every problem instance G , the leaf extension G+ can be constructed in linear time.

Lemma 5 (Service Times Reduction Lemma). There is a one-to-one correspondence between the optimal solutions of G and G+ .
Moreover, the elimination of service times takes linear time.

Proof. After the augmentation of the original network all the service times are transformed in virtual traveling times and
the number of vertices is not more than 2n + 1. Profit at i has to be collected if and only if the corresponding tour in G+
visits i′ , no matter whether or not the tour in G passes through i. �
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The class of trees is closed with respect to leaf extension transformation, but the classes of paths and cycles are not. In
particular, leaf extension changes the topology of a path producing a tree. We shall see in Section 3.2 that the exclusion
of service times on paths yields indeed substantial decrease in complexity as opposed to the intractability results of the
previous subsection.

3. Exact algorithms in linear time

We prove solvability in linear time of PTP, OP, and PCTSP for a number of special cases. In particular we directly prove
linear time solvability of PTP on trees with service times, PTP on cycles with service times and eventually of OP and PCTSP
on cycles without service times (we already know that OP and PCTSP with service times are NP-hard on general networks).

3.1. Tree networks

In this subsection we briefly discuss the complexity of PTP on trees, stars and paths.

Theorem 6. PTP can be solved in O (n) time on trees with service times.

The property follows quite straightforwardly from the work of Klau et al. [20] where they prove that the corresponding
problem on Steiner tree is solvable in linear time. Our problem can be transformed in an instance of the problem solved in
[20] by replacing any profitable node i with service time si with a dummy node ti with null profit and null service time.
Node i is then appended as a child to node ti with edge cost equals to si/2.

Note that, problems on stars and paths with service times can be seen as special cases of trees with service times.
Furthermore, any problem on a star, a path or a tree without service times is a special case of the corresponding problem
with service time (set si = 0 for all customers i) and can be solved by the algorithm for trees with service times. Thus, we
have the following corollary.

Corollary 7. PTP can be solved in O (n) time also on trees without service times and on stars and paths with/without service times.

3.2. Cycle networks

Contrary to PTP, we have seen that OP and PCTSP are NP-hard already on stars without service times, and also on paths
and cycles with service times. Hence we assume here that the network is a cycle and for OP and PCTSP the condition si = 0
holds for all customers.

Theorem 8. The following problems can be solved in O (n) time on cycles: PTP with service times, OP and PCTSP without service times.

Proof. We assume that the indexing along the cycle is 0,1,2, . . . ,n,0 in this order, and every tour starts from, and returns
to, 0. There can occur two essentially different types of a tour:

• Type 1 — all around the cycle;
• Type 2 — visiting vertices 1, . . . , i in one direction, returning to 0, then in the other direction visiting n,n−1, . . . , j +1, j

and returning to 0 via n.

We shall refer to the second case as the (i, j)-tour, where 0 � i < j � n + 1. By label n + 1 we mean 0, and in this way
(i,n + 1) is interpreted as a tour not using the edge joining 0 and n at all, hence only going from 0 to i and back.

Observe that Type 1 has a unique value for PTP, which can be expressed as

n∑
i=1

pi −
n∑

i=0

ti,i+1 −
n∑

i=1

si

where tn,n+1 means tn,0 by the convention put on label n + 1. Moreover, the Type 1 tour is feasible for OP if
∑n

i=0 ti,i+1 �
Tmax, and it is feasible for PCTSP if

∑n
i=1 pi � Pmin. (In OP and PCTSP the summation of the si is zero as service times have

been excluded.)
In either case, the Type 1 value computed above will have to be compared with the Type 2 optimum, i.e. with the best

possible choice of an (i, j)-tour. Since there are
(n+1

2

)
choices for the pair i, j, the main point is how to go down from O (n2)

to O (n) with proper organization of computation. To achieve this, we propose a linear-time preprocessing in two phases,
and then a one-round scanning, as described below.

Algorithm for PTP For PTP, w.l.o.g., we assume that si � pi for all i. If there would be some i with si > pi , then we can
consider that vertex i is never visited. First we compute the profit of a tour from 0 to each vertex in both directions:
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Pi =
∑

1�k�i

(pk − 2tk−1,k − sk), P ′
j =

∑
j�k�n

(pk − 2tk,k+1 − sk)

Accordingly, P0 = P ′
n+1 = 0. Since a farther vertex is of interest only if it yields larger profit, during this procedure we also

mark i with ∗ ( j with ∗′) if Pi (P ′
j) is larger than all preceding calculated values in that direction. Computing all Pi and P ′

j
requires only O (n) steps since the difference between two consecutive values is expressed with just three terms. Moreover,
storing the actual largest profit in a buffer, the condition of marking can be tested in constant time per vertex. Note that 0
is marked with both ∗ and ∗′ because, although it has 0 profit, it has not been preceded with any value.

At the end of this phase each vertex may have one, or both, or none of the markings ∗ and ∗′ . We need one more
scanning around the cycle, during which we create a list L of the pairs (i, j) with 0 � i < j � n satisfying the following
properties: i is marked with ∗, j is marked with ∗′ , and the set Si, j = {� | i < � < j} contains no marked vertices at all. (If
i, j have the required marks and j = i + 1, then Si, j = ∅ and consequently (i, j) ∈ L.) Then the optimum for PTP is equal to
the largest of max(i, j)∈L(Pi + P ′

j) and of the Type 1 tour.

Algorithm for OP First determine the largest value i0 of index i reachable within Tmax/2 from the depot (i.e., it requires at
most Tmax time to travel from 0 to i0 and back to 0). Then for each i from i0 down to 0 find the largest value ji of index
j such that ji is feasible under the assumption that i has been visited. Denoting by OP+(i) and OP−( j) the profits of a
tour from 0 to i with increasing index and from n + 1 to j with decreasing index, respectively (both returning to 0), the
maximum OP-value is reached by

max
0�i�i0

OP+(i) + OP−( ji).

This can be determined in at most i0 + (n − j0 + 1) + 1 � 2n + 1 steps by moving with both indices in increasing order,
along the sequence of pairs (0, j0), (1, j0), (1, j0 − 1), . . . , (1, j1), (2, j1), . . . , (2, j2 + 1), (2, j2), . . . , (i0, ji0 ), checking in each
step whether the current (i, j) meets the requirements. (If also (i + 1, ji) is feasible for some i, then ji+1 = ji holds.) Local
computation requires constant time, hence the algorithm is linear.

Algorithm for PCTSP The method is similar to that for OP, except that now we need to choose i0 as smallest i yielding Pmin
on 1, . . . , i. Then for i running from i0 to 0 find the largest j = ji such that j is feasible under the assumption that i has
been visited. Maximum PCTSP-value is reached by choosing largest sum of values at i and j for an (i, j)-tour. The reason
for linear running time is similar to the previous case. �

Since problems without service times are particular cases of problems with service times (as already shown in Corol-
lary 7), and problems on paths are particular cases of the corresponding problems on cycles (add an edge of cost +∞
between the endpoints of the path) we have the following corollary.

Corollary 9. The following problems can be solved in O (n) time: PTP on cycles without service times, and OP and PCTSP on paths
without service times.

4. Pseudo-polynomial algorithms and fully polynomial-time approximation schemes

In this section we design efficient approximation algorithms for OP and PCTSP on tree networks that can be directly
applied to star networks, path networks, and can be easily adapted to cycle networks. First of all, let us recall that Lemma 5
yields the algorithmic equivalence of problems with and without service times, whenever the class of input is closed under
attaching pendant edges. Because of this reason, for trees it suffices to restrict our attention to the case where si = 0 holds
for all i.

We consider the depot as the root of the tree, with index i = 0. For any vertex i we denote by di � 0 the number of its
children. The children of vertex i are denoted by ik , where 1 � k � di .

Let us observe further that a polynomial-time transformation of the tree can lead to an equivalent binary tree network,
equivalent in the sense that for any subset of customers in the original tree exactly the same visiting costs and profit is
obtained also on the correspondent binary tree. Using the notation introduced at the beginning of Section 3.1, the transfor-
mation proceeds as follows:

• If a vertex i has more than 2 children (di > 2), then the connection between i and its children is removed and two new
vertices i′ and i′′ with zero profit (and zero service time) are generated. Vertex i′ is inserted between vertex i and its
children i1 and i2, while vertex i′′ is inserted between vertex i and all its remaining children ik (2 < k � di ). The 2 + di
new edges are weighted as follows: ti,i′ = ti,i′′ = 0, ti′,ik = ti,ik for k = 1,2 and ti′′,ik = ti,ik for k = 3, . . . ,di .

The transformation can be applied by traversing the dynamically updated tree with any order and requires no more than
n/2 updates with the insertion of 2 new nodes at each update. The final number of nodes in the tree cannot be larger
than 2n.
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Two-step tree reduction Based on the above facts, a general problem instance with a tree network can be reduced in two
steps to a simpler instance, as follows.

1. Apply the Service Times Reduction Lemma.
2. Transform the tree to a binary tree.

These steps substantially simplify structure and improve the running time of algorithms.

4.1. Orienteering problem

We design algorithms with various time bounds, their comparison depends on the travel cost and profit conditions. Due
to its better time bound, we include the case of paths in a separate assertion.

Theorem 10. OP can be solved on trees with service times within the following pseudo-polynomial time bounds:

(i) O (nT 2
max).

(ii) O (nP 2), where P = ∑n
i=1 pi .

(iii) O (nTmax) if the input is a path.
(iv) O (nP ) if the input is a path.

Proof. In all cases the beginning of the proposed algorithms consists in applying the two-step tree reduction so that we
have to deal with a tree of at most 2n customers without service times.

Proof of case (i). For each vertex i � 0 compute a function value zi(t) for t � Tmax. Function values zi(t) are computed
traversing the tree in post-order, representing the maximum profit that can be collected from the subtree rooted in i within
a given time bound t . Function values are −∞ when t < 0, and can be stored in a vector with Tmax + 1 components for
t = 0, . . . , Tmax. Vector components are computed as (pi and di are the profit and the number of children for vertex i,
respectively)

zi(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pi if di = 0;
pi + max(0, zi1(t − 2ti,i1)) if di = 1;

pi + max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
zi1(t − 2ti,i1)

zi2(t − 2ti,i2)

max
2ti,i1���t−2ti,i2

(zi1(� − 2ti,i1) + zi2(t − � − 2ti,i2))

if di = 2.

The optimal value of the problem is z0(Tmax). The optimal customer subset can be retrieved by storing for each zi(t) the
children (if any) and their corresponding time bounds which have given positive contribution to the function value.

Post-order traversal requires O (n) steps. At nodes i with di < 2 each component is computed in O (1) time and the
whole vector zi is computed in O (Tmax) time. At nodes i with di = 2 an O (Tmax) time is needed for each component and
the whole vector zi is computed in O (T 2

max) time. The maximum number of nodes with 2 children is 2n/2, thus all vectors
zi are computed in O (nT 2

max) time.

Proof of case (ii). For each vertex i we compute a function value zi(p) for p = 0, . . . , P that can be stored in a vector with
P + 1 components. Here zi(p) represents the minimum time needed for collecting profit exactly p in the subtree rooted in
node i. We consider zi(p) = +∞ if p < 0. Vector components are computed as

zi(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if p = pi;
+∞ if p < pi;
+∞ if di = 0 and p 
= pi;
2ti,i1 + zi1(p − pi) if di = 1;

min

⎧⎪⎨
⎪⎩

2ti,i1 + zi1(p − pi)

2ti,i2 + zi2(p − pi)

2ti,i1 + 2ti,i2 + min
1���p−pi−1

(zi1(�) + zi2(p − pi − �))
if di = 2.

The optimum corresponds to the maximum value of p such that z0(p) � Tmax. Computing zi(p) for di = 2 takes O (p)

steps, therefore the running time of the algorithm is O (nP 2).

Proof of case (iii). Note that, after the two-step tree reduction, nodes i with two children (di = 2) have the property that at
least one of the two children is a leaf, which we assume to be child i1 without loss of generality. Thus, the recursion
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max
2ti,i1���t−2ti,i2

(
zi1(� − 2ti,i1) + zi2(t − � − 2ti,i2)

)

of the algorithm can be reduced to

pi1 + zi2

([t − 2ti,i1 ] − 2ti,i2

);
indeed if we visit both children, then the traveling salesman will spend exactly 2ti,i1 time visiting the leaf i1 and the rest
of the time visiting the subtree rooted in i2. As a consequence, computational time spent in this step is O (1) instead of
O (Tmax), vector zi can be filled in O (Tmax) and the overall cost of the algorithm is O (nTmax).

Proof of case (iv). Similarly to case (iii) we change the recursion

2ti,i1 + 2ti,i2 + min
1���p−pi−1

(
zi1(�) + zi2(p − pi − �)

)

to

2ti,i1 + 2ti,i2 + zi2

([p − pi1 ] − pi
);

also in this case the time spent to compute zi(p) reduces from O (P ) to O (1) and the overall complexity is O (nP ).

This completes the proof of Theorem 10. �
Theorem 11. OP can be solved on cycles with service times within pseudo-polynomial time O (n2Tmax) and O (n2 P ) where P =∑n

i=1 pi .

Proof. Similarly to the notation used in the proof of Theorem 8, we assume that the indexing along the cycle is
0,1,2, . . . ,n,0 in this order, and every tour starts from, and returns to, 0. There can occur two essentially different types of
a tour:

• Type 1 — all around the cycle;
• Type 2 — passing through vertices 1, . . . , i in one direction, returning to 0, then in the other direction passing through

n,n − 1, . . . , j + 1, j > i and returning to 0 via n.
Note that in this case we do not assume that passing through a customer vertex implies a visit to the customer spending
the corresponding service time.

Let us define Z−1 as the optimal solution value that can be obtained by a Type 1 tour and define Zi (i = 0,1, . . . ,n) as
the optimal solution value that can be obtained by a Type 2 tour reaching customer i as the farthest customer on the first
round.

Evaluating Z−1 is equivalent to solve a Max Knapsack problem where item values are given by customer profits pi , item
weights are given by service times si and maximum weight is given by Tmax − T (where T = ∑n

i=0 ti,i+1). This can be done
by dynamic programming in O (nTmax) and O (nP ) time.

Evaluating Zi (i = 0, . . . ,n) is equivalent to solve a path instance where the cycle network is transformed as follows.
Edge (i, i + 1) is removed. Customers j < i are relocated to the location of customer i. Customer n is detached from the
depot and reconnected to customer i so that the new edge has traveling time equal to the original edge (0,n). According to
Theorem 10, computing Zi takes at most O (nTmax) and O (nP ).

The problem can be solved taking the maximum over Zh for h = −1,0,1, . . . ,n, that is in O (n2Tmax) and O (n2 P ). �
Theorem 12. OP has FPTAS on trees with service times. For any given ε > 0, there is a (1 − ε)-approximation algorithm with running
time O (n5/ε2) on trees and O (n3/ε) on paths.

Proof. Consider an instance I of OP on a tree with n vertices with traveling times ti, j and profits pi . In order to obtain
a (1 − ε)-approximation for I we consider the instance I ′ on the same tree and with the same traveling times ti, j but
with the profits scaled as follows: p′

i = � pi
f � where the factor f will be given later. Thus, pi/ f − 1 < p′

i � pi/ f . Denote
by S (S ′) an optimal solution for I (I ′). We prove in the following that an optimal solution for I ′ obtained by the dynamic
programming algorithm given in Theorem 10(ii) is a (1−ε)-approximation for I in time polynomial in |I| and 1/ε. The value
of the solution S ′ in I is val(S ′) = ∑

i∈S ′ pi � f
∑

i∈S ′ p′
i � f

∑
i∈S p′

i � f
∑

i∈S(
pi
f − 1) = ∑

i∈S pi − f |S|� opt(I)− 2 f n since
|S|� 2n.

Moreover opt(I) � max1�i�n pi � (
∑n

i=1 pi)/n = P/n. Thus, considering f = εP
2n2 , the value of the solution S ′ in I is

val(S ′) � opt(I) − ε opt(I).
The running time of the algorithm is O (n(P/ f )2) that is O (n5/ε2).
This bound is improved to O (nP/ f ), that is O (n3/ε), when the network of the problem instance is a path. �
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Corollary 13. OP has an FPTAS on cycles with service time. For any given ε > 0, there is a (1 − ε)-approximation algorithm with
running time O (n4/ε).

Proof. When the network is a cycle the error bound is obtained by a procedure like the one described in Theorem 11 using
the FPTAS described in Theorem 12 to approximate n + 1 problems within 1 − ε and taking the best overall solution. �
4.2. Prize collecting TSP

Theorem 14. PCTSP can be solved on trees with service time within the following pseudo-polynomial time bounds:

(i) O (nP 2
min).

(ii) O (nT 2), where T = ∑
ti, j .

(iii) O (nPmin) if the input is a path.
(iv) O (nT ) if the input is a path.

Proof. Similarly to Theorem 10, the first step of the proposed algorithms consists in applying the two-step tree reduction
so that we have to deal with a tree of at most 2n customers without service times.

Proof of case (i). For each vertex i � 0 we compute function values zi(p), that are computed traversing the tree in post-
order, representing the minimum traveling time that must be spent in the subtree rooted in i in order to collect a profit at
least p. Function values zi(p) being 0 when p � 0 are stored in a vector with Pmin components for p = 1, . . . , Pmin. Vector
components are computed as (pi and di are the profit and the number of children for vertex i, respectively)

zi(p) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if p � pi;
+∞ if di = 0;
2ti,i1 + zi1(p − pi) if di = 1;

min

⎧⎪⎨
⎪⎩

2ti,i1 + zi1(p − pi)

2ti,i2 + zi2(p − pi)

min
1���p−pi−1

(2(ti,i1 + ti,i2) + zi1(�) + zi2(p − pi − �))
if di = 2.

The optimal value of the problem is z0(Pmin). The optimal customer subset can be retrieved by storing for each zi(p) the
children (if any) and their corresponding collected profits which have given positive contribution to the function value.

Postorder traversal takes O (n) steps. At nodes i with di < 2 each component is computed in O (1) time and the whole
vector zi is computed in O (Pmin) time. At nodes i with di = 2, O (Pmin) time is needed for each component and the whole
vector zi is computed in O (P 2

min) time. The maximum number of nodes with 2 children is n/2, thus all vectors zi are
computed in O (nP 2

min) time.

Proof of case (ii). For each vertex i we compute a function zi(t) for t = 0, . . . , T that can be stored in a vector with T + 1
components. Here zi(t) represents the maximum profit that can be collected in time exactly t in the subtree rooted in the
node i.

We consider zi(t) = −∞ if t < 0. Vector components are computed as

zi(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∞ if di = 0 and t 
= 0;
pi if di = 0 and t = 0;
pi + zi1(t − 2ti,i1) if di = 1;

pi + max

⎧⎪⎨
⎪⎩

zi1(t − 2ti,i1)

zi2(t − 2ti,i2)

max
2ti,i1���t−2ti,i2

(zi1(� − 2ti,i1) + zi2(t − � − 2ti,i2))
if di = 2.

The optimum value corresponds to the minimum value of t such that z0(t) � Pmin. The running time of the algorithm is
O (nT 2).

Proof of case (iii) and (iv). These parts are analogous to the proofs of (iii) and (iv) of Theorem 10, the difference is that we
now substitute the optimization in the recursive step by

2(ti,i1 + ti,i2) + zi2(p − pi − pi1)

and

pi1 + zi2

([t − 2ti,i1 ] − 2ti,i2

)

respectively. �



64 E. Angelelli et al. / Theoretical Computer Science 531 (2014) 54–65
Theorem 15. PCTSP can be solved on cycles with service times within pseudo-polynomial time O (n2 Pmin) and O (n2T ) where T =∑
ti, j .

Proof. Similarly to the notation used in the proof of Theorem 8, we assume that the indexing along the cycle is
0,1,2, . . . ,n,0 in this order, and every tour starts from, and returns to, 0. There can occur two essentially different types of
a tour:

• Type 1 — all around the cycle;
• Type 2 — passing through vertices 1, . . . , i in one direction, returning to 0, then in the other direction passing through

n,n − 1, . . . , j + 1, j > i and returning to 0 via n.
Note that in this case we do not assume that passing through a customer vertex implies a visit to the customer spending
the corresponding service time.

Let us define Z−1 as the optimal solution value that can be obtained by a Type 1 tour and define Zi (i = 0,1, . . . ,n) as
the optimal solution value that can be obtained by a Type 2 tour reaching customer i as the farthest customer on the first
round.

Evaluating Z−1 is equivalent to solve a Min Knapsack problem where item values are given by customer profits pi , item
weights are given by service times si and minimum weight is given by Pmin. This can be done by dynamic programming in
O (nPmin) and O (nT ).

Evaluating Zi (i = 0, . . . ,n) is equivalent to solve a path instance where the cycle network is transformed as follows.
Edge (i, i + 1) is removed. Customers j < i are relocated to the location of customer i. Customer n is detached from the
depot and reconnected to customer i so that the new edge has traveling time equal to the original edge (n,0). According to
Theorem 14, computing Zi takes at most O (nPmin) and O (nT ).

The problem can be solved taking the maximum over Zh for h = −1,0,1, . . . ,n, that is in O (n2 Pmin) and O (n2T ). �
Theorem 16. PCTSP has an FPTAS on trees with service times. For any given ε > 0, there is a (1 + ε)-approximation algorithm with
running time O (n3(ln T )2/ε2) on trees and O (n2(ln T )/ε) on paths.

Proof. We cannot apply directly the scaling method as in Theorem 12 since we have no bound on the optimum value
for PCTSP. Thus, we proceed as follows. The time space between 0 and T = ∑

ti, j is divided into q + 1 intervals [0,1),
[1, (1 + ε)1/n), [(1 + ε)1/n, (1 + ε)2/n), . . . , [(1 + ε)q−1/n, (1 + ε)q/n) with q = n log1+ε T �. In order to achieve an FPTAS, we
adapt the dynamic programming algorithm from Theorem 14(ii) considering function z only for 0 and the q upper endpoints
of the half-open intervals. More precisely an entry z′

i(t
′) = p, where t′ is an upper endpoint of an interval of the traveling

time space, indicates that there exists a tree rooted in i with profit p and traveling time at most t′ .
We update z′ bottom-up in the tree, starting with the leaves (that are vertices of depth 0). The update operation when

we look at a vertex i with one child i1 is as follows:

z′
i

(
t′) = pi + z′

i1

(
v ′

1

)

where v ′
1 is such that t′/(1 + ε)1/n � v ′

1 + 2ti,i1 � t′ . When i has 2 children i1, i2, then

z′
i

(
t′) = pi + max

{
z′

i1

(
v ′

1

)
, z′

i2

(
v ′

2

)
, max

2ti,i1���t−2ti,i1

{
z′

i1

(
u′

1

) + z′
i2

(
u′

2

)}}

where v ′
1, v ′

2, u′
1, u′

2 are such that t′/(1+ε)1/n � v ′
1 +2ti,i1 � t′ , t′/(1+ε)1/n � v ′

2 +2ti,i2 � t′ , u′
1/(1+ε)1/n � �−2ti,i1 � u′

1,
u′

2/(1 + ε)1/n � t′ − � − 2ti,i2 � u′
2. Moreover z′

i(0) = pi and z′
i(t

′) = −∞ for a leaf i.
We prove in the following by induction that after performing all update operations, for any entry zi(t), t = 0, . . . , T from

Theorem 14(ii), where i is a vertex of depth r, there exists an entry z′
i(t

′) such that z′
i(t

′) � zi(t) and t′ � t/(1 + ε)r/n . Thus,
a (1 + ε) approximate value corresponds to a minimum t′ such that z′

0(t
′) � Pmin.

The claim is clearly satisfied for vertices of depth 0. Assuming that it is true for r − 1, we prove it for r. We distinguish
between cases according to the recursion above.

Consider first t and a vertex i of depth r with one child i1 of depth r − 1. By induction there exist u′
1 such that

z′
i1
(u′

1) � zi1 (t − 2ti,i1 ) and u′
1 � (t − 2ti,i1 )(1 + ε)(r−1)/n . Let t′ be the upper endpoint of the interval that contains the value

u′
1 + 2ti,i1 .

Then t′ � (u′
1 + 2ti,i1 )(1 + ε)1/n � (t − 2ti,i1 )(1 + ε)r/n + 2ti,i1 (1 + ε)1/n � t(1 + ε)r/n . Moreover z′

i(t
′) = z′

i1
(v ′

1) + pi

from the recursive computation. Since v ′
1 � u′

1 by construction, we have z′
i1
(v ′

1) � z′
i1
(u′

1). Thus z′
i(t

′) � z′
i1
(u′

1) + pi �
zi1 (t − 2ti,i1 ) + pi , so z′

i(t
′) � zi(t).

If i of depth r has 2 children i1, i2, then a value zi(t) may originate from three different branches of the recursion. The
first case using just the function zi1 requires a word-by-word repetition of the argument above, and the second case using
zi2 follows analogously. Finally, when zi(t) is obtained from the combination of zi1 and zi2 , we observe that both i1, i2 have
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depths at most r − 1 and hence by the induction hypothesis both zi1 , zi2 admit (1 + ε)(r−1)/n approximate values of z′
i1
, z′

i2
at the upper endpoints of the corresponding time intervals. Consequently, the sum of approximations properly approximates
the sum for zi .

The running time of this algorithm is O (nq2) = O (n3(ln T )2/ε2), which is polynomial in the input size and in 1/ε.
If the network is a path, the time bound is O (nq) = O (n2(ln T )/ε). �

Corollary 17. PCTSP has an FPTAS on cycles with service times. For any given ε > 0, there is a (1 + ε)-approximation algorithm with
running time O (n3(ln T )/ε).

Proof. When the network is a cycle the error bound is obtained by a procedure like the one described in Theorem 15 using
the FPTAS described in Theorem 16 to approximate n + 1 problems within 1 + ε and taking the best overall solution. �
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