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Abstract

We study a variant of the tenure game introduced by Spencer (Theoret. Comput. Sci. 131
(1994) 415). In this version, faculty is not 1red, but downgraded to the lowest rung instead.
For the upper bound we give a potential function argument showing that the value vd of

the game starting with d faculty on the 1rst rung satis1es vd6 �log2 d + log2 log2 d + 1:98�.
We prove a nearly matching lower bound of �log2 d+ log2 log2 d� using a strategy that can be
interpreted as an antirandomization of Spencer’s original game. For d tending to in1nity, these
bounds improve to

�log2 d+ log2 log2 d+ 1 + o(1)�6 vd6 �log2 d+ log2 log2 d+ 1:73 + o(1)�:
In particular, the set of all d∈N such that the value of the game is precisely �log2 d+log2log2 d+
1� has lower density greater than 1

5 .
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1. Introduction

In this paper, we study a variant of the tenure game introduced by Spencer in [11].
Tenure games are so-called Pusher–Chooser games. These are two player perfect in-
formation games where each round the player called ‘Pusher’ splits the position into
two alternatives and ‘Chooser’ selects one thereof. Hence the theme of these games is
on-line balancing: Pusher has to 1nd a balanced split (in the sense that neither alter-
native is too favorable to Chooser), whereas Chooser tries to detect and exploit such
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imbalances. Prominent examples of Pusher–Chooser games include vector balancing
games [2,3,6,7,9,10] and liar games. Concerning the latter, we refer to the survey [8]
and its extensive bibliography of 120 references. Internet routing problems gave rise
to the related “guessing secrets” problem, that attracted attention recently [1,4,5].
In his marvelous paper “Randomization, Derandomization and Antirandomization:

Three Games”, Spencer [11] shows a generic method to convert a random strategy for
Chooser in such a game into a deterministic algorithm. Moreover, he also provides a
method coined “antirandomization” that produces a matching lower bound construc-
tively, i.e., including a strategy for Pusher.
The game Spencer demonstrated these methods most easily is the tenure game. We

cite the rules from [11]:

The tenure game is a perfect information game between two players, Paul—
chairman of the department and Carole—dean of the school. An initial position
is given in which various faculty are at various pre-tenured positions. Paul will
win if some faculty member receives tenure. Carole wins if no faculty member
receives tenure. Each year Chair Paul creates a promotion list L of the faculty
and gives it to Dean Carole who has two options: (1) Carole may promote all
faculty on list L one rung and simultaneously 1re all other faculty. (2) Carole
may promote all faculty not on list L one rung and simultaneously 1re all faculty
on list L.

In this paper, we study a slight variant of this tenure game. We will assume that
not-promoted faculty is not 1red, but downgraded to the 1rst rung instead. Apart from
an intrinsic interest, there are two further reasons to investigate this game. In [6] we
showed that good strategies for this game yield good strategies for the on-line vector
balancing problem with aging, i.e., where decisions in the past become less important
compared to the actual one. A second motivation is that this variant seemingly does
not admit the randomization, derandomization and antirandomization approach.
Let us state the rules precisely. Whether Carole can win or not of course depends

on the number of rungs we have. To remove this parameter without losing information
about the game, we assume to have in1nitely many rungs and play an optimization
version of the game: The highest rung reached by some faculty member is called the
pay-oK for Paul. Naturally, he tries to maximize this pay-oK, whereas Carole tries to
minimize it. To further simplify the setting we assume that all faculty is on the 1rst
rung at the beginning of the game. Exchanging people by innocent chips and baptizing
this version ‘European Tenure Game’, we have:
Rules of the European tenure game: The game is played with a 1xed number d of

chips which lie on levels numbered with the positive integers. At the start of the game,
all d chips are on level one. The game is a two-player perfect information game. The
1rst player, called ‘Pusher’, tries to get a chip to a possibly high level. The maximum
level ever reached by a chip during the game is called pay-oK to Pusher. Each round
Pusher chooses a subset of chips he proposes to be promoted. If the second player
(‘Chooser’) accepts, then these chips each move up one level, and the remaining chips
are moved down to the 1rst level. If Chooser rejects, then the remaining chips move
up one level, and Pusher’s choice is downgraded to level one.
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From the rules it is clear that Pusher has some advantage in the European tenure
game compared to Spencer’s original game, which we shall call ‘American tenure
game’. The American tenure game played with d chips has a value (the maximum
level Pusher can reach) of �log d� + 1, where we write log(·) to denote the dyadic
logarithm. In the European version Pusher roughly gains an extra log log d levels.
More precisely, a bound of �log d�+ �log log d�6vd6 log d+ log log d+ 4 for the

value vd of the European tenure game played with d chips was shown in [6]. In this
paper, we make some progress towards a full understanding of the game. We reduce
the gap between lower and upper bounds, so that there are at most three possibilities
for each d. For larger d, the gap further reduces to at most two values, though we are
able to determine a precise value for a set having positive lower density:

Theorem 1. Let vd denote the value of the European tenure game played with d
chips. Then,

�log d+ log log d�6 vd 6 �log d+ log log d+ 1:98�
holds for all d. For d tending to in7nity, these bounds improve to

�log d+ log log d+ 1 + o(1)�6 vd 6 �log d+ log log d+ 1:73 + o(1)�:
In particular, the set S = {d∈N | vd= �log d+log log d+1�} has lower density greater
than 1

5 .
2

2. Upper bound: Chooser’s strategy

Let us assume d¿3 since smaller cases are trivial. We describe a position of
the game by a function P :N→N0 such that

∑
i∈N P(i)=d. Hence P(i) denotes the

number of chips on level i.
For the upper bound we use a potential function argument. Let � := (2 log d − 1)=

(log d). De1ne a potential function v by v(P) :=
∑

i∈N P(i)�
i−1 for all positions

P :N→N0. We analyze the strategy for Chooser to choose that one of the alternatives
which minimizes v(P) for the resulting position. This yields:

Lemma 2. The value of the game played with d¿3 chips is at most

log(d log d− d+ 1)
log(2− 1= log d)

+ 16 log d+ log log d+ 1 +
1

2 ln 2
+ o(1)

≈ log d+ log log d+ 1:73 + o(1):

Proof. Clearly we have v(P)6d log d for the starting position. Now let P be an
arbitrary position of the game such that v(P)6d log d. Denote by P1; P2 the two

2 The lower density d(S) of a set S ⊆N is d(S) := lim inf n→∞ (1=n)|{s∈ S | s6n}|. Roughly speaking,
the last paragraph of the theorem states that we know the precise value of the game for more than a 1fth
of the values for d.
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positions resulting from either accepting or rejecting a given Pusher move. Then
v(P1) + v(P2)=d+ �v(P), since each chip is promoted in either P1 or P2 (increasing
its potential by a factor of �) and downgraded (leading to a potential of one) in the
other alternative. Thus,

min{v(P1); v(P2)}6 1
2
(v(P1) + v(P2))

=
1
2
(d+ �v(P))

6
1
2

(
d+

2 log d− 1
log d

d log d
)

= d log d:

Hence Chooser’s strategy of minimizing v(P) ensures that v(P)6d log d holds through-
out the game.
Let P be any position such that v(P)6d log d. Let l denote the level of the highest-

ranking chip. Since the remaining d − 1 chips at least are on level one, 3 we have
�l−16d log d− d+ 1. Hence

l6 log�(d log d− d+ 1) + 1 =
log(d log d− d+ 1)
log(2− 1= log d)

+ 1:

For d¿3, the latter term is strictly less than log d+ log log d+ 1:98, as can be easily
shown. Put l= log d. Then log(2− 1

l )= 1+ log(l− 1
2 )− log l¿1− 1=(2(l− 1=2) ln 2),

as the logarithm is concave. Thus

log(d log d− d+ 1)
log(2− 1= log d)

6
l+ log l

log(2− 1=l)

6
l+ log l

1− 1=(2(l− 1
2 ) ln 2)

= l+ log l+
1

2 ln 2
+

log l
2l ln 2− 1− ln 2

+
1 + ln 2

2 ln 2(2l ln 2− 1− ln 2)
;

proving the asymptotics.

3. Lower bound: Pusher’s strategy

For a position P :N→N0 put f(P)=
∑

i∈N P(i)2
i. Note that this function was

used as a potential function for the American tenure game. We propose a strategy for
Pusher that consists of 1rst maximizing the f-value of the position and then using the

3 This seems to be a negligible advantage. For large d in fact it is, but for smaller values this is enough
to reduce the upper bound from l + log l + 4 to l + log l + 1:98.
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strategy for the American tenure game to convert the f-potential into a high-ranking
chip.
Let us sketch this last phase 1rst. For a more detailed discussion we refer to [11].

Assume Pusher got to a position having f-potential at least 2‘ for some ‘∈N. Then
either there is a chip on level ‘, or Pusher can split the chips into two subsets each
having potential at least 2‘−1. Regardless of Chooser’s move, the promoted part already
has an f-potential of at least 2‘. Therefore, Pusher may ignore the downgraded chips
and continue like this on the promoted group. Since the number of non-ignored chips
decreases but the potential does not drop below 2‘, Pusher ends up with a chip on
level ‘. Thus using this strategy Pusher can enforce a chip to level �log(f(P))� from
a position having potential f(P).

3.1. First phase

The case d=2 is solved by a moment’s thought, so let us assume d¿3. We assume
1rst that d=2l is a power of 2 and deal with the general case at the end of this section.
The 1rst part of our strategy is identical with the one presented in [6].
It is clear that Pusher can change any position P such that all P(i) are even, to the

position P′ de1ned by P′(1)= 1
2d and P′(i + 1)= 1

2P(i) for all i∈N. All pusher has
to do is to select half of the chips of each level. Then, regardless of Chooser’s choice,
he ends up with position P′. We call this procedure an easy split.
From the starting position with d=2l chips on the 1rst level, Pusher can play l easy

splits and reach a position P with P(i)= 2l−i for all i=1; : : : ; l, with P(l+1)=1 and
P(i)= 0 for i¿l+ 2. Playing up to this position is the 1rst part of Pusher’s strategy.

3.2. Second phase

We continue our strategy to maximize f. In the remainder of this paper, we will
call f(P) simply the potential of P omitting the f. Since in Phase 1 a greedy strategy
of maximizing the function f was successful, one might be tempted to continue this.
As each level has potential d (except level l+1, which has potential 2d), it is not too
diBcult to split the levels into two parts having equal potential. 4 Thus the surviving
part carries the whole potential (recall that moving up doubles the potential of a chip),
and we gain a potential of 2 for each chip that is downgraded. We can continue this
roughly log l times. If, while doing so, we partition the downgraded chips evenly, we
can gain an extra potential of roughly d log l. Since we need roughly dl extra to prove
our main result, we are not done yet.
The problem is that having played this way, we might end up with one chip on

level l+log l holding most of the potential of the whole position. Hence, Chooser will
downgrade this chip in his next move, and all our clever gains are gone.

4 From the rules of the tenure games it is clear that it makes no diKerence whether Pusher proposes some
set of chips or its complement. Therefore, we may view any Pusher move simply as partition of the set of
chips into two classes.
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The solution is modesty. Of course, we cannot prevent the chip on level l+1 to move
up to l+log l in log l−1 moves. Chooser can enforce this by simply downgrading that
part of the chips that does not contain this highest-ranking one. Therefore, we partition
the chips into classes having diKerent potentials. The one containing the highest-ranking
chips has so large a potential, that we are immediately satis1ed if it survives (ending
with a potential of at least 2dl). On the other hand, if the ‘lower class’ chips survive,
we gain only little potential (an additional d), but end up with a Oexible position (in
particular having no too high-ranking chips, and allowing a similar step again). Here
are the details:
We call the position

Pk : N→ N0; i �→




2l−i if i ¡ k;
1 if i = k;
2l+1−i if k ¡ i 6 l+ 1;
0 otherwise

a logarithmic ladder with gap at level k. Further on, we de1ne for all 06j¡k

Qk;j : N→ N0; i �→




d(1− 2−j) if i = 1;
2l+1−i if j + 26 i 6 k;
1 if i = k + 1;
2l+2−i if k + 26 i 6 l+ 2;
0 otherwise:

We compute the potentials of these positions.

Lemma 3. For all 06j¡k6l+ 1, we have

f(Pk) = d(2l− k + 1) + 2k ;

f(Qk;j) = d(4l− 2(k + j) + 4) + 2k+1 − 2l−j+1:

Proof. The proof is a simple calculation. Note that the levels of Pk below the gap
each contribute d to the potential, whereas those above contribute 2d.

Lemma 4. From a logarithmic ladder with gap Pk , Pusher can enforce for any j¡k
one of the positions Pl+1−j and Qk; j. In particular, he can advance from Pk to either
Pk−1 and Qk; l+2−k , if k¿ l

2 + 1.

Proof. In position Pk , Pusher chooses those chips that have level at most j. If Chooser
rejects, these d(1−2−j) chips move down to level one, the remaining move up one level
and position Qk; j is reached. Hence suppose that Chooser accepts, then d2−j =2l−j

chips move to level one, and the other chips move up one level. Now the number of
chips on each level is a multiple of 2l−j. Thus Pusher can play l − j easy splits and
reach position Pl+1−j. The second claim follows from the 1rst by choosing j= l+2−k.
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From what we showed so far we already get a 1rst lower bound.

Lemma 5. For any �(l+1)=2
6s6l+1, Pusher has a strategy enforcing one of the
positions Qk; l+2−k for k = s+1; : : : ; l, and Ps. For s= �(l+1)=2
, this strategy yields
a potential of at least 1:5d log d, and thus a lower bound for the value of the game
of �log d+ log log d+ 0:58�.

Proof. From the starting position with 2l chips on level one, Pusher does l easy
splits and reaches position Pl=Pl+1 (this is Phase 1). Once in Position Pi for some
l¿i¿s + 1, he applies Lemma 4 with j= l + 2 − i and reaches Qi; j or Pi−1. This
proves the statement concerning the possible positions. With s= �(l+1)=2
, the bound
for the value of the game follows directly from Lemma 3 and the discussion of the
American tenure game.

Since the positions Qk; l+2−k all have a potential of more than 2dl, the lower bounds
of Lemma 5 just depend on the potential of P�(l+1)=2� of about 3

2 dl. We therefore
continue Pusher’s strategy on this position.

3.3. Third phase

The reason why we could not continue applying Lemma 4 is that the gap k and the
position j where Pusher splits the levels would meet. Splitting the levels above the gap
leads to slightly more complicated positions having two gaps. For 0¡r¡s6l+2, we
de1ne

Pr;s : N→ N0; i �→




2l−i if i ¡ r;
1 if i = r;
2l+1−i if r ¡ i ¡ s;
0 if i = s;
2l+2−i if s ¡ i 6 l+ 2;
0 otherwise:

Hence Prs is again a logarithmic ladder, this time having one gap on level r (holding
one chip) and a second one on level s, which is empty. Note that Pk =Pk; l+2.
We also need for 0¡r¡j¡s6l+ 2,

Qr;s;j : N→ N0; i �→




d(1− 2−j+1) if i = 1;
1 if i = r + 1;
2l+2−i if j + 26 i ¡ s+ 1;
0 if i = s+ 1;
2l+3−i if s+ 1¡ i 6 l+ 3;
0 otherwise:

Again we compute their potentials.
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Lemma 6.

f(Pr;s) = d(4l− r − 2s+ 5) + 2r ;

f(Qr;s;j) = d(8l− 4s− 4j + 14) + 2r+1 − 2l−j+2:

The following lemma shows that also logarithmic ladders with two gaps allow com-
prehensible strategies.

Lemma 7. Let 0¡r¡s6l + 2. For any j such that r¡j¡s, Pusher can advance
position Pr; s to either Pl+2−j; l+r+2−j and Qr; s; j.

Proof. Pusher chooses all chips on level at most j except the single chip on level r. If
Chooser rejects, we are immediately in position Qr; s; j. Otherwise, 2l−j+1 chips move
to level one and Pusher’s choice moves up one level. As all levels hold a multiple of
2l−j+1 chips, Pusher can play l− j + 1 easy splits and reach position Pl+2−j; l+r+2−j.

Here is an outline of the third phase: using Lemma 7 we apply a modesty strategy
again. By Lemma 5 (and one extra step if l is odd), we reach P(l+1)=2; l+1 or P(l+2)=2; l+2.
Once in position Px;2x for some x∈ [�(x + 7)=3�; �(l+ 2)=2�], Pusher slowly increases
the potential through the position Px−1;2x−1 to Px−1;2(x−1). The 1rst step increases the
potential by roughly 3d, the second by 2d. If Chooser tries to foil this strategy, he
immediately ends up with a Q-position having a potential of roughly 2dl (and leading
to a potential of at least 2dl within a few moves).

Lemma 8. In the European tenure game played with d=2l chips, Pusher can reach
one of the positions:
• Qk; l+2−k for k = �(l+ 1)=2
+ 1; : : : ; l,
• Qx;2x; l+3−x for x= �(l+ 7)=3�; : : : ; �(l+ 2)=2�,
• Qx−1;2x−1; l+3−x for x= �(l+ 7)=3�; : : : ; �(l+ 3)=2�,
• P�(l+4)=3�;2�(l+4)=3�.
In consequence, Pusher can reach a potential of at least 2dl, and thus a pay-o: of
at least �log d+ log log d+ 1�.

Proof. Applying Lemma 5 with s= �(l + 1)=2
, Pusher can get one of the positions
Qk; l+2−k for k = �(l+ 3)=2
; : : : ; l, or P�(l+1)=2�. Note that P�(l+1)=2�=P�(l+1)=2�; l+2. In
particular, we have P�(l+1)=2�=P�(l+4)=3�;2�(l+4)=3� for l=2. Thus, we may assume l¿3
from now on.
If l is odd, we apply Lemma 7 with j=(l + 1=2) + 1 and end up with either

Q(l+1)=2; l+2; (l+3)=2 (which is Qx−1;2x−1; l+3−x for x= �(l + 3)=2�) or P(l+1)=2; l+1. For
l=3, the latter equals P�(l+4)=3�;2�(l+4)=3�. Hence assume l¿4 in the remainder of this
proof. If l is even, our actual position is P(l+2)=2; l+2.
The rest is an easy induction. Assume that we are in position Px;2x for some x= �(l+

7)=3�; : : : ; �(l+2)=2�. Note that this implies l¿4. Applying Lemma 7 with j= l+3−x
on this position, we get Qx;2x; l+3−x or Px−1;2x−1. Applying Lemma 7 on the latter with
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j= l + 3 − x again, we reach position Qx−1;2x−1; l+3−x or Px−1;2(x−1). This proves the
claim concerning the reachable positions.
For the potentials we look up in Lemmas 3 and 6 and compute:

f(Qk;l+2−k) = 2dl + 3 · 2k−1;

f(Qx;2x;l+3−x) = 4d(l− x) + 2d+ 3 · 2x−1;

f(Qx−1;2x−1;l+3−x) = 4d(l− x) + 6d+ 2x−1;

f(P�(l+4)=3�;2�(l+4)=3�) = d(4l− 5�(l+ 4)=3�+ 5) + 2�(l+4)=3�:

All potentials except the one of Qx;2x;2xl+3−x for x= l=2+1 and even l¿4 are at least
2dl. For l¿28, we brieOy sketch how to obtain the missing potential of slightly less
than 2d for this position also. The remaining small cases can be solved easily by hand
or computer. A nicer proof though will be given at the end of this section.
Assume l¿28. Note that the r= l=2 − 1 levels l=2 + 4 to l + 2 of Ql=2+1; l+2; l=2+2

each contain chips of total potential 4d, whereas the remaining ‘low’ chips have a
potential of slightly more than 2d only. Pusher may choose the chips on the �r=2
¿7
highest levels together with the low chips. This choice alone has a potential of more
than dl, thus if Chooser accepts, Pusher clearly reached a potential of more than 2dl.
If Chooser rejects, a potential of more than 8d�r=2� + 1d¿2dl − 7d results. As all
levels hold a multiple of 27 chips, Pusher plays seven easy splits and 1nally gets the
desired potential of 2dl.

3.4. If d is not a power of 2

So far we assumed that d is a power of 2. Since we may always ignore some of
the chips in our play, this immediately yields bounds for the general case as well. As
we ignore less than half the chips, our loss is not very big. For the value of the game,
we just lose an additive term of 1 + o(1). Unfortunately, our upper and lower bounds
are already that close that such a loss is signi1cant.
A 1rst idea would be to partition the chips into subsets of cardinalities of powers

of two, and then play the above strategies on each separately. It is a problem though
to synchronize the strategies. It might happen (and Pusher cannot prevent this) that
one subset already reached a Q-position ending the strategy, while another set is in the
middle of a series of easy splits. To make this approach work, we would need a way
to conserve the potential of a favorable position like a Q-position for several moves.
This seems to be a diBcult task.
Fortunately, an easy trick solves the problem and shows that the general case is not

far away from the special case of powers of 2.

Lemma 9. Let i∈N such that 2i6d. Then Pusher can earn a potential of 2·2ii�d=2i�.
In consequence, Pusher has a strategy ensuring him a potential of at least
2d log d(1 + o(1)).
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Proof. Let d0 = �d=2i�2i, the largest multiple of 2i not exceeding d. This is Pusher’s
strategy: He plays with d0 chips only, ignoring the rest. The set of d0 non-ignored
chips is partitioned into �d=2i� groups of 2i chips each. These groups will never be
split in the course of the game, so we may assume these chips to be glued together
forming each a big chip. As there are 2i big chips, Pusher follows his strategy for
powers of 2 and ends up with a position of potential 2 ·2ii in terms of big chips. Since
each big chip consists of �d=2i� ordinary ones (‘un-gluing the big chips’), this position
has a potential of 2 · 2ii�d=2i�.
Put l := log d and i= �l− log l�. Then

2 · 2ii�d=2i�¿ 2(d− 2i)(l− log l− 1)

= 2dl
(
1− 1

l

)
(1− (log l+ 1)=l)

= 2dl(1 + o(1)):

From Lemmas 2 and 9 we deduce that we know the precise value of the game,
namely �log d+ log log d+ 1�, for all suBciently large d such that the fractional part
of log d + log log d is contained in [0; 0:27[. Some elementary calculus leads to the
conclusion that the set of all d such that we know the precise value of the game has
lower density greater than 1

5 .

3.5. Small cases

In this last subsection on lower bounds we deal with the small cases solved by hand
or computer in the proof of Lemma 8. Recall that only the cases 46l¡28; l even,
where not proven completely. We apply the trick of Lemma 9 to reduce the seemingly
more diBcult case of l even to odd l. We will show that for all l¿3 odd, Pusher can
gain a potential of 2ld+ d.
Assume this shown for the moment. In the case d=2l, l even, Pusher splits the

chips into pairs, glues each one together and plays his strategy for l odd. Un-gluing
them yields a position having potential at least 2(l−1)d+d. Since the number of chips
on each level is even, Pusher can play an easy split, gaining him an extra potential of
d. Thus Pusher can gain a potential of at least 2ld for all d=2l. We end this section
by proving the remaining claim for l odd.

Lemma 10. In the game played with d=2l; l odd, chips, Pusher can enforce a
potential of at least 2ld+ d.

Proof. Pusher follows the strategy of Lemma 8 and reaches one of the positions de-
scribed there. We continue play from there.

From Qk; l+2−k for some k ∈ [(l + 3)=2; l]: If k = l, then f(Qk; l+2−k)=
2dl+3·2k−1 = 2dl+ 3

2 d, hence there is nothing to show. Assume k¡l. Then level l+2
holds one chip and l+1 holds two chips. Thus both levels hold the same potential of
4d. Further on, there is one single chip on level k+1, which has the same potential as
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2k chips on the 1rst level (there are much more on this level). Here is Pusher’s split:
the 1rst partition class shall contain the two single chips on level l+2 and k +1. The
second class shall contain the two chips on level l+1 and 2k of the chips on the 1rst
level. The remaining chips (each level contains an even number thereof) shall be split
evenly. Thus both partition classes contain chips having equal potential in total. The
1rst partition class contains less chips, namely 2+ 1

2 (d−4−2k)= d
2 −2k−1. Hence even

if this class does not survive (resulting in fewer chips downgraded and adding a poten-
tial of 2 each), Pusher ends up with a potential of 2dl+3 ·2k−1+2(d2 −2k−1)¿2dl+d.

From Qx−1;2x−1; l+3−x for some x6(l + 3)=2: Since f(Qx−1;2x−1; l+3−x)= 4d(l −
x)+ 6d+2x−1, only the case x=(l+3)=2 has to be regarded. We treat the case l=3
separately 1rst. Though not diBcult, it shows the problems arising in small cases.
Qx−1;2x−1; l+3−x for l=3 and x=(l+3)=2 has six chips on the 1rst level and one each
on level three and 1ve. We shall denote this position by (6; 0; 1; 0; 1; 0; : : :). Pusher
selects the single chip on level 1ve, which will not survive (or we are done with a
potential of over 8d). Thus we are in position (1; 6; 0; 1; 0; 0; : : :). Pusher selects four
chips on level two. If they do not survive, we are in position (4; 1; 2; 0; 1; 0; : : :) having
potential 60=2ld + d + 4. Otherwise we are in position (4; 0; 4; 0; 0; 0; : : :) and two
easy splits get us to (4; 2; 1; 0; 1; 0; : : :) having potential 56=2ld+ d.
We may thus assume l¿5 (recall that we only considered odd l). Then a split

similar as in the 1rst case solves the problem: The 1rst partition class shall contain the
single chips on level l+ 2 and (l+ 3)=2, the second the two chips on level l+ 1 and
2(l+1)=2 of the chips on level one. The remaining chips shall be split evenly. As above
we compute a potential of 4d(l− x) + 6d+2x−1 + 2(2+ 1

2 (d− 4− 2(l+1)=2)= 2ld+ d
if the second class survives, which solves this case.

From Qx;2x; l+3−x for some x6(l+1)=2: Since f(Qx−1;2x−1; l+3−x)= 4d(l−x)+2d+
3 · 2x−1, only the case x=(l+ 1)=2 has to be regarded. Again very small values of l,
namely l=5 and 7 need special attention.
Let l=5, thus x=3. We deviate from the strategy described in Lemma 8. Once

in position P3;6 = (16; 8; 1; 4; 2; 0; 1; 0; : : :) (which precedes Q3;6;5 in Lemma 8), Pusher
chooses the two single chips on levels 3 and 7 and 10 of the chips on level one.
Regardless of Chooser’s move the resulting position has potential at least 11d.
Let l=7. Again Pusher avoids position Q4;8;6. Once in Position P4;8 = (64; 32; 16; 1; 8;

4; 2; 0; 1; 0; : : :), he chooses the two single chips on levels 4 and 9, the two chips on lev-
els 7 and 52 of the chips on level one. If Chooser accepts these chips to be promoted, as
potential of 15d results. Otherwise, Pusher continues from (56; 12; 32; 16; 0; 8; 4; 0; : : :)
with two easy splits and obtains a potential greater than 15d.
Finally, let l¿9. Then Qx;2x; l+3−x contains four chips on level l and two on level

l+ 1 to match the potential of the single chip on level l+ 3. Here is the partition of
Chooser’s move: the two single chips on levels l + 3 and (l + 3)=2 shall be in the
1rst partition class. The chips on levels l and l + 1 as well as 2(l+1)=2 of the chips
on level one shall be in the second. There is an even number of remaining chips on
each level, which are split evenly. Thus both partition classes hold the same potential
(of 1

2 (2dl + 3 · 2(l+1)=2)) and the position resulting from Chooser’s move has potential
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2dl +3 · 2(l+1)=2 plus an extra 2 for each chip that is downgraded. Since both partition
classes contain at least 2 + 1

2 (d − 6 − 2(l+1)=2) chips, this results in a potential of at
least 2dl + d.

From P�(l+4)=3�;2�(l+4)=3�: Apart from the case l=5, this position already has a
potential of 2dl+d. For l=5 note that P�(l+4)=3�;2�(l+4)=3�=(16; 8; 1; 4; 2; 0; 1; 0; : : :) can
be partitioned into the two positions (10; 2; 1; 0; 0; 0; 1; 0; : : :) and (6; 6; 0; 4; 2; 0; 0; 0; : : :).
Both contain the same potential and half the chips, hence not matter how Chooser
plays, a position having potential f(P�(l+4)=3�;2�(l+4)=3�) + d¿2dl + d results.
This ends the proof of Lemma 10.

4. Remarks and open problems

The strategies we gave above have little in common with the generic approach of
randomization, derandomization and antirandomization. A main problem seems to be
that the game has no 1xed end. Thus random play is not a good idea for Chooser.
If the game lasts suBciently long, a chip can reach arbitrary high levels with high
probability.
An obvious problem left open in this paper is a precise determination of the value

of the game for all or all but a few values of d. We only succeeded in doing so for
a set of d having lower density 1

5 . For the remaining values apart from 1nitely many,
two possibilities exist for the value of the game.
With quite some eKort it is possible to continue Pusher’s strategy from the

Q-positions and thus gain a potential of �dl for some �¿2. Unfortunately, these gains
are not too big, in particular, they are not enough to determine the value of the game
for asymptotically all numbers d.
More interesting than a slight increase of the set of numbers d such that the value

of the game with d chips is determined might be the following: assume that d=2l

is a power of two again. Then the proofs in Section 3 give a strategy for Pusher to
obtain a potential of about 2dl. A closer inspection of these proofs shows that Pusher
might need more than l2 moves to reach this aim. This is caused by the strategy
which is quite unbalanced in the following sense: Whenever Chooser has two diKerent
alternatives, i.e., Pusher did not play an easy split, one of the alternatives immediately
produces a potential of 2dl, whereas the other only gains a modest additional potential
of Q(d) in up to l− 1 easy splits.
We do not know whether a more balanced strategy exists. If Pusher could produce

two alternatives gaining an R(d) potential increase in one move (like the easy splits
do), this would result in a strategy that needs O(l) moves only.
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