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Abstract. We investigate whether a sound and complete formal system for join dependencies can 
be found. We present a system that is sound and complete for tuple generating dependencies and 
is strong enough to derive join dependencies from join dependencies using only generalized join 
dependencies in the derivation. We also present a system that sound and complete for tuple 
generating dependencies and is complete for extended join dependencies (which are a special 
case of generalized join dependencies). Finally, we construct a Gentzen-style system that is sound 
and complete for join dependencies. The last two systems have unbounded inference rules. 
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1. Introduction 

The most widely studied design method for relational database schemes is the 
decomposition method [ 131. A join dependency [ 1,161 is a semantic specification by 
the database designer of a lossless decomposition. There are also other classes 
of dependencies, all of which are semantic specifications of some kind. 

A problem of utmost importance for database design theory is the implication 
problem for join dependencies: does a set of join dependencies imply another join 
dependency. That is, given that certain decompositions are lossless, can we tell that 
another decomposition is also lossless. An implication testing algorithm, the ‘chase’, 
was constructed by Maier et al. [15]. This algorithm has an exponential worst-case 
running time. Moreover, there is probably no polynomial algorithm, since deciding 
if a decomposition is lossless when given two join dependencies is NP-hard [lo]. 

The chase enables us to test implications of join dependencies. In the process of 
database design, it is useful to know all of the dependencies implied by a given set. 
There is, however, no way to find this set using the chase, without exhaustively 
enumerating the set of all possible dependencies. Consequently, we are led towards 
finding a formal system for join dependencies; a formal system enables us to derioe 
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new join dependencies from given ones. Formal systems for dependencies have 
attracted a lot of interest in the last few years, since the introduction of a formal 
system for functional dependencies by Armstrong [2]. 

Since the implication problem for join dependencies is recursively solvable, the 
formal system consisting of the inference rule 

d,,..., d,t-d if{d,,...,d,}l=d 

is sound and complete. Nevertheless, there is an interest in finding an ‘elegant’ 
formal system, one that has a small number of simple axioms and inference rules. 
A typical example is the propositional calculus, which is a formal system for the 
recursive set of tautologies of propositional logic. 

Up to now all attempts to develop a sound and complete formal systems for join 
dependencies have failed. (The formal system of [8,17,18] has been shown to be 
complete only for deriving first order hierarchical decompositions [8,18]). Thus, 
attention has shifted to finding classes of dependencies that include join dependen- 
cies as a special case and for which there is a sound and complete formal system. 
One such is the class of total tuple generating dependencies [9], for which a formal 
system was developed in [ll]. 

Sciore [ 171 has defined the class of generalized join dependencies, which lies strictly 
between the classes of tuple generating dependencies and join dependencies. He 
constructed a formal system which can derive join dependencies from join dependen- 
cies by derivations that consist of generalized join dependencies. In Section 3.1 we 
improve Sciore’s result. We show that the formal system for tgd’s in [ll] has a 
similar property: it can derive join dependencies from join dependencies by deriva- 
tions that consist of full generalized join dependencies. Our treatment is much 
simpler than that of [17]. 

A formal system can be viewed as a computing mechanism for generating con- 
sequences. A class of dependencies may not have a sound and complete formal 
system, because no sound formal system for the class can have enough computing 
power to generate all consequences. There are two possible solutions to the problem. 
One can consider a larger class of dependencies, or one can consider a stronger 
notion of formal system. In Section 3.2 we combine both approaches. We define 
the class of extended join dependencies, which lies strictly between the classes of join 
dependencies and generalized join dependencies. We then develop a sound and 
complete system for these dependencies. This system differs from most systems in 
the literature in having an unbounded rule, i.e., a rule with an unbounded number 
of premises. 

Finally, by extending the notion of formal system even further, we manage to get 
a formal system for join dependencies. All of the formal systems in the literature 
of dependency theory are Hilbert-style, in which a derivation is a sequences of 
dependencies. In contrast, in Gentzen-style systems a derivation is a sequence of 
sequents, which are formal statements of implication [l4]. In Section 4 we present 
a Gentzen-style system with an unbounded rule and prove that it is sound and 
complete for join dependencies. 
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2.1. Attributes and relations 

Attributes are symbols taken from a given finite set U called the universe. All sets 
of attributes are subsets of U. We use the letters A, I?, C, . . . to denote single attributes, 
and Q, R, . . . to denote sets of attributes. We do not distinguish between the attribute 
A and the set {A}. The union of X and Y is denoted by XY, and the complement 
of X in U is denoted by X An attribute set collection (asc) is a set of subsets of U 
whose union is U. We use Q, R, S, . . . to denote asc’s. 

With each attribute A is associated an infinite set called its domain, denoted 
DOM(A), such that DOM(A) n DOM(B) = 8, for A# I3 Let Dom = 
UAE ,DOM(A). For a set X E U, an X-value is a mapping w: X + Dom such that 
w(A) E DOM( A) for all AE X. A relation on X is a finite set of X-values. We use 
the letters t, u, . . . to denote values, and I, .I, . . . to denote relations. A tuple is a 
U-value. An arbitrary relation, unless explicitly stated otherwise, is a relation on U. 

2.2. Operations on relations 

We use two operations of the relational algebra [ 121. For an X-value w and a set 
Y c X we denote the restriction of w to Y by w[ yl. Let I be a relation on X. The 
projection of I on Y, denoted q(l), is rTTy( I) = { w[ y1: w E I}. 

Let I,, . . . , Ik be relations on X,, . . . , Xk, respectively. The join of I,, . . . , Ik, 

denoted I, * * - 0 * Ik, is 

I, * * -+*I,=(w:w is an XI. . . Xk-value s.t. W[Xj]E lj, for 1 =z j G k}. 

With each asc R = (R,, . . . , Rk} we associate a project-join expression 

mR=?TR,*’ - ‘*TR,. 

This expression defines a mapping from relations to relations as follows. Let I 
be a relation, then 

m&I) = {w: w is a tuple s.t. for all R E R there is a tuple u E I s.t. 

w[ R] = u[ RI}. 

Project-join expressions were studied in [7,18]. We mention some properties: 

(1) 1 s m&). 

(2) mR(mR(I)) = mR(I). 

(3) 1 s 1 entails mR(I) z mR(J). 

A valuation is a mapping h: Dam-, Dom, such that a E DOM(A) entails h(a) E 
DOM( A) for all a E Dom. The valuation h can be extended to tuples and relations 
as follows: Let w be a tuple. Then h(w) = h 0 w (0 denotes functional composition). 
Let I be a relation. Then h(I)={h(w): WE I}. 
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A tableau [3] is a pair T = (w, I), where w is a tuple and I is a relation, such that 
w[A] E T~( I) for all A E U. T defines an operation on relations as follows: 

T(J) = {h(w) : h is a valuation s.t. h(1) c J}. 

That is, T(J) is the set of images of w under all valuations that map every tuple of 
I to some tuple of J. Observe that J c T(J). 

Example 1. Let U = AB. Let I be the relation 

A B 
----_--_ 
a0 61 
al bl 
al b0 
-___---_ 

Let w be the tuple 

A B 
---_-_-_ 
a0 b0 
----_--_ 

Now T = (w, I) is a tableau. Let .J be the relation 

A B 
-_-----_ 
a0 b0 
al b0 
al bl 
a2 bl 
a2 b3 
-_-----_ 

T(J) is the relation 

A B 
-_----__ 
a0 b0 
al b0 
al bl 
a2 bl 
a2 b3 
a0 bl 
al b3 
a2 b0 
----_--_ 

Clearly, the values in a tableau serve as formal variables, and therefore can be 
renamed, if done consistently. 
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Lemma 2.1 ([3]). Let (w, I) be a tableau, and let h be a one-to-one valuation. Then, 
for every relation J, (w, I)(J) =(h(w), h(I))(J). 

We now show how to construct a tableau that defines the same mapping as a 
project-join expression. Let R = {R,, . . . , &}. 7” is a tableau (w, I), where w is an 
arbitrary tuple, I = { wl, . . . , wk}, wi[Ri] = w[Ri], and wi[A] is a value that has a 
unique occurrence in I, for all A E I&. 

Lemma 2.2 ([3]). For all relations I, mR(I) = T,(I). 

We say that TR represents mm 
Consider now the following problem. Given a tableau (w, I), under what condition 

is it a tableau TR which represents a project-join expression mm Let u E I. Then 
u[A] is repeated in I if there is another tuple v E I such that u[A] = v[A]. u[X] is 
nonrepeated in I 

Lemma 2.3 ([18]). 
mR if and only if: 

(1) For all AE 
(2) If u[A] is repeated in I, then u[A]= w[A]. 

if for no A E X is u[A] repeated in I. 

Let (w, I) be a tableau. Then it represents a project-join expression 

U, at most one A-value is repeated in I. 

Example 2. Let U = ABC. Let R = {AB, AC, BC}. TR is the tableau (w, I): 

A I3 C 
-------------- 

w: a0 b0 CO 
-------------- 
a0 b0 cl 

I: a0 bl CO 
al b0 CO 
-------------- 

Let T,, T2 be tableaux. We say that T1 is covered by T2, denoted T, s T2, if 
T1 (I) c_ T2( I), for every relation I. 

Lemma 2.4 ([3]). Let (u, I) and (v, J) be tableaux. The following conditions are 
equivalent : 

(1) (u, Wh J>. 
(2) u E (v, JNO 
(3) There is a valuation h on J such that h(J) G I and h(v) = u. 

Put otherwise, (u, I) s (v, J) if and only if there are a valuation h and a relation 
I’ such that u = h(v) and I = h(J) u I’. Searching for the appropriate h can, however, 
be quite difficult, since testing covering of tableau is NP-complete [3, lo]. 
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Example 1 (continued). Let T’ be (w, J), where J is 

A B 
-------- 
a0 b3 
a3 b3 
a3 bl 
al b5 
a5 b5 
a5 bl 
al b7 
a7 b7 
a7 b0 
-------- 

To show that T=s T’, we compute T’(I) and get 

A B 
-------- 
a0 bl 
al bl 
al b0 
a0 b0 

Now w E T’(I), so T Q T’. However, T(J) is 

A B 
---_--__ 
a0 b3 
a3 b3 
a3 bl 
al b5 
a5 b5 
a5 bl 
al b7 
a7 b7 
a7 b0 
a0 bl 
al bl 
al b0 
-------- 

Now w e T(J), so T s T’. 

2.3. Dependencies 

For any given application only a subset ‘of all possible relations is of interest. 
This subset is defined by constraints which are to be satisfied by the relation of 
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interest. A class of constraints that was extensively studied is the class of depen- 
dencies. 

A join dependency (jd) is a statement *[RI or *[R,, . . . , &I, for an asc R = 
W,, - -. , Rk}. It is satisfied by a relation I if I = mR( I).’ Intuitively, *[RI means 
that I can be represented by the projections 7rR,( I), . . . , nRk( I) without loss of 
information. A tuple generating dependency (tgd) is a tableau (w, J).’ It is satisfied 
by a relation I if I = ( W, J)(I). Intuitively, ( W, J) means that if some tuples, fulfilling 
certain conditions, exist in the relation, then another tuple must also exist in the 
relation. Thus, we can view a tableau both as an operation on relations and as a 
constraint. By Lemma 2.2, every jd is equivalent to some tgd; hence, we can view 
a tableaux of the form TR as a jd, and say that it represents *[RI. The class of jd’s 
is denoted by JD, and the class of tgd’s is denoted by TGD. Clearly, JD c TGD.3 
Note that, for a given universe U, TGD is an infinite set, while JD is a finite set. 

A dependency is trivial if it is satisfied by every relation. 

Lemma 2.5 ([9]) 
( 1) The jd *[RI is trivial if and onZy if U E R. 
(2) l%e tgd (w, I) is trivial if and only if w E I. 

For a set of dependencies D we denote by SAT(D) the set of relations that satisfy 
all dependencies in D. D implies a dependency d, denoted D!= d, if SAT(D) c 
S AT(d). That is, if d is satisfied by every relation that satisfies all dependencies 
in D. The implication problem is to decide for a given set of dependencies D and a 
dependency d whether D != d. An algorithm that tests implication of tgd’s, the chase, 
was developed in [9], generalizing the algorithm for jd’s in [IS]. 

In the sequel, D denotes a finite set of dependencies, and d and d’ denote single 
dependencies. 

Intuitively, to test whether D != (w, I) we ‘chase’ I by D into into some J E SAT(D) 
and then check if w is in J. A chase of I by D is a maximal sequence of distinct 
relations IO, I,, . . . such that I = IO and Ij+l is obtained from Ij by an application of 
a chase rule. To each tgd in D there corresponds a ‘IT-rule. 

‘W-rule (for a tgd (w, J) in 0). h+, is (w, J)(h). 

Since all the relations in a chase are distinct, it must be a strictly increasing 
sequence, and we have the following lemma. 

Lemma 2.6 ([9]). All chases of I by D are jinite and have the same final relation, 
which is in SAT(D). 

’ Join dependencies are called in [S] total join dependencies, and in [17] fuZl join dependencies. 
’ Tuple generating dependencies are called total tuple generating dependencies in [9,10,11]. 
3 We use E to denote set containment and c to denote proper containment. 
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This unique final relation is denoted chase D(I). It can be used to test implication. 

Theorem 2.7 ([9]). Let D be a set of tgd’s, and let (w, I) be a tgd. Then Dt= (w, I) 
if and only if w E chaseD( I). 

Example 1 (continued). We show here that T’i= T and TI= T’. 
To see that T’ t= T, consider a chase of I by T’. I0 is I. I, is T’(I): 

A B 
-_------ 
a0 61 
al bl 
al 60 
a0 b0 
-------_ 

The reader can verify that T’( T’(I)) = T’(I), so chaser(I) = II. Since w E II, we 
have T’ t= T. 

To see that T implies T’, consider a chase of J by T. Jo is J. 

A B 
----_---- 

J1 is T(J): a0 63 
a3 b3 
a3 bl 
al b5 
a5 b5 
a5 61 
al b7 
a7 b7 
a7 60 
a0 bl 
al 61 
al b0 
--------- 

A B 
--------- 

J2 is T(J,) = T( T(J)): a0 63 
a3 63 
a3 bl 
al b5 
a5 65 
a5 bl 
al b7 
a7 b7 
a7 60 
a0 bl 
al 61 
al b0 
a0 60 
------___ 

The reader can verify that T( T( T(J))) = T( T(J)), so chaser(J) = J2. Since w E J2, 
we have Tl= 7”. 

3. Hilbert-style formal systems 

A Hilbert-style formal system for a family of dependencies consists of axioms and 
inference rules. The axioms are schemas of trivial dependencies, e.g., the reflexivity 
axiom for fd’s [2] and mvd’s [6]. The inference rules specify whether a dependency 
is inferrable from some premises, e.g., the transitivity rule for fd’s [2] and mvd’s 
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[6]. A bounded rule is a rule with a bounded number of premises. A bounded system 
is a system where all rules are bounded. Let C be a class of dependencies, and let 
F be a formal system. A derivation in C of a dependency d E C from a set of 
dependencies D E C by F is a sequence of dependencies from C: d,, dl, . . . , d,, 
with d, = d, each of which is either an instance of an axiom of F, a member of 0, 
or is inferrable from earlier d’s by one of the inference rules of E We say that d 
is derivable from D by F in C, denoted DI- ,=,= d, if there is a derivation of d from 
D by F in C. If F and C are understood from context, then we simply write DI- d. 
F is sound for C if for every D E C and d E C we have that Dt F,c d entails that 
DI= d ; F is complete for C if for every D s C and d E C we have that D t== d entails 
that DI- F,c d. To show that F is sound it suffices to show that, for every di in a 
derivation of d from D in F, Dl= di. That is, if di is an instance of an axiom, then 
it is trivial (proving that the axioms are sound), and if di is inferrable from dj,, . . . , dj,, 
then {dj,, . . . , dj,,} b di (proving that the inference rules are sound). 

3.1. Generalized join dependencies 

In [ 1 l] we presented three systems, called TT1, TT2, and TT, for tgd’s. Essentially, 
what these system do is simulate the chase. Thus, given a chase I,,, II, . . . , I,, of I 
by D such that w E In, we can construct a derivation by TTI, TT2, or TT, of (w, I) 
from D. These systems, however, do not specialize to jd’s. That is, even when D is 
a set of jd’s and (w, 1) is a jd, the derivations constructed from the chase may have 
tgd’s that are not jd’s. Furthermore, it does not seem possible to simulate the chase 
by derivations that consists of jd’s. We refer the reader to [17] for a discussion of 
this point. 

One may think that the above formal systems for tgd’s can solve our motivating 
problem, that of enumerating all jd’s that are implied by a given set of jd’s, by 
generating all tgd’s that are implied by the given set of jd’s. The difficulty is that a 
finite set of jd’s can imply infinitely many tgd’s. 

In view of this difficulty, Sciore [17] introduced the class of generalized join 
dependencies. A tgd (w, 1) is called a generalized join dependency (gjd) if for all 
A E U there are at most two repeated A-values in 1, and if there are two repeated 
A-values, then w[A] is one of them.4 The class of gjd’s is denoted by GJD. Clearly, 
every jd is a gjd, i.e., JD c GJD c TTGD. Note that, for a given universe U, the set 
GJD is finite. (If (u, 1) and (v, J) are tgd’s and h is one-to-one valuation such that 
h(u) = v and h(I) = J, then we say that (u, 1) and (v, J) are isomorphic. GJD is finite 
up to isomorphism of tgd’s.) 

Sciore then presented a formal system for gjd’s that consists of six rules BO-B6. 
His system is sound. Moreover, he proved that when D is a set of jd’s and (w, I) 
is a jd, one can construct a derivation by his system of (w, I) from D that consists 
of gjd’s. In this section we improve Sciore’s results by showing that a variant of 
IT*, which is sound and complete for tgd’s, has the same property as Sciore’s system. 

4 Generalized join dependencies are called in [17] filf generalized join dependencies. 
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Our treatment is not only significantly simpler, but also fits into the larger framework 
of formal systems for tgd’s. 

The system TIT2 consists of one axiom and one inference rule. 

TIYDO’ (triviality). t- (w, {w} u I). 

TTD3 (simplification). (w, I u J u {u}), (u, J) I- (w, I u J). 

Theorem 3.1 ([ll]). The system lT2 is sound and complete for tgd’s. 

The system TT; is a variant of lTZ. 

‘ITDO (triviality). I-( w, {w}). 

TTDl (covering). (u, I)I-(II, J) if (u, J)s (u, I). 

TI’D3’ (simplification). (w, I u J u {u}), (u, J) I- (w, I u J), if, for some X E U, u[ X] 
is nonrepeated in I u J u {u, w} and u[X] = u[X]. 

Rules TTDO’ and lTD1 generalize the triviality axiom and the covering rule for 
jd’s in [8,18] and also generalize rules BO, Bl, B2, and B5 for gjd’s in [17]. Rules 
TTD3 and lTD3’, however, have no analogue in [8,17,18]. 

Example 3. Let U = ABCD. Let (u, J) be 

A B C D 
---____-----_____--- 

2): a0 60 CO d0 
-------------------- 
a0 60 cl d0 
a0 61 CO dl 
-___---------__----- 

Let (w, lu Ju{u}) be 

A B C D 
--------------__---- 

w: a2 b0 CO d0 
----_--------------- 
a2 b0 c2 d0 
a0 b0 cl d0 
a0 61 CO dl 

u: al 60 CO d2 
-------------------- 

Let X = BC. We have that u[AD] is nonrepeated in I u J u {u, w} and u[ BC] = 
u[ BC]. 
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By rule TTD3’, (w, lu Ju{u}), (~,J)I-(w, lu J), where (w, I u J) is 

A I3 C D 
-------___-----_____ 

w: a2 b0 co do 
_------___----______ 
a2 60 c2 d0 
a0 b0 cl do 
a0 bl CO dl 
-------------------_ 
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Theorem 3.2. The system lT2 is sound and complete for tgd’s. 

proof. Soundness: Rules TT’DO, lTD1, and lTD3 are shown to be sound in [ll]. 
We now show that rule TTD3’ is also sound. Suppose that u[X] is nonrepeated in 
I u J u {u, w} and u[X] = u[X]. Define a valuation h such that h( u[.r;‘]) = v[x] 
and h is the identity elsewhere. We now have h(w) = w and h( I u J u {u}) = 
~L_J Ju{u}. Thus, by rule ‘TTDl, (w, lu Ju{u})b(w, Iu Ju{u}). Now, by rule 
TTD3, (w, lu Ju{u}), (tl,J>l=(w, 1~ J). 

Completeness: It suffices to show that the rules of IT’; imply the rules of TT,. 
Since (w, {w}) s (w, {w} u I), rules TTDO and lTD1 together imply rule TTDO’. Rule 
TTD3 is a special case of rule ‘TTD3’ by taking X to be U. Cl 

Theorem 3.3. Let D be a set of jd’s, and let d be a jd- If Dl= d, then Dt--TT;,GJD d. 

Proof. Let D be a set of jd’s, let (w, 1) be a jd, and suppose that Dl= (w, I). By 
Theorem 2.7, it suffices to show that for every u E chase& I) we have Dt,,, (u, I). 
(Note that (u, I) is a gjd for any tuple v such that (u, 1) is a tgd, because there is 
at most one repeated A-value in I for all A E U.) Let IO, I,, . . . , I, be a chase of I 
by D. We show by induction on j that, for every u E Ii, DI-~,~( u, I). I,, is I, so if 
u E I, then I--~,~ (u, {u}) by rule TI’DO, and (u, {u}>~~~&, 1) by rule TTDl. 

Suppose now that the assumption holds for 4 and let u E h+,. That is, there is a 
tgd (u, J) E D such that u E (u, J)(4). Let (u, J) represent the jd *[RI, R = 
{R,, - - . , R,}. Construct a tgd (u, K), K = { ul, . . . , u,}, which also represents *[RI. 
It is easy to define a one-to-one valuation h such that h(J) = K and h(u) = u. Thus 
( IJ, J) I---~~~( u, K) by rule lTD1. Also, by rule TT’Dl, (u, K)I-( u, K u 1). We claim 
that (u, K u I) is a gjd. In proof, note that for all A E U there is at most one repeated 
A-value in I and at most one repeated A-value in K, that if t[A] is nonrepeated 
in K, then t[A] is not in T~( I), and that if t[A] is repeated in K, then u[A] = t[A]. 
Since (u, K) represents “[RI, we have u E (u, K)( 4). That is, there is a valuation h 
onKsuchthath(u)=uandh(K)cIj.Letti=h(u,)E~,1~i~m.Bytheinduction 
hypothesis, D I- GJD( t, I), 1 d i s m. NOW Ui[ di] is nonrepeated in K u I u {u} and 

ti[Ri]= h(ui[Ri])= h(u[Ri])=u[Ri]=ui[Ri], 

so by m applications of rule lTD3’, (u, K u I), (t,, I), . . . , (t,, I)I-~~,,( u, I). 0 
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3.2. Extended join dependencies 

The results of the previous section can be improved in two directions. First, we 
can restrict the class of dependencies that have to be considered in order to enumerate 
jd’s. Secondly, we can prove that the formal system used is complete for this class 
of dependencies, unlike the system TT; that is not known to be complete for gjd’s. 
The price to pay for these improvements is having to deal with unbounded inference 
rules. 

We consider here the class of extended join dependencies. A tgd (w, I) is called 
an extended join dependency (xjd) if for all AE U there is at most one repeated 
A-value in I5 The class of xjds is denoted by XJD. Clearly, every jd is an xjd, and 
every xjd is a gjd, i.e., JDc XJDc GJDc TTGD. 

We use the system TT, from [ll]. 

‘ITDO’ (triviality). I-(w, {w}u I). 

‘ITD4 (transitivity). (w, I), (u,,J), . . . ,(u,, J)t-(u, J) if UE(W, I)({r+,. . . , u,}). 

Rule TTD4 is unbounded because it may have an unbounded number of premises. 

Theorem 3.4 ([ 111). The system IT, is sound and complete for tgd’s. 

Let (u, J) be a jd. Then every tgd (v, J) is an xjd, because there is at most one 
repeated A-value in I for all A E U, but not necessarily a jd, because u[A] may not 
be the repeated A-value for some A E U. Thus, from Theorem 2.7, there is a 
one-to-one correspondence between the tuples of chaseD(J) and the xjd’s (II, J) 
implied by D. Using this characterization, we can show that the system TT3 is 
complete for xjd’s. 

Theorem 3.5. The system TTz is complete for xjd’s. 

Proof. Let D be a set of xjd’s, let (u, J) be an xjd, and suppose that D I= (u, J). By 
Theorem 2.7 it suffices to show that, for every u E chase&J), Dt--,,,( u, J). (Note 
that (u, I) is an xjd.) Let Jo, . . . , .I, be a chase of J by D. We show by induction 
on i that, for every u E Ji, DI-~,~(u, J). JO is J so if u E J, then D!--xJo(u, J) by rule 
TTDO’. Suppose now that the assumption holds for Ji = { ul, . . . , u,}. Let u E Ji+l- 
That is, there is an xjd (w, I) E D such that u E (w, I)({ ur, . . . , u,}). By the induction 
hypothesis, D I-,,, (uk, J), for 1 d k d m, so D I-~,,,( u, J) by rule TTD4. Cl 

5 That is, if (w, I) is what Aho et al. [3] call a simple tableau. 
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4. A Gentzen-style formal system for jd’s 

When (u, J) is a jd, every tgd (u, J) is an xjd. Using the correspondence between 
the tuples of chaseD( 1) and the xjd’s (v, J) implied by D, we showed that the system 
cIT3 is complete for xjd’s. The difficulty in obtaining a formal systems for jd’s stems 
from the fact that not all tuples in chase,(l) correspond to jd’s. 

To study the situation in detail, we need some more machinery. From now on 
we treat asc’s as sequences of attribute sets rather than unordered collections. Thus 
an asc is a sequence (R,, . . . , R,) of attribute sets such that lJrE1 Ri = U. For an 
asc R = (R,, . . . , R,), we partition the attributes of U into two sets: 

MANY(R) = {A : for some 1 d i, j d m, i fij, A E Ri n R,}, 

ONCE(R) = {A : for all 1 d i, j G m, if i Zj, then A e Ri n Ri}. 

That is, MANY(R) is the set of attributes that belong to at least two elements of 
R and ONCE(R) is the set of attributes that belong to exactly one element of R. 
For every R E I?, define the stem of R: ST(R) = R n MANY(R). I satisfies *[RI if 
whenever there are tuples wl, . . . , W, in I such that Wi[ Ri n Rj] = Wj[Ri n Rj], then 
there is in I a tuple w such that W[ Ri] = Wi[ Ri]. Thus attributes in MANY(R) and 
ONCE(R) play different roles in the ‘meaning’ of *[RI. 

Let TR be(u,J),J={u,,. . . , u,}. Suppose (v, J) is a tgd such that v[ MANY( R)] = 
u[MANY(R)]. Then (v, J) represents the jd’ *[ S1, . . . , S,], where Si = 
{A: v[A] = ui[A]}. (Note that ST(Si) = ST( Ri).) Conversely, if *[SI, . . . , S,,,] is a jd 
implied by D such that ST( Si) = ST( Ri), 1 d i d m, then there is a tuple v in chase,(I) 
such that (v, J) represents *[ S1, . . . , S,,,] and v[ MANY( R) = u[ MANY( R)]. We say 
that “[S,, . . . , S,,,] has the same stem sequence as *[RI. Thus there is a one-to-one 
correspondence between the tuples of chaseD(J) with the same MANY(R)-value 
as u and the jd’s with the same stem sequence as “[RI that are implied by D. 

In order to simulate the chase, we have to associate a jd *[S”] with each tuple 
v E chase,(I). *[S”], however, does not carry the same information as v. In order 
to keep the same information in the derivation, we also have to carry with us the 
stem basis, which is a generalization of the stem sequence. A stem basis X is a 
sequence of attributes sets (X,, . . . , X,) such that if A E Xi, then A E Xi, for some 
j # i. Note that if m = 1, then X = (0). A jd *[RI = *[RI, . . . , R,] is X-based if Xi E Ri, 
and (Ri-Xi)n(Rj-Xj)=@ for i#j, lsi,jsm. 

If we try to specialize rule TTD4 to jd’s, we realize that the rule is not sound 
unless all the premises of the rule are jd’s with the same stem basis. That means 
that the concatenation of two sound derivations is not necessarily a sound derivation, 
because the jd’s in the two derivations may have different stem bases. The ability 
to concatenate derivations is, however, a basic feature of Hilbert-style systems. The 
solution is to revert to Gentzen-style formal systems, which deals with sequents 
instead of dependencies. (See [ 141 for a description of a Gentzen-style formal system 
for first-order logic.) A sequent is an expression X: D -+ d, where X is a stem basis, 



112 C. Beeri, M.Y. Vardi 

D is a finite set of jd’s and d is an X-based jd. X is the Zubel of the sequent, D is 
the antecedent, and d is the succedent. 

The interpretation of + is that of implication. Namely, X: D + d is true if Dl= d. 
The label is needed to guide the derivations. The inference rules are such that 
sequents with different labels can not interact. A Gentzen-style formal system F has 
axioms and inference rules for sequents rather than dependencies. F is sound if 
whenever X: D + *[RI is derivable by F for some stem basis X, we have D I= “[I?]. 
F is complete if whenever D!= *[RI, the sequent X: D + d is derivable by F for 
some stem basis X. 

We now present the Gentzen-style system .I. 

ZJDO. t-X: D + *[XI, . . . , Xi-13 U, Xi+,, . . . , X,,,] for a stem basis X = (X,, 
. . . , X,), 19 is m. 

ZJDl. Let *[RI, . . .,R,]ED,letX=(X, ,..., X,,,) be a stem basis, and let *[Si] = 
*[sf, . . . , SQ be X-based jd’s such that Ri n Rj n Sk c Si, for all 1 d i, j d k, 1 d p s m. 
Then 

X:D+*[S’],... ,X: D+*[Sk]tX: D-+*[@, . . . , Q,,], 

where Qi = 6 (Rj n S{). 
j=l 

Example 4. Let U = ABCD, D = {*[I?]}, R = {ABC, AD}, X = {AB, AC, BC}, S’ = 
{ABCD, AC, BC}, and S* = {AB, ABCD, BC}. The reader can verify that X is a 
stem basis, and that *[S’] and *[S*] are X-based. Furthermore, the conditions of 
rule ZJDl are satisfied. Consequently, 

X: D+*[S1],X: D-+*[S,]t-X: D+*[Q], 

where Q = {ABC, ACD, BC}. 

Theorem 4.1. The system J is sound and complete for jd’s. 

Proof. Soundness: We first show that the succedent is always X-based. 
ZJDO: *[XI,. . . , Xi-13 U, Xi+19 . . . , X,] is clearly X-based. 
ZJDl: We show that *[Q] = *[ Q1, . . . , (&,I is X-based. Let A E Xp’ Then A E Si 

for all lsisk, so AEQ,. Assume now that AE(Q~-X~)~((&--X,) for qfp. 

That is, for some i, j we have 

AE RinSin RjnS’,nXpn&, 

But 

Rin RjnSinX,,GS’,nXP 
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SO 

A@;-XJn(S',-X,); 

a contradiction. It follows that *[Q] is X-based. 
For a stem basis X = (X1, . . . , X,), construct a relation Ix = {w,, . . . , w,} such 

that Wi[A] = Wj[ A] ifI A E Xi n XP Let *[Q] be an X-based jd. We define a tuple wo 
as follows. If AE (Ii -Xi for some i, then w,[A] = wi[A]. else w,[A] = wi[A] for 
some i such that A E Qti wQ is well defined because if A E Qi -Xi, then for no j # i 
is A E Qj - XP Otherwise, whenever A E Qi also A E Xi, SO if A E Qi n Qj, then A E Xi n 
Xj and w~[A] = wj[A]. 

Example 4 (continued). Let Ix = { wl, w2, w,) be 

A B D D 
-------------------- 

w, : a0 b0 cl dl 
w2: a0 bl CO d2 
w3 : al 60 CO d3 

------------_-----__ 

Now WQ is the tuple 

A B D D 
_-_-----_______---__ 
a0 150 CO d2 
--_----___c______-__ 

Proof of Theorem 4.1 (continued). We show by induction on the length of the 
derivation that if t-J X: D + *[Q], then wQ E chaseD( Ix). 

ZJDO: *[Q] is *[Xi, . . . , Xi-19 U, Xi+*, . . . , X,]. Here WQ = Wi E Ix. 

ZJDl: *[Q] is *[Q, . . . , Qm], Qi = lJj”=, (Rj n S{). Let ti denote wsi. By the 
induction hypothesis, ti E chaseD( Ix), 1 d i d k Let t be the tuple defined by t[RJ = 

ti[Ri], 1 s i s k. We have to show that t is well defined, that is, ti[A] = $[A] if 
A E Ri n I$. tJA] = w,[A] for some p such that A E Sb, and +[A] = w,[A] for some 
q such that A E Sj,. If w,[A] # w,[A], then A E SL - Xp or A E Si - X4’ Assume without 
loss of generality that A E Sb - Xp’ But 

so A E S’p - Xp and $[A] = w,[Al_a contradiction. It follows that t is well defined. 
Since chase,(l,) is in SAT(D), we have that 

m,(chase& Ix)) = chase& Ix), 

so t E chaseD( Ix). It remains to show that t is exactly wQ 
Suppose first that A E Qp - Xp’ Then, for some i, A E Ri n Si n &,. It follows that 

?[A] = ti[A] = w,[A]. Suppose now whenever A E Qp also A E Xp and that A E Qq 
for some q. Then A E Ri n Sb for some i, and t[A] = ti[A]. If ti[A] Z wJA], then, for 
some p, A E SL - Xp so A E Qp - Xp-a contradiction. 



114 C. Beeri, M. Y. Vardi 

We have shown that if F-/X: D + *[Q], then wQ E chase,(l,), so, by Theorem 
2.7, Dl= (WQ, Ix). To complete the soundness proof, we have to show that 
( wo, Ix) < To. Let TQ be (v, J), where J = { vl, . . . , u,). Define a valuation h such 
that h(Wi) = Ui for 1 9 i d m. h is well defined, because if wi[A] = wj[A], then 
AE Xi n Xj, SO AE Qi n Qj and S[A]= Uj[A]- If wQ[A] = w,[A], then AE QP and 
u[A] = q,[A]. Therefore, h( wQ [A]) = v[ A]. It follows that h( wQ) = ~1. 

Completeness : Suppose that Di= *[Q], Q = {Qr, . . . , Qm}, TQ = (w, I), I = 

{WI, * - a, w,}. Define the stem basis X = (ST( Q1), . . . , ST( Qm)). It is easy to see 
that we can take Ix to be I. By Theorem 2.7, w E chaseD(I). With each tuple 
u in chaseD( 1) we associate a jd *[S”] = *[Sy, . . . , Sk], where Sr = Xi u 
{A: u[A]= wi[A]}. W e c aim that “[S”] is X-based. Clearly, Xi c Sy, and if 1 

AE(SY-Xi)n(Sj’-Xj), 

then wi[A] = wj[ A&a contradiction, because wi[A] = wj[A] iff A E Xi n Xp Observe 
that if u[MANY( Q)] = w[MANY( Q)], then *[ SU] is equivalent to (u, I). 

Let the chase of I by D be IO,. . . , I,. We show by induction on j that for every 
u E 4, we have t-,X: D + “[S”]. 

Basis (j = 0): I0 is 1, so u is Wi for some i and “[S”] is *[X1, . . . , Xi-19 U, 
xi+l, * - . , X,,,]. By ZJDO, I-, X: D-, “[S”]. 

Induction : Let u E h+, . There are a jd *[ R1, . . . , Rk] E D and tuples ul, . _ . , uk E 4 

such that U[Ri] = Ui[ Ri], 1 s i d k. Let *[Si] denote *[PI. That is, 

Sg = Xp U {A: ui[A] = wp[A]}- 

By the induction hypothesis, I-X: D + *[Si]. With u we associate *[VI = 
“[SY, . . . , Sk], where 

S; = Xp u {A: u[A] = w,[A]} = XP u ,j {A E &,: u[A] = w,[A]) 
h=l 

=XPu fi {AER~:u~[A]=wJA]}=X~LJ 6 (&nS,h) 
h=l h=l 

= 6 (RhnSi). 
h=l 

To prove that F-JX: D + *[S”] by rule ZJDl, we have to show that 

R,-nR,nS{sSE. 

We have XP c 23; and XP E SPg. Let 

AC Rrn R8n(S;-X,). 

Then u[A] = uf[A] = w,[A] and u[A] = u,[A], so u,[A] = wJA.1, and A E SE - Xp’ 
In particular, k-,X: D + *[SW]. But *[SW] is just *[Q], which completes the 

proof. Cl 
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5. Concluding remarks 

In this paper we have investigated whether a sound and complete formal system 
for join dependencies can be found. We have shown a bounded formal system that 
is strong enough to derive join dependencies using only generalized join dependen- 
cies in the derivation and an unbounded formal system that is complete for extended 
join dependencies. Both systems are also sound and complete for tuple generating 
dependencies. We have also constructed a sound and complete unbounded Gentzen- 
style system for join dependencies. 

Several problems remain open: 
(1) Is the system TT; complete for any subclass of TGD that contains JD? 
(2) Is there a sound and complete bounded formal system for extended join 

dependencies? 
(3) Is there a sound and complete bounded Gentzen-style system for join depen- 

dencies? 
Finally, we would like to comment about the usefulness of the system J. As was 

observed in Section 1, the formal system consisting of the rule 

dw.., d,Ed if{d,,...,dk}+d 

is sound and complete for every class of dependencies for which the implication 
problem is solvable. The interest in ‘elegant’ systems is twofold. First, such a system 
can often lead to the construction of efficient algorithms for testing implication, as 
the formal system for functional dependencies of [2] leads to the efficient algorithm 
of [4), and the formal system for multivalued dependencies of [6] leads to the 
efficient algorithm of [5]. Furthermore, such systems offer more insight into the 
properties of the class of dependencies under study and facilitate the use of 
dependencies in the design of the database schema. In our view, the system J is 
too complex to offer the second advantage. Nevertheless, the system offer a syntactic 
description of the chase, and this description may make it possible to construct a 
subexponential algorithm for testing implication of join dependencies. 
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