Counting the number of games

David Wolfe*, William Fraser
Mathematics and Computer Science Department, Gustavus Adolphus College, 800 West College Avenue, St. Peter, MN 56082-1498, USA

Received 18 April 2002; accepted 8 May 2003

Abstract

We give upper and lower bounds on $g(n)$ equal to the number of games born by day n. In particular, we give an upper bound of $g(n+1) \leqslant g(n)+2^{g(n)}+2$. For the lower bound, for all $\alpha<1$, for sufficiently large $n, g(n+1) \geqslant 2^{g(n)^{\alpha}}$. (c) 2003 Elsevier B.V. All rights reserved.

1. Introduction

For a complete introduction to combinatorial game theory, see [1] or [3]. For a terse introduction to combinatorial game theory axioms sufficient for reading this paper, see [4].

Define \mathscr{G}_{n}, the games born by day n, recursively as follows:

$$
\begin{aligned}
& \mathscr{G}_{0} \stackrel{\text { def }}{=}\{0\}, \\
& \mathscr{G}_{n} \stackrel{\text { def }}{=}\left\{\left\{\mathscr{G}^{\mathrm{L}} \mid \mathscr{G}^{\mathrm{R}}\right\}: \mathscr{G}^{\mathrm{L}}, \mathscr{G}^{\mathrm{R}} \subseteq \mathscr{G}_{n-1}\right\} .
\end{aligned}
$$

Previously known upper and lower bounds on the number of games, $g(n)$, born by day n are, to the best of our knowledge, unpublished. Clearly, $g(n) \leqslant 4^{g(n-1)}$ since there are $2^{g(n-1)}$ choices for subset G^{L} and for G^{R}. Lower bounds can be obtained by counting only those games with names. For instance, it is not hard to see that there are $2^{n+1}-1$ numbers born by day n.

[^0]
2. Upper bounds

Let \mathscr{N}_{n} be the set of new games born on day $n+1$, i.e.,

$$
\mathscr{N}_{n}=\mathscr{G}_{n+1} \backslash \mathscr{G}_{n} .
$$

For any game $G \in \mathscr{N}_{n}$, define the top cover, $\lceil G\rceil$, the set of minimal games in \mathscr{G}_{n} greater than G. Similarly the bottom cover, $\lfloor G\rfloor$, contains the maximal games in \mathscr{G}_{n} less than G. i.e.,

$$
\begin{aligned}
& \lceil G\rceil=\left\{H \in \mathscr{G}_{n}: H>G \text { and for no } H^{\prime} \text { in } \mathscr{G}_{n} \text { is } H>H^{\prime}>G\right\}, \\
& \lfloor G\rfloor
\end{aligned}=\left\{H \in \mathscr{G}_{n}: H<G \text { and for no } H^{\prime} \text { in } \mathscr{G}_{n} \text { is } H<H^{\prime}<G\right\} . ~ . ~ \$
$$

In this paper, when a relation is applied to a game and a set it is assumed to hold for all elements of the set. We compare two sets of games similarly. For example, if \mathscr{S}_{1} and \mathscr{S}_{2} are sets, $\mathscr{S}_{1} \leqslant \mathscr{S}_{2}$ if and only if for all $G_{1} \in \mathscr{S}_{1}$ and $G_{2} \in \mathscr{S}_{2}, G_{1} \leqslant G_{2}$. An anti-chain (in the partial order \mathscr{G}_{n}) is a subset of \mathscr{G}_{n} containing no two comparable elements. Call a pair of anti-chains, $(\mathscr{T}, \mathscr{B})$, admissible if $\mathscr{T}>\mathscr{B}$. In this paper, we use the symbol $G_{1} \triangleleft G_{2}$ to mean G_{1} is less than or incomparable with G_{2}, i.e., $G_{1} \nsupseteq G_{2}$. Similarly $G_{1} \triangleright G_{2}$ if and only if $G_{1} \nless G_{2}$.

Theorem 1. There is a 1-1 correspondence between $G \in \mathscr{N}_{n}$ and admissible pairs $(\mathscr{T}, \mathscr{B})$. In particular, $\lceil G\rceil=\mathscr{T}$ and $\lfloor G\rfloor=\mathscr{B}$ if and only if

$$
\begin{equation*}
G=\{\mathscr{L} \mid \mathscr{R}\} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{L}=\left\{H^{\mathrm{L}} \in \mathscr{G}_{n}: H^{\mathrm{L}} \triangleleft \mathscr{T}\right\} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{R}=\left\{H^{\mathrm{R}} \in \mathscr{G}_{n}: H^{\mathrm{R}} \mid \triangleright \mathscr{B}\right\} . \tag{3}
\end{equation*}
$$

Proof. Note that for any $G,(\lceil G\rceil,\lfloor G\rfloor)$ is an admissible pair. The following two lemmas complete the proof.

Lemma 2. For any admissible pair $(\mathscr{T}, \mathscr{B})$, there is at most one game $G \in \mathscr{N}_{n}$ such that $\mathscr{T}=\lceil G\rceil$ and $\mathscr{B}=\lfloor G\rfloor$.

Proof. Suppose one such G exists. It suffices to show $G=\{\mathscr{L} \mid \mathscr{R}\}$, where \mathscr{L} and \mathscr{R} are given by Eqs. (2) and (3). Every left option G^{L} is in \mathscr{L} since otherwise $G^{\mathrm{L}} \geqslant T$ for some $T \in \mathscr{T}$, and $G^{\mathrm{L}} \geqslant G$ which is never true. Similarly each $G^{\mathrm{R}} \in \mathscr{R}$. It remains to show the additional left options in \mathscr{L} (and, by a parallel argument, in \mathscr{R}) are of no consequence. The Gift Horse Principle [1] states that the value of game G is unaffected by introducing new left options less than or incomparable with G. But if some $H^{\mathrm{L}} \in \mathscr{L}$ exceeded G then H^{L} (or some element between H^{L} and G) must be in \mathscr{T}. (No H^{L} equals G since G is a new day $n+1$ game.)

Lemma 3. For any admissible pair (\mathscr{T}, \mathscr{B}), let G be given by (1). Then $\lceil G\rceil=\mathscr{T}$ and $\lfloor G\rfloor=\mathscr{B}$.

Proof. We will show $\lceil G\rceil=\mathscr{T}$. (The case $\lfloor G\rfloor=\mathscr{B}$ is symmetric.)
We will first show that if $T \in \mathscr{T}$ then $T>G$ by exhibiting a winning strategy for Left (moving first or second) on $T-G$. Since $T>\mathscr{B}, T \in \mathscr{R}$ and Left can win moving first to $T-T$. If Right moves first to some $T-H^{\mathrm{L}}$ for $H^{\mathrm{L}} \in \mathscr{L}$, Left has a winning response since $T \triangleright H^{\mathrm{L}}$. Lastly, if Right moves on T to some $T^{\mathrm{R}}-\{\mathscr{L} \mid \mathscr{R}\}$, observe that $T^{\mathrm{R}} \triangleright T>\mathscr{B}$, and hence $T^{\mathrm{R}} \in \mathscr{R}$ and Left plays to $T^{\mathrm{R}}-T^{\mathrm{R}}$.

Next, we will prove that if $T^{\prime} \in \mathscr{G}_{n}$ and $T^{\prime} \geqslant G$ then $T^{\prime} \geqslant T$ for some $T \in \mathscr{T}$, establishing the lemma. Suppose, to the contrary, that $T^{\prime} \triangleleft \mid \mathscr{T}$. Then $T^{\prime} \in \mathscr{L}$ and Right wins moving first from $T^{\prime}-G$ to $T^{\prime}-T^{\prime}$ and so $T^{\prime} \triangleleft G$.

Corollary 4 (to Theorem 1). For any subset \mathscr{S} of \mathscr{G}_{n}, define

$$
f(\mathscr{S})=\left|\left\{G \in \mathscr{N}_{n}: \mathscr{S}=\lceil G\rceil \cup\lfloor G\rfloor\right\}\right| .
$$

Then $f(\mathscr{S}) \leqslant 2$. In particular,
(1) $f(\mathscr{S})=1$ if and only if \mathscr{S} is the union of non-empty anti-chains $\mathscr{T} \cup \mathscr{B}$ with $\mathscr{T}>\mathscr{B}$, and
(2) $f(\mathscr{S})=2$ if and only if \mathscr{S} is an anti-chain.
(3) In all other cases, $f(\mathscr{S})=0$.

We need only use $f(\mathscr{S}) \leqslant 2$ to show $\left|\mathscr{N}_{n}\right|$ is bounded by twice the number of subsets of day n games, proving the following theorem due to Hickerson [5]:

Theorem 5. $\left|\mathcal{N}_{n}\right| \leqslant 2^{g(n)+1}$.
Dan Hoey [6] tightened this upper bound by using Corollary 4 more strongly.
Theorem 6. $g(n+1) \leqslant g(n)+2^{g(n)}+2$.
Proof. On day 0 , the theorem holds. On subsequent days, the partial order of \mathscr{G}_{n} has a top and bottom (n and $-n$) each comparable to all other elements in \mathscr{G}_{n}. Hence, no subset \mathscr{S} of \mathscr{G}_{n} containing n or $-n$ will have an isolated element (incomparable with all other games in \mathscr{S}) unless \mathscr{S} is the singleton set $\{n\}$ or $\{-n\}$, and any subset \mathscr{S} of \mathscr{G}_{n} containing both n and $-n$ will have a 3 -chain unless $\mathscr{S}=\{n,-n\}$. So,

$$
\begin{aligned}
\left|\mathscr{N}_{n}\right| \leqslant & \mid\left\{\mathscr{S} \subseteq \mathscr{G}_{n}: \mathscr{S} \text { has no 3-chain and at least one isolated element }\right\} \mid \\
& +\mid\left\{\mathscr{S} \subseteq \mathscr{G}_{n}: \mathscr{S} \text { has no 3-chain }\right\} \mid \\
\leqslant & \left(2+2^{g(n)-2}-1\right)+\left(4+3\left(2^{g(n)-2}-1\right)\right) \\
= & 2+2^{g(n)} .
\end{aligned}
$$

This bound can be tightened still further by making stronger use of the fact that \mathscr{S} cannot have a 3 -chain. For example,

Theorem 7. $\quad g(n+1) \leqslant g(n)+\left[g(n-1)^{2}+\frac{5}{2} g(n-1)+2\right] 2^{g(n)-2 g(n-1)}$.
(The right-hand side is upper bounded by $\left[2 g(n-1)^{2} / 4^{g(n-1)}\right] \cdot 2^{g(n)}$ for $n \geqslant 2$.)
Proof. The length of the longest chain of games born by day n is exactly $2 g(n-1)+1$ [4]; call this value k. Then the number of possibilities for the elements of \mathscr{S} in such a chain is at most $\binom{k}{2}+k+1$. When two elements are taken from the chain, \mathscr{S} determines at most one game in \mathscr{G}_{n+1}. The number of possibilities for elements of \mathscr{S} outside the chain is at most $2^{g(n)-k}$. Hence,

$$
\begin{aligned}
g(n+1) & \leqslant g(n)+\left(\binom{k}{2}+2(k+1)\right) 2^{g(n)-k} \\
& \leqslant g(n)+\left[g(n-1)^{2}+\frac{5}{2} g(n-1)+2\right] 2^{g(n)-2 g(n-1)} .
\end{aligned}
$$

3. Lower bounds

In this section, we give a lower bound of $g(n) \geqslant 2^{g(n-1)^{x}}$ where $\alpha>0.51$ and $\alpha \rightarrow 1$ as $n \rightarrow \infty$. In addition, if $a(n)$ is the longest day n anti-chain, we show $a(n+1) \geqslant\binom{ a(n)}{\lfloor a(n) / 2\rfloor}$.

We will first bound $g(n+1)$ in two ways: the first expression is simpler, and the second is tighter.

Theorem 8.

$$
\begin{equation*}
g(n+1) \geqslant 2^{g(n) / 2 g(n-1)} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
g(n+1) \geqslant(8 g(n-1)-4)\left(2^{(g(n)-2) /(2 g(n-1)-1)}-1\right) \tag{5}
\end{equation*}
$$

Proof. The games born on day n form a distributive lattice [2], and the length of every maximal chain in the lattice is exactly $l=2 g(n-1)+1$ [4]. To obtain the first inequality, observe that one anti-chain must be of length $\geqslant g(n) / l$. By Theorem 1, each non-empty anti-chain \mathscr{S} determines 4 day $n+1$ games, those with admissible pairs $(\mathscr{S},\{-n\}),(\mathscr{S},\{ \}),(\{n\}, \mathscr{S})$, and $(\}, \mathscr{P})$. So,

$$
g(n+1) \geqslant 4 \cdot 2^{g(n) /(2 g(n-1)+1)}-1
$$

which we bound to give (4).
We can tighten the bound by counting all single-level anti-chains. On day $n>0$, the extreme (top and bottom) elements are $\pm n$. Using the remaining $g(n)-2$ elements, we will bound the number of non-empty anti-chains occupying a single non-extreme level by $(g(n)-2) /(l-2)$. If these levels have a_{2}, \ldots, a_{l-1} elements, then the number of non-empty anti-chains occupying a single level is $\sum_{i}\left(2^{a_{i}}-1\right)$ which, by the convexity of 2^{x}, we can bound by summing the average length of an anti-chain

$$
\sum_{2 \leqslant i \leqslant l-1}\left(2^{a_{i}}-1\right)=\sum_{i} 2^{a_{i}}-(l-2) \geqslant(l-2)\left(2^{(g(n)-2) /(l-2)}-1\right) .
$$

Again, each non-empty anti-chain yields 4 games, giving (5).
Lemma 9. $g(n) \geqslant g(n-1)^{2}$.
Proof. The Lemma is true for $n<5$, for the number of games born by day n are 1,4 , 22 , and 1474 , for $n=0,1,2$, and 3. Applying (5) yields $g(4) \geqslant 3 \times 10^{12}$. Otherwise, applying induction to (4),

$$
g(n) \geqslant 2^{g(n-1) / 2 g(n-2)} \geqslant 2 \sqrt{g(n-1) / 2} \geqslant g(n-1)^{2} .
$$

In the last step, note $2^{\sqrt{x} / 2} \geqslant x^{2}$ when $x \geqslant 2000$, i.e., $g(n-1) \geqslant 2000$ or $n \geqslant 5$.
Theorem 10. $g(n)=2^{g(n-1)^{\alpha(n)}}$, where $\alpha(n)>0.51$ and $\alpha(n) \rightarrow 1$ as $n \rightarrow \infty$.
Proof. Solving for $\alpha(n)$, and writing \lg to mean $\log _{2}$,

$$
\begin{align*}
\alpha(n) & =\frac{\lg \lg g(n)}{\lg g(n-1)} \\
& \geqslant \frac{\lg g(n-1)-\lg (2 g(n-2))}{\lg g(n-1)} \tag{6}\\
& =1-\frac{1+\lg g(n-2)}{\lg g(n-1)} \\
& \geqslant 1-\frac{1+\lg g(n-2)}{g(n-2) / 2 g(n-3)} \\
& \geqslant 1-\frac{1+\lg g(n-2)}{1 / 2 \sqrt{g(n-2)}} . \tag{7}
\end{align*}
$$

This last quantity monotonically increases in n for $n \geqslant 3$ and limits to 1 . For $n \leqslant 3, \alpha(n)$ can be calculated exactly from known values. Bounding $g(4)$ by (5) yields $\alpha(4)>0.51$. Using (6), $\alpha(4)>0.72$. Using (7) and monotonicity, $\alpha(n)>0.99995$ for $n \geqslant 6$.

Finally, define $a(n)$ to be the length of the longest anti-chain on day n. Since $g(n+1)$ $\geqslant 2^{a(n)}$, the following lower bound on $a(n)$ suggests a faster order of growth for $\{g(n)\}$ than Theorems 10 and 8.

Theorem 11.

$$
a(n+1) \geqslant\binom{ a(n)+1}{\lceil a(n) / 2\rceil} \geqslant 2^{a(n)} / \sqrt{a(n)} .
$$

Proof. An upper bound of $\binom{a(n) /}{\lfloor a(n) / 2\rfloor}$ uses elementary techniques. Let the longest day n anti-chain be $\mathscr{A}(n)$. The set of games

$$
\{\{n \mid \mathscr{S}\}: \mathscr{S} \subset \mathscr{A}(n) \text { and }|\mathscr{S}|=\lfloor a(n) / 2\rfloor\}
$$

is an anti-chain: Left can win moving first on the difference of any pair $\left\{n \mid \mathscr{S}_{1}\right\}-$ $\left\{n \mid \mathscr{S}_{2}\right\}$ by moving to $\left\{n \mid \mathscr{S}_{1}\right\}-G$ where $G \in \mathscr{S}_{2} \backslash \mathscr{S}_{1}$.

The proof of the theorem requires knowledge of results from [4]. Construct $A^{\prime}(n)$ from $A(n)$ with the one additional game $\{n \mid-n\}$. All games in $A^{\prime}(n)$ are incomparable and join-irreducible in the day $n+1$ distributive lattice. Let $J(\mathscr{S})$ be the day $n+1$ join of elements in \mathscr{S}. Birkhoff's construction of the day $n+1$ lattice from the joinirreducibles guarantees that

$$
\left\{\{J(\mathscr{S})\}: \mathscr{S} \subset \mathscr{A}^{\prime}(n) \quad \text { and } \quad|\mathscr{S}|=\lceil|a(n)| / 2\rceil\right\}
$$

is an anti-chain. This set has size $\binom{a(n)+1}{[a(n) / 2\rceil}$ which, by Sterling's approximation, is about $2^{1+a(n)} / \sqrt{a(n) \cdot \pi / 2} \geqslant 2^{a(n)} / \sqrt{a(n)}$.

Acknowledgements

We wish to thank Dean Hickerson for permission to publish much of his proof of Theorem 5 and for his numerous helpful comments. We thank Dan Hoey for his conjecture leading to Theorem 1, reopening an area which Dean considered in 1974.

References

[1] E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning Ways for Your Mathematical Plays, A.K. Peters, Ltd., 2001, 2nd ed., Vol. 1, (1st ed., Academic Press, New York, 1982).
[2] D. Calistrate, M. Paulhus, D. Wolfe, On the lattice structure of finite games, in: Richard Nowakowski (Ed.), More Games of No Chance, Mathematical Sciences Research Institute Publications, Vol. 42, Cambridge University Press, Cambridge, 2002.
[3] J.H. Conway, On Numbers and Games, A.K. Peters, Ltd., 2001, 2nd ed., (1st Ed., Academic Press, New York, 1976).
[4] W. Fraser, S. Hirshberg, D. Wolfe, The structure of the distributive lattice of games born by day n, INTEGERS: Electronic Journal of Combinatorial Number Theory, 2004, to appear. Preprint available at http://www.gustavus.edu/~wolfe/papers
[5] D. Hickerson, 2002, personal communication.
[6] D. Hoey, 2002, personal communication.

[^0]: * Corresponding author. Fax: +1-507-933-7041.

 E-mail address: wolfe@gustavus.edu (D. Wolfe).

