
Theoretical Computer Science 38 (1985) 99-116
North-Holland

99

FORMAL SYSTEMS FOR JOIN DEPENDENCIES

Catriel BEER1 and Moshe Y. VARDI*
Department of Computer Science, 7’he Hebrew University of Jerusalem, Jerusalem 91904, Israel

Communicated by J.D. Ullman
Received April 1981
Revised November 1983

Abstract. We investigate whether a sound and complete formal system for join dependencies can
be found. We present a system that is sound and complete for tuple generating dependencies and
is strong enough to derive join dependencies from join dependencies using only generalized join
dependencies in the derivation. We also present a system that sound and complete for tuple
generating dependencies and is complete for extended join dependencies (which are a special
case of generalized join dependencies). Finally, we construct a Gentzen-style system that is sound
and complete for join dependencies. The last two systems have unbounded inference rules.

Key words. Database, relational model, join dependency, implication problem, formal system.

1. Introduction

The most widely studied design method for relational database schemes is the
decomposition method [131. A join dependency [1,161 is a semantic specification by
the database designer of a lossless decomposition. There are also other classes
of dependencies, all of which are semantic specifications of some kind.

A problem of utmost importance for database design theory is the implication
problem for join dependencies: does a set of join dependencies imply another join
dependency. That is, given that certain decompositions are lossless, can we tell that
another decomposition is also lossless. An implication testing algorithm, the ‘chase’,
was constructed by Maier et al. [15]. This algorithm has an exponential worst-case
running time. Moreover, there is probably no polynomial algorithm, since deciding
if a decomposition is lossless when given two join dependencies is NP-hard [lo].

The chase enables us to test implications of join dependencies. In the process of
database design, it is useful to know all of the dependencies implied by a given set.
There is, however, no way to find this set using the chase, without exhaustively
enumerating the set of all possible dependencies. Consequently, we are led towards
finding a formal system for join dependencies; a formal system enables us to derioe

* Research partially supported by Grant 1849/79 of the U.S.A.-Israel Binational Science Foundation.
Current address: Center for Study of Language and Information, Ventura Hall, Stanford University,
Stanford, CA 94305, U.S.A.

0304-3975/85/$3.30 @ 1985, Elsevier Science Publishers B.V. (North-Holland)

100 C. Beeri, M. Y. Vardi

new join dependencies from given ones. Formal systems for dependencies have
attracted a lot of interest in the last few years, since the introduction of a formal
system for functional dependencies by Armstrong [2].

Since the implication problem for join dependencies is recursively solvable, the
formal system consisting of the inference rule

d,,..., d,t-d if{d,,...,d,}l=d

is sound and complete. Nevertheless, there is an interest in finding an ‘elegant’
formal system, one that has a small number of simple axioms and inference rules.
A typical example is the propositional calculus, which is a formal system for the
recursive set of tautologies of propositional logic.

Up to now all attempts to develop a sound and complete formal systems for join
dependencies have failed. (The formal system of [8,17,18] has been shown to be
complete only for deriving first order hierarchical decompositions [8,18]). Thus,
attention has shifted to finding classes of dependencies that include join dependen-
cies as a special case and for which there is a sound and complete formal system.
One such is the class of total tuple generating dependencies [9], for which a formal
system was developed in [ll].

Sciore [171 has defined the class of generalized join dependencies, which lies strictly
between the classes of tuple generating dependencies and join dependencies. He
constructed a formal system which can derive join dependencies from join dependen-
cies by derivations that consist of generalized join dependencies. In Section 3.1 we
improve Sciore’s result. We show that the formal system for tgd’s in [ll] has a
similar property: it can derive join dependencies from join dependencies by deriva-
tions that consist of full generalized join dependencies. Our treatment is much
simpler than that of [17].

A formal system can be viewed as a computing mechanism for generating con-
sequences. A class of dependencies may not have a sound and complete formal
system, because no sound formal system for the class can have enough computing
power to generate all consequences. There are two possible solutions to the problem.
One can consider a larger class of dependencies, or one can consider a stronger
notion of formal system. In Section 3.2 we combine both approaches. We define
the class of extended join dependencies, which lies strictly between the classes of join
dependencies and generalized join dependencies. We then develop a sound and
complete system for these dependencies. This system differs from most systems in
the literature in having an unbounded rule, i.e., a rule with an unbounded number
of premises.

Finally, by extending the notion of formal system even further, we manage to get
a formal system for join dependencies. All of the formal systems in the literature
of dependency theory are Hilbert-style, in which a derivation is a sequences of
dependencies. In contrast, in Gentzen-style systems a derivation is a sequence of
sequents, which are formal statements of implication [l4]. In Section 4 we present
a Gentzen-style system with an unbounded rule and prove that it is sound and
complete for join dependencies.

Formal systems for join dependencies

2. Basic definitions

101

2.1. Attributes and relations

Attributes are symbols taken from a given finite set U called the universe. All sets
of attributes are subsets of U. We use the letters A, I?, C, . . . to denote single attributes,
and Q, R, . . . to denote sets of attributes. We do not distinguish between the attribute
A and the set {A}. The union of X and Y is denoted by XY, and the complement
of X in U is denoted by X An attribute set collection (asc) is a set of subsets of U
whose union is U. We use Q, R, S, . . . to denote asc’s.

With each attribute A is associated an infinite set called its domain, denoted
DOM(A), such that DOM(A) n DOM(B) = 8, for A# I3 Let Dom =
UAE ,DOM(A). For a set X E U, an X-value is a mapping w: X + Dom such that
w(A) E DOM(A) for all AE X. A relation on X is a finite set of X-values. We use
the letters t, u, . . . to denote values, and I, .I, . . . to denote relations. A tuple is a
U-value. An arbitrary relation, unless explicitly stated otherwise, is a relation on U.

2.2. Operations on relations

We use two operations of the relational algebra [121. For an X-value w and a set
Y c X we denote the restriction of w to Y by w[yl. Let I be a relation on X. The
projection of I on Y, denoted q(l), is rTTy(I) = { w[y1: w E I}.

Let I,, . . . , Ik be relations on X,, . . . , Xk, respectively. The join of I,, . . . , Ik,

denoted I, * * - 0 * Ik, is

I, * * -+*I,=(w:w is an XI. . . Xk-value s.t. W[Xj]E lj, for 1 =z j G k}.

With each asc R = (R,, . . . , Rk} we associate a project-join expression

mR=?TR,*’ - ‘*TR,.

This expression defines a mapping from relations to relations as follows. Let I
be a relation, then

m&I) = {w: w is a tuple s.t. for all R E R there is a tuple u E I s.t.

w[R] = u[RI}.

Project-join expressions were studied in [7,18]. We mention some properties:

(1) 1 s m&).

(2) mR(mR(I)) = mR(I).

(3) 1 s 1 entails mR(I) z mR(J).

A valuation is a mapping h: Dam-, Dom, such that a E DOM(A) entails h(a) E
DOM(A) for all a E Dom. The valuation h can be extended to tuples and relations
as follows: Let w be a tuple. Then h(w) = h 0 w (0 denotes functional composition).
Let I be a relation. Then h(I)={h(w): WE I}.

102 C. Beeri, M. Y Vardi

A tableau [3] is a pair T = (w, I), where w is a tuple and I is a relation, such that
w[A] E T~(I) for all A E U. T defines an operation on relations as follows:

T(J) = {h(w) : h is a valuation s.t. h(1) c J}.

That is, T(J) is the set of images of w under all valuations that map every tuple of
I to some tuple of J. Observe that J c T(J).

Example 1. Let U = AB. Let I be the relation

A B
----_--_
a0 61
al bl
al b0
-___---_

Let w be the tuple

A B
---_-_-_
a0 b0
----_--_

Now T = (w, I) is a tableau. Let .J be the relation

A B
-_-----_
a0 b0
al b0
al bl
a2 bl
a2 b3
-_-----_

T(J) is the relation

A B
-_----__
a0 b0
al b0
al bl
a2 bl
a2 b3
a0 bl
al b3
a2 b0
----_--_

Clearly, the values in a tableau serve as formal variables, and therefore can be
renamed, if done consistently.

Formal systems for join dependencies 103

Lemma 2.1 ([3]). Let (w, I) be a tableau, and let h be a one-to-one valuation. Then,
for every relation J, (w, I)(J) =(h(w), h(I))(J).

We now show how to construct a tableau that defines the same mapping as a
project-join expression. Let R = {R,, . . . , &}. 7” is a tableau (w, I), where w is an
arbitrary tuple, I = { wl, . . . , wk}, wi[Ri] = w[Ri], and wi[A] is a value that has a
unique occurrence in I, for all A E I&.

Lemma 2.2 ([3]). For all relations I, mR(I) = T,(I).

We say that TR represents mm
Consider now the following problem. Given a tableau (w, I), under what condition

is it a tableau TR which represents a project-join expression mm Let u E I. Then
u[A] is repeated in I if there is another tuple v E I such that u[A] = v[A]. u[X] is
nonrepeated in I

Lemma 2.3 ([18]).
mR if and only if:

(1) For all AE
(2) If u[A] is repeated in I, then u[A]= w[A].

if for no A E X is u[A] repeated in I.

Let (w, I) be a tableau. Then it represents a project-join expression

U, at most one A-value is repeated in I.

Example 2. Let U = ABC. Let R = {AB, AC, BC}. TR is the tableau (w, I):

A I3 C

w: a0 b0 CO

a0 b0 cl

I: a0 bl CO
al b0 CO

Let T,, T2 be tableaux. We say that T1 is covered by T2, denoted T, s T2, if
T1 (I) c_ T2(I), for every relation I.

Lemma 2.4 ([3]). Let (u, I) and (v, J) be tableaux. The following conditions are
equivalent :

(1) (u, Wh J>.
(2) u E (v, JNO
(3) There is a valuation h on J such that h(J) G I and h(v) = u.

Put otherwise, (u, I) s (v, J) if and only if there are a valuation h and a relation
I’ such that u = h(v) and I = h(J) u I’. Searching for the appropriate h can, however,
be quite difficult, since testing covering of tableau is NP-complete [3, lo].

104 C. Beeri, M. Y. Vardi

Example 1 (continued). Let T’ be (w, J), where J is

A B

a0 b3
a3 b3
a3 bl
al b5
a5 b5
a5 bl
al b7
a7 b7
a7 b0

To show that T=s T’, we compute T’(I) and get

A B

a0 bl
al bl
al b0
a0 b0

Now w E T’(I), so T Q T’. However, T(J) is

A B
---_--__
a0 b3
a3 b3
a3 bl
al b5
a5 b5
a5 bl
al b7
a7 b7
a7 b0
a0 bl
al bl
al b0

Now w e T(J), so T s T’.

2.3. Dependencies

For any given application only a subset ‘of all possible relations is of interest.
This subset is defined by constraints which are to be satisfied by the relation of

Formal systems for join dependencies 105

interest. A class of constraints that was extensively studied is the class of depen-
dencies.

A join dependency (jd) is a statement *[RI or *[R,, . . . , &I, for an asc R =
W,, - -. , Rk}. It is satisfied by a relation I if I = mR(I).’ Intuitively, *[RI means
that I can be represented by the projections 7rR,(I), . . . , nRk(I) without loss of
information. A tuple generating dependency (tgd) is a tableau (w, J).’ It is satisfied
by a relation I if I = (W, J)(I). Intuitively, (W, J) means that if some tuples, fulfilling
certain conditions, exist in the relation, then another tuple must also exist in the
relation. Thus, we can view a tableau both as an operation on relations and as a
constraint. By Lemma 2.2, every jd is equivalent to some tgd; hence, we can view
a tableaux of the form TR as a jd, and say that it represents *[RI. The class of jd’s
is denoted by JD, and the class of tgd’s is denoted by TGD. Clearly, JD c TGD.3
Note that, for a given universe U, TGD is an infinite set, while JD is a finite set.

A dependency is trivial if it is satisfied by every relation.

Lemma 2.5 ([9])
(1) The jd *[RI is trivial if and onZy if U E R.
(2) l%e tgd (w, I) is trivial if and only if w E I.

For a set of dependencies D we denote by SAT(D) the set of relations that satisfy
all dependencies in D. D implies a dependency d, denoted D!= d, if SAT(D) c
S AT(d). That is, if d is satisfied by every relation that satisfies all dependencies
in D. The implication problem is to decide for a given set of dependencies D and a
dependency d whether D != d. An algorithm that tests implication of tgd’s, the chase,
was developed in [9], generalizing the algorithm for jd’s in [IS].

In the sequel, D denotes a finite set of dependencies, and d and d’ denote single
dependencies.

Intuitively, to test whether D != (w, I) we ‘chase’ I by D into into some J E SAT(D)
and then check if w is in J. A chase of I by D is a maximal sequence of distinct
relations IO, I,, . . . such that I = IO and Ij+l is obtained from Ij by an application of
a chase rule. To each tgd in D there corresponds a ‘IT-rule.

‘W-rule (for a tgd (w, J) in 0). h+, is (w, J)(h).

Since all the relations in a chase are distinct, it must be a strictly increasing
sequence, and we have the following lemma.

Lemma 2.6 ([9]). All chases of I by D are jinite and have the same final relation,
which is in SAT(D).

’ Join dependencies are called in [S] total join dependencies, and in [17] fuZl join dependencies.
’ Tuple generating dependencies are called total tuple generating dependencies in [9,10,11].
3 We use E to denote set containment and c to denote proper containment.

106 C. Beeri, M. Y Vardi

This unique final relation is denoted chase D(I). It can be used to test implication.

Theorem 2.7 ([9]). Let D be a set of tgd’s, and let (w, I) be a tgd. Then Dt= (w, I)
if and only if w E chaseD(I).

Example 1 (continued). We show here that T’i= T and TI= T’.
To see that T’ t= T, consider a chase of I by T’. I0 is I. I, is T’(I):

A B
-_------
a0 61
al bl
al 60
a0 b0
-------_

The reader can verify that T’(T’(I)) = T’(I), so chaser(I) = II. Since w E II, we
have T’ t= T.

To see that T implies T’, consider a chase of J by T. Jo is J.

A B
----_----

J1 is T(J): a0 63
a3 b3
a3 bl
al b5
a5 b5
a5 61
al b7
a7 b7
a7 60
a0 bl
al 61
al b0

A B

J2 is T(J,) = T(T(J)): a0 63
a3 63
a3 bl
al b5
a5 65
a5 bl
al b7
a7 b7
a7 60
a0 bl
al 61
al b0
a0 60
------___

The reader can verify that T(T(T(J))) = T(T(J)), so chaser(J) = J2. Since w E J2,
we have Tl= 7”.

3. Hilbert-style formal systems

A Hilbert-style formal system for a family of dependencies consists of axioms and
inference rules. The axioms are schemas of trivial dependencies, e.g., the reflexivity
axiom for fd’s [2] and mvd’s [6]. The inference rules specify whether a dependency
is inferrable from some premises, e.g., the transitivity rule for fd’s [2] and mvd’s

Formal systems for join dependencies 107

[6]. A bounded rule is a rule with a bounded number of premises. A bounded system
is a system where all rules are bounded. Let C be a class of dependencies, and let
F be a formal system. A derivation in C of a dependency d E C from a set of
dependencies D E C by F is a sequence of dependencies from C: d,, dl, . . . , d,,
with d, = d, each of which is either an instance of an axiom of F, a member of 0,
or is inferrable from earlier d’s by one of the inference rules of E We say that d
is derivable from D by F in C, denoted DI- ,=,= d, if there is a derivation of d from
D by F in C. If F and C are understood from context, then we simply write DI- d.
F is sound for C if for every D E C and d E C we have that Dt F,c d entails that
DI= d ; F is complete for C if for every D s C and d E C we have that D t== d entails
that DI- F,c d. To show that F is sound it suffices to show that, for every di in a
derivation of d from D in F, Dl= di. That is, if di is an instance of an axiom, then
it is trivial (proving that the axioms are sound), and if di is inferrable from dj,, . . . , dj,,
then {dj,, . . . , dj,,} b di (proving that the inference rules are sound).

3.1. Generalized join dependencies

In [1 l] we presented three systems, called TT1, TT2, and TT, for tgd’s. Essentially,
what these system do is simulate the chase. Thus, given a chase I,,, II, . . . , I,, of I
by D such that w E In, we can construct a derivation by TTI, TT2, or TT, of (w, I)
from D. These systems, however, do not specialize to jd’s. That is, even when D is
a set of jd’s and (w, 1) is a jd, the derivations constructed from the chase may have
tgd’s that are not jd’s. Furthermore, it does not seem possible to simulate the chase
by derivations that consists of jd’s. We refer the reader to [17] for a discussion of
this point.

One may think that the above formal systems for tgd’s can solve our motivating
problem, that of enumerating all jd’s that are implied by a given set of jd’s, by
generating all tgd’s that are implied by the given set of jd’s. The difficulty is that a
finite set of jd’s can imply infinitely many tgd’s.

In view of this difficulty, Sciore [17] introduced the class of generalized join
dependencies. A tgd (w, 1) is called a generalized join dependency (gjd) if for all
A E U there are at most two repeated A-values in 1, and if there are two repeated
A-values, then w[A] is one of them.4 The class of gjd’s is denoted by GJD. Clearly,
every jd is a gjd, i.e., JD c GJD c TTGD. Note that, for a given universe U, the set
GJD is finite. (If (u, 1) and (v, J) are tgd’s and h is one-to-one valuation such that
h(u) = v and h(I) = J, then we say that (u, 1) and (v, J) are isomorphic. GJD is finite
up to isomorphism of tgd’s.)

Sciore then presented a formal system for gjd’s that consists of six rules BO-B6.
His system is sound. Moreover, he proved that when D is a set of jd’s and (w, I)
is a jd, one can construct a derivation by his system of (w, I) from D that consists
of gjd’s. In this section we improve Sciore’s results by showing that a variant of
IT*, which is sound and complete for tgd’s, has the same property as Sciore’s system.

4 Generalized join dependencies are called in [17] filf generalized join dependencies.

108 C. Beeri, M. Y Vardi

Our treatment is not only significantly simpler, but also fits into the larger framework
of formal systems for tgd’s.

The system TIT2 consists of one axiom and one inference rule.

TIYDO’ (triviality). t- (w, {w} u I).

TTD3 (simplification). (w, I u J u {u}), (u, J) I- (w, I u J).

Theorem 3.1 ([ll]). The system lT2 is sound and complete for tgd’s.

The system TT; is a variant of lTZ.

‘ITDO (triviality). I-(w, {w}).

TTDl (covering). (u, I)I-(II, J) if (u, J)s (u, I).

TI’D3’ (simplification). (w, I u J u {u}), (u, J) I- (w, I u J), if, for some X E U, u[X]
is nonrepeated in I u J u {u, w} and u[X] = u[X].

Rules TTDO’ and lTD1 generalize the triviality axiom and the covering rule for
jd’s in [8,18] and also generalize rules BO, Bl, B2, and B5 for gjd’s in [17]. Rules
TTD3 and lTD3’, however, have no analogue in [8,17,18].

Example 3. Let U = ABCD. Let (u, J) be

A B C D
---____-----_____---

2): a0 60 CO d0

a0 60 cl d0
a0 61 CO dl
-___---------__-----

Let (w, lu Ju{u}) be

A B C D
--------------__----

w: a2 b0 CO d0
----_---------------
a2 b0 c2 d0
a0 b0 cl d0
a0 61 CO dl

u: al 60 CO d2

Let X = BC. We have that u[AD] is nonrepeated in I u J u {u, w} and u[BC] =
u[BC].

Formal systems for join dependencies

By rule TTD3’, (w, lu Ju{u}), (~,J)I-(w, lu J), where (w, I u J) is

A I3 C D
-------___-----_____

w: a2 b0 co do
_------___----______
a2 60 c2 d0
a0 b0 cl do
a0 bl CO dl
-------------------_

109

Theorem 3.2. The system lT2 is sound and complete for tgd’s.

proof. Soundness: Rules TT’DO, lTD1, and lTD3 are shown to be sound in [ll].
We now show that rule TTD3’ is also sound. Suppose that u[X] is nonrepeated in
I u J u {u, w} and u[X] = u[X]. Define a valuation h such that h(u[.r;‘]) = v[x]
and h is the identity elsewhere. We now have h(w) = w and h(I u J u {u}) =
~L_J Ju{u}. Thus, by rule ‘TTDl, (w, lu Ju{u})b(w, Iu Ju{u}). Now, by rule
TTD3, (w, lu Ju{u}), (tl,J>l=(w, 1~ J).

Completeness: It suffices to show that the rules of IT’; imply the rules of TT,.
Since (w, {w}) s (w, {w} u I), rules TTDO and lTD1 together imply rule TTDO’. Rule
TTD3 is a special case of rule ‘TTD3’ by taking X to be U. Cl

Theorem 3.3. Let D be a set of jd’s, and let d be a jd- If Dl= d, then Dt--TT;,GJD d.

Proof. Let D be a set of jd’s, let (w, 1) be a jd, and suppose that Dl= (w, I). By
Theorem 2.7, it suffices to show that for every u E chase& I) we have Dt,,, (u, I).
(Note that (u, I) is a gjd for any tuple v such that (u, 1) is a tgd, because there is
at most one repeated A-value in I for all A E U.) Let IO, I,, . . . , I, be a chase of I
by D. We show by induction on j that, for every u E Ii, DI-~,~(u, I). I,, is I, so if
u E I, then I--~,~ (u, {u}) by rule TI’DO, and (u, {u}>~~~&, 1) by rule TTDl.

Suppose now that the assumption holds for 4 and let u E h+,. That is, there is a
tgd (u, J) E D such that u E (u, J)(4). Let (u, J) represent the jd *[RI, R =
{R,, - - . , R,}. Construct a tgd (u, K), K = { ul, . . . , u,}, which also represents *[RI.
It is easy to define a one-to-one valuation h such that h(J) = K and h(u) = u. Thus
(IJ, J) I---~~~(u, K) by rule lTD1. Also, by rule TT’Dl, (u, K)I-(u, K u 1). We claim
that (u, K u I) is a gjd. In proof, note that for all A E U there is at most one repeated
A-value in I and at most one repeated A-value in K, that if t[A] is nonrepeated
in K, then t[A] is not in T~(I), and that if t[A] is repeated in K, then u[A] = t[A].
Since (u, K) represents “[RI, we have u E (u, K)(4). That is, there is a valuation h
onKsuchthath(u)=uandh(K)cIj.Letti=h(u,)E~,1~i~m.Bytheinduction
hypothesis, D I- GJD(t, I), 1 d i s m. NOW Ui[di] is nonrepeated in K u I u {u} and

ti[Ri]= h(ui[Ri])= h(u[Ri])=u[Ri]=ui[Ri],

so by m applications of rule lTD3’, (u, K u I), (t,, I), . . . , (t,, I)I-~~,,(u, I). 0

110 C. Beeri, M. Y Vardi

3.2. Extended join dependencies

The results of the previous section can be improved in two directions. First, we
can restrict the class of dependencies that have to be considered in order to enumerate
jd’s. Secondly, we can prove that the formal system used is complete for this class
of dependencies, unlike the system TT; that is not known to be complete for gjd’s.
The price to pay for these improvements is having to deal with unbounded inference
rules.

We consider here the class of extended join dependencies. A tgd (w, I) is called
an extended join dependency (xjd) if for all AE U there is at most one repeated
A-value in I5 The class of xjds is denoted by XJD. Clearly, every jd is an xjd, and
every xjd is a gjd, i.e., JDc XJDc GJDc TTGD.

We use the system TT, from [ll].

‘ITDO’ (triviality). I-(w, {w}u I).

‘ITD4 (transitivity). (w, I), (u,,J), . . . ,(u,, J)t-(u, J) if UE(W, I)({r+,. . . , u,}).

Rule TTD4 is unbounded because it may have an unbounded number of premises.

Theorem 3.4 ([111). The system IT, is sound and complete for tgd’s.

Let (u, J) be a jd. Then every tgd (v, J) is an xjd, because there is at most one
repeated A-value in I for all A E U, but not necessarily a jd, because u[A] may not
be the repeated A-value for some A E U. Thus, from Theorem 2.7, there is a
one-to-one correspondence between the tuples of chaseD(J) and the xjd’s (II, J)
implied by D. Using this characterization, we can show that the system TT3 is
complete for xjd’s.

Theorem 3.5. The system TTz is complete for xjd’s.

Proof. Let D be a set of xjd’s, let (u, J) be an xjd, and suppose that D I= (u, J). By
Theorem 2.7 it suffices to show that, for every u E chase&J), Dt--,,,(u, J). (Note
that (u, I) is an xjd.) Let Jo, . . . , .I, be a chase of J by D. We show by induction
on i that, for every u E Ji, DI-~,~(u, J). JO is J so if u E J, then D!--xJo(u, J) by rule
TTDO’. Suppose now that the assumption holds for Ji = { ul, . . . , u,}. Let u E Ji+l-
That is, there is an xjd (w, I) E D such that u E (w, I)({ ur, . . . , u,}). By the induction
hypothesis, D I-,,, (uk, J), for 1 d k d m, so D I-~,,,(u, J) by rule TTD4. Cl

5 That is, if (w, I) is what Aho et al. [3] call a simple tableau.

Formal systems for join dependencies 111

4. A Gentzen-style formal system for jd’s

When (u, J) is a jd, every tgd (u, J) is an xjd. Using the correspondence between
the tuples of chaseD(1) and the xjd’s (v, J) implied by D, we showed that the system
cIT3 is complete for xjd’s. The difficulty in obtaining a formal systems for jd’s stems
from the fact that not all tuples in chase,(l) correspond to jd’s.

To study the situation in detail, we need some more machinery. From now on
we treat asc’s as sequences of attribute sets rather than unordered collections. Thus
an asc is a sequence (R,, . . . , R,) of attribute sets such that lJrE1 Ri = U. For an
asc R = (R,, . . . , R,), we partition the attributes of U into two sets:

MANY(R) = {A : for some 1 d i, j d m, i fij, A E Ri n R,},

ONCE(R) = {A : for all 1 d i, j G m, if i Zj, then A e Ri n Ri}.

That is, MANY(R) is the set of attributes that belong to at least two elements of
R and ONCE(R) is the set of attributes that belong to exactly one element of R.
For every R E I?, define the stem of R: ST(R) = R n MANY(R). I satisfies *[RI if
whenever there are tuples wl, . . . , W, in I such that Wi[Ri n Rj] = Wj[Ri n Rj], then
there is in I a tuple w such that W[Ri] = Wi[Ri]. Thus attributes in MANY(R) and
ONCE(R) play different roles in the ‘meaning’ of *[RI.

Let TR be(u,J),J={u,,. . . , u,}. Suppose (v, J) is a tgd such that v[MANY(R)] =
u[MANY(R)]. Then (v, J) represents the jd’ *[S1, . . . , S,], where Si =
{A: v[A] = ui[A]}. (Note that ST(Si) = ST(Ri).) Conversely, if *[SI, . . . , S,,,] is a jd
implied by D such that ST(Si) = ST(Ri), 1 d i d m, then there is a tuple v in chase,(I)
such that (v, J) represents *[S1, . . . , S,,,] and v[MANY(R) = u[MANY(R)]. We say
that “[S,, . . . , S,,,] has the same stem sequence as *[RI. Thus there is a one-to-one
correspondence between the tuples of chaseD(J) with the same MANY(R)-value
as u and the jd’s with the same stem sequence as “[RI that are implied by D.

In order to simulate the chase, we have to associate a jd *[S”] with each tuple
v E chase,(I). *[S”], however, does not carry the same information as v. In order
to keep the same information in the derivation, we also have to carry with us the
stem basis, which is a generalization of the stem sequence. A stem basis X is a
sequence of attributes sets (X,, . . . , X,) such that if A E Xi, then A E Xi, for some
j # i. Note that if m = 1, then X = (0). A jd *[RI = *[RI, . . . , R,] is X-based if Xi E Ri,
and (Ri-Xi)n(Rj-Xj)=@ for i#j, lsi,jsm.

If we try to specialize rule TTD4 to jd’s, we realize that the rule is not sound
unless all the premises of the rule are jd’s with the same stem basis. That means
that the concatenation of two sound derivations is not necessarily a sound derivation,
because the jd’s in the two derivations may have different stem bases. The ability
to concatenate derivations is, however, a basic feature of Hilbert-style systems. The
solution is to revert to Gentzen-style formal systems, which deals with sequents
instead of dependencies. (See [141 for a description of a Gentzen-style formal system
for first-order logic.) A sequent is an expression X: D -+ d, where X is a stem basis,

112 C. Beeri, M.Y. Vardi

D is a finite set of jd’s and d is an X-based jd. X is the Zubel of the sequent, D is
the antecedent, and d is the succedent.

The interpretation of + is that of implication. Namely, X: D + d is true if Dl= d.
The label is needed to guide the derivations. The inference rules are such that
sequents with different labels can not interact. A Gentzen-style formal system F has
axioms and inference rules for sequents rather than dependencies. F is sound if
whenever X: D + *[RI is derivable by F for some stem basis X, we have D I= “[I?].
F is complete if whenever D!= *[RI, the sequent X: D + d is derivable by F for
some stem basis X.

We now present the Gentzen-style system .I.

ZJDO. t-X: D + *[XI, . . . , Xi-13 U, Xi+,, . . . , X,,,] for a stem basis X = (X,,
. . . , X,), 19 is m.

ZJDl. Let *[RI, . . .,R,]ED,letX=(X, ,..., X,,,) be a stem basis, and let *[Si] =
*[sf, . . . , SQ be X-based jd’s such that Ri n Rj n Sk c Si, for all 1 d i, j d k, 1 d p s m.
Then

X:D+*[S’],... ,X: D+*[Sk]tX: D-+*[@, . . . , Q,,],

where Qi = 6 (Rj n S{).
j=l

Example 4. Let U = ABCD, D = {*[I?]}, R = {ABC, AD}, X = {AB, AC, BC}, S’ =
{ABCD, AC, BC}, and S* = {AB, ABCD, BC}. The reader can verify that X is a
stem basis, and that *[S’] and *[S*] are X-based. Furthermore, the conditions of
rule ZJDl are satisfied. Consequently,

X: D+*[S1],X: D-+*[S,]t-X: D+*[Q],

where Q = {ABC, ACD, BC}.

Theorem 4.1. The system J is sound and complete for jd’s.

Proof. Soundness: We first show that the succedent is always X-based.
ZJDO: *[XI,. . . , Xi-13 U, Xi+19 . . . , X,] is clearly X-based.
ZJDl: We show that *[Q] = *[Q1, . . . , (&,I is X-based. Let A E Xp’ Then A E Si

for all lsisk, so AEQ,. Assume now that AE(Q~-X~)~((&--X,) for qfp.

That is, for some i, j we have

AE RinSin RjnS’,nXpn&,

But

Rin RjnSinX,,GS’,nXP

Formal systems for join dependencies 113

SO

A@;-XJn(S',-X,);

a contradiction. It follows that *[Q] is X-based.
For a stem basis X = (X1, . . . , X,), construct a relation Ix = {w,, . . . , w,} such

that Wi[A] = Wj[A] ifI A E Xi n XP Let *[Q] be an X-based jd. We define a tuple wo
as follows. If AE (Ii -Xi for some i, then w,[A] = wi[A]. else w,[A] = wi[A] for
some i such that A E Qti wQ is well defined because if A E Qi -Xi, then for no j # i
is A E Qj - XP Otherwise, whenever A E Qi also A E Xi, SO if A E Qi n Qj, then A E Xi n
Xj and w~[A] = wj[A].

Example 4 (continued). Let Ix = { wl, w2, w,) be

A B D D

w, : a0 b0 cl dl
w2: a0 bl CO d2
w3 : al 60 CO d3

------------_-----__

Now WQ is the tuple

A B D D
------_______---__
a0 150 CO d2
--_----___c______-__

Proof of Theorem 4.1 (continued). We show by induction on the length of the
derivation that if t-J X: D + *[Q], then wQ E chaseD(Ix).

ZJDO: *[Q] is *[Xi, . . . , Xi-19 U, Xi+*, . . . , X,]. Here WQ = Wi E Ix.

ZJDl: *[Q] is *[Q, . . . , Qm], Qi = lJj”=, (Rj n S{). Let ti denote wsi. By the
induction hypothesis, ti E chaseD(Ix), 1 d i d k Let t be the tuple defined by t[RJ =

ti[Ri], 1 s i s k. We have to show that t is well defined, that is, ti[A] = $[A] if
A E Ri n I$. tJA] = w,[A] for some p such that A E Sb, and +[A] = w,[A] for some
q such that A E Sj,. If w,[A] # w,[A], then A E SL - Xp or A E Si - X4’ Assume without
loss of generality that A E Sb - Xp’ But

so A E S’p - Xp and $[A] = w,[Al_a contradiction. It follows that t is well defined.
Since chase,(l,) is in SAT(D), we have that

m,(chase& Ix)) = chase& Ix),

so t E chaseD(Ix). It remains to show that t is exactly wQ
Suppose first that A E Qp - Xp’ Then, for some i, A E Ri n Si n &,. It follows that

?[A] = ti[A] = w,[A]. Suppose now whenever A E Qp also A E Xp and that A E Qq
for some q. Then A E Ri n Sb for some i, and t[A] = ti[A]. If ti[A] Z wJA], then, for
some p, A E SL - Xp so A E Qp - Xp-a contradiction.

114 C. Beeri, M. Y. Vardi

We have shown that if F-/X: D + *[Q], then wQ E chase,(l,), so, by Theorem
2.7, Dl= (WQ, Ix). To complete the soundness proof, we have to show that
(wo, Ix) < To. Let TQ be (v, J), where J = { vl, . . . , u,). Define a valuation h such
that h(Wi) = Ui for 1 9 i d m. h is well defined, because if wi[A] = wj[A], then
AE Xi n Xj, SO AE Qi n Qj and S[A]= Uj[A]- If wQ[A] = w,[A], then AE QP and
u[A] = q,[A]. Therefore, h(wQ [A]) = v[A]. It follows that h(wQ) = ~1.

Completeness : Suppose that Di= *[Q], Q = {Qr, . . . , Qm}, TQ = (w, I), I =

{WI, * - a, w,}. Define the stem basis X = (ST(Q1), . . . , ST(Qm)). It is easy to see
that we can take Ix to be I. By Theorem 2.7, w E chaseD(I). With each tuple
u in chaseD(1) we associate a jd *[S”] = *[Sy, . . . , Sk], where Sr = Xi u
{A: u[A]= wi[A]}. W e c aim that “[S”] is X-based. Clearly, Xi c Sy, and if 1

AE(SY-Xi)n(Sj’-Xj),

then wi[A] = wj[A&a contradiction, because wi[A] = wj[A] iff A E Xi n Xp Observe
that if u[MANY(Q)] = w[MANY(Q)], then *[SU] is equivalent to (u, I).

Let the chase of I by D be IO,. . . , I,. We show by induction on j that for every
u E 4, we have t-,X: D + “[S”].

Basis (j = 0): I0 is 1, so u is Wi for some i and “[S”] is *[X1, . . . , Xi-19 U,
xi+l, * - . , X,,,]. By ZJDO, I-, X: D-, “[S”].

Induction : Let u E h+, . There are a jd *[R1, . . . , Rk] E D and tuples ul, . _ . , uk E 4

such that U[Ri] = Ui[Ri], 1 s i d k. Let *[Si] denote *[PI. That is,

Sg = Xp U {A: ui[A] = wp[A]}-

By the induction hypothesis, I-X: D + *[Si]. With u we associate *[VI =
“[SY, . . . , Sk], where

S; = Xp u {A: u[A] = w,[A]} = XP u ,j {A E &,: u[A] = w,[A])
h=l

=XPu fi {AER~:u~[A]=wJA]}=X~LJ 6 (&nS,h)
h=l h=l

= 6 (RhnSi).
h=l

To prove that F-JX: D + *[S”] by rule ZJDl, we have to show that

R,-nR,nS{sSE.

We have XP c 23; and XP E SPg. Let

AC Rrn R8n(S;-X,).

Then u[A] = uf[A] = w,[A] and u[A] = u,[A], so u,[A] = wJA.1, and A E SE - Xp’
In particular, k-,X: D + *[SW]. But *[SW] is just *[Q], which completes the

proof. Cl

Formal systems for join dependencies 115

5. Concluding remarks

In this paper we have investigated whether a sound and complete formal system
for join dependencies can be found. We have shown a bounded formal system that
is strong enough to derive join dependencies using only generalized join dependen-
cies in the derivation and an unbounded formal system that is complete for extended
join dependencies. Both systems are also sound and complete for tuple generating
dependencies. We have also constructed a sound and complete unbounded Gentzen-
style system for join dependencies.

Several problems remain open:
(1) Is the system TT; complete for any subclass of TGD that contains JD?
(2) Is there a sound and complete bounded formal system for extended join

dependencies?
(3) Is there a sound and complete bounded Gentzen-style system for join depen-

dencies?
Finally, we would like to comment about the usefulness of the system J. As was

observed in Section 1, the formal system consisting of the rule

dw.., d,Ed if{d,,...,dk}+d

is sound and complete for every class of dependencies for which the implication
problem is solvable. The interest in ‘elegant’ systems is twofold. First, such a system
can often lead to the construction of efficient algorithms for testing implication, as
the formal system for functional dependencies of [2] leads to the efficient algorithm
of [4), and the formal system for multivalued dependencies of [6] leads to the
efficient algorithm of [5]. Furthermore, such systems offer more insight into the
properties of the class of dependencies under study and facilitate the use of
dependencies in the design of the database schema. In our view, the system J is
too complex to offer the second advantage. Nevertheless, the system offer a syntactic
description of the chase, and this description may make it possible to construct a
subexponential algorithm for testing implication of join dependencies.

Acknowledgment

We are grateful to Ed Sciore for his extremely helpful comments on earlier drafts
of this paper.

References

[l] A.V. Aho, C. Beeri and J.D. Ullman, The theory of joins in relational data-bases, ACM Trans.
Database Systems 4 (1979) 297-314.

[2] W.W. Armstrong, Dependency structure of database relationships, Proc. IFIP 74 (North-Holland,
Amsterdam, 1974) 580-583.

116 C. Beeri, M. Y. Vardi

[3] A.V. Aho, Y. Sagiv and J.D. Ullman, Equivalence among relational expressions, SIAM J. Comput.
8 (1979) 218-246.

[4] C. Beeri and P.A. Bernstein, Computational problems related to the design of normal form relational
schemas, ACM Trans. Database Systems 4 (1979) 30-59.

[5] C. Beeri, On the membership problem for multivalued dependencies, ACM Trans. Database Systems
5 (1980) 241-259.

[6] C. Beeri, R. Fagin and J.H. Howard, A complete axiomatization for functional and multivalued
dependencies in database relations, Proc. ACM Conf: on Management of Data (1977) 47-61.

[7] C. Beeri, A.O. Mendelzon, Y. Sagiv and J.D. Ullman, Equivalence of relational database schemes,
SIAM J. Compur. 10 (1981) 647-656.

[8] C. Beeri and M.Y. Vardi, On the properties of join dependencies, in: H. Gallaire, J. Minker and
J.M. Nicolas, eds., Advances in Database Theory (Plenum, New York, 1981) 25-72.

[9] C. Beeri and M.Y. Vardi, A proof procedure for data dependencies, J. ACM 31 (4) (1984) 718-741.
[lo] C. Beeri and M.Y. Vardi, On the complexity of testing implications of data dependencies, Rept.,

Dept. of Comput. Sci., The Hebrew Univ. of Jerusalem, 1980.
[ll] C. Beeri and M.Y. Vardi, Formal systems for tuple and equality generating dependencies, SIAM

J. Compur. 13 (1) (1984) 76-98.
[121 E.F. Codd, Relational completeness of database sublanguages, in: R. Rustin, ed., Dara Base Systems

(Prentice-Hall, Englewood Cliffs, NJ, 1972) 65-98.
[13] E.F. Codd, Further normalization of the database relational model, in: R. Rustin, ed., Data Base

Systems (Prentice-Hall, Englewood Cliffs, NJ, 1972) 33-64.
[14] S.C. Kleene, Mathematical Logic (Wiley, New York, 1967).
[15] D. Maier, A-0. Mendelzon and Y. Sagiv, Testing implications of data dependencies, ACM Trans.

Database Systems 2 (1977) 201-222.
[16] J. Rissanen, Theory of relations for databases-a tutorial survey, Proc. 7th Symp. on Marhemaricaf

Foundations of Computer Science, (1978) 537-551.
[17] E. Sciore, A complete axiomatization of full join dependencies, J. ACM 29 (2) (1982) 373-393.
[18] M.Y. Vardi, Axiomatization of functional and join dependencies in the relational model, M.Sc.

Thesis, The Weizmann Institute of Science, 1980.

