
Theoretical Computer Science 38 (1985) 223 -247
North-Holland

223

EXTENDING REGULAR EXPRESSIONS WITH ITERATED
SHUFFLE

Matthias JANTZEN
Fachbereich Informatik (TGI), Universitiit Hamburg, Rothenbaumschaussee 67, D-2000 Hamburg
13, Fed. Rep. Germany

Communicated by T. Ito
Received May 1984
Revised November 1984

Abstract. It is shown that every finite expression which uses the operations union, product, Kleene
star, and iterated shuffle in any order, starting with finite sets, defines a language which can be
recognized non-deterministically by some multicounter machine in quasirealtime. It is known that
this family is in general not closed with respect to iterated shuffle. As a consequence of the
characterization each such language is in NSPACE(log n) and thus in P. However, if Pf NP,
then also neither P nor NSPACE(log n) are closed under iterated shulIle. The proof uses the new
concept of so-called shuffle schemes and a number of results on algebraic language theory.

Introduction

Recently, the operations shuffle and iterated shuffle have got more and more
attention. Together with other operations on languages they have been used to define
various classes of finite expressions that aim to describe sequentialized execution
histories of concurrent processes or sometimes the processes themselves [4,17-241.

The iterated shuffle operation sometimes allows a very short description of an
otherwise lengthy process specification. For instance, the unbounded readers-writers
problem, which cannot be modelled by any ordinary Petri net, has the following
short ‘solution’:

where @ denotes the iterated shu@le, and UI denotes the shufle operation.
Most application oriented description languages, such as flow expressions [23]

or event expressions [19,211 use the regular operations (union, product, Kleene
star), the shuffle operations (shuffle, iterated shuffle), and in addition to that further
operations to control synchronization, such as lock symbols, inverse shuffle, or
cancellation. These additional operations are able to mimic intersection and erasing
homomorphisms which causes the corresponding language classes to equal the
family of all recursively enumerable sets (see [2, 14, 19, 251).

OWL3975/85/$3.30 @ 1985, Elsevier Science Publishers B.V. (North-Holland)

224 M. Jantzen

In [2] and in [14,251 it has been show that flow expressions describe all the
recursively enumerable sets. In fact, any rec. enum. set can be specified by some
finite expression that uses only three different types of operations x, y, and z, where
x E {inverse shuffle, cancellation}, y E {shuffle, product}, and z = iterated shuffle [143.
Thus these combinations of operations are very powerful and the question arises,
which of the many other nontrivial combinations of operations, one of them being
iterated shuffle, are as powerful as the above or hopefully less complex.

More combinations of operations that can be used to define all rec. enum. sets
have been studied in [141, but all of them include some type of erasing.

In [11, flow expressions have been studied that do not allow any nesting of Kleene
star and iterated shuffle. It is there shown that these classes of restricted flow
expressions define all, and only, homomorphic images of Petri net languages.
However, these flow expressions still use the so-called lock symbols and thus again
provide a mechanism for erasing.

Extending the regular operations only with shuffle and iterated shuffle avoids
erasing and yields the so-called shuffle expressions [23] or equivalently C-
expressions [17 1.

Obviously, every shuffle expression language is context sensitive and this is the
best result known so far (see [16]). The claim [14, Corollary 3.141 that there exists
a shuffle expression language which cannot be accepted by any multicounter machine
in quasirealtime, unfortunately is based on an incorrect example. The new results
presented here will show why.

Now, to gain more insight in the complexity and power of the iterated shuffle
operation it is useful to first study subclasses of the shuffle expression languages.
One of those is the family Y/&‘, which is the smallest class of languages containing
the finite sets and closed under the operations union, shuffle and iterated shuffle.
This class contains nonregular sets and has been studied in [12,141. It was shown
there that each language L E YAu f is an element of the least intersection closed trio
generated by the semi-Dyck set D1 := (ab)@. This trio can be characterized using
Petri nets ([9]) as the class %YY or else as certain restricted classes of multicounter
languages as defined in [8,12,13]. From these characterizations it follows easily
that Y&+’ is a subclass of P, the class of languages acceptable in deterministic
polynomial time. Another proof for this result was later given in [26]. Both proofs
relied on an important property of the family .Ys&& namely, that any language of
that class can be written by some finite expression in normal form, where the iterated
shuffle is not nested. Whether nesting of iterated shuffle is crucial for defining
complicated languages or not, depends of course not only on the whole set of
operations allowed, but also on the basic sets one starts with. For instance, it was
shown in [141 that the language L = {ab”cde”fl n 2 O}@ is not acceptable by any
multicounter machine in quasirealtime, which is also a consequence of a result in
[26], stating that this language L is NP-complete, once we assume Pf NP.

Knowing all this, it is now the question whether arbitrary nesting of iterated
shuffle and Kleene star is powerful enough to also define NP-complete sets by
starting with regular sets.

Extending regular expressions with iterated shu@Ze 225

We show here that any language which can be defined from the regular sets by
applying finitely many of the four operations union, product, Kleene star, and
iterated shuffle in any order, is in fact acceptable by some nondeterministic multi-
counter machine that operates in quasirealtime, and thus in P. This significantly
generalizes [26, Theorem 5.11, corrects [14, Corollary 3.1 l] and adds to the research
in [l, 2, 4, 14-261, and last but not least solves the open problem in [19].

For proving complicated equations involving shuffle operations we introduce the
notion of shu#Ze schemes. These shuffle schemes combine informal graphical rep-
resentations of shuffled strings with the necessary preciseness to give rigorous proofs.
The advantage of this concept lies in its ability to replace clumsy string-oriented
proofs by more natural graphical transformations.

Unfortunately, the question as to whether every shuffle expression language is a
multicounter language, or at least an element of the class P, still remains unanswered
and appears to be difficult to solve.

1. Notation and basic definitions

To have a concise description for classes of languages defined by finite expressions
we use the following notation which is in accordance with standard formal language
theory. The notation used in [14] is partly repeated here.

A language L is a subset of the free monoid X” generated by the finite alphabet
X. The length of a string w E X* is denoted by lg(w), and card(X) denotes the
cardinality of X.

A fumiZy of languages 2? is a nonempty set of languages which is closed under
isomorphisms, i.e. change of alphabets, such that not all elements LE 2 are the
empty set.

In accordance with [3] we define, slightly simplifying the notation: A mapping 0
from families of languages to families of languages is called an operator, if for all
families of languages Z’ and .Z’, .Z’ E Z’ implies O(.Z’) E O(Y), and for each L E O(2)
there exists a finite family Y such that L E O(Y).

If 0 and 0’ are operators satisfying O(Y) c O’(Z) for all families of languages
2, then we write 0~ 0’. An operator 8 is called a closure operator, if for all families
of languages 9 one has 25 E O(Z) and O(O(2’)) = O(Z).

If O,, . . . , 6’,, are operators then (O,, . . . , O’,)(LZ’) is the least family of languages
containing LZ and closed under finitely many, including none, applications of the
operators Oj, 1 d id n. Thus by definition (O,, . . . , 0,) is a closure operator. If 0 is
already a closure operator, then we write 6(P) instead of (O)(Y).

Usually operators are defined on the basis of operations on languages. For
example, if - is the concatenation between languages, then LZ - 5?‘:=
{L * L’I L E 2, L’ E 2”) is the natural generalization to families of languages 2 and
2’. Hence by our notation (-)(LZ) denotes the closure of the family 9 under product,
more precisely: the smallest family containing 2? and which is closed under product.

226 M. Jan&en

The expression (O,, . . . , O,,)(Ol,, . . . , D;)(Y) is a shorthand for (01, . . . , On)
((K . * ’ 9 Cl)(~)).

The following unary operators on families of languages all are closure operators.
The definitions of the underlying operations on languages may be found in [3,6].

2 is the class of all homomorphisms between languages.
X is the class of all non-erasing homomorphisms:

%?:={h~%‘llg(h(w))#O for all wfh}.

X-’ is the class of all inverse homomorphisms.
cod Ye is the class of all codings or length-preserving homomorphisms:

X ““‘:={h~ %‘llg(h(w,))=lg(w) for all words w}.
drr X is the class of all length-decreasing homorphisms, also called weak codings

or alphabetical homomorphisms:

H ‘&“:={h~ %‘llg(h(w))Glg(w) for all words w}.

Furthermore we shall use, as is usually done in formal language theory, the
following abbreviations: .& := (%, %‘-‘, A 94) is the class of all trio operations, where
A 92 denotes intersection with regular sets. It is well known that M(9) =
(2YDd, X-l, A 5?)(Z).

Similarly, we use the abbreviations

.&:=(9,x-‘, A BE), %:=(A;, A,+) and @:=(A;, v,*).

All these operators JU, .& 9, 9 are again closure operators. The wedge operation
A is the natural generalization of language intersection to families of languages z,,
2$ and is defined by

The closure of a family 2? under the wedge operation is consequently denoted by
A (.J?), but, as it is usually done in AFL-theory, we then say that A (2) is closed
under intersection instead of saying that A (3’) is closed under wedge.

Similar to the wedge operation, v is the natural generalization of union to families
of languages 2, and .&:

If 2 v 2 E 2, then 2’ is called union-closed. The regular operations of product,
KIeene plus, and Kleene star are generalized to families of languages in the obvious
way.

Let h denote the empty word. For any family of languages 2 # {{h}} let 2” :=
{L-{A}1 LE 2) (note that A(Z) = Zu 55”).

Let 2% (9&g, EYY’, %8’, respectively) be the family of finite sets (regular sets,
computation sequence sets, recursively enumerable sets, respectively). For defini-
tions of %Ef in terms of Petri nets or counter machines see [4, 8, 1 l-131. It is there

Extending regular expressions with iterated shujle 227

shown that FJYY = (&, A)({Q}), where D, is the semi-Dyck language over one
pair of brackets. In [11,121 it has been proved that %5f9 Z Z&“(%Y.Y).

As in [141 the shufle operation will be denoted by the symbol u and is defined
on languages L and K by:

u,u2... u, E L, v1v2 . . . v, E K).

The shuffle operation is generalized to families of languages in the obvious way.
The iterated shu$Ze was introduced in [20] and there denoted by a dagger. This

symbol, however, can be confused with Kleene plus, so we choose the following
notation from [1, 2, 231. Let L be a language. Then

Lo := U L, and L@ := U Li,
ia i*l

where Lo := {A} and L,+l := Li UI L.
Let N := (0, 1,2, . . . } be the set of nonnegative integers. If X := {x1, x2, . . . , x,} is

an ordered finite alphabet then the Parikh mapping I) : X* + N” is defined by

we= (#x,(w), #x2(w), - * -, #,,W,

where #,i(w) is the number of occurrence of the symbol Xi in the word w.

2. Basic structural properties

In what follows we define classes of languages by using the operations union,
product, Kleene star, shufIIe, and iterated shuffle.

To denote the languages from these families we will use expressions without
formally defining the corresponding classes of expressions, since this could be done
in the standard way. Any such expression can be obtained from a finite set-theoretic
description of a language mainly by replacing the braces { and } by the brackets (

and), omitting superfluous brackets. Since no confusion seems possible we do not
distinguish between expression and the languages defined by them. We define:

L%uj:= (v, w, @)(~a

z%?2 := (v, -, *, O)(%z),

9% :=(v;, *, u, O)(%Gz).

The class .Y’&+’ has been studied in [111, some of the results will be mentioned in
what follows. The class YEP is the class of languages definable by shuffle expressions
[23] or C-expressions [171. The class E% may be defined through extended regular
expressions and is the class mainly studied in this work. We solve the open problem
in [19], which asks for the complexity of the class %Y%!.

228 M. Jantzen

For many of the proofs it is necessary to transform finite expressions into
equivalent ones by means of certain transformation rules. The simplest ones are
more or less known from the literature, but worth noticing.

Lemma 2.1. The following equations are valid for arbitrary languages A, B, and C :

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

AurB =BuA.

(AuJB)uC =Aur(BuK).

AuJ(BLJC) =(AuB)u(AuJC).

(Au B)@ zA@~B@.

(Au B)@ =(A%B@)uA@uB?

(A*)@ = (A@)* = (A@)@ = (A*)@ = (A@)+ =

(A+)@ = (A@)* = (A@)@ = (A@)@ = A@_

(A@)@ =(A@)+ =(A+)@ =A@_

(A% B)@ =((AuB)% B)u{h}.

These equations were the basis for the normal form theorem for the family L&J+’
in [121, reported in [141, and used in [26]. Since [12 3 is not available everywhere
and the result can easily be generalized we give an explicit proof here in Section 4.
In order to do that, we first have to collect a few results which describe useful
relations between the operators and which can then be used for inductive proofs
quite easily.

Lemma 2.2. The following relations are valid:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(v)(V) =(V)(v).

(*)(V> = (W*).

(O)(V) = OWN.

b)(v) s ww.
(9(v) +a’).

(9(V) ~(V)(v)(-).

@J)(V) =s w)ww.

(0)(+=(v)(~)(@)-

(O)W~W(~)W.

Extending regular expressions with iterated sh@e 229

Proof. Recall that (V)Z = Z’u 2’ = {L,Lu{A}~LEZ}. Relations (1) to (7) are
trivial consequences of Lemma 2.1. Relation (8) follows from Lemma 2.1, equations
(5) and (7) ; and for the proof of relation (9), equations (4) and (6) have to be
used. Cl

Theorem 2.3. If A? is a family of languages which contains the language (A} and is
closed with respect to the operation u, then

(v, w, OW) = wbJMN=n

Proof. The proof immediately follows from Theorem A.2. Cl

Corollary 2.4

(1) %&4p=(v)(w)(0)(%92).

(2) (V, w, O)@q) = wbu)w(~q).

(3) (v,uJ, O)(%W = (v)(uJ)(O)(%W.

Notice that in a commutative monoid the operators UI and 0 are equivalent to
product and star, respectively. Following [5 J, a subset of the free commutative
monoid A4 (usually this is W) is called semilinear if it is the finite union of linear
sets X = {a} + B*, with a E M, B G M, and B finite. Each expression for a language
from the class (v)(uI)(O)(g.) ti can be transformed by using the equations of Lemma
2.1 so that one can see that this family is another notation for the class of semilinear
sets (modulo the Parikh mapping). The family (v, w, O)(S&Z) then corresponds to
the rational subsets of M. It is easy to verify that Corollary 2.4(1) describes the
normal form result for the family Y&/ obtained in [121.

Corollary 2.5

Proof. This follows from Corollary 2.4(2) and the fact that the family %Y’.Y is closed
under union and shuffle, and contains the iterated shuffle of any regular set.
%ZW = (A, A)(0,) has been proven in [S] and [111, where also the closure under
v and w has been verified, see [9]. R@E %Y’.Y for any regular set R is Lemma IV.6
in [7] and follows also from the proof of Theorem 5.1 in [26], where it has been
shown that R@E P by using the states of a finite automaton for R as counters for
pebbles. Cl

If one is interested in the effect that the erasing of the empty word in languages
has on the finite presentation of classes defined through operations from the set
{v,., w, *, @}, the reader should consult [151, where the formal proofs of the
following results can be found.

230 M. Jantzen

Theorem 2.6. For any family of languages 2,

U “, *, u1, *, O)(Y)JA = (“, u, -, +, O)(~“).

Theorem 2.7. For any family of languages 2,

[(” , u, O)(=mA = (”)bJ)(@)bJKfA).

Corollary 2.8
(1) zEA =(v,‘,uJ,+,o)(9%zA).
(2) %%qA = (v)(w)(@)(s%zA).
(3) SBA c (v, a, +, O)(s%9zA).

The reason why equality cannot be proved for (3) is that one has to use the shuffle
operation in order to represent a set A@ = A@ w A.

We conjecture that the family (v , -, +, O)(.%t”) is not contained in the family
RR It would be sufficient to show that the set (ah)” is not an element of S9.
Note, however, that the set (ab)’ is an element of 8% since it can be written as
(a6)@= (a)(ab)@(b)(ab)@.

It is easily seen from the definitions that the families 9’&+‘, %3?, and 9% are
closed under decreasing homomorphisms. Using the preceding results one also gets
[9Pec(9VA)]A = %%‘A and likewise the classes .Y&u#” and EB” are closed under
decreasing homomorphisms, i.e. codings combined with erasing, modulo the empty
word.

A special type of erasing which is very useful, and in fact needed to prove our
main theorem in the next section, is the deletion of certain symbols by using so-called
k-limited erasing. We give a definition.

Definition. A homomorphism h E %, h : X” + Y*, is called k-limited erasing on a
word w E X* if for each decomposition w = z4uv2, h(u) = A implies lg(u) s k.

h is called k-limited erasing on a language L E X” if h is k-limited erasing on
each word w E L.

Lemma2.9. LetLE (v, -, w, +, *, 0, @)(9ik) and h E RdcC then there exists a constant
c, depending only on L, such that for each w E L there exists a v E L with h(w) = h(v)
and h is c-limited erasing on v.

Proof. Let us define the constant c := c(L) inductively as follows:
(1) For L E S&z let c(L) := max{lg(w) 1 w E L}.

(2) c(L, u LJ := max{G), c(L2)I.
(3) c(L, * LJ:= c(L * w L2) := c(L,) + c(L2).
(4) c(L;) := c(LT) := c(LY) := c(LY) := 2 - c(L,).

We prove the lemma by structural induction.
Basis. LE 9.. is trivially true.

Extending regular expressions with iterated shu@e 231

Induction steps:
(1) If L = L1 u Lz, then w E L implies w E L1 (or w E L2, which is symmetrical)

and the induct. hyp. implies the existence of a v E L, c L such that h(w) = h(v) and
h is c(I;,)-limited erasing on v. Since c(L,) d c(L), h is also c(L)-limited erasing
on VE L.

(2) If L = L1 . L2, then w E L implies w = w, - w, with w, E L,, w2 E L2. Then there
exist vi E Lj such that h is c(L,)-limited erasing on v1 and c(L,)-limited erasing on
2~~. Thus h is c(L) = (c(L,) + c(L,))-limited erasing on v1v2 E L.

(3) If L = L1 UI L2, the argumentation is similar to case (2) above and omitted.
(4) If L = Lt (or LT), then w # A (the case w = A is always trivially true) can be

decomposed into w = w, w2 . . . w,, n 2 1, Wi E L1.
If h(w;) = h for some i then one can iteratively delete these subwords, finally

yielding a word W’E Lf, w’= wi w; . . . wl, with h(w) = h(w’) and h(wi) # h for all
1 s is m, WI E L,. Now for each wi there exists a vi such that h(w:) = h(q) and h
is c(L,)-limited erasing on each vi. Since h(vi) f A it is immediately seen that h is
2 - c(L,) = c(LT)-limited erasing on v, . . . v, E Lf.

(5) L = (LF) or L = (L,)‘. In this case the argumentation is a bit more complicated,
since by shuffling words Wi E L1 into each other one can obtain arbitrarily long
subwords which are to be erased by h, even if h(wi) f A for each i. However, if
each Wi is decomposed into Wi := Wi,Ui, Wi,Ui, . . . Winai,Wi,+,, where h(wi,) = A, h(aij) # A
then for each word w E w1 w - - - u wk, k E N one can find another word v E
Wlul”’ w wk such that h(w) = h(v) and h is 2 - c(.L,)-limited erasing on v just by
first pasting together the subwords wijajj, 1 sj 4 n - 1, and Wi,Ui,wi”+, and treating
those as indivisible ‘symbols’. A more formal proof is technical and omitted. Cl

3. The class 8’8#

The subject of this section is to prove the main theorem, i.e., that each language
LE %‘94 can be accepted by some nondeterministic one-way multicounter machine
in quasirealtime. In doing this, we shall not use counter machines, instead we will
use the characterization of this class of languages as the least intersection closed
AFL containing the semi-Dyck language D, := (a!~)@. Consequently we denote this
class by (9, A)(Dl) (see [6,8, 111). The proof is quite involved and needs a number
of definitions that we shall explain first.

The proof will be done by structural induction on the depth of the expressions
that described languages from the class ‘WZ. Roughly speaking we start with the
sets of the family .Y%#’ of which we know by Corollary 2.4 that they are elements
of the family (9, A)(Dl). Knowing that this family is not closed under iterated
shuffle the following expressions of depth k + 1 are of main interest: (A*)@, (A@)‘,
(Au B)‘, and (A - B)@. By the calculation rules of Lemma 2.1 the first three
expressions do not cause problems.

232 M. Jantzen

However, to describe the set (A - B)@ by some expressions of depth k that use
only the sets A and B together with operations under which the family (9, A)(Dl)
is closed does create new problems that fall back to the other simpler cases. This
is why the proof of our main result needs the definition of certain well structured
expressions, called marked expressions, which can be used to describe a subclass
of the family %‘%! and which it is easier to deal with.

Definition. (1) If F={wl,. . . , w,} c X’ is a finite set of nonempty strings, then
(WI, - * * 9 w,) is the marked expression denoting F with depth(F) := 0.

(2) If E, and E2 are marked expressions and X, y, Z,p are four different symbols
not used in the expressions El and E2, then the following expressions E are marked
expressions of depth(E) := max{depth(E,), depth(&)} + 1:

(3) Nothing else is a marked expression.

Let MZ Z% be the class of all languages definable by marked expressions. If L E SW%‘%
then depth(L) := min{depth(E) 1 E is a marked expression denoting L}.

Obviously %‘9 = %“‘c(~8B). ,

We now show that any language definable by a marked expression can be accepted
by a nondeterministic multicounter machine in quasirealtime, which is equivalent
to showing mZ%B G (9, A)(Dl).

Theorem 3.1. #922%! G (9, A)(Q).

Proof. We use induction on depth(L) for all L E *pc~B.
Basis. Clearly, if LE MS%%! and depth(L) = 0, then L is a finite set and as such

an element of (9, A)(D1).
If L E m’%%! and the operation 0 is not used in the marked expression denoting

L, then L is regular and thus an element of (9, A)(D,) for any depth(L) B 0. If
L E HZ%‘% is not regular and depth(L) = 1, then L = (xEy)@ for some finite set E.
Aso in this case LE (9, A)(ol) since the latter family contains the iterated shuffle
of any regular set (see Corollary 2.5 and its proof).

Induction step. Assume as induction hypothesis that the theorem is true for all
L E WZR% of depth k or less for some k 21. The two cases k=O and k=l are
covered by the basic step. Let L E HZ%‘% be such that depth(L) = k + 1. The following
cases are possible.

Case 1: L= ((xE,y) - (%!.Q)).
Case 2: L = ((xE,y) u (fE&).
Case 3. L= (xE,y)*.
Case 4. L = (xE,y)@.

In all these four cases E, and E2 are expressions of depth k or less. Therefore in

Extending regular expressions with iterated shu$le 233

Cases 1 to 3, L is in (9, A)(Q) since this family is closed under product, union,
and Kleene star.

Since the family (9, A)(Or) is not closed with respect to iterated shuffle, it does
not immediately follow that in Case 4 L is an element of (9, A)(Q).

Thus we have to consider Case 4 in more detail: since k+ 13 2 we find the
following subcases of Case 4:

Subcase 4.1. L= ((x((x,E,y,) * (x2Ezyz))y)@, where E, and E2 have depth k - 1
or less. By Theorem 3.6 below we then find

I-, = ((x,E,y,)@ Lu (X*&Y*P Lu (XY)@) n (w,Y,%Y,YP IJJ x*)9

where X is some finite alphabet.
NOW depth((xiEai)@)s k, for 1 s is 2, and the induction hypothesis shows

(xiEiYi)@, (xxlY~x2Y2Y)o~ (xYl@9 and X* E (9, A)(Or). L is obtained from these sets
by operations, under which the family (9, A)(Q) is closed, therefore LE
(% A)@I), too-

Subcase 4.2. L = (x((xlElyl) u (x2E2y2))y)@, where depth(Ei) 6 k - 1 for 1 s is 2.
Then, by Theorem 3.8 below,

E = WY)@ uf (~&YA@) n ((=I~I~)o u X*)1

w (((xv>@ u (x2Ezvd@) n ((xx2yzyP UJ X*)>

for some finite alphabet X.
As in Subcase 4.1 this shows L E (9, A)(Dl), since by the induction hypothesis

(XiEai)@, 1 d i s 2, and all the other sets involved are in (9, A)(Q).
Subcase 4.3. L = (x(qE,y,)*y)@, with depth(E,) s k - 1. Then, by Theorem 3.9

below,

L = (W&Y,)’ UJ by)@> n (W,Y,)*Y)@ LU X*1,

where (xlEly,)@, (xv)@, X*, and (x(xIyI)*y)@~(~, h)(Q) show LE(~, A)(L),).
Subcase 4.4. L= (x(xlE,yl)@y)@ with depth(E,) d k- 1. Then, by Theorem 3.11

below,

E = (xh%y,)@~)* LU by)@,

and again LE (g, A)(Dl) by the induction hypothesis and the closure properties
of (-% A)@I).

Hence by induction we have WZ~% c (9, A)(Q). •J

Combining Theorem 3.1 and Lemma 2.9 we obtain the main result of this section.

Theorem 3.2. Wl! c (9, A)(Q).

Proof. For each L E WI!, LC X*, there exists a language L’E m’%R, L’E Y* and a
homomorphism h E %‘&“, h : Y* + X*, such that L = h(L’). By Lemma 2.9 there is

234 M. Jantzen

a constant c such that h(L’) = h(L’ n R) where R is the regular set

R := {w E Y* 1 h is c-limited erasing on w}.

Thus h is c-limited erasing on L’n R.
By Theorem 3.1, L’E (S, A)(Or) and since (9, A)(Q) is closed under intersection

with regular sets and under c-limited erasing homomorphism (see [6]) finally
L=h(L’nlt)~(S, A)(&). Cl

Note that the family (g, A)(Q) is not closed under arbitrary decreasing
homomorphisms, so that Lemma 2.9 is crucial for proving the main result.

Corollary 3.3. The languages from the family 8% are acceptable in nondeterministic
space log n, hence in deterministic space (log n)2 or in deterministic polynomial time.

Theorem 3.1 is the basis for our main result: Theorem 3.2 and its Corollary 3.3.
However, its proof is still not finished completely since it refers to four important
and nontrivial technical results. The proofs for these, Theorems 3.6, 3.8, 3.9, and
3.11, are not obvious and we therefore introduce the new concept of shuffle schemes
which shall be defined after some preliminary examples.

When dealing with the shuffle operation, string-oriented proofs about certain
valid equalities tend to hide the main idea behind notational monstrosities unless
they are informal and not precise. But very often proofs of the type ‘it is easy to
see. . . ’ are risky and, especially for the shuffle operations, intuition may suggest
the false. To give the reader examples, here are some equations of which the author
thought for quite a while that they all were true. The reader is kindly invited to test
his or her intuition about the validity of the following ‘equations’.

Example 3.4. (1) For distinct symbols a, b, c:

(abc)@= ((ab)@u (c)O) n ((bc)@u (a)@)?

(2) For finite sets A, B, C over disjoint alphabets:

(ABC)@= ((Al?)’ UI Co) n ((BC)@ur A@)?

(3) For distinct symbols $, 4, a, b:

(%(ab)@$)@= ($(ab)@$)* UJ ($c)@?

(4) For distinct symbols $, $, a, b:

($[(ab)@t.u ab]$)@=($(ab)@$)* UJ ($ab+)@?

Which of these four equations are true? It is not hard to show that equation (1)
is true: “c” is seen as follows: One has abc E (ab)@ UI (c)O = (ab, c)@ and thus
(abc)@c (ab)@ UJ co. By the same reasoning (abc)@c (bc)@ UJ (a)@ thus the left-hand
side of (1) is contained in the right-hand side of (1).

Extending regular expressions with iterated shuj7e 235

To see the converse, we do induction on the number of b’s in a word w E (ab, c)” n
(bc, a)@. Obviously #,(w) = #b(w) = #,(w). If #b(w) = 1, then obviously w = abc E
(abc)@; if #,,(w)=n, then w= u, au2bujcu4, since w E (ab, c)@ (respectively w E
(bc, a)@) implies that to the left-hand (respectively right-hand) side of each occur-
rence of a symbol b in w there must exist an occurrence of an a in w (respectively
c in w).

By induction u,u2u3u4~ (abc)@ so that w E (abc)‘, too.
Surprisingly, the similar equation (2) is false, as can be seen by the following

example: Let

A := {$}, B := (a, aa, b, bb), c := (4).

Then for w := $a$$ ba$$ b4 one can easily show that w & (ABC)@. On the other hand,
w E ((AB)’ UJ Co) n ((BC)@ UJ A@), as can be seen by looking at the following
decompositions of w into scattered subwords:

Equation (3) is less obvious but is true in the even more general form

(%A@&)@ = ($A@$)* I.U (%$)@,

where A E X* is an arbitrary set and $, 4 e X. The proof of this result is given later
in the text (Theorem 3.11).

Equation (4) then is again wrong, as can be seen by looking at the following word:

w := aabbaa$bbt,

for which w E (%[(ab)@ u ab]Q)@ but w f.z ($(ab)@Q)* UJ ($ab$)?
In order to simplify proofs about equations similar to (1) and (3) of Example 3.4

we introduce a graphical notation, called shufle-schemes, for words v E
{w*) u - - - w {w,}, where the Wi are single words.

Definition. Let wl, . . . , w, E X+ be given nonempty words. A shufle scheme S for
VE{W~}Lu” LU {w,} is a two-dimensional arrangement of #(S) := C y=, lg(Wi) =
lg(v) individual, square cells cij, where 1 s id n, 1 d j d lg(w,), each of which has
two different inscriptions: S-COnt(Cij) E X and S-nUm(Cij) E { 1, . . . , #(S)}. These
cells cij are arranged in n rows of the form

one directly underneath the other where

Pi = lgCwi), CO?lt(Ci,l)COnt(CJ . . . CO?lt(Ci,J = Wi,

236

and

M. Jantzen

In addition we require that

tnumCci,j) 11 ~i~n,lGj~lg(Wi)}={l,2 ,..., #(S)},

which makes num to a bijection between the cells and their numberings. Instead of
num-‘(i) we shall write S-cell(i) (or shortly cell(i) if S is known) to denote the ith
cell of S. (With respect to the numbering given by num.)

If a cell c of S has the inscription x = cant(c), then we shall call c an x-cell. For
any cell c let ‘c (respectively c’) denote the cell immediately to the left (respectively
right) of the cell c if it exists. If cl and c2 are two cells of the very same row of S
and num(c,) < num(c,), then [c, . . . c2] denotes that part of this row which contains

. .
all the cells c,, cl, cr, . . . , ‘c2, c,. Likewise [c, . . .] or [. . . c,] shall denote the
whole final (initial) part of this row including the cells cr, c;, c;‘, . . . (or
C2r 'C2, 32,. . .). The unique word ISi determined by S is finally defined by ISI :=
cont(ceZZ(l))cont(ceZZ(2)). . . cont(ceZZ(#(S))).

Example 3.5. Let w1 = aba, w2 = aaba, w3 = bab and v := aababababa E (w,) LLI
{ w2} UJ {w,}. Then v can be written in at least two different ways (see Fig. 1).

where v = ISJ = Is*/ .

Fig. 1.

Now, we have the proper terminology available to formulate the proofs of the
important technical results, necessary for the proof of Theorem 3.1.

Theorem 3.6. Let IL1 := ($(xAy) - (zBj++)@, where A, B c X” are arbitrary sets and
$, 4, x, y, 2, pfZ X. Let

R, := (xAy)@ LU (TBjj)@u~ ($Q)@, R2 := ($(xy%jj)$)@ Lu x?

Then

Extending regular expressions with iterated shuji’e 237

Proof. Obviously $(xAy) * (fBy)e G RI (and C_ R2). Since Ry = R, (using the
equation (M, u A4J@ = My w MF) and RF= &, one has L1 c RF= R1 and L1 E
RF= R2 thus L, E R, n &.

To show R, n R,G L1 we use the concept of shuffle-schemes. Let w E R1. Then
there exists a shuffle-scheme S, with w = I&[, which is of the form depicted in Fig.
2, where only cant(c) is written into each cell c.

I I

m-rows
I: ’ ’

I 1 I I I
I , 1 I

k-rows

where vi E A for l<i<n and
'j EB

for l<jlm for some n,m,k z 0.

Fig. 2.

Let w E RZ, then there exists a shuffle-scheme S, with w = IS21 of the form shown
in Fig. 3.

Now wERlnR2 implies n=m=s=k, r=C:=, (lg(Ui)+lg(Ui)), and the number
of z-cells in S, equals the number of z-cells in S, for each z E X u {$, 4, x, y, 2, 7).
More specifically: S, -cont(ceN(i)) = S,-cont(ceZZ(i)) for each 1 s i s #(S,) = #(S,).

We shall show that one can always construct a new shuffle-scheme S such that
still ISI = w and S has the form depicted in Fig. 4.

If this is possible, then obviously w E L = ($(xAy) - (cS3j+$)@.

To construct the new shuffle-scheme S we shall use a cut and paste method,
applied iteratively to the shuffle-scheme S,, that will end up with the shuffle-scheme
S. The cut and paste steps will uniquely be determined by the shuffle-scheme S,.

238 M. Jan&en

s-rows

r-rows

where aiE X for lLi$r, r20.

Fig. 3.

n-rows I*#*, -
,.,.I ’

* . .

$ X vi (y ’ ui Y Q
n

where ii,, .._ , in} = 11, _.. , n},hence vi, E A, ui, E B.
3 3

Fig. 4.

Algorithm 3.7
Step 1.
Step 2.

Step 3.

Start with the shuffle-scheme S1 and call it S.
For some $-cell c2 in S, not yet considered,
until all of them have been used,

do begin
Take the $-cell c of S for which
S2-num(c,) = S-num(c), cut it out and paste it immediately to the left of
that x-cell c’ in S for which S-num(c’) = S,-num(c;).
end.

Since S2-num(c2) < S2-num(c;) this yields a new shuffle-scheme, again called
S, for which still w = ISI holds.
For some y-cell c2 in S, not yet considered,
until all y-cells of S2 have been used,

do begin
Take the total row [c . . .] of S for which S-num(c) = S,-num(c;), which
implies S-cont(c) = 3, cut it out and paste it immediately to the right of
that y-cell c” in S for which S-num(c”) = St-num(c2).
end.

Extending regular expressions with iterated shufle 239

Since S,-num(c,) < S,-num(c;) this yields a new shuffle-scheme, again called
S, for which still w = ISI holds.

Step 4. For some @cell c2 in S, not yet considered,
until all of them have been used,

do begin
Take that $-cell c in S for which S-num(c) = S2-num(c2), cut it out and
paste it immediately to the right of that y-cell c’ in S for which S-num(c’) =
S+2um(‘c,).
end.

The final resulting shuffle-scheme S still has w = ISI and is of the form depicted
in Fig. 4. This completes the proof of Theorem 3.6. Cl

Theorem 3.8. Let L, := ($((xAy) u (%Bjj))Q)@, where A, B E X” are arbitrary sets and

$,Q,x,y, *,:VX. Let

R,:= ((($Q)% (xAy)@)n(($xyQ)@u X0),

I?,:= ((($+)% (nBjj)@)n(($zj#% X0).
Then

L, = R, LIJ R2.

Proof. By Lemma 2.1(4) one gets L1 = (xAy)@ UI i$%ByQ)@. Hence it is sufficient
to show R, = ($xAyQ)@ and l’k 1 ewise R2 = ($ZByQ)@. The inclusion ($xAyQ)@ c RI
is trivial.

The reverse inclusion follows by slightly modifying Algorithm 3.7 in the proof of
Theorem 3.6 and can be omitted. Cl

Theorem 3.9. Let IL1 := ($(xAy)*$)@, where A c X* is arbitrary and $, x, y, $ g X. Let

R, := (xAy)@ I.LI ($$)@, R2 := ($(xy)*+)@ LIJ x?

Then

L,=R,nR,.

Proof. First observe that R, = (xAy)@u~($Q)@=((xAy)u($~))@implies RI= RFand
similarly R2 = RF. Hence $(xAy)*$ c RI implies L, = ($(xAy)*Q)@c Ry= RI and
likewise L, z R2, thus L, E R, n R2.

For the proof of the reverse inclusion we again use a cut and paste algorithm on
shuffle-schemes. Let w E R, n R2, then there exist shuffle-schemes S, and S, of the
forms depicted in Figs. 5 and 6 such that w = IS,(= IS21.

Since w = IS,(= IS21 one has r = m, k =CaEx #,(w) = C:=, lg(u,), and more pre-
cisely

cont(S,-cell(i)) = cont(S,-cell(i)) for each 1 s is #(S,) = #(S,).

240 M. Jan&en

. 1
;., :

’ : ’ n-rows I
, I , * I

’ - , * I
I. .,

I’;., m-rows

where viE A for l<i6n, and n,miO.

Fig. 5.

$ xlylxlyl . ..lxIy
I I

1.1 0 . I -, . ,
1’1 - a

r-rows
I

. . ’

$xy -.*

k-rows

where aiEX for l<i<k , kZ0.

Fig. 6.

Now the following cut and paste algorithm iteratively changes the shuffle-scheme
S, according to the information contained in S, until a new shuffle-scheme S is
found from which the desired inclusion follows.

Algorithm 3.10
Step 1. Start with the shuffle-scheme S, and call it S.
Step 2. For some $-cell c2 in Sz not yet considered,

until all of them have been used,
do begin
Take that $-cell c of S for which S-num(c) = S,-num(c,), cut it out and
paste it immediately to the left of that x-cell c’ in S for which S-num(c’) =
S,-num(c;).
end.

Step 3. For some y-cell c2 in S2 with S,-cont(ci) = x not yet considered,
until all such y-cells in S2 have been used,

do begin
Take the total row [c. . .] in S for which S-nun-r(c) = S,-num(c;), cut it
out and paste it immediately to the right of that y-cell c” in S for which
S-num(c”) = S,-num(CJ.
end.

Step 4. For some $-cell c2 in S2 not yet considered,
until all $-cells in S2 have been used,

do begin
Take that @cell c in S for which S-num(c) = S,-num(c,), cut it out and
paste it immediately to the right of that y-cell c’ in S for which S-num(c’) =
S,-num(‘4.
end.

It is easy to verify that at any step in Algorithm 3.10 one has ISI = w and the

241 Extending regular expressions with iterated shuffle

shuffle scheme S obtained finally has the form depicted in Fig. 7.

$ x

;;I *
m-rows ,.I.1 . ::I

Y,l y x u,,2 Y --- x Ul,n(l) y Q
I J’ i’Y*it: I I

’ . I (.(. b‘;#;
I .

1 1 I * I I * I
I.1 . I I * I

/.I * 1 I . I I* / ’ I

$ X Urn, Y . . . X U
m,n(m) y + I

where {LI~,~ / lZi<m,

From this it is clear that w = ISI E ($(xAy)*Q)@ = L, and therefore (RI n R2) z L1
which proves the theorem. cl

l<j<n(j), n= Tn(j)J = {vi 1 lZi<n 1 5 A.
j=l

Fig. 7.

The next result is most important for proving our main theorem, since it allows
to reduce the nesting depth of 0 in certain %92 languages at the cost of other
operations.

Theorem 3.11. For any set A c X* and symbols $, 4 e X,

($A@#)‘= (%A@e)* LU ($4)‘.

Proof. Let us use the abbreviations L:= ($A@$)@ and R := (%A@$)* LU ($4)‘. First
let us show R c L. Obviously ($+)@ c L (since A E (A)@) and $A@+ c L.

242 M. Jantzen

Thus ($A@#)* c Lo and R c Lo LU L. By definition of 0 and L we get Lo c L,
hence L@r,uL_cLand REL.

For the reverse inclusion LE R the use of shuffle schemes is not appropriate.
Fact 1. ($A@$)* u $A@$ E R implies R UI $A@4 E R.
This is simply proved as follows:

R UJ $A@$ = ($A@$)* UI ($4)’ UI $A’$ (definition of R)

cRLu($$)@= R (using the assumption and the definition of I?).

Fact 2. R u ($A@$) G R implies L G R.
This follows by induction from the definition of L:

L:= ($A@$)@ = U Xi, where X0:= {A} and Xi+1 := Xi UI (%A@$).
i>O

Using these facts it is therefore enough to prove

($A@$)* u $A@$ c R.

To do this, let w E ($A@$)+, v E ($A@$), and ~E{w}u~{v}. We shall show UE R by
considering three cases. (The cases w = A or v = $4 trivially imply {w} u1 {v} E R.)

Case 1. Let w = w, w2 with wr, w2 E ($A@$)*. Then u = wlvw2 trivially implies u E R.
Case 2. Let w = wowlw2 with

wo, w,d$A@Q)*, w,=$w;w;w:"$E ($A@$), v=$v’$,

and

u E {w-Jw$}({v’} l.JJ {4}){$w~$w2}.
c

Then

u E ~wowv’~ u { 4++4”}){~~2} u ($4) c R ~1 {I# c R,

since {v’}w{w~w~w~}cA@.
Case 3. Let w = wow,w2.. . wnwn+,, na2,withwi=$wftandw!EA@for1<i<q

w; = w;wy, IfI w:, = w;w, ; w,, Wn+, E (%A@$)*, v = $v’$,

u E { w,%w~%}((v’} Lu { w:+$w;Q - - * $w~-,~%w~}){~w~~w,+*}.

Then

u E {wo$w;}((v’} Lu {wyw; - - * w~-~w~}){w~~w,+~} Lu ($$)”

c {wo%~({v’l l.lJ ww; * - * wl~)+tw,+,~ IJJ c%w.
Since v and w: E A@ for each wi, 1 d i s n, we thus get

u E { w,,}(%A@~){w,+,} u1(%$)” G ($A@$)* LU (St)@ = R.

This finishes the proof of Theorem 3.11. Cl

Extending regular expressions with iterated shujle 243

(That these three cases really cover all possible cases can be seen by looking at
Fig. 8, where all possible shufflings of w and t, are vizualized informally.)

case 1 (1 (1 (
M)()() ,___I ___\

i i

case 2 (1 (
9 si’__.)() ,__---’

i ;

i

(1 (
9

) () (1

!
()

i i

case 3
I

(1 (
?

1 (1 (
1

1 (1

i i

(1 (

a)(V’() , I

i i

Fig. 8. Any horizontal line stands for a word in A’, the % symbol is represented by an
opening bracket (and the Q by the closing bracket). The dashed arcs point to the positions in w to which

the $ and Q symbols from the word D are shuffled.

It is interesting to compare Corollary 3.3 with the following proposition from [26].

Proposition 3.12. The problem to decide ZJ E (IV)@ for arbitrary words v, w E X*,
card(X) 2 2, is NP-complete.

The obvious question to be asked is whether or not every language in the larger
class 9% is nondeterministically acceptable by a multicounter machine in quasireal-
time too, or is at least in P. In [14] it has been shown that the language L:=
{ ab”cde”f 1 n 3 0)’ is not in (9, A)(Q). However, the set { ab”cde”f 1 n 2 0) is not in
9’8 since it does not contain an infinite regular subset. By now it is not at all clear
whether 9% contains some NP-complete set. In order to find out how one could
eventually construct an NP-complete language in 9’8 the following generalization
of Theorem 3.2 gives some more hints.

Theorem 3.13. (v , u, O)(v , -, *, 0)(3Gz) c (9, A)(Q).

244 M. Jantzen

Proof. From Theorem 2.3 we first derive

(v,ul, O)(v;,*, o)(%z)=(v,~, O)(~~E)C(V)(uJ)(O)(~)(~~E).

By the closure properties of (9, A)(Q) it is sufficient to show (0)(uI)(‘2%?!) c

(9, A)(II,) and moreover it is enough to prove the following:
For arbitrary languages L1,. . . , L, E 2%?4, Li C X”, one has L:=

(L,wL*uJ-* UI L,)@E (9, A)(Dl). To finally see this, let x,, . . . , x, & X be new
symbols not used in the languages Li, 1 G i d n. NOW construct L’:=
(x, * L, UJ x2 - L2 LIJ * * - UJ x,L,)@ and observe L = h(L’) for some h E iVdec.

Now

L’=(x,L,ux,L,u* * ‘U&L,)%[(X, . . .xn)%x*]

is easy to see. But this already proves the theorem, since with Li E 832 also L”:=
(x,L, u x2L2u - - -ux,L,)@~ 8%. Thus L= h(L’)= h(L”nM), where LNE ER, ME
(O)(S&Z) c (9, A)(Q), by Corollary 2.5.

Again by Lemma 2.9 there exists a regular set R such that h is c-limited erasing
on L’ n R and therefore L = h(L”n M n R) where, by Theorem 3.2, L”, M, R E
(9, A)(Dl) and h is c-limited erasing on L”n A4 n R. Therefore, L E (9, A)(Ill). Cl

It is surprising that we were not able to generalize the ideas of the last proof to
show that the typical language,

cw~~%J w)1Q)@~ w(9b)w(~~),

is an element of (g, A)(ol) or at least acceptable in deterministic polynomial time.
Note, that the similar looking sets

(%((ab)%lJ (ab))$)@= (%(a(a6)%(ub)@)q)@
and

($((ub)@ ul (cd)@)Q)@ = ($(ub, cd)@@,

are both elements of the class Z%!.

Appendix A

We shall now present the result necessary to prove Theorem 2.3 in all details.
Also we shall list some open problems which have a more technical appeal.

Lemma A.l. (O)(UI)(0) s (V)(UJ)(@ j(u).

Proof. Lemma 2.1 shows that

Extending regular expressions with iterated shufle 245

Theorem A.2. (v , UJ, 0) d (V)(v)(uJ)(O)(u).

Proof. Clearly

We show (v, UJ)[(@)(v, UJ)]” d (V)(v)(uJ)(@j)(w) by induction on n.
Basis: n = 0 is trivial. For n = 1 we have

(buwmV9~)

s (v)(4(0)(v NUJ)

5 (v hJ)(v)W@)bJ)

qv hJMN4

s (V)(v hJ)to NJ).

Induction step:
(v, u.J)C(O)(v, dl”+l

(by Lemma 2.2(4))

(by Lemma 2.2(9))

(by Lemma 2.2(4))

=(v,U1)(0)(V,U1)[(O)(V,Ul)ln

Q (v , w)(O)(V)(v k)(@)bJ) (by the induction hypothesis)

s t v, uJ)tvMN v NJJMN4 (by Lemma 2.2(2))

s (V, ~)(v)(v)(u)(~)(uJ)(@)(uJ) (by Lemma w9))

s (v , ur)(V)(v)(V)(UI~)(@)(UJ)(W) (by Lemma 2.3)

6 (V(v NuJN@)b) (by Lemma 2.2(1) and (4)). 0

Now that we have finished the proof of Theorem 2.3 we formulate some of the
open questions.

Problem 1. Is the family 8BA a proper subclass of the family (v , -, +, @)(S%Z”),

or not?

This problem arose in the context of Corollary 2.8.

Problem 2. In [15] it has been shown that the families P’k.#’ and Y8 are closed
with respect to quotient by finite sets. We conjecture that the family 8% may not
be closed under this operation. To prove this it would be sufficient to show that
(a6c)“/c=(abc)~uJ(ab)~ %R.

Problem 3. Is 9% c (9, A)(Q)?

246 M. Jantzen

Problem 4. Does the family 9% contain some NP-complete set?

For this question, consult [26], too.

References

[l] T. Araki, T. Kagimasa and N. Tokura, Relations of flow languages to Petri net languages, Theoret.
Comput. Sci. 15 (1981) 51-75.

[2] T. Araki and N. Tokura, Flow languages equal recursively enumerable languages, Acta Inform. 15
(1981) 209-217.

[3] J. Berstel, Transductions and Context-Free Languages (Teubner, Stuttgart, 1979).
[4] L. Czaja, Parallel systems schemas and their relation to automata, Inform. Process. Lett. 10 (1980)

153-158.
[51 S. Eilenberg and M.P. Schiitzenberger, Rational sets in commutative monoids, Z. Algebra 13 (1969)

173-191.
[6] S. Ginsburg, Algebraic and Automata-Theoretic Properties of Formal Languages (North-Holland,

Amsterdam, 1975).
[7] J. Gisher, Shuffle languages, Petri nets, and context-sensitive grammars, Comm. ACM 24 (1981)

597-605.
[8] S.A. Greibach, Remarks on blind and partially blind one-way multicounter machines, Theoret.

Comput. Sci. 7 (1978) 311-324.
[9] M. Hack, Petri net languages, Computation Structures Group Memo 124, Project MAC, MIT., 1975.

[lo] D. Haussler and H.P. Zeiger, Very special languages and representations of recursively enumerable
languages via computation histories, Inform. Control 47 (1980) 201-212.

[1 l] M. Jantzen, On the hierarchy of Petri net languages, R.A.I.R.O. Inform. ZYhf!or. 13 (1979) 19-30.
[123 M. Jantzen, Eigenschaften von Petrinetzsprachen, Dissertation, Universith Hamburg, FB Infor-

matik, 1979.
[131 M. Jantzen, On zerotesting-bounded multicounter machines, Lectures Notes in Computer Science

67 (Springer, Berlin, 1979) 158-169.
[14] M. Jantzen, The power of synchronizing operations on strings, Ilheoret. Comput. Sci. 14 (1981)

127-154.
[151 M. Jantzen, Extending regular expressions with iterated shuffle, Tech. Rept., FB-Informatik, Univ.

Hamburg, IFI-HH-B-99184, 1984.
[161 J. Jedrzejowicz, On the enlargement of the class of regular languages by the shuffle closure, Inform.

Process. Lett. 16 (1983) 51-54.
[171 T. Kimura, An algebraic system for process structuring and interprocess communication, Proc. 8th

Ann. ACM Symp. on Theory of Computing (1976) 92- 100.
[181 T. Kimura, Formal description of communication behaviour, Proc. Johns Hopkins Conf on Znforma-

tion Sciences and Systems, 1979.
[19] W.F. Ogden, W.E. Riddle and W.C. Rounds, Complexity of expressions allowing concurrency,

Proc. 5th Ann. ACM Symp. on Principles of Programming Languages (1978) 185-194.
[20] W.E. Riddle, Modelling and analysis of supervisor systems, Ph.D. Thesis, Computer Science Dept.,

Stanford Univ., 1972.
[21] W.E. Riddle, Software systems modelling and analysis, RSSM/25, Dept. of Computer and Com-

munication Sciences, Univ. of Michigan, Ann Arbor, 1976.
[22] A.C. Shaw, Systems design and documentation using path descriptions, Proc. Sagamore Computer

Conf on Parallel Processing (IEEE Computer Society, 1975) 180-181.
[23] A.C. Shaw, Software description with flow expressions, IEEE Trans. Software Engrg. 3 (4) (1978)

242-254.
[24] G. Slutzki, Non-synchronizing concurrent processes and their languages, unpublished manuscript,

Dept. of Computer and Information Sciences, Univ. of Delaware, Newark, 1979.

Extending regular expressions with iterated shufle 247

[25] G. Slutzki, Descriptional complexity of concurrent processes, Lecture Notes in Computer Science
88 (Springer, Berlin, 1980) 601-611.

[26] M.K. Warmuth and D. Haussler, On the complexity of iterated shuffle, J. Comput. Sysz. Sci. 28
(1984) 345-358.

