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Millstream systems have been proposed as a non-hierarchical method for modelling natural
language. Millstream configurations represent and connect multiple structural aspects of
sentences. We present a method by which the Millstream configurations corresponding
to a sentence are constructed. The construction is incremental, that is, it proceeds as the
sentence is being read and is complete when the end of the sentence is reached. It is based
on graph transformations and a lexicon which associates words with graph transformation
rules that implement the incremental construction process. Our main result states that,
for an effectively nonterminal-bounded reader R and a Millstream system MS based on
monadic second-order logic, the correctness of R with respect to MS can be checked: it
is decidable whether all graphs generated by R belong to the language of configurations
specified by MS.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Millstream systems simultaneously model several aspects of language structure in a parallel and co-ordinated way [3,4].
A Millstream configuration of a sentence represents the analysis of that sentence with respect to those aspects, including
appropriate links between the analyses. As aspects to be considered, morphology, syntax and semantics come to mind
immediately. However, other aspects can be modelled as well. An important point is that the separation of aspects can
lead to simple models for each of them; the connections between the models, the links, are established by, hopefully, also
simple conditions. While the formal notions developed in this paper as well as the results obtained are independent of the
number and types of linguistic aspects considered, we illustrate them by rather small examples that cover only syntax and
semantics – and even these in a very restricted way neglecting many linguistic details – because our aim is to convey the
principles and the potential of our approach rather than to present a full-blown implementation of a system for linguistic
analysis of sentences. Nevertheless, the implementation of such a system is one of the long-term goals of this research, and
we hope that our presentation shows that such an implementation would be both desirable and possible.

Various psycholinguistic and cognitive neuroscience-based studies (see [34] for example) show that humans do not
postpone the analysis of an utterance or sentence until it is complete; they rather start to process the sentence immedi-
ately when they have heard or read the first words or parts of words. Along these lines, we present results regarding the
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incremental syntactic and semantic analysis of natural language sentences using Millstream systems as part of our ongoing
work on this formalism for the description and analysis of language.

Incremental language processing is an intensively studied topic both in the context of compiler construction for pro-
gramming languages and in the context of natural language parsing. Of the vast literature related to incremental parsing
we mention only a few selected studies: Work on incremental LR-parsing for programming languages by Ghezzi and Man-
drioli [17] and by Wagner and Graham [35]; studies of incremental parsing for natural languages using various grammar
models and various computing paradigms by Beuck et al. [8], Costa et al. [10,9], Hassan et al. [22], Huang and Sagae [24],
Lane and Henderson [28], Nivre [29] and Wu et al. [36]. In these and similar studies one constructs a structural representa-
tion of an utterance, a sentence, or a program by building partial structures as one progresses reading or hearing the input
and by combining them or rejecting already constructed structures. The structural representation is intended to reflect all
relevant aspects as described by a single formal grammar. In his 1960 paper Grammar for the hearer [23], Hockett discusses
the natural understanding of spoken language and the implied constraints on parsing models. What Hockett calls a “hearer”
would be called a “reader” in our setting.

We propose that various linguistic levels like phonology, morphology, syntax and semantics should be considered simul-
taneously and not successively. Hence, we base our work on Millstream systems [3,4], a generic mathematical framework
for the description of natural language. These systems describe linguistic aspects such as syntax and semantics in parallel
by separate modules and provide the possibility to express the relation between the aspects by so-called interfaces. Roughly
speaking, a Millstream system1 consists of a finite number of modules each of which describes a linguistic aspect and an
interface which describes the dependencies between these aspects. The modules need not be of the same mathematical na-
ture: one aspect might be adequately modelled by a context-free grammar while, for another aspect, a Montague grammar
might be preferable. Each module defines a tree language which describes one linguistic aspect in isolation. The interface
establishes links between the trees given by the modules, thus turning unrelated trees into a meaningful whole called a
configuration and filtering out analyses which make sense with respect to some linguistic aspects, but not all of the ones
modelled.

In contrast, if one were to use a single type of grammar to model all aspects simultaneously, the resulting construct
would be unmanageable, as is well known and can be seen in the admirable attempt of [27] to model German.

Consider – for simplicity – a Millstream system containing only two modules, a syntactic and a semantic one, which
model the syntax and semantics of a natural language. A configuration of the Millstream system consisting of two trees
with links between them represents an analysis of a sentence. An obvious question is how to construct such a configuration
from a given sentence. Such a procedure would be a step towards automatic language understanding based on Millstream
systems. This paper continues the work begun in [6], where we proposed to use graph transformation for that purpose. We
mimic the incremental language processing performed by humans to construct a Millstream configuration by a step-by-step
procedure while reading the words of a sentence from left to right.2 The idea is that the overall structure of a sentence is
built incrementally, word by word. With each word, one or more lexicon entries are associated. These lexicon entries are
graph transformation rules whose purpose it is to construct an appropriate configuration.

For a sentence like Mary loves Peter, for example, we first apply a lexicon entry corresponding to Mary. This results in
a partial configuration representing the syntactic, semantic and interface structure of the word. We continue by applying
a lexicon entry for loves, which integrates the syntactic, semantic and interface structure of this word into the configura-
tion. Thus, after the second step, we have obtained a partial configuration representing Mary loves. Finally, the structure
representing Peter is integrated into the configuration, resulting in the Millstream configuration for the entire sentence.

We call such a sequence of graph transformation steps a reading of the sentence. The graph transformation system itself,
which consists mainly of the lexicon, is called a reader. Since words can appear in different contexts, alternative lexicon
entries for one and the same word may co-exist. In general, this may result in nondeterminism or even ambiguity; the
former occurs when two or more rules are applicable, but only one will finally lead to a complete reading; the latter
arises when two or more readings of the sentence are possible. These effects are inevitable as they are caused by inherent
properties of natural language. In many situations, however, only one lexicon entry will be applicable because its left-hand
side requires certain partial structures to be present, to which the new part is added. This corresponds to the situation of a
human reader who has already seen part of the sentence and can thus rule out certain lexicon entries associated with the
next word.

Given a reader that is supposed to construct configurations of a Millstream system MS, an obvious question to ask is
whether the reader yields correct configurations, that is, whether the configurations it constructs are indeed configurations
of MS. The main (formal) result of this paper is Corollary 1 which states that, under certain conditions, this question is
decidable for so-called regular MSO Millstream systems, that is, systems in which the modules are regular tree grammars
(or, equivalently, finite tree automata) and the interface conditions are expressed in monadic second-order (MSO) logic.
In other words, given a regular MSO Millstream system MS and a reader satisfying the conditions mentioned, one can
determine effectively whether all readings yield correct configurations of MS.

1 The term Millstream system refers to the place at which the notion was created; thus, it has no direct connection to language theory.
2 Instead of “left to right” one might prefer to say “in their spoken (or natural) order.”
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Our graph transformation rules use a special case of the well-known double-pushout (DPO) approach [14]. Since general
DPO rules give rise to Turing-complete graph transformation systems, we try to avoid them. One of the most prominent
special cases of the DPO approach is hyperedge replacement, a context-free type of graph transformation invented indepen-
dently by Bauderon and Courcelle [2] and Habel and Kreowski [20]; see also [11,19,15,12]. Our formal model of readers is
based on an extension of hyperedge replacement that allows the replacement of several hyperedges simultaneously. More-
over, the replacement may depend on the context. This type of rules was inspired by contextual hyperedge replacement as
proposed in [13] for applications in software refactoring. However, in that paper only single hyperedges are replaced and
the context consists of isolated nodes.

We hope that the use of graph transformation in natural language processing can pave the way for incorporating the
semantic dimension and other aspects in the linguistic analysis of sentences. In fact, we are not the only authors who em-
phasize the potential of graph transformation in natural language processing. Another recent paper that comes to exactly the
same conclusion from the point of view of statistical machine translation is [26], where the use of synchronous hyperedge
replacement grammars for semantically informed machine translation is proposed.

Our paper is structured as follows. In Section 2 we introduce the formal background about Millstream systems and the
representation of Millstream configurations as graphs. We then introduce the model of readers in Section 3 and explain their
mode of operation by means of a small example. In Section 4 we consider the correctness of such readers and prove the
main result of the paper. Next, in Section 5, we explain the linguistic relevance of (nonterminal-bounded) readers, by con-
sidering structures occurring in natural language, such as unlimited embedding, anaphoric reference and wh-dependencies.
We discuss the results and the next steps of this ongoing research in Section 6.

2. Millstream configurations as graphs

Throughout the paper, N denotes the set of non-negative integers. For a set S , S∗ denotes the set of all finite sequences
(or strings) of elements of S . For w ∈ S∗ , |w| denotes the length of w , and [w] denotes the set of all elements of S occurring
in w , that is, [w] is the smallest set A such that w ∈ A∗ . As usual, if ⇒ is a binary relation, then ⇒∗ denotes its reflexive
and transitive closure.

We first define the general type of graphs considered. For modelling convenience, we choose to work with hypergraphs
in which the hyperedges, but not the nodes, are labelled. In an ordinary edge-labelled directed graph, edges are triples
(u, v,a) consisting of a start node u, an end node v , and a label a. If we want to be able to consider multiple parallel
edges with identical labels, we can accomplish this by saying that a graph consists of finite sets V and E of nodes and
edges, respectively, an attachment function att : E → V 2 and a labelling function lab : E → Σ , where Σ is the set of labels.
Hypergraphs generalize this one step further, by allowing a hyperedge to be attached to any sequence of nodes rather than
just a pair, that is, the attachment is turned into a function att : E → V ∗ . Note that this includes hyperedges which are
attached to only a single node or to no node at all.

Often it turns out to be convenient to assume that the label of a hyperedge determines the number of attached nodes.
For this reason, the edge labels will be taken from a ranked alphabet Σ , meaning that Σ is a finite set of symbols such
that every a ∈ Σ has a rank rk(a) ∈ N. In the sequel, we use the terms alphabet, graph, and edge to mean ranked alphabet,
hypergraph, and hyperedge, respectively.

The precise definition follows.

Definition 1 (Graph). Let Σ be an alphabet. A Σ-graph or simply graph is a quadruple (V , E,att, lab) consisting of

• a finite set V of nodes,
• a finite set E of edges,
• an attachment att : E → V ∗ , and
• an edge labelling lab : E → Σ such that rk(lab(e)) = |att(e)| for all e ∈ E .

If they are not explicitly named, the components of a graph G are referred to as V G , EG ,attG , labG . By GΣ we denote the
class of all Σ-graphs.

A subgraph of G = (V , E,att, lab) is a graph (V ′, E ′,att′, lab′) such that V ′ ⊆ V , E ′ ⊆ E , and att′ and lab′ are the restric-
tions of att and lab, respectively, to E ′ .

Example 1 (Graph). Fig. 1 shows a graph G consisting of nodes v1, . . . , v5 and edges e1, . . . , e4. The edges are drawn as
rectangles with their labels inside. Lines, sometimes called tentacles in the literature, connect the edge with its attached
nodes. For e2, for instance, we have labG(e2) = c and attG(e2) = v5 v3 v2 v4. Thus, the rank of c is assumed to be 4. The edges
e3 and e4 are ordinary edges. Normally they would be drawn as arrows pointing from v4 to v3. In the sequel, graphs will
be drawn in a less cluttered way, using suitable conventions about how to draw different types of edges and leaving out
information which is irrelevant or can be inferred from the context.

An isomorphism between graphs G and H is a pair of bijective mappings mV : V G → V H and mE : EG → E H that preserves
attachments and labels, that is, mV (attG(e)) = attH (mE (e)) and labG(e) = labH (mE (e)) for all e ∈ EG ; here mV is canonically
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Fig. 1. A graph.

extended to a homomorphism of V ∗
G into V ∗

H . If such an isomorphism between G and H exists, the two graphs are said
to be isomorphic. We point out here that we do not wish to distinguish between isomorphic graphs even though, for
technical convenience, all constructions will be given in terms of operations on concrete graphs. Since we generally identify
isomorphic graphs, we do not explicitly mention that statements such as “the graph G is uniquely determined” or “there
are only finitely many graphs of size k in GΣ ” are intended to be read with the implicit addition “up to isomorphism”.

A term graph G is a graph that represents a formal expression over a set Σt of function symbols. As usual, each symbol
a in such an expression has an arity k which determines the number of subexpressions it requires. The arity k of a ∈ Σt
is also indicated by denoting a as a(k) . To represent an expression over Σt as a graph G , each a(k) is regarded as a label
of rank k + 1. If an edge e ∈ EG has the attachment v1 · · · vk v we say that v1, . . . , vk are the source nodes of e and v is
its target node. Intuitively, in a term graph the target node of an edge labelled with a represents an expression a(· · ·) the
direct subexpressions of which are represented by the source nodes of the edge. Essentially, term graphs have already been
proposed in [1], where they were called DOAGs (directed ordered acyclic graphs). Another closely related concept is the
notion of a jungle; cf. [21].

To make the notion of term graphs precise, consider a ranked alphabet Σt such that rk(a) � 1 for all a ∈ Σt. For a graph G
and nodes u, v ∈ V G , there is a path from u to v if there are nodes u = v0, . . . , vn = v such that, for every i ∈ {1, . . . ,n}, EG

contains an edge that has vi−1 among its source nodes and vi as its target node.

Definition 2 (Term graph). Let Σt be a ranked alphabet such that rk(a) � 1 for all a ∈ Σt. A term graph over Σt is a Σt-graph
G such that

1. every node v ∈ V G is the target node of a unique edge e ∈ EG ,
2. there is a node r ∈ V G , called the root of G , which is not a source node of any edge in EG , and
3. for every node v ∈ V G , there is a path from v to the root of G .

For the sake of clarity, let us define the expression represented by a term graph G . If r ∈ V G is the root of G then G
represents the expression term(G) = termr(G). Here termv(G) is defined as follows for all v ∈ V G : If v is the target node of
e ∈ EG , labG(e) = a and attG(e) = v1 · · · vk v , then

termv(G) = a
(
termv1(G), . . . , termvk (G)

)
.

Note that distinct occurrences of equal subexpressions in term(G) may be shared in G , that is, represented by the same
node. We call a term graph G a tree if it does not involve sharing. More precisely, a term graph G is a tree if for, all edges
e, e′ ∈ EG with attG(e) = u1 · · · uku and attG(e′) = v1 · · · vl v , ui = v j for some i ∈ {1, . . . ,k} and j ∈ {1, . . . , l} implies e = e′
and i = j.

Fig. 2 depicts a tree over S(3) , VP(3) , NP(2) , V(2) , Mary(1) , loves(1) , Peter(1) . We do not specify the order of the source
nodes of edges explicitly, but use the convention that they should be read from left to right. Target nodes are drawn above
their respective edges. To save space and make drawings of term graphs more comprehensible, we use the more usual and
less redundant drawing style shown in Fig. 2(b) in the sequel. The reader should, however, keep in mind that nodes are
unlabelled; the labels drawn underneath the nodes are edge labels rather than node labels.

Let us now turn to Millstream configurations. In this paper, we represent them in a way which is suitable for graph
transformation. Therefore, we define a configuration to consist of k term graphs – one for each linguistic aspect considered
– with links between them. The links are represented by edges. They indicate relations between the nodes and may belong
to different categories, that is, they may carry different labels. A typical link establishes a relation between two nodes,
where one belongs to one term graph and the other one belongs to another one. In general, links may have an arbitrary
arity, and may also link two or more nodes belonging to the same term graph.
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Fig. 2. Pictorial representation of a term graph without sharing, that is, a tree.

The alphabets used to build Millstream configurations contain two types of edges: term edges and links, respectively.
Term edges are those edges of which the term graphs consist, and links are used to establish connections between nodes in
the term graphs.

Definition 3 (Millstream alphabet and configuration). Let k ∈N.

1. A Millstream alphabet is a ranked alphabet Σ partitioned into two disjoint alphabets Σt and Σl of term symbols and link
symbols, respectively.

Let G ∈ GΣ .

2. Edges of G labelled with symbols in Σt and Σl are called term edges and links, respectively.
3. A Millstream configuration of dimension k (over Σ ) is a graph G ∈ GΣ such that the deletion of all links from G results in

a disjoint union of k term graphs.

Note that, for a Millstream configuration G and given link symbol σ of arity l, the set of all links labelled with σ
represents an l-ary relation on the nodes of the configuration.

Since we are not going to make use of the formal definition of Millstream systems here, we explain only informally what
a Millstream system in the sense of [4] is. Let k � 1 and let Σ be a Millstream alphabet.

A Millstream system MS over Σ is a k + 1-tuple MS = (M1, . . . , Mk;Φ), consisting of k modules and a logical interface Φ .
The modules are any formal devices that specify sets L(M1), . . . , L(Mk) of term graphs over Σt. For example, classical tree
automata can be used as modules. The interface consists of a set of closed logical formulae which express properties of
Millstream configurations. A Millstream configuration the underlying term graphs of which are G1, . . . , Gk belongs to the
language L(MS) if G1 ∈ L(M1), . . . , Gk ∈ L(Mk) and, in addition, the configuration as a whole satisfies Φ .3

In this paper, we consider the class of MSO Millstream systems, where ‘MSO’ stands for ‘monadic second-order’. By defi-
nition, an MSO Millstream system is a Millstream system in which the k modules are closed formulae Φ1, . . . ,Φk in MSO
logic that define sets L(Φ1), . . . , L(Φk) of term graphs, and the interface is an MSO formula as well.4 The reader should note
that it is easy to express in MSO logic that a graph is a term graph. Therefore, we may assume without loss of generality
that only graphs that are indeed term graphs satisfy Φi , for i ∈ {1, . . . ,k}.

A special case of MSO Millstream systems (with respect to descriptional capacity) are the regular MSO Millstream sys-
tems studied in [3–6]. These are Millstream systems in which the modules are regular tree grammars (or finite state tree
automata) and the interface is an MSO formula. Since the regular tree languages are exactly the MSO-definable tree lan-
guages, MSO Millstream systems are more general only in so far as their modules can generate term graphs instead of
trees.

3 See [11, Section 5.3.3] for a precise definition of how a graph G can be seen as a logical structure |G|2 whose universe is the union of the sets of nodes
and edges of the graph, and whose predicates determine the labels and attachments of the edges.

4 From the point of view of descriptive power, the modules are of course negligible in this case, because the formulae Φi can be conjunctively added to
the interface. However, modularization makes the construction of Millstream systems easier.
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Fig. 3. A sample configuration that relates a syntactic and a semantic tree.

There are two reasons for this generalization. The first is that such sharing often occurs in linguistic modelling, for ex-
ample when a functional entity of a sentence is referred to several times. The second reason is that sharing is a natural
concept to use when working with graph transformation. As mentioned earlier, the k term graphs in a Millstream configu-
ration are supposed to represent k individual linguistic aspects of one and the same sentence. Millstream systems that are
sophisticated enough to be of practical linguistic relevance may be expected to cover several linguistic aspects and contain
links of various kinds and arities. As mentioned in the introduction, the discussion of such examples is beyond the scope
and purpose of this paper. It would, furthermore, lead to incomprehensible figures. Therefore, the Millstream configurations
in the examples of this paper will consist of two term graphs each, representing a simplified syntactic and semantic analysis
of a sentence, and there will be only one link symbol. This link symbol is of rank 2, and it connects nodes across the two
term graphs. Therefore, we draw links as unlabelled lines connecting the nodes in question. Furthermore, to distinguish
links from term edges, the former are depicted as dashed lines.

With these conventions, a configuration looks as shown in Fig. 3. It consists of two term graphs which represent the
extremely simplified syntactic and semantic structures of the sentence Mary loves Peter. The term symbols of the semantic
part should be interpreted as functions of a many-sorted algebra. The sorts of the algebra are the semantic domains of
interest, and the evaluation of a term graph G yields an element of one of these sorts by evaluating term(G) in the usual
manner. In the semantic tree shown in the figure, we assume that Mary and Peter are (interpreted as) functions without
arguments, that is, constants, returning elements of the sort name. The function person takes a name as its argument and
returns, say, an element of the domain person. Finally, loving is a function that takes two persons as arguments and returns
an element of the domain state, namely the state that the first argument (commonly called the agent) loves the second (the
patient). The links establish correspondences between nodes in the two trees showing, for example, that the verb of the
sentence corresponds to the function loving whose two arguments correspond to the two noun phrases of the sentence. We
note here that this correspondence must respect the different thematic roles (agent and patient) of the noun phrases, thus
making sure that the agent is really the first argument of the semantic function. Otherwise, the state object obtained by
evaluating the semantic tree would express the wrong thing.

In realistic settings, one would use more elaborate term graphs on both the syntactic and the semantic sides. For exam-
ple, one might decompose the verb into its stem love and the inflection s indicating present tense. Semantically, one would
at least add a node above the current root. This node would be a function taking a state as its input and turning it into
a situation in the present, that is, it would reflect the temporal information provided by the inflection. That node would
then be linked with the inflection that gives rise to it (see, e.g., [25]). This slightly more elaborate configuration is shown in
Fig. 4. However, since we primarily want to convey the idea behind our way of constructing configurations, we will stick to
the more simplified type of configurations shown in Fig. 3 for the examples discussed throughout the rest of this paper.

3. Building configurations incrementally by graph transformation

We are given a sentence. We want to “understand” it. Technically, more precisely and more modestly, we want to turn
this sentence into a “correct” Millstream configuration, if possible. What is a correct Millstream configuration for a given
sentence and how can we find it? These questions are addressed in the present section of this paper. As described above,
a Millstream system contains k modules, one for each of the k trees in a configuration. Furthermore, we are given a logical
interface describing which configurations – consisting of k term graphs generated by the modules and a set of links between
them – are considered to be correct. Here we investigate how configurations can be built “from scratch” along a sentence
using graph transformation. We use a lexicon which associates words with graph transformation rules. Consider the very
simple sentence Mary loves Peter. The construction of a configuration for this sentence consists of applying three rules in
succession, the first one being associated with Mary, the second one with loves, and the third one with Peter. In general,
this process is nondeterministic.
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Fig. 4. A slightly less simplified configuration.

We use graph transformation in the sense of the so-called double pushout (DPO) approach [14] with injective occurrence
morphisms. A DPO rule or simply a rule r consists of three graphs, where the one in the middle is a subgraph of the others:
r = (L ⊇ K ⊆ R) (also called span in the literature). The rule applies to a given graph G if

1. L is isomorphic to a subgraph of G (for simplicity, we assume that the isomorphism is the identity) and
2. no edge in EG \ E L is attached to a node in V L \ V K .

The application of r is defined up to isomorphism. It is best described in terms of concrete graphs, using the following
two-step process. We first create the graph D from G which is obtained by removing all nodes and edges from it that are
in L but not in K . Then, we obtain the result H by adding all nodes and edges to D that are in R but not in K . Thus,
the middle component K , which is commonly called the gluing graph is not affected by the rule, but rather used to “glue”
the new nodes and edges in the right-hand side R to the existing graph. The second condition for applicability, commonly
known as the dangling condition, ensures well-formedness, as it makes sure that the deletion of nodes does not result in
so-called dangling edges, that is, edges with an undefined attachment. The application of r to G , yielding H , is denoted by
G ⇒r H . If R is a set of graph transformation rules and G ⇒r H for some r ∈ R , we denote this fact by G ⇒R H .

Compared to general DPO rules, our lexicon rules are quite restricted. We use a ranked alphabet N of nonterminal
labels to indicate “construction sites” in a partial configuration. Lexicon rules never delete nodes or ordinary edges, but only
nonterminals. The following definition makes these notions of nonterminals and rules precise.

Definition 4 (Lexicon rule). Let Σ and N be a Millstream alphabet and a ranked alphabet of nonterminal labels, respectively,
such that N is disjoint from Σ . A nonterminal of a graph G is an edge e ∈ EG such labG(e) ∈ N .

A lexicon rule over Σ and N is a rule r = (L ⊇ K ⊆ R) over Σ ∪ N that satisfies the following requirements:

1. L ∈ GΣ∪N \ GΣ ,
2. K is the graph obtained from L by deleting all nonterminals, and
3. for every edge e ∈ E R \ E K ,

[
attR(e)

] ⊆
⋃{[

attL
(
e′)] ∣∣ e′ ∈ E L, labL

(
e′) ∈ N

} ∪ (V R \ V K ).

Since the gluing graph K of a lexicon rule r = (L ⊇ K ⊆ R) is uniquely determined by the left-hand side L, it is not
necessary to mention it explicitly. We will therefore denote lexicon rules by L ::= R in the sequel. Note that, since V K = V L ,
the dangling condition is automatically satisfied, that is, r applies to every subgraph which is isomorphic to L.

Let us briefly discuss the requirements on lexicon rules in Definition 4.
The first one requires that L contains at least one nonterminal. This requirement should intuitively be reasonable. It

guarantees that a graph that does not contain any nonterminals is indeed terminal, that is, no lexicon rule applies to it.
However, it is in fact not difficult to see that readers, as defined in Definition 5 below, do not gain any additional power
if the requirement is dropped. This can be seen by adding a new nonterminal label Z of rank 0 and turning every lexicon
rule L ::= R with L ∈ GΣ into the two rules L + Z ::= R + Z and L + Z ::= R , where ‘+ Z ’ denotes the addition of a new
nonterminal labelled Z to a graph.

By the second requirement, the application of a lexicon rule removes the nonterminals in its left-hand side, but nothing
else.

The third requirement states that new edges added to the configuration – term edges, links, and nonterminals – can only
be attached to new nodes and nodes that were attached to one of the replaced nonterminals. In other words, the left-hand
side except the nonterminals and their attached nodes is nothing but context the presence of which is required for the
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Fig. 5. Lexicon entries for Mary, loves, and Peter; the left-hand side of the lexicon entry for Mary is the (unique) start graph.

rule to be applicable. This context is neither changed by deleting part of it, nor are new edges attached to its nodes. This
reflects the intuitive view that nonterminals indicate “construction sites”, that is, parts of the configuration that are still
under development.

It is worth recalling that, strictly speaking, we work with abstract graphs rather than concrete ones. In particular,
derivation steps are defined only up to isomorphism. This means that we can safely select any concrete graph G as the
representative of the corresponding abstract graph, that is, of the isomorphism class of all graphs that are isomorphic to G .
We exploit this fact in order to simplify some constructions, using the following technical assumption.

Technical assumption. Consider a derivation step G ⇒r H by a lexicon rule r = (L ::= R). From now on, we assume that H
is constructed from G in such a way that

(a) the nonterminals in the image of L in G are removed from G , yielding a graph D ⊆ G , and
(b) fresh copies of the nodes and edges in R that are not in L are added to D .

Here, fresh means that these nodes and edges do not appear in G and, when a derivation is considered, not in earlier graphs
of that derivation either. Thus, the nodes and edges in G are still present in H , except for nonterminals that have been
replaced, and all nodes and edges that have been added are fresh copies of those in R .

Fig. 5 shows sample lexicon rules for Mary, loves, and Peter. Here, and in the sequel, a lexicon rule associated with a
particular word w is referred to as a lexicon entry for w . The nonterminals are depicted in typewriter font surrounded by
boxes, the term edges and links are drawn as before. The nonterminals in Fig. 5 indicate which syntactic or semantic roles
are missing. By deleting the nonterminals on the left-hand side of a lexicon rule we obtain the gluing graph, that is, the
context required in a partial configuration for the lexicon rule to be applicable. This gluing graph is drawn in black on the
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right-hand side of a lexicon entry. The nodes, term edges and links drawn in blue5 on the right-hand side are “added”
around the gluing graph, thus replacing the nonterminals on the left-hand side. By replacing nonterminals the syntactic or
semantic roles around the gluing graph are specified. Starting with the start graph – on the left-hand side of the lexicon
entry for Mary – and applying the three lexicon entries in Fig. 5 in the order in which the words appear in the sentence Mary
loves Peter takes us to the configuration in Fig. 3. The nonterminal labels SYN_ARG and THETA_ROLE on the right-hand
side of the lexicon entry for Mary indicate that, after application of this rule, the syntactic and semantic roles of Mary are
not yet specified: whether Mary is the syntactic subject or object (SYN_ARG) and semantic agent or patient (THETA_ROLE)
has to be specified during the reading of sentence. Note also that the complete lexicon should contain another entry similar
to the one in (a), but with Mary and Mary being replaced by Peter and Peter, respectively. Similarly, there should be a
variant of (c) for the name Mary. This would make it possible to read the sentence Peter loves Mary.6 Before we discuss such
a reading of a sentence and a slightly more complex example we define the notion of a reader formally.

Definition 5 (Reader). A reader is a tuple R= (Σ, N, W ,Λ, S) consisting of

• a Millstream alphabet Σ ,
• a ranked alphabet N of nonterminal labels that is disjoint from Σ ,
• a finite set W of words, the input words,
• a mapping Λ, called the lexicon, that assigns, to every w ∈ W , a finite set Λ(w) of lexicon rules over Σ and N , and
• a finite set S ⊆ GΣ∪N of start graphs.

Let u = w1 w2 · · · wn ∈ W ∗ with w1, w2, . . . , wn ∈ W . A reading of u by R is a derivation

G0 ⇒Λ(w1) G1 ⇒Λ(w2) · · · ⇒Λ(wn) Gn

such that G0 ∈ S and Gn ∈ GΣ . In this case, Gn is said to be the result of this reading. The set of all Σ-graphs resulting from
readings of u is denoted by R(u), and L(R) = ⋃

u∈W ∗ R(u).

When considering readers as defined, we refer to a rule in Λ(w) also as a lexicon entry for w . For u = w1 · · · wn and (Σ ∪
N)-graphs G0, . . . , Gn , a derivation of the form G0 ⇒Λ(w1) G1 ⇒Λ(w2) · · · ⇒Λ(wn) Gn may be abbreviated as G0 ⇒∗

Λ(u)
Gn .

Let us discuss a reading of a sentence in a slightly more interesting case than the one above. We consider English
sentences involving the verbs to seem and to try; they are raising and control verbs, respectively. In sentences like Mary
seems to sleep, the noun Mary is the syntactic subject of seems, but it is not its semantic argument. In contrast, in the
sentence Mary tries to sleep, Mary is both the syntactic and the semantic argument of tries as well as the semantic argument
of to sleep. For the sake of simplicity, we assume that these sentences have the same syntactic structure, that is, that they
differ only with respect to their semantic structure. Fig. 9 shows Millstream configurations corresponding to the sentences.
In the first configuration, the fact that Mary is the semantic argument of both tries and to sleep is represented by sharing
rather than duplicating the corresponding substructures. Fig. 6 shows the lexicon entries needed to be able to handle these
sentences. In addition, the lexicon entry for Mary given in Fig. 5(a) is needed. The nonterminal labels INF_COMPL and EV
are abbreviations for infinitival complement and eventual event. Let us consider the reading of the sentence Mary tries to sleep.
We start with the start graph on the left-hand side in Fig. 5(a). Reading Mary, as the first word in the sentence, we apply
the lexicon entry in Fig. 5(a) leading to the partial Millstream configuration shown in Fig. 7.

The nonterminal labels SYN_ARG and THETA_ROLE in Fig. 7 illustrate that the syntactic and semantic roles of Mary are
not determined yet. Now we read tries and apply the lexicon rule in Fig. 6(b) leading to the partial configuration shown in
Fig. 8. Here, the syntactic and semantic roles of Mary have been specified as the syntactic subject and the first semantic
argument (agent), respectively. The nonterminal labels INF_COMPL and EV tell us that on the syntactic side an infinitival
complement and on the semantic side an “eventual event” is missing. Reading the word to sleep enables the lexicon rule in
Fig. 6(c). Note that the gluing graph or context obtained by deleting the nonterminals on the left-hand side of the lexicon
entry for to sleep occurs in the partial configuration of Mary tries in Fig. 8. Applying the lexicon rule for to sleep in Fig. 6(c)
after having read to sleep in the sentence Mary tries to sleep, replaces the nonterminals labelled INF_COMPL and EV in the
partial configuration in Fig. 8 and results in the final Millstream configuration depicted in the upper half of Fig. 9. Via a
similar reading, using the lexicon entry for seems instead of the one for tries, the sentence Mary seems to sleep gives rise to
the configuration in the lower half of Fig. 9.

In the context of a reader R= (Σ, N, W ,Λ, S) let us call a graph G ∈ GΣ∪N straight if the sequence of attached nodes of
each nonterminal in EG does not contain repetitions, that is, it consists of pairwise distinct nodes. A reader is said to be in
normal form, if all left-hand and right-hand sides of lexicon rules and all graphs in S are straight. Note that all nonterminal
graphs derived by a reader in normal form are straight. The following lemma states that, without loss of generality, all
readers can be assumed to be in normal form. This is similar to [19, Theorem I.4.6], where such a result is proved for
hyperedge replacement grammars.

5 In case of grey scale printouts the blue appears grey.
6 From an implementation point of view, such situations should of course be handled by rule templates.
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Fig. 6. Lexicon entries for handling Mary seems to sleep and Mary tries to sleep.

Fig. 7. Partial configuration after having read Mary.

Lemma 1. For every reader R = (Σ, N, W ,Λ, S) one can construct a reader R′ in normal form such that R′(u) = R(u) for all
u ∈ W ∗ .

Proof. As usual, a partition of a set X is a set X of disjoint nonempty subsets of X such that
⋃

Y ∈X Y = X . In particular,
the unique partition of ∅ is ∅.

From R we construct R′ = (Σ, N, W ,Λ, S) as follows.
Consider a nonterminal label A ∈ N and let k be its rank. For each partition π of the set {1,2, . . . ,k}, let Aπ be a new

nonterminal of rank |π |. Let

N = {
Aπ

∣∣ A ∈ N,π is a partition of
{

1,2, . . . , rk(A)
}}

be the set of such new nonterminals.
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Fig. 8. Partial configuration after having read Mary tries.

Fig. 9. Configurations representing the sentences Mary tries to sleep and Mary seems to sleep.

Next, for each graph G ∈ GΣ∪N , we construct the graph G ∈ GΣ∪N as follows.
Consider a nonterminal e ∈ EG and assume that attG(e) = v1 · · · vk . On the set {1,2, . . . ,k} consider the equivalence

relation ≡ defined by

i ≡ j if and only if vi = v j .

Let π be the partition defined by ≡. Now, let labG(e) = labG(e)π . From v1 · · · vk remove all nodes vi such that i is not
minimal in its block with respect to π . Define attG(e) to be the resulting sequence of nodes. The graph G obtained in this
way is straight. Moreover, the function that maps G to G is a bijection between the graphs in GΣ∪N and the straight graphs
in GΣ∪N .
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Now, define R′ = (Σ, N, W ,Λ, S) by extending this construction canonically to sets of graphs, lexicon rules, and lexica.
Thus R′ is in normal form. Moreover, for every lexicon rule r = (L ::= R) over Σ and N and all G, H ∈ GΣ∪N , one has
G ⇒r H if and only if G ⇒r H . By induction on the length of u this yields the statement of the lemma. �

Thus, whenever convenient, we assume in the sequel that a reader is in normal form.
When designing readers, it is useful to be able to make some basic assumptions about the order of the words in the

input sentence. The following result makes this possible, as it states that the set of input sentences a reader can process can
be restricted by intersection with a regular language.

Theorem 1. Let R = (Σ, N, W ,Λ, S) be a reader. For every regular language L ⊆ W ∗ , one can effectively construct a reader R′ =
(Σ, N ′, W ,Λ′, S ′) such that, for every input sentence u ∈ W ∗ ,

R′(u) =
{
R(u) if u ∈ L,

∅ otherwise.

Proof. Let A = (W , Q , δ,q0, F ) be a deterministic finite automaton (DFA) accepting L, where Q with Q ∩ N = ∅ is the set
of states, δ : Q × W → Q is the transition function, q0 is the initial state, and F is the set of final states. One constructs R′
as follows: Let N ′ = N ∪ Q ; define the rank of each q ∈ Q to be zero; add a nonterminal labelled with q0 to the graphs in
S to obtain S ′ .

Now, Λ′ = Λ′
0 ∪ Λ′

1 is defined as follows. For w ∈ W and every lexicon entry r ∈ Λ(w), Λ′
0 contains a lexicon entry rq

for every q ∈ Q ; each entry rq results from adding single edges labelled q and δ(q, w) to the left-hand and right-hand sides
of r, respectively. Moreover, with w and q as before, Λ′

1 consists of lexicon entries rq,f for each q with δ(q, w) ∈ F ; these
entries are obtained by adding q to the left-hand side of r and keeping the right-hand side of r unchanged.

Let u ∈ W ∗ , G0 ∈ S , and G ∈ GΣ∪N . Let G ′
0 be the graph in S ′ corresponding to G0 in S . By induction on the length of u

one proves that G0 ⇒∗
Λ(u)

G if and only if G ′
0 ⇒∗

Λ′
0(u)

G ′ , where G ′ is obtained from G by adding an edge labelled δ(q0, u)

to it, where δ is extended to W ∗ in its second argument in the usual manner. Moreover, a reading terminates if and only
if a rule rq,f ∈ Λ′

1 is applied, that is, the state reached in A is a final state. Together these facts imply the claim of the
theorem. �

An important question is: how to prove the correctness of a reader with respect to a given Millstream system. In other
words, one would like to guarantee that the language generated by the reader is equal to the language of configurations of
the Millstream system. In the next section of this paper we investigate this issue.

4. Correctness of readers

Throughout this section, we consider nonterminal-bounded readers in normal form. Consider a reader R = (Σ, N, W ,

Λ, S) with R = ⋃
w∈W Λ(w), and let l ∈ N. A derivation G0 ⇒R G1 ⇒R · · · ⇒R Gn is l-nonterminal-bounded if none of the

graphs Gi for i ∈ {0, . . . ,n} contains more than l nonterminal edges. The reader R is l-nonterminal-bounded or, briefly,
nonterminal-bounded if all derivations G0 ⇒R G1 ⇒R · · · ⇒R Gn with G0 ∈ S are l-nonterminal-bounded. We say that a
reader is effectively nonterminal-bounded if it is nonterminal bounded and an explicit bound l as above is known.

In this section we show that the languages of effectively nonterminal-bounded readers are context-free graph languages
– more precisely, hyperedge-replacement graph languages. From this, we conclude that it is decidable for such readers
whether all resulting configurations constructed are valid configurations of a given regular MSO Millstream system.

Let us remark here that nonterminal-boundedness is, of course, undecidable for graph transformation systems in gen-
eral, since graph transformation systems can simulate Turing machines. It does not seem to be obvious whether a similar
undecidability result holds in the special case of readers. However, the examples in this paper, except the one discussed
in Section 5.3, are indeed nonterminal-bounded. Roughly speaking, this is because nonterminal-boundedness can only be
violated if there are cycles that allow one to create a nonterminal e with a certain label from other nonterminals of which
at least one carries the same label as e. Such a cycle occurs in the lexicon rules in Fig. 11, which create a nonterminal
labelled S from another such nonterminal. However, this cycle does not increase the number of nonterminals in the graph,
which means that the reader is nonterminal-bounded.

More generally, the number of nonterminals in the configurations of a reader can be bounded from above by modelling
the set of Parikh vectors of derived graphs by a vector addition system; here the Parikh vectors are obtained by counting the
numbers of occurrences of nonterminal labels. Since boundedness of vector addition systems is decidable [32], this yields
a sufficient condition for nonterminal-boundedness of readers. It does not yield a decision procedure, because reader rules
may be disabled if the nonterminals do not appear in the right context.

Next, we recall the definition of hyperedge replacement grammars and languages. For this, given a label A of rank k, let
A• = ({1, . . . ,k}, {e},att, lab), where att(e) = 1 · · ·k and lab(e) = A.

Definition 6 (HR grammar and language). (Cf. [19].) A hyperedge-replacement grammar, HR grammar for short, is a tuple
Γ = (N,Σ, P , S), where
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• N and Σ are ranked alphabets of nonterminal and terminal labels, respectively,
• P is a finite set of HR rules (see below), and
• S is a finite set of start graphs.

An HR rule is a lexicon rule of the form A• ::= R , where A ∈ N and R is straight.
The hyperedge-replacement language (HR language) generated by Γ is

L(Γ ) = {
G ∈ GΣ

∣∣ G0 ⇒∗
P G for some G0 ∈ S

}
.

Let R and R′ be readers. We say that R and R′ are equivalent if R(u) =R′(u) for every input sentence u. With respect
to a reader R= (Σ, N, W ,Λ, S), we say that a graph G is linear if it contains at most one nonterminal.

A lexicon rule is left-linear (right-linear) if its left-hand side (right-hand side) is linear, and it is linear if it is both
left-linear and right-linear. The reader R is linear if each graph in S as well as all lexicon entries in Λ are linear.

An easy but important observation is that a left-linear lexicon rule r = (L ::= R) is an HR rule with an additional context
condition: provided that r can be applied to a graph G , its effect is the same as the effect of the HR rule obtained by making
r context-free. To make this precise, let e be the unique nonterminal in L. Then 
r� denotes the HR rule obtained from r by
removing all nodes in V L \ [attL(e)] and all edges in E L \ {e} from both L and R .

Observation 1. For a left-linear lexicon rule r = (L ::= R) and a linear graph G, there is at most one graph H such that G ⇒r H. If this
graph H exists, then G ⇒
r� H.

We now show that nonterminal-bounded readers are equivalent to linear ones.

Lemma 2. For every nonterminal-bounded reader R there exists an equivalent linear reader R′ . If R is effectively nonterminal-
bounded then R′ can be constructed effectively.

Proof. Let R= (Σ, N, W ,Λ, S) be nonterminal-bounded with bound l. For a graph G ∈ GΣ∪N , let #(G) = |{e ∈ EG | labG(e) ∈
N}| be the number of nonterminals occurring in G . Thus #(G) � l for all graphs G derived by R.

Choose any total order <N on N . Assuming that we know l, we show how to construct an equivalent linear reader
R′ = (Σ, N ′, W ,Λ′, S ′).

For every sequence A1 <N A2 <N · · · <N An of nonterminal labels with n � l let N ′ contain the label A1 · · · An of
rank

∑n
i=1 rk(Ai). A graph G ∈ GΣ∪N containing n nonterminals e1, . . . , en with n > 0, where labG(ei) = Ai , can be

turned into a graph G̃ ∈ GΣ∪N ′ by replacing e1, . . . , en with a single nonterminal e such that labG̃(e) = A1 · · · An and
attG̃(e) = attG(e1) · · ·attG(en). For a graph G ∈ GΣ we let G̃ = G .

Let S ′ = {G̃0 | G0 ∈ S}. For all w ∈ W one modifies the lexicon entries r = (L ::= R) in Λ(w) as follows: Since an
application of r does not necessarily replace all nonterminals in the current partial configuration, first, our construction has
to extend r, turning it into several rules that cover the different cases. For this, let 	 = l − max(#(L),#(R)). Since we may
assume, without loss of generality, that #(L) � l and #(R) � l, 	 is non-negative. Now, construct all rules r+ = (L+ ::= R+)

that can be obtained from r by adding at most 	 pairwise distinct new nonterminals to L. Each attached node of these new
nonterminals is either a node in V L or a new node not in V L ∪ V R , which is then also added to L. The right-hand side R+ is
obtained from R by adding exactly the same new nonterminals and nodes to R that were added to L. Thus, in effect, r+ just
matches the additional nonterminals that may be present in the graph to which it is applied, but keeps them unchanged.
Now, Λ′(w) consists of all rules r̃+ , for every r+ constructed in this way. For G0 ∈ S one proves, by induction on the length
of u, that G0 ⇒∗

Λ(u) G if and only if G̃0 ⇒∗
Λ′(u)

G̃ for all G ∈ GΣ∪N with #(G) � l. This completes the proof. �
Thanks to Lemma 2, it suffices to consider linear readers R = (Σ, N, W ,Λ, S) throughout the rest of this section. Ac-

cordingly, we are mainly interested in straight graphs G ∈ GΣ∪N containing exactly one nonterminal e. Such graphs are
called unary. To express that a graph G is unary and that its unique nonterminal carries the label A, we denote G by G[A] .
A lexicon rule is called unary if it is of the form L[A] ::= R[B] for nonterminal labels A and B . Since an HR rule r with the
left-hand side A• necessarily applies to G[A] , there is exactly one graph H such that G ⇒r H (see Observation 1). In the
following, we denote this graph by r(G). If r is linear (unary) then r(G) is obviously linear (unary) as well.

Let the size |G| of a graph G be the sum of the number of edges and the number of isolated nodes7 of G . Given a
number k ∈N and a graph G , a k-subgraph of G is a maximal subgraph of G of size at most k containing a nonterminal of G .
We denote by subk(G) the set of all k-subgraphs of G .8 Note that this set is finite for every G and k because, for finite Σ

and N , the set of graphs of size at most k is finite. We only use subk(G) for graphs G that are either unary or terminal. In
the first case, each graph in subk(G) contains the nonterminal of G , and in the second case subk(G) is empty.

7 A node is isolated if no edge is attached to it.
8 Recall that we do not distinguish between isomorphic graphs.
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Lemma 3. Let r = (L ::= R) be a unary lexicon rule, let G and H be unary graphs, and consider a step G ⇒r H. For every k ∈ N

subk(H) =
⋃

G ′∈subk(G)

subk
(
r�(G ′)).

Proof. Let p = 
r�. By Observation 1, G ⇒r H implies that H = p(G). Hence, we have to prove that

subk
(

p(G)
) =

⋃
G ′∈subk(G)

subk
(

p
(
G ′)). (1)

We consider the two inclusions separately.
Let J be a k-subgraph of p(G) and assume, without loss of generality, that | J | = k. Since the nonterminal of p(G) is

in J , the intersection of J and G is of size at most k − 1. Hence, adding e and its attached nodes to this intersection
yields a subgraph of G of size at most k, which means that this graph is a subgraph of a graph G ′ ∈ subk(G). Obviously,
J ∈ subk(p(G ′)).

Conversely, let G ′ ∈ subk(G) and J ∈ subk(p(G ′)). By the definition of k-subgraphs and of hyperedge replacement,
subk(p(G ′)) ⊆ subk(p(G)) and thus J ∈ subk(p(G)), as required.

This proves Eq. (1) and, therefore, the lemma. �
Theorem 2. For every effectively nonterminal-bounded reader R= (Σ, N, W ,Λ, S), one can effectively construct an HR grammar Γ

such that L(Γ ) = L(R).

Proof. By Lemma 2, we can assume that R is linear. Let k be the size of the largest left-hand side L of lexicon entries
L ::= R in Λ. For every A ∈ N , let SA = {G[A] ∈ GΣ∪N | ||G[A]| � k}. We construct a new reader R′ = (Σ, N ′, W ,Λ′, S ′) with
N ′ = {〈A,S〉 | S ⊆ SA}. The idea behind the construction is to keep track of subk(G) in every intermediate graph G . This
is done by augmenting the label of the unique nonterminal in G with subk(G). For this, we construct Λ′ by taking copies
of the lexicon rules in Λ and replacing the nonterminal labels in their left-hand and right-hand sides by labels in N ′ in
accordance with Lemma 3. For notational convenience, given a linear graph G and a set S ⊆ SA , where A ∈ N , let 〈G,S〉
denote the graph obtained from G by replacing the label of its nonterminal e, if present, by 〈A,S〉. Thus, 〈G,S〉 = G if G
does not contain a nonterminal. To complete the construction of the reader R′ we define:

• S ′ = {〈G0, subk(G0)〉 | G0 ∈ S} and
• for all w ∈ W , for all lexicon rules r = (L[A] ::= R) in Λ(w) and for all S ⊆ SA , Λ′(w) contains the rule 〈L,S〉 ::= 〈R,S ′〉

with S ′ = ⋃
G∈S subk(
r�(G)).

By induction on the length of derivations one proves that the following statements are true for all G0 ∈ S , all linear graphs
G ∈ GΣ∪N , and all u ∈ W ∗:

1. If G0 ⇒∗
Λ(u) G then 〈G0, subk(G0)〉 ⇒∗

Λ′(u)
〈G, subk(G)〉.

2. Conversely, if 〈G0, subk(G0)〉 ⇒∗
Λ′(u)

〈G,S〉 for a set S , then G0 ⇒∗
Λ(u) G and S = subk(G).

In particular, R′(u) = R(u) for all u ∈ W ∗ . However, we know more than this. By the second property and the choice of k,
if 〈G0, subk(G0)〉 ⇒∗

Λ′(u)
〈G,S〉 for a graph G[A] , then a lexicon rule 〈L,S〉 ::= R in Λ′ is applicable to 〈G,S〉 if and only if L

is a subgraph of a graph in S . Consequently, the reader R′′ obtained by removing all lexicon entries 〈L,S〉 ::= R such that
L is not a subgraph of any of the graphs in S satisfies R′′(u) =R′(u) for all u ∈ W ∗ . By the reasoning above, a lexicon rule
r of R′′ is applicable to an intermediate derived graph if and only if the label of the nonterminal in the left-hand side of
r coincides with the label of the nonterminal in that graph. In other words, r is applicable if and only if 
r� is applicable.
Hence, if R′′′ is the reader obtained from R′′ by replacing every lexicon rule with the HR rule 
r�, then R′′′(u) =R′′(u) for
all u ∈ W ∗ . Hence, L(R) = L(R′′′). �

Based on Theorem 2, one could, in principle, replace nonterminal-bounded readers by HR grammars altogether. However,
this would be impractical due to the huge number of rules required. Moreover, readers allow a more direct modelling of
linguistic phenomena since all linguistic information, that is, missing syntactic and semantic roles, syntactic and semantic
structures developed so far, etc. is visually depicted and not just encoded in a single nonterminal symbol throughout the
derivation and in the lexicon rules. Nevertheless, this raises an interesting open question for future research: What is the
power of context-free, but not necessarily linear readers?

As a consequence of Theorem 2 it can effectively be checked whether all graphs in the language of a reader satisfy a
given MSO formula.

Theorem 3. The following problem is decidable: Given an effectively nonterminal-bounded reader R and an MSO formula Φ on graphs
as input, is it true that all graphs in L(R) satisfy Φ?
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Fig. 10. Complement clause that Mary cheated occurs within the complement clause that Sarah knows.

Proof. It is known that, for an MSO formula Φ and an HR grammar Γ , it is decidable whether all graphs generated by Γ

satisfy Φ (see, e.g., [11, Theorem 4.4(3)]). Together with Theorem 2, which shows that we can effectively construct an HR
grammar Γ so that L(Γ ) = L(R), this proves the claim. �

As an immediate consequence of Theorem 3 and the definition of MSO Millstream systems, we obtain the main result of
this paper.

Corollary 1. The following problem is decidable: Given an MSO Millstream system MS and an effectively nonterminal-bounded reader
R as input, is it true that L(R) ⊆ L(MS)?

As discussed in Section 2, regular MSO Millstream systems are a special case of MSO Millstream systems since the regular
tree languages are exactly those which can be defined by MSO logic and since the transition from a regular tree grammar
to an equivalent MSO formula is effective. Hence, Corollary 1 applies in particular to this class of Millstream systems, which
was studied in earlier papers.

The inclusion L(R) ⊆ L(MS) means correctness or soundness of the reader, while the converse inclusion L(MS) ⊆ L(R)

show its completeness. Ideally, one should like both properties to hold. For applications, correctness may be the more
important one. Incorrect analyses would be unacceptable; on the other hand, in the case of incompleteness there may be
sentences which cannot be analysed. In a dynamic environment this problem might be addressed by modifying the reader.

5. Linguistic relevance

The main result of the previous section indicates that nonterminal-bounded readers have nice algorithmic properties.
One may ask how realistic the assumption of nonterminal-boundedness is. In this section we outline how nonterminal-
bounded readers model the processing of certain structures occurring in natural language such as unlimited embedding,
wh-dependency, and anaphoric reference.

5.1. Unlimited embedding

In natural language some syntactic constituents can be embedded in other syntactic constituents of the same type.
A complement clause (abbreviated CP) is such a syntactic constituent. It consists of a complementiser (C) and its comple-
ment which is a sentence (S). Complementisers are words such as that, whether, if and since. Fig. 10 shows the syntactic
structure of the sentence John claims that Sarah knows that Mary cheated in which the complement clause that Mary cheated
occurs within the complement clause that Sarah knows.
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Fig. 11. Handling embedding in John claims that Sarah knows that Mary cheated.

A deeper embedding of complement clauses occurs in the sentence The board doubts that Sarah remembers whether John
claimed that Mary cheated. Theoretically, there can be unlimited embeddings in natural language. We model unlimited em-
bedding with quite simple recursive rules as shown in the sample lexicon entries in Fig. 11 for the reading of the sentence
John claims that Sarah knows that Mary cheated.

The right-hand side of Fig. 11(a) is a sample lexicon entry for John or Sarah or Mary (similar to the lexicon entry in
Fig. 5(a)). The abbreviations J/S/M and J/S/M, on the syntactic and semantic side, refer to John, Sarah, Mary, respectively.
Fig. 11(b) shows a sample lexicon entry for claims or knows. The nonterminal labels CP and SEM_ARG on the right-hand
side of the lexicon entry show that a complement clause and a semantic argument are expected during further reading.
Fig. 11(c) shows the lexicon entry for the intransitive verb cheated. The right-hand side of this lexicon entry does not
contain nonterminals that indicate missing syntactic and semantic categories. Fig. 11(d) shows the lexicon entry for the
complementiser that. The nonterminal labelled S on the right-hand side of the lexicon entry in Fig. 11(d) indicates that an
embedded sentence is expected during further reading. Starting with the start graph and applying the lexicon rules in Fig. 11
in the order dictated by the sentence John claims that Sarah knows that Mary cheated leads to the Millstream configuration
in Fig. 12. In this way, unlimited embedding is modelled. Note that, although the rules in Fig. 11 permit the creation of



S. Bensch et al. / Theoretical Computer Science 531 (2014) 1–25 17
Fig. 12. Millstream configuration including the syntactic and semantic structures of the sentence John claims that Sarah knows that Mary cheated.

arbitrarily long readings with repeated occurrences of the nonterminal label S, the reader is still nonterminal-bounded
since the cycle that turns one S into the next one consumes all intermediate nonterminals it creates.

5.2. Wh-Dependencies

In English sentences the so-called canonical position of a direct object is located immediately after the verb that assigns
the direct object its thematic role. For example, in the sentence Mary knows that John likes pizza, the canonical position of
the direct object pizza is located immediately after the verb likes that assigns the direct object its thematic role. In English
the position of wh-phrases (such as what, who, which, etc.) at the beginning of a sentence indicates a direct question, like in
the sentence Whom does Mary love? The notion of wh-dependencies (or long-distance dependencies) refers to dependencies
between words or phrases that do not occur adjacent to each other in a sentence. Wh-dependencies arise from a syntactic
mechanism called wh-movement that takes place in order to form a question. During wh-movement, the direct object of a
sentence “moves” from its canonical position to the front of the main clause and leaves a “gap” behind which we illustrate
by the symbol λ. The position of the fronted wh-phrase is referred to as filler position. For example, in the sentence Mary
loves Peter, the direct object Peter moves to the front in order to form the question Whom does Mary love?

There is psycholinguistic evidence [18,30] that in sentence comprehension the reading (or parsing) of a fronted
wh-phrase leads to the prediction of a thematic role assigner (typically a verb) and thus to the creation of an incomplete de-
pendency. Gibson [18] associates working memory cost (memory and storage cost) with the processing of wh-dependencies.
Predictions must be maintained in the working memory and the cost for maintaining them increases as additional words
are processed. In Millstream readers these predictions must be kept track of by nonterminals marking the corresponding
“construction sites”, that is, predicted syntactic or semantic categories to be integrated in the configuration at a later step.
Thus, intuitively, the restriction of a Millstream reader R being nonterminal-bounded corresponds to the fact that humans
can only memorize a bounded number of predictions during sentence comprehension.

Figs. 13–16 show sample lexicon entries for handling the wh-dependency in the question Whom does Mary love? The
lexicon entry in Fig. 13 predicts a thematic role assigner, which is illustrated by the nonterminal label V and which is
embedded into the subgraph with the root labelled VP. This subgraph also already marks the gap position with λ. The
wh-phrase whom is linked with an indefinite entity on the semantic side which represents the indefinite entity asked for.
The indefinite is connected to the semantic function interrogative as this indefinite entity is what is being asked for. Fig. 14
shows a sample lexicon entry for does. Fig. 15 is a sample lexicon entry for Mary occurring in a question. Note that the
thematic role for Mary is known already (as agent) and that we are not waiting for further reading in order to determine
the thematic role for Mary as in the lexicon entry in Fig. 11(a), for example.
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Fig. 13. Lexicon entry for fronted wh-phrases. The nonterminal labelled V is the predicted thematic role assigner.

Fig. 14. Lexicon entry for does as an auxiliar in a question.

Fig. 15. Lexicon entry for Mary occurring in a question, where the theta role of Mary is known.

Fig. 16. Lexicon entry for love as the predicted thematic role assigner for the indefinite entity.

Let us now analyse the reading of the question Whom does Mary love? Applying first the lexicon rule in Fig. 13 and
then the lexicon rule in 14, leads us to the partial Millstream configuration for whom does shown in Fig. 17. In Fig. 17 the
nonterminal label S illustrates that a sentence is expected and the nonterminal label SEM_ARG illustrates that a semantic
argument is expected. The expected thematic role assigner (indicated by the nonterminal labelled V) is within the subgraph
with the root labelled S. Applying the lexicon rule in Fig. 15 leads us to the partial configuration for whom does Mary
illustrated in Fig. 18. Finally, applying the lexicon rule in Fig. 16 leads us to the Millstream configuration of whom does Mary
love depicted in Fig. 19. Fig. 19 illustrates on the syntactic side that the direct object has been fronted and left a gap λ

behind which is being asked for.
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Fig. 17. Partial Millstream configuration for whom does. The syntactic thematic role assigner and the thematic role of the indefinite entity, indicated by the
nonterminals labelled V and PATIENT, respectively, need to be specified during further reading.

Fig. 18. Partial Millstream configuration for whom does Mary. The syntactic thematic role assigner and the thematic role of the indefinite entity, indicated
by the nonterminals labelled V and PATIENT, respectively, need to be specified during further reading.

5.3. Anaphoric reference

We finally discuss an example that, in its pure form, is not nonterminal-bounded.
Anaphoric reference means that a word (or anaphor) refers back to its antecedent, typically a noun or a noun phrase.

For example, in the sentence John thinks that he is smart, the anaphor he refers back to its antecendent John. We want to
illustrate how to model anaphoric reference by discussing the example sentence John claims that he cheated. Fig. 20 shows
sample lexicon entries for John and he, where John acts as an antecedent for the pronoun he. The nonterminal label SM in
Fig. 20(a) stands for some male and is a “placeholder” for an expected anaphor, he in this case.

Starting with the start graph and applying the lexicon rules in Fig. 20(a), Fig. 11(b), and Fig. 11(d), we obtain the partial
configuration for John claims that, shown in Fig. 21. The application of the lexicon entry for he shown in Fig. 20(b) turns
this into the partial configuration for John claims that he in Fig. 22. Thus, the nonterminal labelled SM is replaced by the
nonterminal labelled THETA_ROLE and a link to the syntactic constituent Pro of the anaphor he is added. One could add
a variant of this lexicon entry in which the nonterminal labelled by SM is re-created on the right-hand side. This would
make it possible to use the same antecedent for several occurrences of pronouns. Finally, Fig. 23 shows the complete
Millstream configuration for John claims that he cheated, which we get after applying the lexicon rule in Fig. 11(c) to the
partial configuration in Fig. 22. In Fig. 23 we see that the semantic argument of the function cheating is connected to the
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Fig. 19. Millstream configuration for the question Whom does Mary love?

Fig. 20. Lexicon entries for handling anaphoric reference.

first semantic argument of the function claiming since John and he refer to the same person. This illustrates the usefulness
of sharing.

The extension of our reader by the lexicon rules in Fig. 20 gives rise to a nonterminal-unbounded reader. In the loop
made possible by the rules in Fig. 11 we may replace the repeated applications of the lexicon entry in Fig. 11(a) by the one
in Fig. 20(a), thereby creating an unbounded number of nonterminals labelled SM. On the one hand, it seems intuitively clear
that this cannot be avoided if we really want to be able to deal with an unbounded number of occurrences of antecedents
of anticipated pronouns. On the other hand, this is only needed for sentences in which a large number of pronouns refer to
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Fig. 21. Partial Millstream configuration for John claims that, where John functions as an antecedent.

Fig. 22. Partial Millstream configuration for John claims that he, where John functions as an antecedent for the pronoun he.

Fig. 23. Millstream configuration for John claims that he cheated, where John functions as an antecedent for the pronoun he.
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a large number of different antecedents in a non-local manner.9 From a psycholinguistic point of view such sentences may
be disregarded, because no human being could make sense of them as they are too ambiguous even in cases in which the
numbers are rather small. For example, consider the sentence

John claimed that Bob thinks that Peter suggested that he had told Harry that he had deceived his brother.

It is probably safe to assume that this sentence, though syntactically correct, would not occur in any real conversation
because it is entirely unclear which of the pronouns refer to whom. In fact, even in cases where there is a unique cor-
respondence between pronouns and the persons they refer to, the number of possible antecedents to be kept in mind
must be small enough for the human brain to be able to handle them. Hence, it makes sense to think about how a reader
R= (Σ, N, W ,Λ, S) can be restricted so that it becomes nonterminal bounded.

Suppose we want to make sure that at most k copies of SM exist in the intermediate graphs at every stage during a
reading. Using a similar idea as in the proof of Theorem 1, we may introduce new nonterminal labels ‘0’, . . . , ‘k’ of rank 0.
For every start graph G ∈ S , we add another start graph to S , namely G with an added edge labelled by 0. This new edge
will act as a counter in those readings which make use of SM. For this purpose, the rule in Fig. 20(a) is replaced by k
rules, each of which is obtained by adding an edge labelled with i − 1 to the left-hand side and one labelled with i to
the right-hand side, for every i ∈ {1, . . . ,k}. In other words, the counter is increased by one each time another copy of
SM is added. Similarly, the lexicon entry in Fig. 20(b) is replaced by k entries that decrease the counter from i ∈ {1, . . . ,k}
to i − 1. Another copy of that rule allows one to remove the counter in the case of i = 1. The latter corresponds to the
nondeterministic guess that no more copies of SM will occur in the remainder of the reading.

There are, of course, other ways in which counting can be implemented, but this one has the advantage that only rules
which affect the counted quantity need to be copied and modified, or replaced by rule schemata.

Another method to force nonterminal-boundedness can be obtained directly from the construction leading to Theorem 2.
Recall that the construction in the proof of Lemma 2 relies on knowing a nonterminal bound l of the reader. However, the
construction works just as well if we simply choose the desired bound. Of course, the resulting linear reader will not be
equivalent with the original reader any more. Instead, it will implement exactly the l-nonterminal-bounded readings of
the original reader. In other words, the desired nonterminal bound can be passed as a parameter to the construction and
Corollary 1 enables us to check whether all l-nonterminal-bounded readings yield correct configurations with respect to the
given MSO Millstream system.

6. Conclusions and future work

In this paper, we have presented readers – graph transformation systems that incrementally perform a linguistic analysis
of a sentence while reading that sentence from left to right. The result of this analysis is a Millstream configuration, that is, a
graph of the kind provided by Millstream systems [3,4], possibly containing shared substructures. The graph transformation
rules of a reader are organized in a so-called lexicon. It associates a set of graph transformation rules with each possible
input word. Reading a sentence means to apply lexicon entries, that is, graph transformation rules associated with the words
in the sentence in the order in which these words appear. Intuitively, such a step integrates the information provided by the
respective word into the partial configuration, thus building up the final configuration in a stepwise manner. Our examples
show that nontrivial linguistic phenomena can be covered in this way, but more research will be required to find out exactly
how the lexicon entries should be formed to be able to design readers that work well even for examples of realistic size.
We sketch a few of the most important aspects to be addressed by future work.

Building lexica in a consistent manner. The lexicon entries presented in this paper have been designed by hand in an ad-hoc
manner. In particular, nonterminals have been invented where they seemed to be required, and they were used in a way
that intuitively seemed to make sense. However, the development of lexica with tens of thousands of entries must follow
well-defined design patterns, and the meaning of a given nonterminal in such a lexicon has to be specified in a reasonably
precise way to make lexica extensible and enable the engineering of lexica, possibly even the automatic generation of lexica.

Degree of nondeterminism. Reading a sentence may involve nondeterminism. On the one hand, the left-hand side of a given
lexicon rule may match several places in the current partial configuration. On the other hand, two or more lexicon entries
for the current word may apply. However, it is not unreasonable to hope that the degree of nondeterminism will usually be
rather small in well-designed readers. The reason for this is that, although there will usually be several lexicon entries for a
given word, the situations in which they apply are typically not the same. Since nondeterminism and, therefore, backtracking
is a possible source of inefficiency, this question should be studied further.

Certainly, the way in which lexica are designed will affect the degree of nondeterminism. For example, one may distin-
guish between “lazy” and “eager” strategies. Imagine a situation where a word can give rise to two interpretations, so that

9 Note that, for instance, sentences of the form 〈phrase1〉 and 〈phrase2〉 and 〈phrase3〉 . . . with local references within the individual phrases do not require
nonterminal-unboundedness unless the individual phrases do.
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more information coming later in the sentence is needed to find out which interpretation is the right one, thus giving rise
to two different substructures in the configuration. An eager strategy would nondeterministically predict any of the two
structures, that is, there would be two lexicon entries taking care of one interpretation each. In contrast, a lazy strategy
would only create the common part of both structures, remembering the remaining information in the nonterminals un-
til later, when the ambiguity can be resolved. Clearly, both strategies have their advantages and disadvantages. The eager
strategy increases the amount of nondeterminism and the number of lexicon entries, but is also expected to lead to fewer
nonterminals and smaller and less complex rules.

Rule schemata. In implementations of practically relevant size, it obviously makes no sense to establish independent lexicon
entries for all words of the language. This becomes most obvious when proper names such as Mary and Peter are concerned,
but applies to many other word classes as well. For example, transitive verbs can be handled alike in many ways. However,
the details might be more difficult even in supposedly easy cases: in the sentence Mary likes wine, but she hates beer one
cannot substitute Peter for Mary because Mary’s gender is reflected by the personal pronoun she. Thus, future work should
study rule schemata that allow to specify lexicon rules which can be instantiated in flexible ways to create concrete lexicon
entries.

Probabilities and training. It seems that humans use a mixture of the lazy and eager strategies mentioned above, combined
with probabilities: On the one hand, if one interpretation is (much) more probable, we tend to process a sentence according
to this interpretation until it turns out that a re-interpretation is necessary. On the other hand, if several interpretations are
equally reasonable, we tend to keep things undecided until the ambiguity is resolved.

This indicates that it may be a good idea to introduce lexicon rules with probabilities, and to use an eager strategy for
alternatives with considerably different probabilities, but use a lazy strategy for the remaining cases. Probabilities immedi-
ately make training algorithms become a necessity, because it is obviously too difficult and cumbersome a task to determine
the right probabilities by hand. Instead, one should develop training algorithms that derive appropriate probabilities for a
given set of lexicon entries from corpora.

Computability and complexity. Clearly, the construction leading to Corollary 1 is of too high complexity to be of immediate
practical use. In fact, this is even the case if one considers Theorem 2 alone, because of the enormous size of the gram-
mar constructed in its proof. Nevertheless, the result shows that reasonably general readers10 have favourable algorithmic
properties. Therefore, it makes sense to study further computability and complexity issues in connection with readers and
Millstream systems. In particular, one should study special cases such as readers containing only lexicon rules with con-
nected left-hand sides or even context-free readers, that is, readers the lexicon rules of which are context-free.

Corollary 1 leaves an interesting question open, namely under which conditions it is also possible to decide whether
L(MS) ⊆ L(R). A positive result regarding this question would enable us to check total correctness of nonterminal-bounded
readers. It seems likely that total correctness is undecidable even for nonterminal-bounded readers, but there does not seem
to be an obvious proof.

Future research will also have to study efficient algorithms for the construction of lexica and, once a lexicon is given,
of readings. Language processing in general, regardless of whether natural languages or artificial languages are concerned,
needs to be performed in near-realtime. Upon reading an input sentence, with a very short delay, possibly independently
of the length of the sentence, an understanding of the input should be available. For natural language, the output may
be the translation into another language or, for example, a description of the semantics of the input sentence. In this
case, near-realtime processing is a must, because otherwise no reasonable communication is possible. The importance of
near-realtime processing goes hand in hand with the fact that human language processing is an incremental process. Thus,
future research will have to study the complexity of constructing readings from input sentences.

In a uniform setting, that is, when the reader is not considered to be fixed, finding and applying a lexicon rule requires
solving the subgraph isomorphism problem, which is NP-complete. However, in practical cases the problem should nev-
ertheless be solvable in a rather efficient manner, because typically only a reasonably small number of lexicon rules are
associated with a given input word, and partial configurations as well as the left-hand sides of rules tend to consist of
connected subgraphs of the k term graphs of a configuration, with links in between. The exact impact of these facts on the
complexity of rule application remains to be studied, however. Even optimisation algorithms that modify lexica according
to certain criteria could be of interest. These could, for instance, make lexica more compact, increase laziness or eagerness,
make them more suitable for fast pattern matching, etc.

Practical implementation. An implementation of readers that allows us to implement and execute readers of realistic size
must be made. Such an implementation should be based on a general graph transformation engine such as AGG, GP, and
GrGen.NET [33,31,16]. Currently, one of our students works on a prototype implementation of readers.

Other applications of graph transformation to natural language processing. Clearly, there are many more tasks in natural language
processing that graph transformation could be useful for. HR grammars may be used to describe, for instance, models of

10 Recall from Section 2 that nonterminal-boundedness, the only assumption used in Theorem 2, is not an unrealistically strong assumption.
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natural language that include sharing of substructures, a situation which occurs naturally as described in Section 5 or to
handle trees with back references, giving rise to cycles. Graph transformation rules may be used to specify and implement
model transformations that take one graph as input and yield another one as output. The computed transformation may, for
example, be a translation between different languages, it may simplify a given linguistic analysis, augment it with additional
information, or analyse it further. Moreover, since the union of two graphs is a graph, graph transformation is ideally suited
as a formal way of studying, expressing and implementing procedures that take several graphs as input or yield several as
output.
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