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Abstract

Studying the precise nature of the complexity of games enables gamesters to attain a deeper
understanding of the di/culties involved in certain new and old open game problems, which
is a key to their solution. For algorithmicians, such studies provide new interesting algorithmic
challenges. Substantiations of these assertions are illustrated on hand of many sample games,
leading to a de0nition of the tractability, polynomiality and e/ciency of subsets of games. In
particular, there are tractable games that need not be polynomial, polynomial games that need not
be e/cient. We also de0ne and explore the nature of the subclasses PlayGames and MathGames.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In this talk, I would like to sell you the idea that the complexity and algorithmic
nature of combinatorial games (simply games in the sequel) is quite unlike that of
existential decision and optimization problems. A study of the precise nature of the
complexity of games enables gamesters to attain a deeper understanding of the di/-
culties involved in certain new and old open game problems, which is a key to their
solution. An illustration of this will be given in Section 5. Algorithmicians, on the
other hand, will 0nd new, interesting algorithmic challenges in the analysis of game
complexities, in addition to the fun of playing games.
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For one thing, the very notion of tractability and intractability need to be rede0ned
for games. In particular, it will turn out that tractability and polynomiality are not
synonymous notions as for decision problems. Secondly, the notion of e/cient and
ine/cient strategies is largely dichotomous for decision or optimization problems; in
contrast, there is a wide panorama of games, spanning the gap between the very ine/-
cient and the very e/cient. Thirdly, whereas in the existential decision problems area
there are only few (older) problems whose complexity have not yet been determined,
such as graph isomorphism, the complexity of the majority of combinatorial games
is still unknown. For decision problems, high complexity is normally a liability; for
games it may be an asset.
Another idiosyncrasy of games is that they have only a very meager representa-

tion in the set of NP-complete problems, but a rich presence in the Pspace-complete
and Exptime-complete sets, due to the alternating quanti0ers expressing the win in
a two-player games. Thus, the study of games oCers insights into higher complexity
classes.
Certain questions about games needing only a single existential quanti0er may be NP-

complete. Fraenkel et al. [33] showed, inter alia, that the question whether White can
jump all of Black’s kings in a checkers position involving only kings is polynomial on
the n× n checkerboard, but NP-complete on a planar graph. Demaine et al. [20] showed
that the question whether a player can win in a single move in an n× n phutball game
is NP-complete. Of course puzzles involve only a single existential quanti0er, so they
are, if not in P, natural candidates for being NP-complete. A recent NP-completeness
result for the puzzle Clickomania was proved by Biedl et al. [10]. An older one is
generalized instant insanity [74]. Surprisingly, there are some puzzles that are Pspace-
complete, such as a certain pebbling game of Gilbert et al. [55] and Sokoban [19],
where blocks have to be pushed into target squares. The Pspace-completeness of such
puzzles stems from the fact that vertices may be repebbled or squares may be revisited.
There are some important practical and theoretical approximability results for de-

cision problems. Few are known for games. End positions of Berlekamp’s Nimstring
(see WW [7, Chapter 16]) become “reasonably tractable” and often strategies which
win at Nimstring also win at dots-and-boxes, another game analyzed by Berlekamp [6],
WW [7], so the former can be said to approximate the latter. Also Amazons has been
analyzed by Berlekamp and associates, and in [5] he asserts that the simple “orthodox”
values of all 2×N starting positions, in which a pair of Amazons of opposite color
begin anywhere on an initially empty board, which may have jagged edges at either
or both ends, are very good approximations. Another form of possible approximability
result: guarantee a win in (n=2) + ” plays of a game, out of n games. Another: 0nd
good approximations to the values of general hot partizan games.
We shall illustrate these challenges by means of sample games. All of them will be

two-player games.
In Section 2, we show that the standard notion of tractability adopted for existential

decision and optimization problems is unsuitable for games. The discussion is illustrated
with two games. The important notion of game sums is explored in Section 3, together
with its rami0cations on game complexities. Seven games accompany the discourse.
The essence of the previous sections is then used in Section 4 to formulate a de0nition
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of the tractability, polynomiality and e/ciency of games. Annotations and illustrations
with two further games are also included. This de0nition can be applied to shed light
on the true nature of some unsolved games. An application is given in Section 5. In
Section 6, we explore the nature and lure of games, considering aspects of the so-called
PlayGames and MathGames. Section 7 presents a wrap-up of the various complexity
issues covered in this paper, and some of their rami0cations.
Numbered “Homework” problems are exercises that a reader may solve easily or

after a moderate eCort. Numbered “Problems” are research problems that I do not
know a solution for.

2. Games and the common tractability notion

In algorithmics, we have learned that if any part of a process is exponential, then
the process is de0ned to be intractable. Let us examine this common wisdom with
respect to games.
Nim. This is one of the simplest games: given a 0nite number of tokens, arranged in
piles. A move consists of selecting a pile and removing from it a positive number of
tokens, possibly the entire pile. The player making the last move wins, the opponent
loses.
The game has a very easy winning strategy: the XOR of the binary representation

of the pile sizes is computed. If the XOR is nonzero, the Next player can win, i.e.,
the player who moves from the current position u (an N -position), by moving to a
position with XOR zero. Otherwise the previous player can win, i.e., the player who
moved to u (a P-position). In particular, for the case of two piles, the P-positions are
precisely those where the pile sizes are the same.
Input size: �(�k

i=1 log ni), where ni is the size of the ith pile.
STRATEGY COMPUTATION: Linear in input size.
So this is a perfect case of a tractable problem.
What about length of play?
Well, it turns out that the loser can force the winner to spend exponential time before

consummating a win! Consider two piles of the same size n, which is a P-position.
The loser can keep taking a single token from a pile, which has to be matched by the
winner who takes a single token from the other pile, equalizing the pile sizes. The play
thus lasts �(n) steps, which is exponential in the input size. A less trivial manifestation
of exponential delay can be eCected by playing Nim with more that two piles.
The problem with exponential length of play is but the tip of the iceberg of game-

complexity idiosyncrasies!
This fact about Nim is rather embarrassing, since Nim, as one of the simplest games,

is supposed to be the prototype of a polynomial game. We shall, however, overcome
our embarrassment quickly, and retain Nim in the class of tractable games. The reason
is simply that whereas we dislike computing in more than polynomial time, the human
race relishes to see some of its members being tortured for an exponential length of
time, from before the era of the Spanish inquisition and matadors, through soccer and
tennis, to chess and Go!
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The convention of accepting exponential length of play into the class of tractabil-
ity and respectability, does not seem to have a parallel in the realm of existential
complexity (polynomial and NP-complete optimization problems), where the lack of
an exponential time component is a prerequisite to tractability, by de0nition. This lit-
tle dent in our accepted view of tractability already suggests that this notion, tailored
for optimization problems, has to be modi0ed for games. Later, we will meet further
reasons.

Homework 1. Find a game with a polynomial strategy that lasts exponentially long
irrespective of the choice of moves of the loser or winner.

Problem 2. Nim is a succinct game in the sense that its input size is logarithmic. Give
an example of a nonsuccinct game which has a polynomial winning strategy, but its
length of play is exponential.

Problem 3. Is there an NP-hard succinct game?

Note. The succinct versions of many NP-complete decision and optimization problems
are polynomial in their succinct input size. Just one example of many is “independent
set” which is NP-complete for a general graph, but polynomial for the case when all
degrees are 62. The succinct versions tend to be easy, in general.
In contrast, there are many succinct versions of games that appear to be complex,

but whose true complexity is unknown. Of course there are some exceptions for both
classes of problems. Galperin and Wigderson [51] showed that certain very simple
game questions are Pspace-complete in a certain model of a very specialized succinct
representation of graphs. But in that model, the nonsuccinct versions are likely to
be even harder. There are also games where the general form is complex and the
succinct one easy. For example, Kayles is Pspace-complete on a general graph [75],
but polynomial on a simple path [58]; see also ([7, Chapter 4]; [7] which will be
cited as WW in the sequel). Its input size is log |V |, the length of the simple path
on which succinct Kayles is played. (The polynomiality stems from the periodicity of
the Sprague–Grundy function for Kayles. (Kayles is played on a graph. A move is to
place a counter on an unoccupied vertex which is not adjacent to any occupied vertex.
Equivalently, to delete a node and all its neighbors.)
Tractability for succinct games can sometimes be established by demonstrating ulti-

mate periodicity or additive periodicity of the g-function. A potentially mutually ben-
e0cial interaction with the “theory of combinatorics of words”, where questions of
periodicity are of major concern, might be explored.
If a game has a polynomial winning strategy, do we consider it tractable no matter

how long it lasts? Having begun with Nim, we shall illustrate this question with a
game whose name has Nim as a pre0x, namely Nimania, a mild case of Dancing
Mania, sometimes observed in post-pneumonia patients [37–39].
Nimania. Given a positive integer n. Play begins by subtracting 1 from n. If n=1,
the result is the empty set, and the game ends with player I winning. If n¿1, one
additional copy of the resulting number n − 1 is adjoined, so at the end of the 0rst
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Fig. 1. Player I can win Nimania for n=3 in 13 moves. Solid arrows indicate player I’s moves, and dashed
arrows those of player II.

move there are two (indistinguishable) copies of n − 1 (denoted (n − 1)2). At the kth
stage, where k¿1, a move consists of selecting a copy of a positive integer m of the
present position, and subtracting 1 from it. If m=1, the copy is deleted. If m¿1, then
k additional copies of the resulting number m−1 are adjoined to the existing numbers.
The player making the last move wins; the opponent loses.
It can be shown that since the numbers in successive positions decrease (though the

number of them increases), the game terminates. Who wins? For n = 1 we saw above
that player I wins. For n=2, player I moves to 12, player II to 1, hence player I again
wins. For n=3, Fig. 1 shows that by following the lower path, player I can win in 13
moves. Unlike the cases n=1 and 2, however, not all moves of player I are winning
for n=3.
An attempt to resolve the case n = 4 by constructing a diagram similar to Fig. 1

is rather frustrating. It turns out that for n=4 the loser can delay the winner so that
play lasts over 244 moves! (There are 602 × 24× 365=31; 536; 000s=year. If one move
is made every second, player I will thus have to spend 557,845 years of his life to
consummate his win.) We have proved, however, the following surprising facts:
(i) Player I can win for every n¿1.
(ii) For n¿4, player I cannot hope to see a win being consummated in any reasonable

amount of time: the smallest number of moves is ¿22
n−2

, and the largest is an
Ackermann function.

(iii) For n¿4, player I has a robust winning strategy: most of the time player I can
make random moves; only near the end of play does player I have to pay attention
(as we saw for the case n=3).

Since the length of play is at least doubly exponential, it seems reasonable to say
that Nimania, in contrast to Nim, is intractable, though the winning strategy is robust.
The complexity of computing the next move is constant; the high complexity is due
to the sheer length of play.
So we have established that if play lasts for more than exponential time, it is in-

tractable. Of course, there are numerous additional reasons for intractability in other
games, some of which we will meet later.
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There are, on the other hand, games that last only a constant number of moves, but
the computation of the next winning move is hard. Rabin [73] gave a game of length
3 (two moves for player I, with one move of player II in-between) where player II
can win, but it is undecidable to compute a winning move. Other short but intractable
games are given in Jones [60], Jones and Fraenkel [61].

3. Game sums

De�nition 4. (i) A game is impartial if the options (moves) of all positions are the
same for both players. Otherwise the game is partizan.
(ii) The game graph of a game � is a digraph G=(V;U ), in which every vertex

u∈V represents a game position, and there is a directed edge (u; v)∈E if and only if
there is a move from u to v in �.

The game graph G has normally exponential size in the input size of �. This holds
for both the seemingly complex game of chess, as for the easy Nim, since in both
cases, every combination of any 0nite number of tokens in the game, translates into a
single vertex of G.
Thus games have an a priori exponential complexity, quite unlike optimization and

decision problems, which do not seem to exhibit an a priori bias towards polynomiality
or nonpolynomiality.
For both impartial and partizan games, the potential of tractability is enhanced if the

game breaks up into a sum. As Elwyn Berlekamp remarked, the situation is similar
to that in other scienti0c endeavors, where we often attempt to decompose a given
system into its functional components. This approach may yield improved insights into
hardware, software or biological systems, human organizations, and abstract mathemat-
ical objects such as groups. In most cases, there are interesting issues concerning the
interactions between subsystems and their neighbors.
The game of Nim is the disjoint sum of its component piles. Some other games

decompose into sums. If a game decomposes into a disjoint sum of its components,
a tractable strategy can sometimes be recovered, such as for Nim. In particular, the
exponentially large game graph does not need to be constructed in these cases.
Consider the following examples.

Welter’s game is an example of a game which is not a disjoint sum of its compo-
nents. It is played on a semiin0nite strip ruled into squares, numbered consecutively
from left to right, beginning with 0. Initially, a 0nite number of tokens is placed on
distinct squares. A move consists of selecting a token and moving it to any unoccupied
lower numbered square [81,82], see Fig. 2, where, say, the token on 5 can be placed
only onto any one of the squares 3, 2, or 0. The player 0rst unable to move loses;

.. .0 2 3 6 7 8 10

Fig. 2. Welter’s game.
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Fig. 3. Domineering position after the 14th move of L.

the opponent wins. Note that the game is equivalent to playing Nim with the proviso
that the piles have distinct sizes at all times. This proviso makes the sum nondisjoint.
A polynomial strategy can be recovered (Conway [ONAG in the sequel] [15, Chapter
13]), see also WW [7, Chapter 15]. Its validity proof is rather intricate. It also appears
to be very di/cult to generalize this game. For this and other properties of Welter’s
game, see [2,62,22,72,63].
Domineering. A chessboard or other doubly ruled board is tiled with dominoes. Every
dominoe covers two adjacent squares. Left tiles vertically, Right horizontally. The
player 0rst unable to move loses, the opponent wins. See ONAG [15, Chapter 10],
WW [7, Chapter 5], [3,13,65,83,85]. After the initial moves, the board may break up
into a sum of partial boards. See Fig. 3 for a 10× 11 board.
Domineering is partizan, unlike Nim, which is impartial. But for both cases, the game

decomposes naturally into a disjoint sum of games, though this holds for domineering
only ultimately. Chess does not appear to break up into sums in a natural way, but
certain endgames of Go do.
Grundy’s game. Given a 0nite number of piles of 0nitely many tokens, select a pile
and split it into two nonempty piles of di>erent sizes. The player 0rst unable to move
loses; the opponent wins. The game is a sum of its piles. But it is succinct. Though
the Sprague–Grundy function has been computed for pile size at least up to 107, and
a strong tendency to period 3 has been observed, no periodicity has been established.
Ultimate periodicity for Grundy’s game has been conjectured in WW [7, Chapter 4].

Homework 5. Find a strategy for the following game: given a 0nite number of piles
of 0nitely many tokens, select a pile and split it into two nonempty piles. The player
0rst unable to move loses; the opponent wins.

Geography. Geography games simulate on a graph the familiar word game in which
two players alternately name a country (or town) subject to the restriction that the 0rst
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Fig. 4. An initial position of chomp.

letter of every country matches the last letter of the previously named country, and
that no country is named twice. The most common variations depend on whether the
graph is undirected (U) or directed (D), and on whether no vertex (V) or no edge (E)
can be repeated.
Play begins at some initially marked vertex. For vertex geography, a move consists

of marking an as yet unmarked follower vertex of the last marked vertex. The player
0rst unable to move loses; the opponent wins.
The game is nonsuccinct, but does not decompose into a sum. Directed edge ge-

ography (DEG) was proved to be Pspace complete by Schaefer [75]. The same holds
for DVG. In fact, both remain Pspace-complete even for bipartite planar graphs with
in=out degrees at most 2 and degree at most 3 [67,34]. Fraenkel et al. [43] showed that
UEG is Pspace-complete, but polynomial for the bipartite case. It was also pointed out
there that UVG is polynomial; other variations are mentioned there in the introduction.
Poset games. These are games played on partially ordered sets. The next three games
are instances of poset games. The 0rst is chomp [49,52], in which two players alter-
nately move on a given m× n matrix of 1’s (see Fig. 4). For a technical reason there
is a single 0 at the origin. A move consists of pointing to some 1, say at location
(i; j), and removing the entire north-east sector (i.e., replacing all the 1’s by 0’s inside
the sector). The player removing the last 1 wins. The input size is log(mn), which is
succinct. In addition, this game is not the sum of totally ordered sets, as Nim; rather
it is the product of two Nim-piles. Also, it does not seem to decompose into sums.
Neither tractability nor intractability are known for general m, n. However, there is

a neat proof that player I can win: If taking the element (m; n) (the “largest” element)
is an opening winning move, then player I can make it and win. If it is a losing
move, then there is a winning answer, say taking element (i; j). Player I’s 0rst move
is then to take (i; j) : : : . This argument holds in general for poset games with a largest
element, but it is nonconstructive. Incidentally, computer simulations of chomp suggest
that, more often than not, an opening winning move is to take an element other than
the largest.

Problem 6. Give a constructive, preferably polynomial, strategy for chomp.
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Fig. 5. A superset game on A2
3.

We say, informally, that a P-position in a game is any position u from which the
Previous player can force a win, that is, the opponent of the player moving from u.
An N -position is any position v from which the Next player can force a win, that is,
the player who moves from v. A tie position is an end position which is a win for
neither player, and a D-position is a draw position, i.e., a “dynamic tie” position: a
player cannot force a win but has a next nonlosing move. Denote by P the set of all
P-positions of a game, by N the set of all its N -positions, by D the set of all its
D-positions, and by F(u) the set of all (immediate) followers of position u. Then we
have, u∈P if and only if F(u)⊆N, u∈N if and only if F(u)∩P �= ∅, and u∈D
if and only if F(u)∩P= ∅ and F(u)∩D �= ∅.
Normal play of a game is when the player making the last move in a game wins;
mis?ere play, when the player making the last move loses.

Superset game. Put Ak
n = {B⊆ {1; : : : ; n} : 0¡|B|6k}. A move in this two-player game

consists of pointing at an as yet unremoved subset and removing it, together with all
sets containing it. For normal play, we then clearly have A1

n ∈P if and only if n≡ 0
(mod 2). Gale and Neyman [50] showed that A2

n ∈P if and only if n≡ 0 (mod 3). We
may add to this the trivial statement, A0

n ∈P if and only if n≡ 0 (mod 1). It is therefore
conjectured there that Ak

n ∈P if and only if n≡ 0 (mod k +1). A superset game on A2
3

is shown in Fig. 5. It can be veri0ed easily that it is a P-position, consistent with the
conjecture Ak

n ∈P if and only if n≡ 0 (mod k + 1).
Incidentally, note that An

n ∈N by the above nonconstructive argument, and so if
the conjecture is true, then the unique winning move is to remove the largest element
{1; : : : ; n}, much unlike the observed behavior of chomp. At the end of [42], the g-
values of the 0rst few positions of Ak

n have been computed.
The superset game is also succinct, and its doubly exponential game graph does not

decompose into a sum.

Problem 7. Settle the Gale–Neyman conjecture.

von Neumann’s Hackendot is played on a forest. A player points to an as yet unre-
moved vertex, and removes the unique path from that vertex to the root of the tree the
vertex belongs to. This removal breaks up the tree into a forest, in general. The game
is an N -position when begun on a tree, by the above nonconstructive argument. An
interesting tractable strategy for normal play of the game was given by TUlehla [80].
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(a) (b)

Fig. 6. A game of Hackendot.

See also WW [7, Chapter 17]. A typical game position of Hackendot is shown given
in Fig. 6(a). The result after one move is seen in Fig. 6(b).
This game is nonsuccinct and it decomposes into a disjoint sum of its trees. These

properties seem to contribute to its demonstrated tractability.
We point out that recently a high-school student, Byrnes [14], has proved a theo-

rem about the periodicity of the g-function of certain restricted poset games, with an
application to chomp.

4. What are tractable, polynomial and e*cient games?

The above sample games and many others led us to suggest the following complexity
de0nition for subsets of games.

De�nition 8. A subset T of combinatorial games with a polynomial strategy has the
following properties. For normal play of every G ∈T , and every position u of G:
(a) The P-, N -, D- or tie-label of u can be computed in polynomial time.
(b) The next optimal move (from an N - to a P-position; from a D- to a D-position,

from a tie- to a tie-position) can be computed in polynomial time.
(c) The winner can consummate a win in at most an exponential number of moves.
(d) The subset T is closed under summation, i.e., G1; G2 ∈T implies G1 +G2 ∈T (so

(a), (b), (c) hold for G1 +G2 for every independently chosen position of G1 and
for every independently chosen position of G2).

A subset T1 ⊆T for which (a)–(d) hold also for misUere play is a subset of games
with an e@cient strategy.
A superset T 1 ⊇T for which (a)–(c) hold is a superset of games with a tractable

strategy.
A game in some such T or T1 or T 1 is called polynomial or e@cient or tractable,

respectively.
A decidable game which has no tractable strategy is called intractable.

Ten comments about De0nition 8 and its rami0cations are as follows.
(1) Every e/cient game is polynomial, every polynomial game is tractable. But a

tractable game need not be polynomial, a polynomial game need not be e/cient, quite
unlike optimization and decision problems, where polynomiality and tractability were
de0ned to be synonymous. Examples are given below. See also Section 7, (1).
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(2) Instead of “polynomial time” in (a) and (b) we could have speci0ed some low
polynomial bound, so that some games complete in P (see, for example [1]), and
possibly two-player games on cellular automata [29–31], would be excluded. But the
decision about how low that polynomial bound should be would be largely arbitrary,
and we would lose the closure under composition of polynomials. Hence we preferred
not to do this.
(3) In (b), we could have included also a P-position, i.e., the requirement that the

loser can compute in polynomial time a next move that makes play last as long as
possible. In a way, this is included in (c). A more explicit enunciation on the speed
of losing does not seem to be part of the requirements for a tractable strategy.
(4) Regarding (b), we have already observed in Section 1 that there are intractable

games where the computation of the next move from an N -position is undecidable [73],
and others, such as Nimania, where this computation is linear. A variety of intermediate
complexities between these extremes are exhibited by other games.
(5) As was pointed out in Section 2, our convention of accepting exponential length

of play into the class of tractable games does not seem to have a parallel in the realm
of existential complexity (polynomial and NP-complete optimization problems). Note
that (c) tends to relax the common notion of tractability, by permitting an element of
exponential length, whereas the other items of De0nition 8 are rather in the direction
of tightening it.
(6) In Section 2, we saw that for Nim, play may last for an exponential number of

moves. In general, for succinct games, the loser can delay the win for an exponential
number of moves. Is there a “more natural” succinct game for which the loser cannot
force an exponential delay? There are some succinct games for which the loser cannot
force an exponential delay, such as Kotzig’s Nim (WW [7, Chapter 15]) of length 4n
and move set M = {n; 2n}. This example is rather contrived, in that M is not 0xed,
and the game is not primitive in the sense of Fraenkel et al. [35, Section 3], i.e., the
gcd of the move set is not 1. Is there a “natural” nonsuccinct game for which the
loser can force precisely an exponential delay? Perhaps an epidemiography game with
a su/ciently slowly growing function f (where at move k we adjoin f(k) new copies;
see [37,38]), played on a general digraph, can provide an example.
(7) There are several ways of compounding a given 0nite set of games—moving

rules and ending rules. See, for example, [76], ONAG [15, Chapter 14]. Since the sum
of games is the most natural, fundamental and important among the various compounds,
we only required in (d) closure under game sums.
(8) One might consider a game e/cient only if both its succinct and nonsuccinct

versions ful0ll conditions (a)–(d). But given a succinct game, there are often many
diCerent ways of de0ning a nonsuccinct variation; and given a nonsuccinct game, it is
often not so clear what its succinct version is, if any. Hence, this requirement was not
included in the de0nition.
(9) It would seem that instead of beginning the de0nition about a subset T , we could

have begun right away with a game that satis0es the desired requirement. However,
there may be diCerent sets T , such as subsets of impartial games and subsets of partizan
games, each of which satis0es (d), but their union does not. In fact, are there partizan
games G1; G2; G3 such that: (i) G1; G2; G3; G1 +G2; G2 +G3 and all their options have
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Table 1
A winning move in Moore’s Nim2

Decimal Binary Binary Decimal

6 0110 0110 6
7 0111 0111 7
8 1000 −→ 0011 3
9 1001 0101 5
mod 3: 2222 0000

polynomial-time strategies, (ii) G1 + G3 is NP-hard? If so, then such sets T are not
disjoint. In this case two of them would contain G2.

(10) At the beginning of the de0nition, “: : : every position u of G” is mentioned. At
the end of (d) a similar remark is made once more. The reason for this “repetition” is
that in (d) two copies of the same game could be used for G1 and G2 with the same—
arbitrary—position in both. A trivial parity argument permits winning (or maintaining
a draw) in such a situation for every game. The extra repetition was done to exclude
from T such trivial cases.

Collections of games with a panorama of complexities bridging the gap between
e/cient and intractable games as per De0nition 8 can be produced. Just about any
imaginable perversity manifests itself in some game, and perturbs some of (a)–(d).
Succinctness may aCect (a). Rabin’s game violates (b), and Nimania upsets (c). MisUere
play and interaction between tokens aCect (d). Also partizan games violate (d) condi-
tionally, in the sense that sums are Pspace-complete [71]; even if the component games
have the form {a‖{b|c}} with a; b; c∈Z: [90], Moews (as cited in [9, Chapter 5]).
Moore’s Nim [70], WW [7, Chapter 15], and WythoC’s game (see Section 6), are not
known to satisfy (d), but both are tractable.

Moore’s Nimk is a variation of Nim in which up to k piles can be reduced. Thus Nim
is Nim1. A tractable strategy can be given by expressing the pile sizes in binary as in
Nim, but XOR-ing them to the base k+1. If this “sum” (without carries) is 0, we have
a P-position. Otherwise, it is an N -position, and a move to 0 wins. For example, Table
1 depicts a winning move in Moore2. No polynomial strategy seems to be known for
this game.

Another curious strategy property is exhibited by

Two-player cellular automata games. This designates a collection of games, a subcol-
lection of which has a barely tractable strategy. The collection depends on an integer
parameter s. On the digraph depicted in Fig. 7, place a number of tokens on distinct
vertices. A move consists of selecting an occupied vertex u, and Aring its token into
q= min(s; dout(u)) followers of u, where dout(u) is the outdegree of u. That is, u and q
of its followers are “complemented”: a token is placed at unoccupied vertices, and to-
kens are removed from occupied ones on every vertex of the selected “q-neighborhood”.
No move can be made from a leaf. The two players alternate moving, but for s=1, a
loop at u permits a player to pass. A player unable to move loses. The outcome may
be a draw.
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Fig. 7. Solving a cellular automata game with s=2.

The labels in Fig. 7 are for the case s=2. If the occupied vertices Nim-sum to a
nonzero value, the player to move can win by moving to a position with Nim-sum 0,
unless the sum is ∞(K) with 0 =∈K , in which case a draw can be maintained. See [28,
Section 3], or [47] for the generalized Sprague–Grundy function and the generalized
Nim-sum, which were 0rst introduced by Smith [76].

Homework 9. Play a cellular automata game on the digraph of Fig. 7 for s=3, and
compute the corresponding labels.

Suppose that a cellata (cellular automata) game is played on a digraph G=(V; E),
with |V |= n. It is natural to associate with it a game graph G=(V;E), where V is the
set of all n-dimensional binary vectors, and a 1 (0) designates that the corresponding
vertex is occupied (unoccupied).
Despite the exponential size of this game graph, it turns out that the generalized

Sprague–Grundy function ' can be restored by restricting attention to vectors of weight
62(s + 1). For the case s=1, the so-called annihilation games [25,44,46], we can
even formulate an O(n6) algorithm for the game. MisUere play (last player losing)
of annihilation games was analyzed by Ferguson [24]. The complexity for s¿1 is
still open [29–31]. A special case of cellata games has applications to the e/cient
computation of optimal or nearly optimal linear error correcting codes. The “lexicode”
method [17,16] produces a code of length n in O(22n) steps. The method of Fraenkel
[27] and Fraenkel and Rahat [41], yields a code of length n and minimum distance d
in O(nd−1) steps.

The polynomiality of annihilation games has a curious property.

KalmTar [64] and Smith [76] de0ned a strategy in the wide sense to be a strategy
that depends on the present position and on all its antecedents, from the beginning of
play. Having de0ned this notion, both authors concluded that it seems logical that it
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Fig. 8. Illustration of a strategy in the broad sense.

su/ces to consider a strategy in the narrow sense, which is a strategy that depends
only on the present position (the terminology Markov strategy suggests itself here).
They then promptly restricted attention to strategies in the narrow sense.
Let us de0ne a strategy in the broad sense to be a strategy that depends on the

present position v and on all its (immediate) predecessors u∈F−1(v), whether or not
such u is a position in the play of the game. This notion, if anything, seems to be
even less needed than a strategy in the wide sense.
Yet, for annihilation games, the only strategy that we know which can produce

a next winning move from an N -position in polynomial time, is a strategy in the
broad sense. The reason is that ' is computed only for an induced subgraph G′ of
size O(n4), and so also the counter function, which points to the “correct” follower
from an N -position is computed only for G′. While G′ su/ces for restoring ' on all
of G, it restores a simulated counter c′ which may lead to an ancestor rather than
to a follower. This is illustrated schematically in Fig. 8: player II (the loser) moves
from u with '-value p to some v0 with higher '-value r. Then player I (the winner)
wishes to move to some wj with '-value p and lower counter value c. The simulated
counter c′ may point to an ancestor w0 rather than to the desired follower wj. But
c′(w0)¡c′(v0). Player I may then pretend that player II moved from w0 to v0, rather
than from u. This procedure can continue only a 0nite number of times, so eventually
player I will 0nd a follower wj of v0 with '-value p and simulated counter value
c′(wj)¡c′(u).
Annihilation games might have a polynomial strategy in the narrow sense, but we do

not know of one. Perhaps the polynomial strategy in the broad sense suggested itself
precisely because the game is “barely” polynomial, so to speak. Small perturbations of
the annihilation games lead to Exptime- and Pspace-complete games [45,34,56].

Problem 10. Does a general cellata game have a polynomial strategy?

5. N -heap Wytho4 game

In this section, we illustrate how the study of the complexity of a game in general
and De0nition 8 in particular, may lead to the solution of an old game problem.
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Table 2
The 0rst few P-positions of WythoC’s game

n An Bn

0 0 0
1 1 2
2 3 5
3 4 7
4 6 10
5 8 13
6 9 15
7 11 18
8 12 20
9 14 23
10 16 26

Wytho4’s game. See [88,18,89,32,7,26,11,21,66]. Some of these references analyze
various generalizations of the game.
The game is super0cially similar to Nim, but played with two piles only. The moves

are of two types: remove any positive number of tokens from a single pile, or take
the same number of tokens from both piles. We denote game positions by (x; y) with
06x6y, where x, y denote the two pile sizes, and proceed to examine normal play.
Clearly (0; 0) is a P-position. So is (1; 2), as can be veri0ed easily by considering all
its followers. The P-positions (An; Bn) for n∈ {0; : : : ; 10} are listed in Table 2.
The table suggests the following interesting structure:

An = mex{Ai; Bi : 06 i ¡ n}; Bn = An + n ∀n ∈ Z¿0;

where for any subset S ⊂Z¿0, S �=Z¿0, mex S := min(Z¿0 \ S)= least nonnegative
integer not in S. We have indeed, P=

⋃∞
i=0 {(Ai; Bi)}.

The strategy indicated by Table 2 is exponential, since it has to be computed up
to O(max(x; y)) for the input (x; y) of size O(log(xy)). However, there exist two
polynomial procedures for computing the P-positions [26]. One of them is based on
the observation (An; Bn)= (�n.�; �n.�+n) where .=(1+

√
5)=2 (the golden section).

Thus the game is tractable, but no polynomial strategy for it is known. Why?
It might be argued that the nondisjunctive move of taking from both piles is the

source of the di/culty. Suppose, we play a take-away game on n piles of tokens. There
are two types of moves. (I) Remove any positive number of tokens from a single pile,
(II) Remove a nonnegative vector (a1; : : : ; an) from all the piles, with at least two of
the ai¿0. Blass et al. [12] gave necessary and su/cient conditions for this game to
have the same strategy as Nim. In most cases, the strategy indeed remains that of
Nim. In particular, taking (k; k + 1) from two Nim piles, leaves it invariant, whatever
k ∈Z¿0 is chosen at each move.
What is special about the removal of (k; k) is that it constitutes the set of P-positions

of Nim. “Shortcircuiting” those by permitting to move from one to another must upset
the Nim strategy, and it produces the interesting WythoC game. See also [40,48]. This
led us to the following conjecture, a special case of which is listed in [57, Problem 53].
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De0ne an N -heap WythoC game as follows: Given N¿2 heaps of 0nitely many
tokens, whose sizes are A1; : : : ; AN , A16 · · ·6AN . The moves are to take any positive
number of tokens from a single heap or to take (a1; : : : ; aN )∈ZN

¿0 from all the heaps—
ai from the ith heap—subject to the conditions: (i) ai¿0 for some i, (ii) ai6Ai for
all i, (iii) a1 ⊕ · · · ⊕ aN =0, where ⊕ denotes Nim-addition. The player making the
last move wins and the opponent loses. Note that the classical WythoC game is the
case N =2. Let N¿3. For every 0xed (A1; : : : AN−2)∈ZN−2

¿0 with A16 · · ·6AN−2,
denote the P-positions by (A1; : : : ; AN−2; AN−1

n ; AN
n ), A

N−26AN−1
n 6AN

n for all n. We
conjecture:
There exists an integer m=m(A1; : : : ; AN−2) such that AN−1

n =mex({AN−1
i ; AN

i :
i¡n}∪T ), AN

n =AN−1
n + n for all n¿m, where T is a (small) set of integers

which depends only on A1; : : : ; AN−2.
For example, for N =3, A1 = 1 we have T = {2; 17; 22}; and it seems that m=23.

A related conjecture is that:
For every 0xed (A1; : : : ; AN−2)∈ZN−2

¿0 there exist integers a= a(A1; : : : ; AN−2),
m=m(A1; : : : ; AN−2)∈Z¿1, such that AN−1

n ∈ {�n.� − (a + 1); �n.� − a; �n.� −
(a − 1)} for all m ¿ n, where . = (1 +

√
5)=2 (the golden section). Moreover,

there is a certain fractal (Fibonacci-based) regularity to the relative appearance
of each of the three values �n.� − (a+ 1); �n.� − a; �n.� − (a − 1), which may
enable one to recover a polynomial strategy.
This appears to hold for a=4, m=35 when N =3, A1 = 1.

Problem 11. Settle the two conjectures.

6. The nature and lure of games

To explore the nature and the lure of games, we consider, informally, two subclasses.

(i) Games people play (PlayGames): games that are challenging to the point that
people will purchase them and play them.

(ii) Games mathematicians play (MathGames): Games that are challenging to math-
ematicians or other scientists to play with and ponder about, but not necessarily
to “the man in the street”.

Examples of PlayGames are chess, go, hex, reversi; of MathGames: Nim-type games,
WythoC games, annihilation games, octal games.
Some “rule of thumb” properties, which seem to hold for the majority of PlayGames

and MathGames are listed below.

I. Complexity. Both PlayGames and MathGames tend to be computationally in-
tractable. An assortment of intractability results, from NP-hardness to Exptime-
completeness, can be found, e.g., in WW [7] (NP-hardness of redwood furniture
and dots-and-boxes), [23,33,34,36,45,56,86]. For summaries of further complexity
results see [54,59]. There are a few tractable MathGames, such as Nim, but most
games still live in Wonderland: we are wondering about their as yet unknown
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complexity. Roughly speaking, however, NP-hardness is a necessary but not a suf-
0cient condition for being a PlayGame! Some games on Boolean formulas are
Exptime-complete, yet none of them seems to have the potential of commercial
marketability.

II. Boardfeel. None of us may know an exact strategy from a midgame position of
chess, but even a novice gets some feel who of the two players is in a stronger
position, merely by looking at the board. This is what we loosely call boardfeel.
Our informal de0nition of PlayGames and MathGames suggests that the former
do have a boardfeel, whereas the latter do not. For many MathGames, such as
Nim, a player without prior knowledge of the strategy has no inkling whether
any given position is “strong” or “weak” for a player. Even two positions before
ultimate defeat, the player sustaining it may be in the dark about the outcome,
which will stump him. The player has no boardfeel. (Even many MathGames,
including Nim-type games, can be played, equivalently, on a board.)
Thus, in the boardfeel sense, simple games are complex and complex games

are simple! This paradoxical property also does not seem to have an analog in
the realm of decision problems. The boardfeel is the main ingredient which makes
PlayGames interesting to play.

III. Math appeal. PlayGames, in addition to being interesting to play, also have consid-
erable mathematical appeal. This has been exposed recently by the theory of parti-
zan games established by Conway and applied to endgames of Go by Berlekamp,
students and associates [4], Berlekamp and Kim [8], Berlekamp and Wolfe [9],
Moews [68,69], Spight [77] and Takizawa [79]. On the other hand, MathGames
have their own special combinatorial appeal, of a somewhat diCerent Wavor. They
appeal to and are created by mathematicians of various disciplines, who 0nd spe-
cial intellectual challenges in analyzing them. As Winkler [84] called a subset of
them: “games people don’t play”. We might also call them, in a more positive
vein, “games mathematicians play”. Both classes of games have applications to ar-
eas outside game theory. Examples: surreal numbers (PlayGames), error correcting
codes (MathGames). Both provide enlightenment through bewilderment, as David
Wolfe and Tom Rodgers put it at the beginning of the preface to [87].

IV. Existence. There are relatively few PlayGames around. It seems to be hard to
invent a PlayGame that catches the masses. In contrast, MathGames abound. They
appeal to a large subclass of mathematicians and other scientists, who cherish
producing them and pondering about them. The large proportion of MathGames-
papers in games bibliographies reWects this phenomenon.

We conclude, inter alia, that for PlayGames, high complexity is desirable. Whereas
in all respectable walks of life we strive towards solutions or at least approximate
solutions which are polynomial, there are two less respectable human activities in
which high complexity is appreciated. These are cryptography (covert warfare) and
games (overt warfare). The desirability of high complexity in cryptography—at least
for the encryptor!—is clear. We claim that it is also desirable for PlayGames.
It is no accident that games and cryptography team up: in both there are adversaries,

who pit their wits against each other! But games are, in general, considerably harder
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Fig. 9. Solving a cellular automata game with s=3.

than cryptography. For the latter, the problem whether the designer of a cryptosystem
has a safe system can be expressed with two quanti0ers only: ∃ a cryptosystem such
that ∀ attacks on it, the cryptosystem remains unbroken? In contrast, the decision
problem whether White can win if White moves 0rst in a chess game, has the form:
“∃∀∃∀ · · · move: White wins?”, expressing the question whether White has an opening
winning move—with an unbounded number of alternating quanti0ers.

Solution to Homework Problem 1. The game of “Scoring”. See [28].

Solution to Homework Problem 5. It is easy to see that any position with k piles
containing an even number of tokens is a P-position if and only if k is even. Indeed,
every move reverses the parity of the number of piles containing an even number of
tokens. For misUere play the result is reversed, i.e., any position with k piles containing
an even number of tokens is a P-position if and only if k is odd. In particular, all
followers of every N -position are P-positions for both normal and misUere play.

Solution to Homework Problem 9. The labels can be viewed in Fig. 9. We point out
that it is “a lucky accident” that every single vertex of Figs. 7 and 9 could be labeled.
In general, it is a subset of vertices that jointly get a label in the game-graph.

7. Epilog: a subset of 10 commandments for game complexities

The following summarizes some of the complexity issues that make games distinctive
from existential decision and optimization problems.
(1) The notions of tractability and polynomiality are not synonymous for games. Nim

is e/cient, some Nim-type games are polynomial but not known to be e/cient,
WythoC’s game is tractable, but not known to be polynomial.
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(2) Polynomiality of games is preserved even if length of play is a simple expo-
nential. This is a relaxation of the requirement for decision problems, where no
exponential element is permitted for tractability. The other polynomiality require-
ments for games are more stringent than for decision problems.

(3) The exponential size of the game graph renders games exponential a priori, unlike
existential optimization problems, which do not exhibit such an a priori bias.
There may be circumstances, such as decomposition into a disjoint sum, which
can recover polynomiality.

(4) Most games lie in Wonderland; we are wondering about their as yet undetermined
complexity status—quite unlike decision problems.

(5) Games have only a very meager representation in the set of NP-complete prob-
lems, but a rich one in the Pspace-complete and Exptime-complete sets of
problems.

(6) The succinct forms of “most” NP-complete decision problems are polynomial;
the complexity of “most” succinct games is unknown.

(7) Tractability for succinct games can sometimes be established by demonstrating
ultimate periodicity or additive periodicity of the g-function. Perhaps the theory
of “combinatorics of words” can contribute to establish such periodicity.

(8) For decision problems, high complexity is normally a liability; for games it is
often an asset.

(9) The boardfeel, which makes simple games appear complex and complex games
simple, does not seem to have an analog in the realm of decision problems.
Neither do the notions of a strategy in the wide sense and in the broad
sense.

(10) Unlike decision problems, only a few approximability results seem to be known
as yet for games (some of which were mentioned in Section 1).

And the 11th commandment: It may be di/cult to pull out a game from Wonderland
and classify it into its precise complexity class. But it may be easier to check whether
a game satis0es any of items (a)–(d) of De0nition 8, and if so, to understand why the
remaining items are hard to satisfy. This approach may lead to solutions for unsolved
games or at least to reasonable conjectures.

In summing up, we remark that amusing oneself with games may sound like a
frivolous occupation. But the fact is that the bulk of interesting and natural mathemati-
cal problems that are hardest in complexity classes beyond NP, such as Pspace, Exptime
and Expspace, are two-player games; occasionally even one-player games (puzzles) or
even zero-player games (Conway’s “Life”). In addition to a natural appeal of the sub-
ject, there are applications or connections to various areas, including complexity, logic,
graph and matroid theory, networks, error-correcting codes, surreal numbers, on-line
algorithms and biology.
But when the chips are down, it is this “natural appeal” that compels both am-

ateurs and professionals to become addicted to the subject. What is the essence of
this appeal? Perhaps the urge to play games is rooted in our primal beastly instincts;
the desire to corner, torture, or at least dominate our peers. An intellectually re-
0ned version of these dark desires, well hidden under the faXcade of local, national or
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international tournaments or scienti0c research, is the consuming strive “to beat them
all”, to be more clever than the most clever, in short—to create the tools to Math-
master them all in hot combinatorial combat! Reaching this goal is particularly satis-
fying and sweet in the context of combinatorial games, in view of their inherent high
complexity.
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