
Theoretical Computer Science 38 (1985) 269-291
North-Holland

269

HIERARCHICAL VERIFICATION OF ASYNCHRONOUS
CIRCUITS USING TEMPORAL LOGIC

B. MISHRA and E. CLARKE*
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213, U.S.A.

Communicated by M. Nivat
Received June 1984

Abstract. Establishing the correctness of complicated asynchronous circuit is in general quite
difficult because of the high degree of nondeterminism that is inherent in such devices. Nevertheless,
it is also very important in view of the cost involved in design and testing of circuits. We show
how to give specifications for circuits in a branching time temporal logic and how to mechanically
verify them using a simple and efficient model checker. We also show how to tackle a large and
complex circuit by verifying it hierarchically.

Introduction

Verification of the correctness of asynchronous circuits has been considered an
important problem for a long time. But, a lack of any formal and efficient method
of verification has prevented the creation of practical design aids for this purpose.
Since all the known techniques of simulation and prototype testing are time-
consuming and not very reliable, there is an acute need for such tools. Moreover,
as we build larger and more complex circuits, the cost of a single design error is
likely to become even higher. In this paper, we describe an automatic verification
system for asynchronous circuits, in which the specifications are expressed in a
propositional temporal logic. We illustrate the use of our system by verifying a
version of the self-timed queue element given in [7].

Bochmann [2] was probably the first to recognize the usefulness of temporal logic
to describe circuits ; he verified an implementation of a self-timed arbiter using linear
temporal logic and what he called ‘reachability analysis’. The work of Malachi and
Owicki [9] identified additional temporal operators required to express interesting
properties of a circuit and also gave specifications of a large class of modules used
in self-timed systems.

Although these researchers have contributed significantly toward developing an
adequate notation. for expressing the correctness of asynchronous circuits, the
problem of mechanically verifying a circuit using efficient algorithms still remains
unsolved. In this paper we show how a simple and efficient algorithm, called a

* This research was supported by NSF under Grant No. MCS-82-16706.

0304-3975/85/$3.30 @ 1985, Elsevier Science Publishers B.V. (North-Holland)

270 B. Mishra, E. Clarke

model checker, can be used to verify various temporal properties of an asynchronous
circuit. Roughly speaking, our method works by first building a labelled state-
transition graph for an asynchronous circuit. This graph can be viewed as a finite
Kripke Structure. Then by using the model checker we determine the truth of various
temporal formulae in this Kripke Structure. As a result, it is possible to avoid the
complexity associated with proof construction.

Most complex circuits are built out of relatively less complex modules in a
hierarchical manner. Hence it should be possible to verify these circuits in a
hierarchical manner, i.e. to verify the correctness of a larger module, given the
premises that the smaller modules are correct. A hierarchical approach to verification
is important in practice, because it enables us to verify circuits incrementally, to
localize faults to small submodules and most importantly, to handle large circuits
without a large growth in complexity. We show how the hierarchical method can
be incorporated in a mechanical approach to circuit verification.

The paper is organized as follows: Section 1 contains a brief description of the
syntax and semantics of CTL, the temporal logic used in this paper, and also explains
the algorithms used in the model checker. In Section 2, we give a simple step-by-step
method used to verify circuits. In Section 3, we illustrate these methods by establish-
ing some interesting properties of a Self-Timed Queue (FIFO) Element. In Section
4, we introduce a hierarchical method to be used in verifying large and complex
circuit and study some of the model-theoretic properties of the operation of ‘restric-
tion’ on a Kripke Structure. The paper concludes by pointing out the shortcomings
of our approach and with a discussion of some remaining open problems.

1. CTL and model checker

The logic that we use to give the specifications of a circuit is a propositional
temporal logic of branching time, called CTL (Computation Tree Logic). This logic
is essentially the same as that described in [1, 3, 51.

The syntax for CTL is given below:
Let 9 be the set of all the atomic propositions in the language 9. Then
(1) every atomic proposition P in 9 is a formula in CTL,
(2) if fi and f2 are CTL formulae, then so are ifi, fi A f2, VXfi, 3Xf,, V(fi U f2)

and Wi Uf2).
In this logic the propositional connectives 1 and A have their usual meanings of

negation and conjunction. The temporal operator X is the nexttime operator. Hence
the intuitive meaning of VXfi (3Xf,) is that f, holds in every (in some) immediate
successor state of the current state. The temporal operator U is the until operator.
The intuitive meaning of V(fi U f2) (3(f, U f2)) is that for every computation path
(for some computation path), there exists an initial prefix of the path such that f2
holds at the last state of the prefix and fi holds at all other states along the prefix.

Hierarchical veri$carion of asynchronous circuits 271

We also use the following syntactic abbreviations:
?? fivf2~l(lfihlf2),fi~f2~lfivf2, andf,+4E(_k+.M~(f2+fi),
?? VFf, = V(true Uf’) which means for every path, there exists a state on the path

at which fi holds,
?? 3Ff, = 3(true Ufi) which means for some path, there exists a state on the path

at which fi holds,
?? VGfi = -ElFlf, which means for every path, at every node on the pathf, holds,
?? 3Gf, = lVFlf, which means for some path, at every node on the path f, holds,
?? V(f, W f2) = 13((fi A~J U (ifi hf.)) which means that for every computation

path, and for every initial prefix of the path, if f2 holds at all the states along
the prefix then fi holds at all the states along the same prefix,

?? 3(f, W f2) = -IV((f, A f2) U (ifi hf2)) which means that for some computation
path, and for every initial prefix of the path, if f2 holds at all the states along
the prefix then f, holds at all the states along the same prefix.

In the last two formulae, W is the while operator. The formula V(fi WfJ
(3(f, W f2)) is read as ‘for every (some) path fi while f2’.

The semantics of a CTL formula is defined with respect to a labelled state-transition
graph. A CTL structure is a triple .& = (S, R, I7) where

(1) S is a finite set of states.
(2) R is a total binary relation on S (R E S x S) and denotes the possible

transitions between states.
(3) 17 is an assignment of atomic proposition to.states, i.e. n: SH 29.
A path is an infinite sequence of states (s 0, 1, s s 2,. 6 .) such that Vi((s, si+l)E R).

For any structure Jbl = (S, R, n) and state so E S, there is an injinite computation tree

with root labelled so such that s + t is an arc in the tree iff (s, t) E IZ.

The truth in a structure is expressed by .&, so k=f, meaning that the temporal
formula f is satisfied in the structure & at state so. The semantics of temporal
formulae is defined inductively as follows:

s,b= P iff P E II(

Soblf iff soBtJ:

so+f, f'f2 iff so!=fi and sol=f2.

so != VXfi iff for all states t such that (so, t) E I?, t I= fi.

sob %fl iff for some state t such that (so, t) E R, t I= fi.

Sokv(f~ uf2) iff for all paths (SO, Sl, S2,. . .), 3i~o(Si~f2Avo~j<i(Sj~fi)).

sobii(fluf,) iff fOr.sOmepath (So,Sl,S2,...),3i~O(si~f2hVo~j<i(Sj~fi)).

From these it is quite easy to see that the semantics of U, the until operator, can
be easily given in terms of a least fixed-point characterization:

v(fi uf2) = Ps-f2V (fi A vxs).

g(f, Uf2)=P%f2V(fiA=~).

272 B. Mishra, E. Clarke

The model checker for CTL can now be thought of as an algorithm that determines
the satisfiability of a given temporal formula fi in a model .M, by computing these
fixed points. A full description of the algorithm is given in [3].

In order to determine if a CTL formula f is true in a structure JU = (S, R, Z7), the
algorithm labels each state of S so that when the algorithm terminates, the label of
each state s E S, ZabeZ(s), will be equal to {f’ E sub(f) 1 .A, s bf’}, where each element
of sub(f) is either a subformula off or the negation of the subformula. Hence
.M, s Ff iff f~ label(s) at the termination of the algorithm.

The labelling algorithm works in several stages. In the ith stage the algorithm
labels the states by the subformulae of length i. The labels assigned in the earlier
stages, corresponding to the subformulae of length less than i are used to perform
the labelling in this stage. It can be shown that the algorithm makes at most n = Ifl
stages of computation and that the total amount of the work involved in each stage
is G(IlSIl+ IIJW. I-4 ence the time complexity of the model checker is O(Ijj . (11 SII +
II R II)). The algorithm is also fairly simple, since it involves only a few straightforward
graph theoretic algorithms.

2. Verification of circuits

Given a circuit to be verified, the steps involved in using the model checker to
assert the correctness of the temporal specifications are as follows:

Step 1. Building the model

The structure associated with the circuit is essentially a finite state-transition
graph, with its vertices corresponding to the distinct states and the edges correspond-
ing to the (possibly nondeterministic) transition between the states. The initial label
associated with each state is the set of propositions true in that state. This labelled
state-transition graph can be built using the following simple algorithm.

Algorithm 2.1. The algorithm to build the Kripke Structure for an asynchronous
circuit.

begin
L := (initial state);
while L # p1 do

choose a state, say s from L and delete it from L;
for all sets of inputs, possible in s do

simulate s with this set of inputs;
let L’ be the set of new states;
for each S’E L’ do

s’ is a successor of s;
if s’ has not been visited then add s’ to L;

Hierarchical verijicacion of asynchronous circuits

endfor ;

endfor ;

endwhile ;

end.

273

Step 2. Giving the specijcations of the circuit in CTL

It usually involves structural properties (i.e. the specifications for different com-
ponents of the circuit, specifications of the signalling scheme used for communication
with various modules, etc.), safeness properties and Ziveness properties. It should be
pointed out that one need not give the complete specification of the circuit in order
to verify some selected properties of the circuit using the model checker.

Step 3. Verifying the circuit using the model checker

This step involves the model checker which checks the truth of the specification
(a formula in CTL) in the structure constructed in Step 1. The working of the model
checker is described in the previous section.

3. Extended example

We illustrate the ideas presented so far by verifying some interesting properties
of an asynchronous circuit. The example chosen for this purpose is one element of
a Self-timed (FIFO) queue, which originally appeared in an article by Seitz on
self-timed systems [7].

(a) Self-timed FIFO queue element. The electrical circuit shown in Fig. 1 is an
implementation of a single FIFO queue element combined with some input and
output logic. This circuit is of very practical importance; in pipeline processes in
which operation times are variable, increased throughput can be achieved by
interconnecting the processing elements through queues. The implementation uses
simple asynchronous control and hence, can be used to build very fast and area-
efficient queues.

The inner cell is intended to be replicated as many times as the number of words
the queue is to be able to store, and the same control will operate a queue of any
word length. The input cell and the output cell can be thought of as logic circuits
converting the two-cycle signalling scheme and the input link to afour-cycle signalling
scheme at the internal link and vice versa. The inner cell can be thought of as a
latch that stores the state of the cell (i.e. whether the cell is fuZZ or empty), together
with logic to generate a load signal and a set of static registers to store the bits.
However, the design shown is not speed-independent, and uses the 3/2-rules. That

214 B. Mishru, E. Clarke

I input cell Inner cell. repeated Output cell I
I

Input
Link
(20)

Fig. 1. Queue (FIFO) element.

is one may expect misoperation if particular sets of three gates have a smaller
cumulative propagation delay time than other sets of two gates.

In the following subsections we specify and verify some interesting properties of
the queue element with a single inner cell.

(b) Temporal specifications for the self-timed queue element. We give examples of
the ways in which various properties of a circuit can be given in CTL. In case of
the queue element some of the structural properties that we might like to specify,
are that the two-cycle signalling used at the input links and the output links is safe
and live. Recall that the structural properties are specifications for various com-
ponents and signalling schemes and thus, may be considered as premises that must
be true in any CTL structure modelling the circuit. Hence the request signal must
satisfy the following safeness and Ziveness conditions. (In the following CTL specifi-
cations we will use symbols Req and Ack for the request and the acknowledgement
signals respectively.)

Safeness conditions for the request signal

0) VG((1Req A Ack) + V(lReq W Ack)),

(2) VG((Req A 1Ack) + V(Req W 1Ack)).

These two CTL formulae essentially express that if the Req and Ack signals are
non-equipotential then the Req signal will remain in its stable logic value while Ack
signal is in its stable value. In other words, Req will not be given unless acknowledge-
ment to previous request signal has arrived.

Hierarchical verijication of asynchronous circuits 275

Liveness conditions for the request signal

(1) VG((Req A Ack) + VF(lReq)),

(2) VG((1Req A TAck) + VF(Req)).

These two CTL formulae express the property that if the Req and Ack signals
are equipotential then eventually the Req signal will change its logic value, thus
indicating an arrival of a request.

In a similar manner, we can specify the properties of the response signal.

Safeness conditions for the response signal

(1) VG((Req A Ack) + V(Ack W Req)),

(2) VG((1Req A 1Ack) + V(lAck W -tReq)).

Informally, they express the fact that Ack will not be given unless there has been
a Req signal to cause it.

Liveness conditions for the response signal

(1) VG((Req A 1Ack) + VF(Ack)),

(2) VG((1Req A Ack) + VF(1Ack)).

That is, if there had been a Req signal then eventually there will be an Ack signal
in response to the request.

We can also give the safeness and the Ziveness properties of the FIFO queue
element in CTL. The following is a representative list of some of the properties,
and by no means, exhaustive and complete. In the CTL formulae given below,
ReqIn stands for request at the input links, AckIn, for acknowledgement at the input
links, ReqOut, for request at the output links, AckOut, for acknowledgement at the
output links and Fulll, for the state of the queue element when it holds some data.

Some safeness properties of the queue element

(1) VG(l(ReqIn = AckIn) A l(ReqOut = AckOut)

+ V(l(ReqIn = AckIn) U (ReqOut = AckOut))).

This formula states that if there have been a ReqIn and a ReqOut, then AckIn
will not be given until AckOut has arrived.

Some liveness properties of the queue element

(1) VG(l(ReqIn = AckIn) A ~Fulll -j VF(A)).

This formula states that if there has been a ReqIn, and the memory element was
empty, then eventually it will be loaded with the input data.

(2) VG(iFull -j VX(Full1 + VF(l(ReqOut = AckOut)))).

276 B. Mishra, E. Clarke

That is the queue element is full then eventually a request at the output links will
be generated in order to move the data to the next element in the queue.

(3) VG(Full1 A l(ReqOut = Ackout) -+
VX((ReqOut = AckOut) + VF(lFull1))).

That is if the acknowledgement arrives at the output Zinks thus indicating that the
data stored in the current queue element has been moved to the next element, then
eventually the queue element will mark its state as empty.

In the next subsection we show how these specifications can be verified automati-
cally by using a model checker.

(c) Verification of the circuit. As a first step for the verification of the circuit, we
build a labelled finite state-transition graph corresponding to the circuit given in
Fig. 1, using Algorithm 2.1. For this model, we assume that each gate of the circuit
has one unit dehy. This is done in order to take care of the speed-dependent
properties of the circuit. This is equivalent to assuming that for any state in the
graph, any of the successor states is arrived at after one unit gate-delay. The label
associated with each state is the set of nodes in the circuit which assume the logical
value 1 in that state. The nodes of the circuit are-AckIn, ReqIn, D, A, FullO, Fulll,
C, B, El, E2, E3, ReqOut, and AckOut. The initial state corresponds to the situation
when ReqIn and AckIn as well’as ReqOut and AckOut are equipotential.

Now, the model checker can take a description of the model and a temporal
formula specifying some property of the circuit, and determine truth of the formula
in that model. However the circuit shown does not obey the 3/2-rule as advertised,
and the model checker determines that the safeness property of the queue element,
given in the previous subsection is not true.

Informally, the problem can be described as follows: when an AckOut is received
in response to the ReqOut signal, the AckOut signal travels via two different electrical
paths-one involving three inverters and the other involving four gates. This creates
a race condition and produces a glitch of about one gate delay on the ReqOut bus.
Though this glitch may not always be able to drive the bus to create a spurious
ReqOut, it has the potential to do so. However, this problem can be easily rectified
by making the inverters slow or by putting five inverters on that path instead of
three. The labelled state-transition graph for the corrected circuit is shown in
Fig. 2.

The state-transition graph shown in Fig. 2 is only one portion of the complete
state-transition graph for the FIFO queue element and corresponds to the initial
state where both ReqIn and AckIn are both at logical-zero value and both ReqOut
and AckOut are at logical-zero value. But the state in which both ReqIn and AckIn
are at logical-zero and both ReqOut and AckOut are at logical-one can not be
reached from this state-transition graph. In fact the state-graph with this situation
as the initial condition is symmetric to the one shown and the complete state-
transition graph consists of both of these components.

Hierarchical verijcation of asynchronous circuits 277

Fig. 2. The state-transition graph for the self-timed queue element.

time: (1453 168)
bAG(((-ReqIn & AckIn)l(ReqIn & -AckIn)) 8z
((- ReqOut & AckOut) 1 (ReqOut & - AckOut)) -.>
A[((-ReqIn & AckIn)l(ReqIn & -AckIn)) U
((ReqOut & AckOut) ((- ReqOut & - AckOut))])

[<7 sets.]

t

time: (2263 300)
t=‘AG(((-ReqIn & AckIn)((ReqIn & -AckIn)) 8~ (-FullI)->AF(A))

[<8 sets.]
t

time: (2694 300)
I= AG(-Fulll--> AX(Full1 --> AF((-ReqOut & AckOut)j

(ReqOut & - AckOut))))
[<8 sets.]

t

time: (3150 300)
bAG(Full1 &((-cReqOut&AckOut)) (ReqOut&-AckOut))->

AX(((ReqOut&AckOut)~(-ReqOut&-AckOut))-~AF(-Full1)))
[<7 sets.]

t

Fig. 3. A sample run using the model checker.

A sample run using the model checker is shown in Fig. 3. In the formula shown
A stands for V, E for 3, 1 for v, & for A, - for 1 and --> for + . Similarly, G, F,
U, and W will stand for G, F, U and W, respectively. The first component of ‘time :’
is the cumulative time in 60th of a second; the second component is the portion of
the cumulative time allocated to ‘garbage collection’. The number to the right of
each formula gives the time taken to determine the truth of the formula.

278 B. Mishra, E. Clarke

4. Hierarchical verification of circuits

The scheme given so far can be practical only for very small circuits. This is
because it suffers from the problem that the state transition graph may have a
number of states, exponential in the number of gates. However, this problem can
be avoided, if circuits are verified in a hierarchical manner. That is, first small
modules are verified and then the bigger module is verified assuming that the smaller
modules it is composed of are correct. Since at any hierarchical level, the number
of small modules that a big module is composed of is relatively small, this method
is amenable to proving correctness of large circuits without a large growth of the
time complexity. Moreover, hierarchical verification permits the localization of faults
to small submodules, thus allowing the designer to rectify the fault by redesigning
the appropriate submodule.

In a hierarchical approach, the state-transition graph for a circuit is built out of
the descriptions of the constituent submodules. We obtain short a description of a
module by using an operation called ‘restriction’. If 9 is the language for the module
with a set of atomic propositions 9, corresponding to the input, output and internal
nodes, then the operation restriction on 2, obtains a 9’ with atomic propositions
P’, corresponding to the input and the output nodes only.

Roughly speaking, the effect of restriction is to make the internal nodes invisible,
since in building the state transition graph for the bigger module, we only require
input-output behaviour of the constituent submodules. But when the internal nodes
are made invisible, certain portions of the state graph will have same labelling of
the atomic (input and output) propositions. The restriction operation defines exactly
when such states can be collapsed into a single state.

Unfortunately, when we restrict a CTL structure to obtain a smaller structure,
some formulae that are true in the former structure may not be true in the restricted
structure. However, by appropriately constraining CTL, we can show that the
formulae in the constrained logic have the desirable property that the truth properties
of such formulae are preserved with respect to the restriction operation. Most of
the formulae used in Section 3 have the desired syntax.

Let the CTL structure for 9 be JU = (S, R, n). Let 9 be the set of all atomic
propositions in the language 9, consisting of 9, the set of atomic propositions
corresponding to the inputs; 6’, the set of atomic propositions corresponding to the
outputs and At , the set of atomic propositions corresponding to the internal nodes
of the circuit. That is 9 = 9 u Ou At . Let 9 be the language with the atomic
propositions, 9 = 9 u 0’. Define n,,: S-29, to be the restriction of 17 to P’, i.e.
Vs E S(n,*(s) = n(s) n 9’). Now we can define a relation E (% E S x S) over the
set of states of A such that s 8s’ iff for some path (so, sl, . . . , s,) of A, n 2 0, s = so
and s, = S’ and for each predecessor of si, s: (1 s i s n), Lf&s~) = L!pt(si)a

It is quite easy to see that the relation %’ over S, is reflexive and transitive but not
symmetric. The transitive closure of Z5’ can be defined as

~*=8u~2u~3u...u~*u....

Hierarchical verification of asynchronous circuits 279

The ?&closure of a state s is defined by 8?*(s) = { s’l s ‘8’* s’} = {s’l s 8 s’}, since 8 is
a transitive relation, i.e. 8* = 8.

For a set of sets {Uj}, max({ Uj}) will denote the set of all distinct sets in { Uj}
maximal under inclusion. We define a mapping cp: S++2S such that for each s E S,

i.e. q(s) is the set of maximal %‘-closures containing s. We consider the following
subsets of S,

Since every element s E S belongs to at least one subset Hi of A, A is called a
decomposition of S and the Hi’s are called the blocks of the decomposition We will
say s dominates s’ if s 8 s’. We define the dominant states of Hi, dom(Hi) as the set
of states that dominate every other states in Hfi

A = so(S)= u q(s).
SES

The decomposition A naturally leads to a substructure of a model M (notation
A = (S’, R’, II’) = .M)A). The states of A’ will be the blocks of A. A block Hi of A,
when considered as an element of S’, will be denoted by Hi- Let R’ (R’c S’ x S’)
be the total binary relation on S’, corresponding to R and induced by the decomposi-
tion A, i.e.

(E?,, Hj) E R’, for i #j, iff for some Si E Hi, Sj E Hj, (si, Sj) E R and sj 6 Hk

(E?i, Hi) E R’ iff for some si, sj E Hi, sj % si and (xi, sj) E R.

Similarly, let II’ : S’++ 2 9’ be the mapping corresponding to II! and induced by
the decomposition A, i.e.

II’(P’n n II(s).
SEH,

The model .M’ = (S’, R’, l7’) is called a restriction of Ju = (S, R, II) with respect
to !P’c_9.

In the following theorem, we show that there are CTL formulae whose truth-
properties are not preserved with respect to restriction.

Theorem 4.1. There exists a CTL structure JU = (S, R, Ll) and a formula 9 where 9
is a CTL formula such that

Ju, s,!= 9 but .M’, r?,# 9, and SEE dom(H,).

Proof. We give counterexamples involving formulae of the form VXP, 3XP and
V(3F I’, U I’*).

We first give a model 44 = (S, R, II) over a language .3 such that Ju, sol= VXP
and JR, so!= 3XP, but A’, Ho&t VXP and .M’, fiol# 3XP, where A’ is a restriction of
& and so E dom(Ho).

280 B. Mishra, E. Clarke

Define A = (S, R, n) over a language 2 with the set of propositions 9, 9 =
{Pi”, Pf”, Pint}, by

s = {so, Sl, 4, R = -Kso:, sd, bl, %A (s*, s2>1,

and l7 to be U(Q,) = {Pi,, Pint}, n(s,) = {Pin} and n(~2) = {Pi”, Pint}. Clearly,
JR, sol== VXPi, and A, sol= 3XPin. Now if we take restriction of JU for language 9’
with the set of propositions 9,

9’ = ipin pfnl,

then we get A%‘= (S’, R’, II’) where

and n’ to be n’(R,-,) = {Pi,} and n’(t?,) = {Pi,}. It can be easily seen that
A’, fioet VXPi, and A’, Gow SIXPi”.

Similarly, we present a model A = (S, R, n) such that .A, sob -IV((3FP,) U P2),
but A’, &,w lV((3FP,) U PJ, where A’ is a restriction of .A% and so E dom(Ho).

Define A = (S, R, n) over a language A? with the set of propositions Y, .9 =
{PI, Pz, PintIt Pint*}, by

s = {so, Sl, s2, s3, d,

R = {bo, s*>, h, s2>, ts;, s3), ($2, %>, b3, s3), b4, S‘J~,

and n to be ntso) = {pintI}, n(sJ ~0, fl(s2) ={PintJ, n(s3) = {PI, P2), and n(sJ =
{P2}. The labellings in Fig. 4 show that A, so!= -M[(3FP,) U P2].

Now if we take restriction of .A for language 9’ with the set of propositions
9’= {PI, P2}, then we get .A?’ = (S’, R’, l7’) where

S’= (jFs,, Is,, R2}, R’ = {(Ho, &A (Ho, H2), (4, HA W2, Jf2)1,

and A!’ to be n’(H,) = 0, 17’(fi,) = { P2} and n’(fi2) = {PI, P2}. Now the labellings
in Fig. 4 show that A’, HoI= V((3FP,) U P2). Cl

However, there exists a large subclass of CTL formulae with the desirable property
that if a formula in this subclass is satisfiable in the unrestricted CTL structure, .A,
then it is satisfiable in the CTL structure, A’, obtained by restriction. We call this
subclass CTL-.

Given a set of atomic propositions 9:
(1) Every atomic proposition P E 9 is a propositional formula in CTL-.
(2) If f, and f2 are propositional formula in CTL-, then so are 7fi,fi off.
(3) If fi is a propositional formula and f2 is a CTL- formula, then V(f, Uf2) and

3(f, U f2) are CTL- formulae.

Theorem 4.2. Let 9 be a CTL- formula in 2’. Then

Ju,sol=~ if.d’,~ol=9 wheres,Edom(H,).

Hierarchical verification of asynchronous circuits 281

lP,, pz,
13FP,,
V(3F P, U Pz)

1p,, lP2, lP1, lpzl
=P,, =P,,
lV(3F P, U fz) lV(3F P, U P2)

lP,, lpz.
+FP,,
-M(3F P, U Pz)

lS, pz,
13FP,,
V(3F P, U PI)

3FP,,
V(3F P, U P2)

Fig. 4. Counterexample for Theorem 4.1.

Before we give the proof of the Theorem 4.2, we need the following technical
lemmas.

Lemma 4.3. If Al’= (S’, R’, lT), is a restriction of .A = (S, R, l7), with respect to 9”,

then
(i) For all Hi, Hj E S’, (i # j), (Hi, l?j) E R’ ifl there exists a path from S: to sj

(s: E dom(Hi), si E Hi) such that (s: = sk, . . . , ~1, s~+~, . . . , s, = si) in .4X and for some

k<l<m,S,,..., SI E Hi, sI-+~ g Hi and s/+1, . . . , S, E Hj
(ii) For all ITi E S’, (I?i, Ri) E R’ ifl there is a cycle in the block Hi.

(iii) For all s such that s E H, lI’(I?) = n(s) n 9”‘.

282 B. Mishra, E. Clarke

Proof Sketch. (i) (t) Suppose there is a path, then SI E Hi, s1+1 E Hj and SI+I e Hi
and (sh sI+J E R. Hence by definition, (fii, Rj) E R’.

(3) Suppose (Hi, Z?j) E R’ then there exist ~2 E Hi, sI+~ E Hj such that sI+~ !Z Hi and
(sl, s~+~) E R Then we claim that s I+1 E dom(Hj). (Assume the contrary. Let S, E Hj
dominate s~+~. Then sI % s~+~. Hence, for each predecessor of s/+~, si,,, n&s;+,) =
nsf(sl+1). Hence, sl gs~+~ and ;1+1 E g*(sl). SI+~ E Hti A contradiction.) Now given
si E dom(Hi) and SI E Hi we can find a path by concatenating the path from si to SI
and s~+~ to sJ. Such paths exist since s: E dom(Hi) and s~+~ E dom(Hj).

(ii) (+) Suppose (Hi, Hi) E R’. Then for some si, sj E Hi, sj 8 si and hence there
is a path from sj to si. Moreover (Si, Sj) E R. Hence, there is a cycle in HP

(+I Suppose Csj, Sj+l, - - - , Sip Sj) is a cycle in H+ Then there are two cases to
consider. In the first case, the cycle contains a state in dom(Hi). Let Sj be such a
state. Then sj 8 q. On the other hand, if the cycle does not contain a dominating
state, since there is a path from sj to si and all the states on the path are nondominating
states of Hi, Sj %’ si. Moreover, since si, sj appear consecutively in the cycle, (Si, Sj) E R.
Hence by definition, (Hii, Ri) E R’.

(iii) Follows directly from the definitions of n& and II’. 0

We extend the operation of restriction to a path in a CTL structure. Let p =

(s0, - - * , %I, %+1, * * *) be a path in JX. Then define

I;io%!eB’(~n+l,. . .) if (so,. . . , s,) is a finite prefix of p such that

%:(P) = so, - - * 9 s, E Ho and s,,+~ GZ Ho;
Go, ilo, . . . otherwise, and so,. . . , E Ho.

Lemma 4.4. Let (so, . . . , s,, s,,+~, . . .) be a path in A. Then 9Er(so, . . . , s,, s,,+~, . . .)

is a path in At’.

Proof. The proof follows from the definition and Lemma 4.3(i) and (ii). Cl

The exact converse of Lemma 4.4 is not true. But for our purpose, a somewhat
weaker version of the converse will suffice.

Lemma 4.5. Let (Ho, H1, . . .) be a path in A’ such that it satis$es one of the following
two conditions:

(1) Hi#Ri+l for all OSi,

(2) Ri # Ri+l f or all 0~ i< k and l?j= @+I for all ksj.
Let so E dom(Ho). Then there is a path (so, sl, . . .) in A and s%& so, s,, . . .) =

(Ro, H,, . . .).

Proof. The proof follows from the definition and Lemma 4.3(i) and (ii). El

Hierarchical verification of asynchronous circuits 283

Lemma 4.6. Let 9 be a CTL- formula in 2”. Then

A’, ITi+ 9 + A, sit= 9 where si E dom(Hi).

Proof. The proof follows by induction on the structure the CTL- formula 9’.
Basis Step: .5 is an atomic proposition P in 9”. Then

A’,rlikS * di!‘,ETi+P

* PE If’(ITi)

* P E n(si) n 9’ (Lemma 4.3(iii))

Induction Step: We only show the cases for VU and 3U. Other cases, involving
propositional connectives, are rather simple and hence omitted.

Let 9= V[fr U f2]. First we show that if for all paths (I?i, Ri+r, . . .) of .A%‘,

3ka i(.&‘, I&!=fz~Vi< I< k(A’, alI=fI)),

then, for all paths (Si, si+,, . . .) of JU,

Let Z=(Si, Si+r,. . .) be any path in JU with Si E dom(Hi) and 9?& I) = I’ =
tgii, Hi+l, - * .) be the corresponding path in .A’. By above, 3 k 3 i - A’, I& I= fi. Let
p 2 i be the smallest index such that sP E Hk. Hence sP E dom(Hk). By the induction
hypothesis, A, sp I= f2. Since Vi < q < p 3i < I< k(s, E H,), and Vi s I< k(A’, I!& t= fi),
and fi is a propositional formula, we have Vi 6 q <p(A, ss I= fi). Hence using the
semantics of the U operator, we get

A’, Hi+ 9 * At’, fiikV(fi U f2)

+ for all paths (Ri, Ifi+*, . . .) of A’,

3ka i(&‘, I&l=S,/rVic I< k(.M’, R,l=fi))

+ for all paths (si, si+l, . . .) of A, (Si E dom(Hi))

3p~i(A,s~I=f,~Vi~q<p(.d,s,I=f,))

* 4 si k v(fi Uf2)

* A, Si b $w

Let .Y= 3(f, Uf2). First we claim that if for some path (ai, I?:+r, . . .) of A’,

Elma i(.A!‘, Bkl=fihViG I< m(,&‘, fi;t=fi)),

284 B. Mishra, E. Clarke

then there is some path (Rip fii+r,. . .) of 4’ satisfying one of the conditions of
Lemma 4.5 such that

3kz i(&‘, k?&t=S,~Vi< I< k(&‘, fl,!=f,)).

The new path (Ri, Hi+r, . . .) is obtained by the following step: if
(t?,!, q+1,. . . , tTjJ!+,) is a maximal finite subpath of (RI, I?i+r, . . .) such that Ri =
~;+,=...= fi;‘,,, then the subpath is replaced by a single state HI. This operation
is done for all such subpaths. It is easy to convince onself that the path obtained
by this operation is a path in A’ and satisfies the claim.

Next, we show that if for some paths (Ri, Ri+l,. . .) of A’ satisfying one of the
conditions of the Lemma 4.5,

3ka i(A’, l$i=S,AVis Z< k(&‘, I?,l=f,)),

then, for some paths (s, Si+l, . . .) of JU,

3p 2 i 0% sp kf2 A Vi d q < p(.fU, sq I=&)).

By Lemma 4.5 there is a path I= (S, Si+l, . . .) in & with Si E dom(Hi) and %! yp.(I) = 1’ =
(Hi9 Hi+l9 * - .), the path in A’. By the above, 3k 2 i(A’, I& l=fJ. Let p 2 i be the
smallest index such that sP E Hk. Hence sP E dom(Hk). By the induction hypothesis,
A, sPI=f2. Since Viaq<p 3isZ<k(s,E H,), and Vi<l<k(.A’, I!$t=f,) and fi is
a propositional formula, we have Vi d q < p(.N, sq b-f,). Hence using the semantics
of the U operator, we get

A’, Rib 9 * A’, I-li+Zl(fi Uf*)

3 for some path (Hi, fii,,, . . .) of .&‘,

~m~i(~‘,R:,~f2AVi~Z<rn(~‘,H~~f,))

+ for some path (Ni, Hi+,, . . .) of A’, satisfying one of
the conditions of Lemma 4.5,

+ for some path (Si, Si+l, . . .) of A, (si E dom(Hi))

In the next lemma we will make use of following simple facts about a CTL-
formulae and blocks H,_ which we state without proof.

Fact 4.7. If a state of Hk satisfies a propositional formula g, then all the states of Hk
must satisfy g.

Hierarchical verijication of asynchronous circuits 285

Fact 4.8. Any quantijed CTL- formula f can be written in an expanded form

Qh U Q&2 U - - - Q&n U gn+A - - -I),

whereQl,Q2,..., Qn are path quantijiers V or 3, and g,, g,, . . . , g,+, are propositional
formulae.

Fact 4.9. If g,+l holds in any state, so do the formulae

Qj(gj U Qj+l(gj+l U * * - Q,(g, U g,,+I)- - a)) for all lajs n.

Similarly, if Qi(gi U Qi+l(gi+l U * - * Q,(g, U gn+I) - - -)) holds in any state SO do the
formulae

Qj(gjUQj+,(gj+l U* . * Qn(g,, U g,+I)- - -)) for all 1 <Jo i.

Conversely, if QlWJQ2k2U - - -Q&, Ug,+,)- - +)) holds in some state, then, for
some 1 ~js n, gj and Qj(gi U Qj+l(gj+l U - - - Q,(g, U gn+l) - * -)) hold in that state
or g,+, holds in that state.

Lemma 4.10. Let 9 be a CTL- formula in 2’. Then

Ju,sik9 j A’,Hil=S wheresiEdom(H,).

Proof. We prove this by a complete induction over a labelled computation tree,
rooted at si and with branches corresponding to transitions in .A. The labelling of
the states of the computation tree is done with respect to the CTL- formula 9.
Since 9 is in CTL-, it is of the form g, or

where g’s are propositional formulae. We label the tree as follows: if 9 = g, then
label Si with g and halt. On the other hand, if

then depending on whether Q1 is V (a), for all (some) computation paths starting
from Si, there exists a finite initial prefix of the path, such that

holds at the last state of the prefix and g, at all other states along the prefix. Label
the states corresponding to the prefix with g,. Continue the labelling procedure for
all the last states of the prefix, in a similar fashion, until a state is labelled with
g ?I+19 and halt. Without loss of generality, assume that A, Sit= g,. Notice that if s’
is any state, labelled with gj by this process, then, A, s’t= gj and

J&S’+ Qj(gjUQj+l(gj+l I-J* * * Qn(gn Ugn+,). . *))-
Let l(s’) stand for the length of the longest prefix of a computation path starting
from s’ such that every state of the prefix has the same label as s’. We say c(s)) =j

286 B. Mishra, E. Clarke

is the characteristic index and Z(s’) the characteristic length of si with respect to the
formula S.

If q and Tk are two computation trees rooted at the dominating states Sj and Sk,
respectively, then we say Tj < Tk, if C(Sj) > C(sk), or if C(Sj) = C(Sk) but I(sj) < I(&).
This defines a well-ordering among the trees.

Consider an initial finite portion of the tree with the root at si, with branches
corresponding to the transitions in block Hi and leaves corresponding to the
dominating states of the blocks.

Case 1: Either the formula 9 is of the form g or 9 is of the form

and some non-leaf state of the initial portion of the computation tree satisfies g,+i.
In the first case, since .M, si != g and g is a propositional formula, it is easy to

show that A’, Hi l= g. In the second case, by Fact 4.7 &, Si ‘F g,+i, and as in the first
case, JU’, Hi I= g,+i. By Fact 4.9

A’, Ri I= Q,(g, U Qz(g2 U * * * Qn(gn U gn+l) * . * 1).
Hence Jt!‘, Hi b S.

Case 2: Formula 9 is of the form

and g,+l does not hold in any non-leaf state. Let k be the maximum over the
characteristic indices of the leaves. Then there are two cases to consider:

Subcase A: Q,, Q2,. . . Qk-l are all V quantifiers.
In this case all the leaves must satisfy

Qj(gj U Qj+l(gj+l U * * . Q,(g, U g,+i) . . a)) for some 1 ~j d k.

By induction on computation tree, we have for the corresponding blocks H,

A’, IT+ Qj(gjUQj+l(Sj+lU*. * Qn(gnUgn+l)* * *))-
By Fact 4.9

But in the restricted structure JU’, each of these J? is a successor of .Ri (by Lemma
4.3(i)). Hence

Hence Jt’, Hi I= S.
Subcase B: Q1,Q2,. . . , Qk_-l are not all V quantifiers. Assume Qi,, Q+ . . . , Qi,

(1 di,di,S-- * d ip d k - 1) are 3 quantifiers.
We consider stages of labelling of the initial portion of the computation tree. By

assumption Qi, . . . , Qi,-i are all V quantifiers. In the first stage consider the labellings
associated with Q,, . . . , Qi,_l- Now all the last states of the prefixes of all the

Hierarchical verification of asynchronous circuits 287

computation paths (starting from Si) that are labelled in this state, must satisfy

Qi,(Si, U Qi,+l(gi,+l U * * * Qn(gn U gn+l) * * *I)*
At this point we stop if there is a state among these that satisfies gi, and

Qi,(gi, UQi,+~(gi,+l U * . * Qn(gn U gn+1)* * '1).
If not, we consider the next stage of labellings associated with Qi,+l, . . . Qi,_l.
Continuing in this fashion, we may
we have found a state that satisfies

gi, and Qu(gij U Qij+l(gij+l U s -*Qn(gnUg,+l)-**)) for some fjE{il,...,ip),

encounter one of the two situations: (i) either

(ii) or all the leaves must satisfy

QjCgj U Qj+l(gj+, U * * . Q,(g, U g,+I). * s)) for some 1 sjs k.

The second situation is handled in a manner similar to Subcase A. Hence we consider
the first situation only.

Let s be the non-leaf state satisfying gil and

Qi;(Sij UQij+~(gij+, U * * * Qn(gn Ugn+l). * *>I*
Then theI-> is a computation path from the root passing through the non-leaf s and
a leaf s,, where s, E dom(I&) and s, satisfies

Qmkm U Qm+dgm+~ U - - -Q&n Ugn+k - 3, b+m<k).

Since s is a non-leaf state and gij is a propositional formula, A, Si I= gi, (Fact 4.7)
and JU ‘, KIi C= gij.

But
J&S,+ Qmkm uQm+hn+J - - - Qnkn Ugn+k - 9).

Hence by Fact 4.9

J% sm’ Qij(gij U Qi,+l(gi,-+, U . * * Qn(gn U gn+l) * . *)I,

and by the induction on the computation tree

J% nmb Qij(gijUQi,+l(gij+l U * . . Qn(gn JJ g,+l)* * s)).
But in the restricted structure A’, I?,,, is a successor of Ri (Lemma 4.3(i)) and hence

d’, Rib Qij(gij U Qi;+l(gi,+l U . * * Qn(gn U gn+1). * a))-
By Fact 4.9

From the above technical lemmas, we easily deduce the proof of the Main Theorem
(Theorem 4.2).

288 B. Mishra, E. Clarke

Proof of Theorem 4.2. The proof directly follows from Lemmas 4.6 and 4.10. U

Now, we show how to build .&’ from A in the following three steps. 4 is
essentially a restriction of A with additional optimizations and labelling of the
transitions of the state-transition graph.

Step 1. Relabel the vertices and the edges of the CTL structure Ju. (a) Label each
state by the subset of the propositions involving only the inputs and the outputs of
the module. (b) Label the edges between two states with the same set of atomic
propositions, by E.

Step 2. Construct the blocks of A, by first determining the dominant states using
a depth first search over the underlying graph. Build JU’ by replacing each block
by a single state.

Step 3. Label the edges of the graph by the set of input signals that causes the
transition and the set of output signals associated with the transition.

This construction is illustrated by taking the
graph for the FIFO queue element shown in Fig.
the blocks constructed in Step 2. The resulting
shown in Fig. 5.

restriction of the state-transition
1. The states shown in groups are
labelled state-transition graph is

Fig. 5. The restricted state transition graph.

It should be mentioned that since we combine successive states in the operation
of Step 2, the restricted model may not be a unit-delay model even if the original
unrestricted model was so. This
4.2.

notion is essentially captured in Theorems 4.1 and

However, this does not pose a problem, since good design methodology forces
the designer not to make the modules at higher level in the hierarchy speed-
dependent. Moreover, since a speed-dependent circuits must be small enough to fit
in an equipotential region and equipotential regions must be small enough that the
potential on any wire in this area will equalize in a ‘short’ time for any large circuit,
the modules at higher level have to be speed-independent [7].

Hierarchical verijication of asynchronous circuits 289

As the first step for verifying the correctness of a circuit using a hierarchical
approach, we construct a CTL structure for a module at some hierarchical level,
using the CTL structures for the submodules at the immediately lower level. In
order to avoid building large-sized CTL structures, we use the restriction operation
on the CTL structures of the submodules and obtain smaller descriptions of these.
Moreover, the transitions of the state-transition graph are additionally labelled with
the associated set of input signals and set of output signals, as explained earlier in
this section.

Given two submodules A and B which are used to build a module C at a higher
level by connecting the inputs and outputs of A and B, we show how to build a
CTL structure for the module C using an operation called ‘composition’. It can be
shown that the composition operation is commutative and associative and hence
can be generalized easily to the case where a module consists of more than two
submodules. The reader may note a close analogy between the operations we define
and the operations defined in [8].

Let the restricted models of the submodules A and B be &A = (S,, &, U,) and
JH~ = (SD, RB, nB), respectively. We assume that the propositions associated with A
and B are renamed so that the input and output nodes of A and B that are connected
have a corresponding pair of propositions, i.e., if input a of A is derived from the
output 6 of B, then the proposition associated with a is Pb corresponding to the
proposition Pb associated with b in B. Furthermore, we make the important assump-
tion that these connections are made using ‘short’ bilateral wires.

The CTL structure of C = A0 B is given by ./UC = AAOB = (SAOB, RAoa, Ll,+s), where
SAOB E SA x S,. The assignment function HAOB: SA,,B ++28~“9~ is defined by n(sAOB) =
n(s,) u n(s,) where the state s&B = (SA, sg). The initial state of & is &,(AOB) =
(S OA, sOB). A state is stable if every pair of propositions assigned to the state has the
same truth value and is unstable otherwise, with a set of transitions 8 corresponding
to the unmatched pair associated with it.

The transition relation RAoB (R,+,B E SAoB X S,+B) is defined as follows. Assume
that there is a transition (sIA, S& E RA such that (s IA, SZA) has associated with it,
the input set (Y and the output set p. Similarly, assume that there is a transition
(S lB, sZB) E RB such that (s lB, sZB) has associated with it the input set y and the
output set S. Furthermore, assume that a! is partitioned into disjoint subsets CY’ and
cy” such that (Y’ is associated with the inputs of C (i.e. the input transitions for (Y’
are generated externally and the transitions for my” are generated internally).
Similarly, assume that y is partitioned into disjoint subsets y’ and y”. Then in the
CTL structure for C, there will be following transitions: Let 8 be the set of transitions
associated with (s *A, sIB), if it is unstable. (i) If (Y” Z 6, then there is a transition
Us lA, SIB), (%A, %d) E RAG with associated input cy’ and output p, (ii) if y” c_ 6, then
there is a transition ((SIA, qB), ($A, sZB)) E R ,+B with associated input y’ and output
S, and (iii) if (Y”U 7”s b, then there is a transition ((sIA, slB), (SPA, sZB)) E RAoB with
associated input cy’u y’ and output p u S.

290 B. Mishra, E. Clarke

The step of constructing the successor states for &, slB) can be thought of as
simulating C at (s,~, s 1B) for all possible sets of inputs and can be easily incorporated
into Algorithm 2.1. Now various properties of C with respect to the model .& can
be determined using the model checker algorithm, as explained in the earlier sections.

5. Cooclusion

We have shown that it is possible to do automatic verification of asynchronous
circuits efficiently. We have also indicated how this method can be extended to do
hierarchical verification of large and complex circuits. We believe that this approach
may eventually turn out to be quite practical.

However, there are many problems that need to be addressed before this approach
is made feasible in practice. In this paper we have used a unit-delay model for the
circuit. Similarly, it is quite easy to use a steady-state model, in which each state
in the state-transition graph corresponds to a stable state and only in response to
an input change does a state change occur. While the steady-state model is useful
for speed-independent self-timed circuits, the unit-delay model is needed to model
properties of a speed-dependent circuit. Unfortunately, even for the speed-dependent
circuits the assumption that each gate has one unit gate-delay is rather unrealistic,
because two similar gates may have different delays depending on process variations,
fan-outs of a gate, etc. Moreover, because of various capacitive effects, the delay
associated with a O-to-l transition is not equal to the one associated with a l-to-0
transition. It is felt that it is necessary to find models that capture these properties
better. Also, we do not know how to handle the effect of large fan-out, charge
sharing, etc. In addition, we felt that CTL is rather weak for succinctly expressing
many properties of circuits. A notation based on temporal intervals [6] may be more
suitable for this purpose.

An interesting area for future research is the usefulness of restriction operation
in the context of hierarchical verification. We have defined a ‘restriction’ operation
and shown that the truth-properties of the CTL- formulae are preserved with respect
to the operation of restriction. It appears that any weaker version of ‘restriction’
will not result in any substantial reduction of the size of the CTL structures and
hence will make hierarchical verification rather expensive. On the other hand, it
seems any stronger version of ‘restriction’, will severely limit the class of CTL
formulae that will be preserved with respect to restriction.

Acknowledgment

We wish to thank Larry Rudolph of Carnegie-Mellon University, and Chuck Seitz
of Caltech for helpful discussions.

Hierarchical verification of asynchronous circuits 291

References

[l] M. Ben-Ari, Z. Manna and A. Pnueli, The logic of nexttime, 8th ACM Symposium on Principle of
Programming Languages, Williamsburg, VA, 1981.

[2] G.V. Bochmann, Hardware specification with temporal logic: An example, IEEE Trans. Comput.
C-31 (3) (1982).

[3] E.M. Clarke, E.A. Emerson and A.P. Sistla, Automatic verification of finite-state concurrent systems
using temporal logic specifications: A practical approach, Z&h ACM Symp. on Principles ofZ+ogram-
ming Languages, Austin, TX, 1983.

[4] E. Clarke and B. Mishra, Automatic verification of asynchronous circuits, in: E. Clarke and D.
Kozen, eds., Proc. C-M. U. Workshop on Logics of Programs, Pittsburgh, PA, 1983 ; Lecture Notes in
Computer Science 164 (Springer, Berlin, 1984).

[5] E.A. Emerson and E.M. Clarke, Characterizing properties of parallel programs as fixpoints, Proc.
7th Znternat. Coil. on Automata, Languages and Programming, Lecture Notes in Computer Science
85 (Springer, Berlin, 1981).

[6] J. Halpern, Z. Manna and B. Moszkowski, A hardware semantics based on temporal intervals, Report
STAN-CS-83-963, Department of Computer Science, Stanford University, Stanford, 1983.

[7] C.A. Mead and L.A. Conway, Introduction to VLSI Systems (Addison-Wesley, Reading, MA, 1980)
Chapter 7.

[8] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science 92 (Springer,
Berlin, 1980).

[9] Y. Malachi and S.S. Owicki, Temporal specifications of self-timed systems, in: H.T. Kung, Bob Sproull
and G. Steele, eds., VLSI Systems and Computations (Computer Science Press, Rockville, MD, 1981).

