

Available at

www.ElsevierComputerScience.com

POWERED BY SCIENCE DIRECT.

Theoretical Computer Science 313 (2004) 527-532

Theoretical **Computer Science**

www.elsevier.com/locate/tcs

Counting the number of games

David Wolfe*, William Fraser

Mathematics and Computer Science Department, Gustavus Adolphus College, 800 West College Avenue, St. Peter, MN 56082-1498, USA

Received 18 April 2002; accepted 8 May 2003

Abstract

We give upper and lower bounds on g(n) equal to the number of games born by day n. In particular, we give an upper bound of $g(n+1) \leq g(n) + 2^{g(n)} + 2$. For the lower bound, for all $\alpha < 1$, for sufficiently large n, $g(n+1) \ge 2^{g(n)^{\alpha}}$.

© 2003 Elsevier B.V. All rights reserved.

1. Introduction

For a complete introduction to combinatorial game theory, see [1] or [3]. For a terse introduction to combinatorial game theory axioms sufficient for reading this paper, see [4].

Define \mathscr{G}_n , the games born by day n, recursively as follows:

$$\begin{split} \mathscr{G}_0 \stackrel{\text{def}}{=} \{0\}, \\ \mathscr{G}_n \stackrel{\text{def}}{=} \{\{\mathscr{G}^{\mathsf{L}} | \mathscr{G}^{\mathsf{R}}\} \colon \mathscr{G}^{\mathsf{L}}, \mathscr{G}^{\mathsf{R}} \subseteq \mathscr{G}_{n-1}\}. \end{split}$$

Previously known upper and lower bounds on the number of games, g(n), born by day *n* are, to the best of our knowledge, unpublished. Clearly, $g(n) \leq 4^{g(n-1)}$ since there are $2^{g(n-1)}$ choices for subset G^{L} and for G^{R} . Lower bounds can be obtained by counting only those games with names. For instance, it is not hard to see that there are $2^{n+1}-1$ numbers born by day n.

^{*} Corresponding author. Fax: +1-507-933-7041. E-mail address: wolfe@gustavus.edu (D. Wolfe).

^{0304-3975/\$ -} see front matter © 2003 Elsevier B.V. All rights reserved. doi:10.1016/j.tcs.2003.05.001

2. Upper bounds

Let \mathcal{N}_n be the set of new games born on day n+1, i.e.,

 $\mathcal{N}_n = \mathcal{G}_{n+1} \backslash \mathcal{G}_n.$

For any game $G \in \mathcal{N}_n$, define the *top cover*, $\lceil G \rceil$, the set of minimal games in \mathscr{G}_n greater than G. Similarly the *bottom cover*, $\lfloor G \rfloor$, contains the maximal games in \mathscr{G}_n less than G. i.e.,

$$\begin{bmatrix} G \end{bmatrix} = \{ H \in \mathscr{G}_n : H > G \text{ and for no } H' \text{ in } \mathscr{G}_n \text{ is } H > H' > G \}, \\ |G| = \{ H \in \mathscr{G}_n : H < G \text{ and for no } H' \text{ in } \mathscr{G}_n \text{ is } H < H' < G \}.$$

In this paper, when a relation is applied to a game and a set it is assumed to hold for all elements of the set. We compare two sets of games similarly. For example, if \mathscr{S}_1 and \mathscr{S}_2 are sets, $\mathscr{S}_1 \leq \mathscr{S}_2$ if and only if for all $G_1 \in \mathscr{S}_1$ and $G_2 \in \mathscr{S}_2$, $G_1 \leq G_2$. An *anti-chain* (in the partial order \mathscr{G}_n) is a subset of \mathscr{G}_n containing no two comparable elements. Call a pair of anti-chains, $(\mathscr{T}, \mathscr{B})$, *admissible* if $\mathscr{T} > \mathscr{B}$. In this paper, we use the symbol $G_1 \triangleleft G_2$ to mean G_1 is less than or incomparable with G_2 , i.e., $G_1 \not\geq G_2$. Similarly $G_1 \Vdash G_2$ if and only if $G_1 \not\leq G_2$.

Theorem 1. There is a 1–1 correspondence between $G \in \mathcal{N}_n$ and admissible pairs $(\mathcal{T}, \mathcal{B})$. In particular, $[G] = \mathcal{T}$ and $|G| = \mathcal{B}$ if and only if

$$G = \{ \mathscr{L} | \mathscr{R} \},\tag{1}$$

where

$$\mathscr{L} = \{ H^{\mathsf{L}} \in \mathscr{G}_n \colon H^{\mathsf{L}} \triangleleft \mathscr{T} \}$$

$$\tag{2}$$

and

$$\mathscr{R} = \{ H^{\mathsf{R}} \in \mathscr{G}_n \colon H^{\mathsf{R}} \models \mathscr{B} \}.$$
(3)

Proof. Note that for any G, $(\lceil G \rceil, \lfloor G \rfloor)$ is an admissible pair. The following two lemmas complete the proof. \Box

Lemma 2. For any admissible pair $(\mathcal{T}, \mathcal{B})$, there is at most one game $G \in \mathcal{N}_n$ such that $\mathcal{T} = \lceil G \rceil$ and $\mathcal{B} = \lfloor G \rfloor$.

Proof. Suppose one such *G* exists. It suffices to show $G = \{\mathscr{L} | \mathscr{R}\}$, where \mathscr{L} and \mathscr{R} are given by Eqs. (2) and (3). Every left option G^{L} is in \mathscr{L} since otherwise $G^{L} \ge T$ for some $T \in \mathscr{T}$, and $G^{L} \ge G$ which is never true. Similarly each $G^{R} \in \mathscr{R}$. It remains to show the additional left options in \mathscr{L} (and, by a parallel argument, in \mathscr{R}) are of no consequence. The *Gift Horse Principle* [1] states that the value of game *G* is unaffected by introducing new left options less than or incomparable with *G*. But if some $H^{L} \in \mathscr{L}$ exceeded *G* then H^{L} (or some element between H^{L} and *G*) must be in \mathscr{T} . (No H^{L} equals *G* since *G* is a *new* day n + 1 game.)

528

Lemma 3. For any admissible pair $(\mathcal{T}, \mathcal{B})$, let G be given by (1). Then $\lceil G \rceil = \mathcal{T}$ and $|G| = \mathcal{B}$.

Proof. We will show $[G] = \mathcal{T}$. (The case $|G| = \mathcal{B}$ is symmetric.)

We will first show that if $T \in \mathscr{T}$ then T > G by exhibiting a winning strategy for Left (moving first or second) on T - G. Since $T > \mathscr{B}$, $T \in \mathscr{R}$ and Left can win moving first to T - T. If Right moves first to some $T - H^{L}$ for $H^{L} \in \mathscr{L}$, Left has a winning response since $T \models H^{L}$. Lastly, if Right moves on T to some $T^{R} - \{\mathscr{L} \mid \mathscr{R}\}$, observe that $T^{R} \models \mathscr{T} > \mathscr{B}$, and hence $T^{R} \in \mathscr{R}$ and Left plays to $T^{R} - T^{R}$.

Next, we will prove that if $T' \in \mathscr{G}_n$ and $T' \ge G$ then $T' \ge T$ for some $T \in \mathscr{T}$, establishing the lemma. Suppose, to the contrary, that $T' \triangleleft \mathscr{T}$. Then $T' \in \mathscr{L}$ and Right wins moving first from T' - G to T' - T' and so $T' \triangleleft G$. \Box

Corollary 4 (to Theorem 1). For any subset \mathcal{S} of \mathcal{G}_n , define

 $f(\mathscr{S}) = |\{G \in \mathscr{N}_n \colon \mathscr{S} = \lceil G \rceil \cup \lfloor G \rfloor\}|.$

Then $f(\mathcal{S}) \leq 2$. In particular,

- (1) $f(\mathcal{S})=1$ if and only if \mathcal{S} is the union of non-empty anti-chains $\mathcal{T} \cup \mathcal{B}$ with $\mathcal{T} > \mathcal{B}$, and
- (2) $f(\mathcal{S}) = 2$ if and only if \mathcal{S} is an anti-chain.
- (3) In all other cases, $f(\mathcal{S}) = 0$.

We need only use $f(\mathscr{S}) \leq 2$ to show $|\mathscr{N}_n|$ is bounded by twice the number of subsets of day *n* games, proving the following theorem due to Hickerson [5]:

Theorem 5. $|\mathcal{N}_n| \leq 2^{g(n)+1}$.

Dan Hoey [6] tightened this upper bound by using Corollary 4 more strongly.

Theorem 6. $g(n+1) \leq g(n) + 2^{g(n)} + 2$.

Proof. On day 0, the theorem holds. On subsequent days, the partial order of \mathscr{G}_n has a top and bottom (n and -n) each comparable to all other elements in \mathscr{G}_n . Hence, no subset \mathscr{S} of \mathscr{G}_n containing n or -n will have an isolated element (incomparable with all other games in \mathscr{S}) unless \mathscr{S} is the singleton set $\{n\}$ or $\{-n\}$, and any subset \mathscr{S} of \mathscr{G}_n containing both n and -n will have a 3-chain unless $\mathscr{S} = \{n, -n\}$. So,

$$|\mathcal{N}_n| \leq |\{\mathcal{S} \subseteq \mathcal{G}_n \colon \mathcal{S} \text{ has no 3-chain and at least one isolated element}\} + |\{\mathcal{S} \subseteq \mathcal{G}_n \colon \mathcal{S} \text{ has no 3-chain}\}| \leq (2 + 2^{g(n)-2} - 1) + (4 + 3(2^{g(n)-2} - 1)) = 2 + 2^{g(n)}. \square$$

This bound can be tightened still further by making stronger use of the fact that \mathscr{S} cannot have a 3-chain. For example,

529

Theorem 7. $g(n+1) \leq g(n) + [g(n-1)^2 + \frac{5}{2}g(n-1) + 2]2^{g(n)-2g(n-1)}.$ (*The right-hand side is upper bounded by* $[2g(n-1)^2/4^{g(n-1)}] \cdot 2^{g(n)}$ for $n \geq 2$.)

Proof. The length of the longest chain of games born by day *n* is exactly 2g(n-1)+1 [4]; call this value *k*. Then the number of possibilities for the elements of \mathscr{S} in such a chain is at most $\binom{k}{2} + k + 1$. When two elements are taken from the chain, \mathscr{S} determines at most one game in \mathscr{G}_{n+1} . The number of possibilities for elements of \mathscr{S} outside the chain is at most $2^{g(n)-k}$. Hence,

$$g(n+1) \leq g(n) + \left(\binom{k}{2} + 2(k+1)\right) 2^{g(n)-k}$$

$$\leq g(n) + \left[g(n-1)^2 + \frac{5}{2}g(n-1) + 2\right] 2^{g(n)-2g(n-1)}. \qquad \Box$$

3. Lower bounds

In this section, we give a lower bound of $g(n) \ge 2^{g(n-1)^{\alpha}}$ where $\alpha > 0.51$ and $\alpha \to 1$ as $n \to \infty$. In addition, if a(n) is the longest day *n* anti-chain, we show $a(n+1) \ge {a(n)/2 \choose \lfloor a(n)/2 \rfloor}$.

We will first bound g(n + 1) in two ways: the first expression is simpler, and the second is tighter.

Theorem 8.

$$q(n+1) \ge 2^{g(n)/2g(n-1)} \tag{4}$$

and

$$g(n+1) \ge (8g(n-1)-4)(2^{(g(n)-2)/(2g(n-1)-1)}-1).$$
(5)

Proof. The games born on day *n* form a distributive lattice [2], and the length of every maximal chain in the lattice is exactly l = 2g(n-1) + 1 [4]. To obtain the first inequality, observe that one anti-chain must be of length $\ge g(n)/l$. By Theorem 1, each non-empty anti-chain \mathscr{S} determines 4 day n + 1 games, those with admissible pairs $(\mathscr{S}, \{-n\}), (\mathscr{S}, \{\}), (\{n\}, \mathscr{S}), \text{ and } (\{\}, \mathscr{S}).$ So,

 $q(n+1) \ge 4 \cdot 2^{g(n)/(2g(n-1)+1)} - 1$

which we bound to give (4).

We can tighten the bound by counting all single-level anti-chains. On day n > 0, the extreme (top and bottom) elements are $\pm n$. Using the remaining g(n) - 2 elements, we will bound the number of non-empty anti-chains occupying a single non-extreme level by (g(n) - 2)/(l - 2). If these levels have a_2, \ldots, a_{l-1} elements, then the number of non-empty anti-chains occupying a single level is $\sum_i (2^{a_i} - 1)$ which, by the convexity of 2^x , we can bound by summing the average length of an anti-chain

$$\sum_{2 \leq i \leq l-1} (2^{a_i} - 1) = \sum_i 2^{a_i} - (l-2) \ge (l-2) (2^{(g(n)-2)/(l-2)} - 1).$$

Again, each non-empty anti-chain yields 4 games, giving (5). \Box

Lemma 9. $g(n) \ge g(n-1)^2$.

Proof. The Lemma is true for n < 5, for the number of games born by day n are 1, 4, 22, and 1474, for n = 0, 1, 2, and 3. Applying (5) yields $g(4) \ge 3 \times 10^{12}$. Otherwise, applying induction to (4),

$$g(n) \ge 2^{g(n-1)/2g(n-2)} \ge 2^{\sqrt{g(n-1)/2}} \ge g(n-1)^2$$

In the last step, note $2^{\sqrt{x}/2} \ge x^2$ when $x \ge 2000$, i.e., $g(n-1) \ge 2000$ or $n \ge 5$. \Box

Theorem 10. $g(n) = 2^{g(n-1)^{\alpha(n)}}$, where $\alpha(n) > 0.51$ and $\alpha(n) \rightarrow 1$ as $n \rightarrow \infty$.

Proof. Solving for $\alpha(n)$, and writing lg to mean \log_2 ,

$$\alpha(n) = \frac{\lg \lg g(n)}{\lg g(n-1)} \ge \frac{\lg g(n-1) - \lg(2g(n-2))}{\lg g(n-1)}$$
(6)

$$= 1 - \frac{1 + \lg g(n-2)}{\lg g(n-1)}$$

$$\ge 1 - \frac{1 + \lg g(n-2)}{g(n-2)/2g(n-3)}$$

$$\ge 1 - \frac{1 + \lg g(n-2)}{1/2\sqrt{g(n-2)}}.$$
(7)

This last quantity monotonically increases in *n* for $n \ge 3$ and limits to 1. For $n \le 3$, $\alpha(n)$ can be calculated exactly from known values. Bounding g(4) by (5) yields $\alpha(4) > 0.51$. Using (6), $\alpha(4) > 0.72$. Using (7) and monotonicity, $\alpha(n) > 0.99995$ for $n \ge 6$. \Box

Finally, define a(n) to be the length of the longest anti-chain on day *n*. Since $g(n+1) \ge 2^{a(n)}$, the following lower bound on a(n) suggests a faster order of growth for $\{g(n)\}$ than Theorems 10 and 8.

Theorem 11.

$$a(n+1) \ge \begin{pmatrix} a(n)+1\\ \lceil a(n)/2 \rceil \end{pmatrix} \ge 2^{a(n)}/\sqrt{a(n)}.$$

Proof. An upper bound of $\binom{a(n)}{\lfloor a(n)/2 \rfloor}$ uses elementary techniques. Let the longest day *n* anti-chain be $\mathscr{A}(n)$. The set of games

$$\{\{n|\mathscr{S}\}: \mathscr{G} \subset \mathscr{A}(n) \text{ and } |\mathscr{G}| = \lfloor a(n)/2 \rfloor\}$$

is an anti-chain: Left can win moving first on the difference of any pair $\{n|\mathscr{S}_1\} - \{n|\mathscr{S}_2\}$ by moving to $\{n|\mathscr{S}_1\} - G$ where $G \in \mathscr{S}_2 \setminus \mathscr{S}_1$.

The proof of the theorem requires knowledge of results from [4]. Construct A'(n) from A(n) with the one additional game $\{n|-n\}$. All games in A'(n) are incomparable and join-irreducible in the day n + 1 distributive lattice. Let $J(\mathcal{S})$ be the day n + 1 join of elements in \mathcal{S} . Birkhoff's construction of the day n + 1 lattice from the join-irreducibles guarantees that

$$\{\{J(\mathscr{S})\}: \mathscr{S} \subset \mathscr{A}'(n) \text{ and } |\mathscr{S}| = \lceil |a(n)|/2 \rceil\}$$

is an anti-chain. This set has size $\binom{a(n)+1}{\lceil a(n)/2 \rceil}$ which, by Sterling's approximation, is about $2^{1+a(n)}/\sqrt{a(n) \cdot \pi/2} \ge 2^{a(n)}/\sqrt{a(n)}$. \Box

Acknowledgements

We wish to thank Dean Hickerson for permission to publish much of his proof of Theorem 5 and for his numerous helpful comments. We thank Dan Hoey for his conjecture leading to Theorem 1, reopening an area which Dean considered in 1974.

References

- E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning Ways for Your Mathematical Plays, A.K. Peters, Ltd., 2001, 2nd ed., Vol. 1, (1st ed., Academic Press, New York, 1982).
- [2] D. Calistrate, M. Paulhus, D. Wolfe, On the lattice structure of finite games, in: Richard Nowakowski (Ed.), More Games of No Chance, Mathematical Sciences Research Institute Publications, Vol. 42, Cambridge University Press, Cambridge, 2002.
- [3] J.H. Conway, On Numbers and Games, A.K. Peters, Ltd., 2001, 2nd ed., (1st Ed., Academic Press, New York, 1976).
- [4] W. Fraser, S. Hirshberg, D. Wolfe, The structure of the distributive lattice of games born by day n, INTEGERS: Electronic Journal of Combinatorial Number Theory, 2004, to appear. Preprint available at http://www.gustavus.edu/~wolfe/papers
- [5] D. Hickerson, 2002, personal communication.
- [6] D. Hoey, 2002, personal communication.

532