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Abstract

Game tree search deals with the problems that arise, when computers play two-person-zero-
sum-games such as chess, checkers, othello, etc. The greatest success of game tree search so
far, was the victory of the chess machine ‘Deep Blue’ vs. G. Kasparov (ICCA J. 20 (1997)
95), the best human chess player in the world at that time. In spite of the enormous popularity
of computer chess and in spite of the successes of game tree search in game playing programs,
we do not know much about a useful theoretical background that could explain the usefulness
of (selective) search in adversary games.

We introduce a combinatorial model, which allows us to model errors of a heuristic evaluation
function, with the help of coin tosses. As a result, we can show that searching in a game tree
will be ‘useful’ if, and only if, there are at least two leaf-disjoint strategies which prove the root
value. In addition, we show that the number of leaf-disjoint strategies, contained in a game tree,
determines the order of the quality of a heuristic minimax value. The model is integrated into
the context of average-case analyses.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Game tree; Error propagation

1. Introduction

When a game tree is so large that it is not possible to And a correct move, there
are two standard approaches for computers to play games. In the Arst approach, the
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algorithms work in two phases. Initially, a subtree of the game tree is chosen for exam-
ination. This subtree may be a full width, Axed depth tree, or any other subtree rooted
at the starting position. Thereafter, a search algorithm heuristically assigns evaluations
to the leaves and propagates these numbers up the tree according to the minimax prin-
ciple. Usually the chosen subtree is examined by the help of the ��-algorithm [5] or
one of its variants. As far as the error frequency is concerned, it does not make any
diKerence whether the envelope is examined by the ��-algorithm or by a pure minimax
algorithm. In both cases, the result is the same. Only the eKort to get the result diKers
drastically.

The heuristic minimax value of such a static procedure already leads to high-quality
approximations of the root value. However, there are several improvements that form
the selected subtree more individually. These lead us to a second class of algorithms
which work in only one phase and which form the tree shape dynamically at execu-
tion time. Some of the techniques are domain independent such as nullmoves [2], fail
high reductions [3], or ‘conspiracy number search’ (CNS). CNS was introduced by
McAllister [9]. SchaeKer [13] interpreted the idea and developed a search algorithm
that behaves well on tactical chess positions. We presented an eCcient Eexible search
algorithm which can deal with conspiracy numbers [6,8]. We implemented the algo-
rithm in the chess program ‘P.ConNerS’, which was the Arst one that could win an
oCcial FIDE Grandmaster Tournament [7]. The success was widely recognized in the
chess community.

In spite of the overwhelming successes of game tree search [14] in practice, we do
not know much about a theoretical background, which could explain how errors of the
heuristic evaluation process are Altered out by the minimax-procedure, resp. why the
Eexible, adaptive algorithms work better in practice than static approaches do.

Pearl [12] examined game trees, assuming that WIN and LOSS are randomly, and
independently from each other, assigned to the terminal positions. As a result the
outcome at the root does only depend on the fraction of WIN-leaves. SchrNufer proposed
a model in which he could explain the helpfulness of depth d search trees. Furthermore,
he was able to distinguish between games where depth d-uniform searching is helpful
and ones where it is detrimental [1]. The game trees in his model are random events
themselves. A similar model, reAned by the concept of quiescence, was used by Kaindl
and Scheucher [4].

The results of this paper are applicable for all concrete (i.e. not randomly chosen,
not vague) game trees, and they are the most general ones that we know of. We use
a simple basic model which has been inspected before with non-encouraging results
only [10,11].

Model. An arbitrary but Axed Anite game tree G is given. Each of its nodes has a value
1 or 0. These values follow the minimax principle, and we call them ‘real’ (=true)
values. We perform coin tosses at the leaves of G. Thus, each leaf gets a second value,
which we call a ‘heuristic’ one. With a probability of p a leaf gets the same heuristic
value as its real one. With a probability of 1 −p it gets the complementary value. We
assume p to be equal for all leaves. The heuristic value of G’s root is the minimax
value of the heuristic leaf values. The question of interest is the following: With which
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Fig. 1. An arbitrary game tree G.

probability will the heuristic minimax value and the real value of G’s root be equal to
each other?

Insights. We show that the ‘number of leave-disjoint strategies’ is a key-term of error
analyses in game trees.

The number of leaf-disjoint strategies (LDSs), which all prove the root value, de-
termines to what degree the root value is approximated by a heuristic minimax value.
If there are not at least two such LDSs, a minimax value will not lead to better
approximations than a direct heuristic evaluation (with respect to a reasonable deAni-
tion of ‘better’).

Note that our results are applicable for all game trees. They are neither limited to
Axed-depth trees nor to trees with clustering leaf-values.

Example. In order to prove the value of G’s root (see Fig. 1) to be 0, we only need to
inspect the subtree S1 := {v1; v2; v3; v5; v8; v9; v10; v12; v14}. We call this subtree (which
proves the upper bound to be 0) a strategy which is contained in the game tree G.
The nodes of S2 := {v1; v2; v3; v5; v8; v9; v10; v11; v14} build a strategy for the root value
0, as well. In contrast to S3 := {v1; v2; v3; v5; v7; v9; v10; v11; v13}, however, S2 is not
leaf-disjoint to S1.

The paper is organized as follows: In Section 2 we introduce some general deAni-
tions, concerning game tree search. In Section 3 we analyze the model and discuss the
results. We also link our results to CNS Section 4 contains the proofs, which proAt
from a new elegant technique of error analysis.

2. De�nitions and notations

2.1. General game tree de4nitions

De�nition 1. In this paper G = (T; h) will be a game tree, if T = (V; E) is a tree and
h : L(G) → {0; 1} is a function, L(G) being the set of leaves of T .
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Remark. We identify the nodes of a game tree G with positions of the underlying
game and the edges of T with moves from one position to the next.

De�nition 2. There are two players MIN and MAX. MAX has to move on even
levels of the game tree, MIN on the other levels. This deAnes a player function
p : V → {MAX;MIN}.

De�nition 3. Let G = (T; h) be a game tree and v∈V a node of T . The function
minimax: V → {0; 1} is inductively deAned by

minimax(v) :=




h(v) if v ∈ L(G);
max{minimax(v′) | (v; v′) ∈ E} if p(v) = MAX;
min{minimax(v′) | (v; v′) ∈ E} if p(v) = MIN:

We call minimax(v) the minimax value of v. The minimax value of the root of G
is denoted by minimax(G).

De�nition 4. Let G be a game tree, s∈ {MIN;MAX }, with root v∈V . Let �(u) denote
the set of u′s successors. A strategy for player s, Ss = (Vs; Es), is a subtree of G,
inductively deAned by
• v∈Vs.
• If u∈Vs is an internal node of T with p(u) = s then there is exactly one u′ ∈�(u)

with u′ ∈Vs and (u; u′) ∈Es.
• If u∈Vs is an internal node of T with p(u) = Qs, then �(u) ⊂Vs, and for all u′ ∈�(u)

is (u; u′) ∈Es.

As a consequence of that, the minimax-evaluation of a strategy S either provides
us with a lower (in case S is a MAX-strategy) or with an upper (in case S is a
MIN-strategy) bound of the root value of G. When a strategy S gives us 1 as a lower
bound, resp. 0 as an upper bound, we say that S ‘proves’ the root value.

De�nition 5. Two strategies will be called leaf-disjoint if they have no leaf in common.

De�nition 6. The depth of a game tree is the maximum distance between the root of
G and its leaves.

3. Error analysis

When we agree on splitting an error analysis into a certain number of errors and the
errors’ positions, one can analyze how errors propagate in game trees from diKerent
points of view: Arstly, the errors may be positioned by a friend of ours (some kind of
best-case scenario). Let S be the set of leaves of a smallest strategy, that proves the
real value of the root. Let n be the number of leaves of G. Then we can make at least
n − |S| many errors at the leaves without the error reaching the root of G.
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Secondly, the positioner of the errors may be our enemy (some kind of worst-case
scenario). If x is the number of leaf-disjoint strategies in G, that all prove the root
value, we will be able to make at least x−1 errors without the error reaching the root.
When there are exactly x faulty evaluations, they can be positioned in such a way that
the root value gets faulty, too.

Theorem 7. Let G = ((V; E); h) be a game tree with value 0 (resp. 1) at the root of
G. Then are equivalent:
(1) There are c leaf-disjoint min- (max-)strategies, that all prove that the value of

the root is 0 (resp. 1).
(2) You must change the values of at least c leaves in order to get the root value

changed to 1 (resp. 0).

Proof. (a) → (b): Let S1; : : : ; Sc c be leaf-disjoint strategies that all prove that the
value of the root of G is 0 (resp. 1). If you change c′¡c leaf values, there will stay
at least one strategy S ∈ {S1 : : : Sc}, which still proves that the value of the root of G
is 0 (resp. 1).

(b) → (a): In the following, we describe a ‘destruction strategy’, which systemat-
ically destroys c leaf-disjoint strategies by the help of the changing of the values of
c-many leaves.

Induction over the depth t of G:
• Start: Let t = 0. For a game tree which consists only of one node it is clear that

there exists only one strategy, and that it is possible to destroy this one by just
changing the value of that speciAc node.

• Induction hypothesis: Thus, let the induction hypothesis be: Under the assumption
that G contains exactly (and no more than) c′¡c leaf-disjoint strategies S1 : : : Sc′

(all proving 1 (resp. 0) as the root value), it is possible to change the root value to
0 (resp. 1) by just changing the values of c′-many leaf values.

• Induction step: t − 1 → t. We examine two cases: If the root � of G is an ALL-
node (an ALL-node v is a strategy-node which contains all successors of v), and if
there are exactly c′-many leaf-disjoint strategies below �, which all prove the root
value, then below all successors of the root will be as well at least c′ many such
strategies. Below at least one of these root successors there is exactly one below
that are exactly c′-many proving strategies. (As otherwise there would be more than
c′-many strategies at the root, as well.) One of these successors is selected, and
together with the induction hypothesis the proof is done.

If the root � of G is a CUT-node, and if there are exactly c′-many strategies
which all prove that the value of the root of G is 1 (resp. 0), this will be caused
by the fact that the sum

∑d
i=1 c

′
i (d being the number of successors of �, c′

i being
the number of proving strategies of the ith successor vi of the root �) is equal to c′.
With the help of the induction hypothesis, we achieve that all these successors get
a value 0 (resp. 1). Thus, the value of the root becomes 0 (resp. 1).

Thirdly, and much more interesting is the question of what happens, when we pre-
sume a certain error rate (in relation to n) and when these errors are arbitrarily or
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Fig. 2. MAX-node v with real value 1.

average-like positioned. For simpliAcation, let us assume that errors occur
randomly.

Let us perform coin tosses on all leaves of G. With a probability of p each leaf
gets the same heuristic value as its real value. With a probability of 1 − p it gets the
complementary value. We assume p to be equal for all leaves. For the inner nodes of
G we build the minimax value that is based on the possibly incorrect heuristic values.
The question of interest is, with which probability the heuristic value and the real value
at the root of G will be the same.

Because of the tree structure the non-error probabilities of leaf-disjoint subtrees are
independent of each other. The probability of making a correct evaluation at the root of
a game tree G is a polynomial QG in the non-error probability p of a direct evaluation
of a node. We will call QG(p) the polynomial of quality for G.

Let v be a MAX-node. Then, in principle and without any loss of generality, we
come to one of the following two situations:

(1) v has got the real value 1:
Let v1; : : : ; vb be the successors of the node v, the root of the example tree (Fig. 2).
Let g1(p); : : : ; gb(p) be the probabilities for the event that the heuristic values
hi; i∈ {1 : : : b} are equal to the real values w1 : : : wb of the nodes v1 : : : vb. Now, we
can compute the probability QG1(p) that the heuristic minimax value of v is equal
to the real value of v:
QG1(p) is equal to the probability that not all successors of v get the heuristic
value 0:

QG1(p) = 1 −
(

m∏
i=1

(1 − gi(p))
b∏

i=m+1
gi(p)

)
:

(2) v has got the real value 0 (Fig. 3):

Let v1; : : : ; vb be the successors of the node v again, v being the root of the
example game tree. If we know the probabilities g1(p); : : : ; gb(p) that a heuristic
value hi; i∈ {1 : : : b} is equal to the real value wi = 0 of the node vi, we will
compute the probability QG2(p), that the heuristic value h corresponds to the real
value of the node v with a probability of QG2(p) =

∏b
i=1 gi(p).

Note 1. Let Q′
G(p) resp. Q(1)

G (p) denote the Arst derivative of QG(p). We will call a
game tree G useful, if Q′

G(1) = 0. (Because we will see that Q′
G(1) = 0 or Q′

G(1)¿1
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holds for all polynomials of quality, this criterion will give us a clear distinction
between ‘good’ and ‘bad’ game trees, if the evaluator is ‘good enough’.)

Let QG(p) be a polynomial of quality.

Lemma 8. Q′
G(1) = 0 or Q′

G(1)¿1 for all game trees.

Lemma 9. If Q′
G(1)¿0, Q′

G(1) will express the number of leaves, which are able to
change the root value of G by a single <ip of a leaf value.

Theorem 10. Q′
G(1) = 0 if, and only if, the game tree G contains at least 2 leaf-

disjoint strategies, both proving the real value of the root of G.

Lemma 8 reveals that there are two contrary types of game trees. Game trees which
are clearly useful and ones that are not useful at all. Theorem 10 speciAes the useful
game trees to be those that contain several leaf-disjoint strategies. Game trees with no
two leaf-disjoint strategies have a damaging error behaviour.

Theorem 11. Q(n)
G (1) =Q(n−1)

G (1) = · · · =Q(1)
G (1) = 0 ⇔ there are n + 1 leaf-disjoint

strategies below v that prove the real value of v.

Let G be an arbitrary game tree, QG its polynomial of quality. Taylor’s theorem,
f(p) =f(1)+f′(1)(p−1)+ · · ·+f(n)(1)=n!(p−1)n +Rn+1(p), leads us to |QG(p)−
QG(1)| = O((1 − p)n+1) if, and only if there are n + 1-many leaf-disjoint strategies in
the game tree G. Near the point x= 1 the number of leaf-disjoint strategies, contained
in G, determines the order of the quality of a search.

Interpretation. Fig. 4 presents us with three diKerent courses of Q(p) and the identity
function. In the case of Q(p)6p, we do not see any motivation for performing any
search at all. It is obviously more eKective to directly evaluate the root. Thus, we
see that the search tree is only useful, (in an intuitive sense, here) when Q(p)¿p,
since only then is the error rate of the computed minimax value of the root smaller
than the error rate of a direct evaluation of the root. Thus, if QG(p) and QH (p) are
polynomials of quality and Q′

G(1) = 0 and Q′
H (1)¿1, there will be an �¿0 such that

for all p∈ [1 − �; 1] it is QG(p)¿QH (p), and thus G is more useful than H .

Example. Let us re-inspect the game tree G in Fig. 1. Let H arise from G by Eipping
the value of node v11 from 0 to 1. As a consequence, there are no two leaf-disjoint
strategies in H for the root value.
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Fig. 5 shows, how the non-error probabilities at the roots grow with increasing p at
the leaves.

We derive the following conjectures:
• It is not the number of strategies, contained in G, that is the key to the quality of

a search, but the number of leaf-disjoint ones. There may be thousands of diKerent
strategies, if there are not at least two leaf-disjoint ones, the game tree is not helpful.

• The branching factor (i.e. the degree of the inner nodes) of a game tree vanishes in
our analysis. This gives us reason to hope that game tree search methods can also
be used in games with quite a high branching factor, which has sometimes been
doubted. Especially, the branching factor argument has led to the general opinion
that Go is not suited for game tree search.

• For chess, there are many heuristic-based ideas as how to form a game tree. What
is the eKect of these heuristics such as fail high reductions or singular extensions?
We guess that these heuristics do nothing but increase the number of leaf-disjoint
strategies in game trees, concerning their real values. CNS can be interpreted as a
meta-heuristic which tries to increase the number of LDSs, too. Indeed, with CNS
you try to examine game trees which contain several LDSs, but seen from the side
of the heuristic values.
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Integration of the model. An objection to the model, which we use here, might be the
fact that in practice (e.g. in chess programs) the evaluation-errors are not independent
from each other, or that they do not occur randomly at all. Anyway, the used model
is deAnitely a nice and elegant tool for analyses and it is not (as it is no model
in the world) necessarily a one-to-one description of the reality. We can easily set
the model in the context of average case analyses. Let us call an average-case error
analysis, in which the number of occurring errors is weighted according to a binomial
distribution, a relaxed average-case analysis. The term expresses that we are interested
in the problem of how errors propagate in minimax trees when we presume an error
rate of ‘approximately x percent’.

Let G be an arbitrary game tree with n leaves, and let s be the string of 0s and 1s,
consisting of the real values of the leaves of G in a left to right order. Furthermore,
let s′ ∈ {0; 1}n be a further string of length n. If the value s(i) and s(i′) have the same
value at a position i, we say ‘the ith leaf of s′ has been correctly classiAed’. When
we put all strings of length n into clusters C1 : : : Cn, with each cluster containing those
strings which have i correctly classiAed items, there exists a certain number ci for each
cluster of strings, which tells us, in how many cases the root is correctly classiAed by
a minimax-evaluation of G.

Since QG(p) is indeed equal to
∑n

i=0 Prob(the root value is correctly classiAed by
the minimax-evaluation of G | there are exactly i correctly classiAed leaves) · Prob(exa-
ctly i leaves are correctly classiAed) =

∑n
i=0 ci=|Ci|

( n
i

)
xi (1−x)n−i, with x being equal

to the probability p of our combinatorial model, the proposed model is nothing but a
nice mathematical vehicle in which we perform a relaxed average-case error analysis.

4. Proofs

Let QG(p) be a polynomial of quality.

Lemma 8. Q′
G(1) = 0 or Q′

G(1)¿1 for all game trees.

Theorem 10. Q′
G(1) = 0 if, and only if, the game tree G contains at least 2 leaf-

disjoint strategies, both proving the real value of the root of G.

Without loss of generality, we, can recursively compose any game tree G with the
help of the following three ‘diKerent’ classes of depth-1 trees. They are diKerent as far
as their polynomials of quality are concerned. Fig. 6(a) shows a game tree rooted by a
maxnode with value 0. Because of the minimax principle all successors are 0 as well.
Fig. 6(b) is a game tree rooted by a maxnode with value 1. Exactly one successor of
the root has a value of 1. In Fig. 6(c) there is more than one successor with a value
of 1. By the help of Section 4 we get polynomials of quality Q1, Q2 and Q3 for the
three types of game trees G1, G2 and G3:

Q1(x) = g1(x) · · · gb(x);
Q2(x) = 1 − (1 − g1(x)) · g2(x) · · · gb(x);
Q3(x) = 1 − (1 − g1(x)) · · · (1 − gm(x)) gm+1 · · · gb(x):
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The derivatives of these three polynomials are easily computable:

Q′
1(x) =

b∑
i=1

g1(x) · · · g′
i(x) · · · gb(x);

Q′
2(x) = −(1 − g1(x))′ · g2(x) · · · gb(x)

+
b∑

i=2
(1 − g1(x)) · g2(x) · · · g′

i(x) · · · gb(x);

Q′
3(x) = −

c∑
i=1

(1 − g1(x)) · · · (1 − gi(x)) · · · (1 − gc(x)) · gc+1(x) · · · gb(x)

−
b∑

i=c+1
(1 − g1(x)) · · · (1 − gc(x)) · gc+1(x) · · · g′

i(x) · · · gb(x):

Because gi(1) = 1 for all i, the following holds:

Q′
1(1) = g′

1(1) + · · · + g′
b(1);

Q′
2(1) = g′(1);

Q′
3(1) = 0:

Any given game tree can be regarded as a recursive construction of t = 1-trees, as
introduced above. By the fact that the polynomial of quality of any leaf is the identity
function and by a simple implicit induction over the depth of game trees we see that
Lemma 8, as well as Theorem 10 are correct.

Example. Let Theorem 10 be proven for all game trees with a maximum depth of d.
Let us now inspect a game tree G with a depth of d+1, with real root value of e.g. 0.
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Therefore, all root successors s1 : : : sb of G have the real value 0. If there are two or
more leaf-disjoint strategies contained in each subtree G1 : : : Gb below s1 : : : sb, and if
they all prove a value of 0, then Q′

Gi
(1) = 0 for all 16i6b. Therefore Q′

G(1) = 0, as
well. If one or more of the subtrees G1 : : : Gb contains no two leaf-disjoint strategies,
at least one of the addends is greater than 0 and thus Q′

G(1)¿0, as well.
Let G be an arbitrary game tree, and let v be its root. From now on, let Q(n)

G denote
the nth derivative of QG. By induction we will show

Theorem 11. Q(n)
G (1) =Q(n−1)

G (1) = · · · =Q(1)
G (1) = 0 ⇔ there are n + 1 leaf-disjoint

strategies below v that prove the real value of v.

Claim 12. The nth derivative of a product of polynomials h(x) := g1(x) · · · gb(x) can
be described as

∑
y1+···+yb=n

a(y1; : : : ; yb) g
(y1)
1 (x) · · · g(yb)

b (x)

with appropriate a(y1; : : : ; yb) ∈ N (natural numbers)

The derivatives of Q1, Q2 and Q3:

Analogous to the previous subsection we will examine the nth derivative of Q1; Q2

and Q3. We will examine them on the following assumptions: (i) For any game tree
G and for all i6n there is valid Q(i−1)

G (1) = · · · =Q(1)
G (1) = 0 ⇔ there are i leaf-

disjoint strategies below v (the root of G) that prove the real value of v. (ii) For
all G ∈ {G1; G2; G3} it is Q(n−1)

G (1) = · · · =Q(1)
G (1) = 0 and there are n leaf-disjoint

strategies below v that prove the real value of v. Moreover (iii), for all i∈ {1 : : : n−1}
the following statement is valid: the sign of Q(i)

G (1) is equal to (−1)i−1.

Remark. When we will start the induction itself, (i) and (iii) will form the induction
hypothesis. (ii) will be derived from one of the assumption that will be made in the
induction step: For a given G ∈ {G1; G2; G3} it is either Q(n)

G (1) = · · · =Q(1)
G (1) = 0, or,

there are n+1 leaf-disjoint strategies below v (the root of G) that prove the real value
of v.

We start describing the derivatives now:
Q(n)

1 (x) =
∑

y1+···+yb=n a(y1; : : : ; yb) g
(y1)
1 (x) · · · g(yb)

b (x) with appropriate a(: : :) ∈N.
With the help of assumption (b) we see that all addends that contain a derivative
smaller than n are zero at the position x= 1. As gi(1) = 1 for all i, we see that

Q(n)
1 (1) =

b∑
1

g(n)
i (1)

Q(n)
2 (x) = (−1)

∑
y1+···+yb=n a(y1; : : : ; yn) (1 − g1(x))(y1) g(y2)

2 (x) · · · g(yb)
b (x) with appro-

priate a(: : :) ∈N. With the help of assumption (ii) we see that at x= 1 only one addend
of the sum is non-equal to zero. We conclude that

Q(n)
2 (1) = g(n)

1 (1):
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The nth derivative of Q(n)
3 (x) is more complicated.

Q(n)
3 (x) = (−1)

∑
y1+:::+yb=n

a(y1; : : : ; yb)(1 − g1(x))(y1) · · · (1 − gc(x))(yc)

×g(yc+1)
c+1 (x) · · · g(yb)

b (x) with appropriate a(: : :) ∈ N:

We distinguish between 3 cases:
Case 1 n¡c: Q(n)

3 (1) = 0, because one factor of each addend is zero, and there are
n leaf-disjoint strategies below v because of the deAnition of a strategy.

Case 2 n= c: Let Sy1 ;:::;yb(x) be any addend of Q(n)
3 (x), at x= 1.

(a) If there is an l with l6c and (yl¿1 or yl = 0), it will follow Sy1 ;:::;yb(1) = 0,
because 1 − gl(1) = 0.

(b) If there is an l with l¿c and yl �= 0 it will follow Sy1 ;:::;yb(1) = 0. It is zero because
the assumption implies that there is an index i with i6c and yi = 0.

(c) Otherwise: Sy1 ;:::;yb(1) = (−1)c · ∏c
i=1 g

(1)
i (1).

With n= c we get Q(n)
3 (1) = (−1) · (−1)n · k · ∏n

i=1 g
(1)
i (1), for a appropriate k ∈N. (In

this case the sign of Q(n)
3 (1) is (−1), if n is even, and (+1) otherwise. That is because

Arst derivatives of polynomials of quality are positive.)

Case 3 n¿c: Again, let Sy1 ;:::;yb(x) be one of the addends of Q(n)
3 (x).

(a) If there is an l with l6c and yl = 0, we know that Sy1 ;:::;yb(1) = 0.
(b) If there is an l with l¿c and yl¿0, we get

∑c
i=1 yi6n−1. Sy1 ;:::;yb(x) has the form

(1−g1(x))(y1) · · · (1−gc(x))(yc) ·X; X ∈R (real numbers). From assumption (ii) we
know that there are n leaf-disjoint strategies below v. By the help of the deAnition
of strategies we know that the sum of leaf-disjoint strategies below v1 : : : vc is n, as
well. As

∑c
i=1 yi6n−1, we can conclude that there is one successor vi; i∈ {1 : : : c}

that is supplied with more than yi-many leaf-disjoint strategies. Thus, by the help
of the assumption (i), we know that at least one of the (1−g(yi)

i (x)) becomes zero
at the position x= 1, for some i∈ {1 : : : c}.

(c) Last but not least there is the case of
∑c

i=1 yi6n and
∏c

i=1 yi¿0. Here we get
Q(n)

3 (1)= −∑
y1+···+yc=n a(y1; : : : ; yc; 0; : : : ; 0) (1 − g1(x))(y1)(1) · · · (1 − gc(x))(yc)(1)

with appropriate a(y1; : : : ; yc; 0; : : : ; 0) ∈N.
With some proper a(y1; : : : ; yc; 0; : : : ; 0) ∈ N we can conclude

Q(n)
3 (1) = (−1)c+1 ∑

y1+···+yc=n
a(y1; : : : ; yc; 0; · · · ; 0)g1(x)(y1)(1) · · · gc(x)(yc)(1)

With the help of assumption (iii) the sign of Q(n)
3 (1) is equal to (−1) (−1)c · ∏c

1

sign(g(yi)
i (1)), with

∑c
1 yi = n: Let ki =yi − 1;∀i∈ {1 : : : c}. Thus (−1)ki is the sign of

g(yi)
i (1). Obviously,

∑c
1 ki = n−c, and therefore, the sign of Q(n)

c (1)=
∏c

i=1 ki(−1) (−1)c

= (−1)(n−1).
Now, we can easily prove Theorem 11 by induction. The induction hypothesis is:
For all i6n the following is valid: Q(i−1)

G (1) = · · · =Q(1)
G (1) = 0 ⇔ there are i leaf-

disjoint strategies below v (the root of G) that prove the real value of v. Moreover,

the sign of Q(i)
G (1) is equal to (−1)i−1.
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The induction start has already been done in the previous subsection.
Induction step (n→ n+1): We start with ‘⇐’. There are n+1 leaf-disjoint strategies

below v, the root of a game tree G. Thus, we know that there are n leaf-disjoint
strategies, too. With the help of the induction hypothesis we know that assumptions
(i)–(iii) are fulAlled. By a simple, implicit induction over the depth of G, we see that
the induction step is already done. We use the previously computed derivatives of Q1,
Q2 and Q3.

Now, we come to ‘⇒’: Let QG be a polynomial of quality of a game tree G. Let
Q(n)

G = · · · =Q(1)
G = 0. Obviously, Q(n−1)

G = · · · =Q(1)
G = 0, too. From the induction hy-

pothesis we know that there are n leaf-disjoint strategies below the root of G, reasoning
the real value of the root of G. Once again, we know that assumptions (i)–(iii) are
fulAlled. By a simple, implicit induction over the depth of G, we see that the induction
step is already done. We must only consider the previously computed derivatives of
Q1, Q2 and Q3, and the fact that for all i ∈ {1 : : : n} the sign of Q(i)

G (1) (G a game
tree) is (−1)i−1.

5. Conclusion

We presented a combinatorial model, that allows us to model errors of a heuristic
evaluation function with the help of coin tosses. The non-error probability of a heuris-
tic minimax value at the root of any game tree G is a polynomial in the non-error
probability of the heuristic evaluation function at the leaves of G. Let QG(x) be that
polynomial. We were able to prove a one-to-one relationship between the number of
leaf-disjoint strategies that all prove the minimax value of G, and the derivatives of
QG(1).

We showed that the number of leaf-disjoint strategies that are contained in a game
tree, determines the order of the quality of a heuristic minimax value. We also got an
easily understandable criterion for the usefulness of game tree searches with heuristic
evaluations at all.
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