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Abstract

In the Linux computer game KPlumber, the objective is to rotate tiles in a raster of squares
so as to complete a system of pipes. We give a complexity classi:cation for the original game
and various special cases of it that arise from restricting the set of six possible tiles.

Most of the cases are NP-complete. One polynomially solvable case is settled by formulating it
as a perfect matching problem; other polynomial cases are settled by simple sweepline techniques.
Moreover, we show that all the unsettled cases are polynomial time equivalent.
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1. Introduction

The computer game KPlumber is included in standard packages of some of Linux
distributions. KPlumber is a game for a single player. It is played on a rectangular
(chessboard-like) board consisting of a number of rows and a number of columns that
structure the board into small squares or cells. Every cell has (up to) four adjacent
cells to the north, south, east, and west of it. In the initial con:guration, every such
cell contains one of the six tiles depicted in Fig. 1. Each of these six tiles contains
several pipes that may cross each other, go around the corner, connect one side of the
tile to the opposite side, and so on. If there is a pipe running from the center of a tile
to the middle of one of its sides, then this side is called open. Otherwise, the side is
called closed. If the pipes are :lled with water, then the system will possibly leak at
an open side of some tile. The only way of preventing this is to have another tile with
an open side in the adjacent cell, so that the water can Jow on into the open pipe in
the adjacent cell. This motivates the following de:nition: Two tiles in adjacent cells
form a safe pair if they either touch each other in open sides or touch each other in
closed sides.

In the initial con:guration, all the tiles are rotated arbitrarily. If the player clicks on
one of the tiles, this tile makes a counter-clockwise rotation by 90◦. Four clicks on
the same tile bring it back into its initial state. The goal of the game is to bring the
pipe system into a safe state where all the pairs of tiles in adjacent cells form safe
pairs. The pipe system is allowed to consist of several connected components in a safe
system. An instance of the plumber problem consists of a rectangular board and of
rotated tiles in the cells. The question is to decide whether the system can be brought
into a safe state.

Since there is no global connectivity condition, the plumber problem can be formu-
lated as a simple constraint satisfaction problem (CSP): For every cell C, there is a
corresponding variable v(C) in the CSP instance. This variable can take four values
that correspond to the four possible rotated states of the corresponding tile (Fig. 1).
For every pair of adjacent cells C1 and C2, there is a constraint that forbids that v(C1)
and v(C2) take values such that an open side touches a closed side. Every constraint

Empty tile (0): 

Dead-end tile (D):

Straight-line tile (S):

Curve tile (C):

T-join tile (T):

X-join tile (X):

Fig. 1. DiCerent types of tiles and their possible rotations.
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involves only two variables, and every variable can only take four distinct values.
Hence, the game is a special case of (4; 2)-CSP which is known in general to be NP-
complete. Eppstein [1] gives fast (but exponential time) exact algorithms for (4; 2)-CSP.

The computational complexity of the game KPlumber is addressed. The reader is
referred to [2] for introduction to computational complexity if necessary. The decision
problem whether the game can be won is NP-complete (Theorem 1). On the other
hand, if the straight line tiles are not permitted, the problem becomes polynomial-time
solvable (Theorem 2). The other “polynomial” sets of tiles are identi:ed in Theorems 3
and 4 and some NP-complete sets of tiles in Theorem 8. Finally, we prove in Theorem
9 that the remaining sets of tiles, i.e., those which are not shown to give either an
NP-complete version or a polynomial time solvable one, have the same complexity. As
pointed out by the referee, the hardness of the full version of the game was proved in
[9], however, we include our proof for the sake of completeness. Another reason for
including this proof is that our proof seems to be simpler than that of [9].

2. Notation

The following tiling problem based on the game KPlumber is studied in this paper:
An instance of the problem is an x×y grid where each position in the grid has assigned
one of six possible types of tiles (cf. Fig. 1): an empty tile (0-tile), a dead-end tile
(D-tile), a straight-line tile (S-tile), a curve tile (C-tile), a T-join tile (T-tile) and an
X-join tile (X-tile). The types of tiles are denoted by 0, C, D, S, T and X, respectively.
An expression Y -tiles for Y ⊆ {0; C; D; S; T; X} means the tiles with types from Y .

Each of the tiles can be freely rotated in the grid (but not moved from its place).
We refer to a grid with :xed rotations of its tiles as to a tiling. A tiling is proper if
the tiles in each pair of the neighboring tiles either touch by their close sides or their
open sides (i.e. they form safe pairs) and the tiles at the boundary of the grid touch
the boundary by their empty sides. A rotation of the tiles which gives a proper tiling
is a proper rotation. Neighboring tiles touching by their open sides are called linked.

In a tiling problem, you have to decide whether a given instance of the problem has
a proper rotation. We also consider in the paper the tiling problems where only some
types of tiles are allowed. An Y -tiling problem is a tiling problem where the types
of tiles in a grid can be only from the set Y ⊆ {0; C; D; S; T; X}; e.g., the CDT-tiling
problem is the tiling problem where the types of the tiles are restricted to the types
C, D and T.

3. The general case

We settle the complexity of the general tiling problem in the next theorem.

Theorem 1. The 0CDSTX-tiling problem is NP-complete.

Proof. Obviously, the problem is in NP. To prove its NP-hardness, we reduce the
problem of planar (1; 3)-satis:ability to the 0CDSTX-tiling problem. Planar (1; 3)-SAT
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Fig. 2. Wires transporting the false (the left one) and the true signal (the right one).

Fig. 3. The signal generator gadget.

is a satis:ability problem where the input formula is planar, all its clauses have sizes
exactly three and we ask whether there is a variable assignment such that each clause
contains exactly one true literal. A formula is said to be planar if its bipartite incidence
graph is planar. The bipartite incidence graph of a formula is a graph whose vertices
correspond to the variables and the clauses of the formula and a “variable vertex” is
joined by an edge to a “clause vertex” if the corresponding variable is contained in the
corresponding clause. The planar (1; 3)-SAT is known to be NP-complete, see [4,5,7].

We construct various gadgets that are needed for the reduction. Throughout the
proof, the straightforward and boring formal veri:cation that the gadgets have the
claimed properties is not presented in full detail. In the :gures, we always draw all
the possible proper orientations of the gadgets in order to assist the reader to :gure
out the omitted details. The gadget “contact” points are drawn with bold lines in the
:gures (see, e.g., Fig. 2). All the gadgets have even sizes, and they are placed so that
the contact areas are at even distances from each other. Also, they are placed so that
on all the sides with the exception of sides containing the contact points they touch
empty tiles.

We :rst draw the incidence graph of the formula to a grid (the graph is planar and
hence it can be also drawn in a grid). We replace the edges by “wires” from Fig. 2.
These wires distribute the value of the variable from the variable gadgets to the clause
gadgets. We use the two possible orientations of the S-tiles in the wire to represent
the truth values: Let the orientation perpendicular to the direction of the wire represent
the false value and the orientation parallel to the direction of the wire the true value
(cf. Fig. 2). The wires guarantee that the signal is correct (i.e., all the S-tiles have the
same orientation). In principle, the wires can be oriented so that their tiles adjacent to
the contact areas also have a link to the adjacent gadgets. However, it can be veri:ed
that none of the other gadgets we use can be attached to such an orientation.

The wires can be terminated using the gadgets from Figs. 3 and 4, we further refer
to these gadget as to the generator and true gadgets. The wires can be turned using
the gadgets from Fig. 5; the top gadget in Fig. 5 turns the wire and preserves its
value, the bottom one turns the wire and negates its value. The wire can be split into
two wires with the same value using the gadget from Fig. 6. We can now describe
the variable gadget: Start a “new” wire with the generator gadget, use several times
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Fig. 4. The true signal generator gadget.

Fig. 5. The identity turn (the top two :gures) and the negating turn (the bottom two :gures).

Fig. 6. The signal split gadget.

the split gadget (from Fig. 6) to make suPciently many copies of the value of the
variable (i.e., as many as the degree of the variable vertex in the bipartite incidence
graph of the formula) and then conduct the values through the wires using the turn
gadgets (those from Fig. 5) to the clause gadgets. If the variable is negated in the
particular clause, negate it using the “negating turn gadget”.

The clause gadget can be found in Fig. 7. This gadget has only the three states
depicted in the :gure. Exactly one of the inputs X , Y and Z is true in each of the
admissible con:gurations and the remaining ones are false.
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Fig. 7. The clause gadget.

Fig. 8. The matching gadgets for the 0CDTX-tiling problem.

The overview of the reduction is as follows: Construct for a given instance of the
planar (1; 3)-SAT an instance of the 0CDSTX-tiling problem as shown above. This
instance has polynomial size and can be constructed in polynomial time. If it can be
properly oriented, then the values corresponding to the orientations of the wires give a
satisfying assignment of the given formula. On the other hand, a satisfying assignment
of the input formula provides a proper orientation of the tiling problem. Hence the
0CDSTX-tiling problem is NP-complete.

4. Polynomial cases

It might be surprising that forbidding only the S-tiles in input instances reduces the
complexity of the problem.

Theorem 2. The 0CDTX-tiling problem can be solved in polynomial time; there is an
algorithm which runs in time O((ab)3=2) for an a× b grid.

Proof. We reduce an instance of the 0CDTX-tiling problem to the perfect matching
problem in bipartite graphs which can be solved in polynomial time [3,6,8]. We replace
each of the tiles of types {C; D; T; X} by a gadget from Fig. 8. The edges in the formed
graph correspond naturally to the pairs of neighboring tiles which can be linked: If
the edge is included to a matching, then the neighboring tiles are linked. In order to
decide whether a given instance of the 0CDTX-tiling problem can be properly rotated,
it is enough to construct the above described graph and check whether it contains a
perfect matching. Its perfect matchings correspond one-to-one to the proper tilings.
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We show that the constructed graph is bipartite: The tiles in the grid can be colored
in white and black in such a way that no two adjacent tiles have the same color. The
vertices in the gadgets are assigned the colors of the tiles which they replace with
the following exception: The colors of the central vertices of the gadgets replacing the
T-tiles are inverted. This is a proper coloring of the constructed graph and hence the
graph is bipartite.

The estimate on the running time follows from the existence [3,6,8] of an algorithm
for perfect matchings in bipartite graphs which runs in time O(n1=2m), where n and m
are the numbers of vertices and edges of the input graph.

The remaining two polynomial-time cases are rather easy.

Theorem 3. The 0CSX-tiling problem can be solved in linear time.

Proof. Realize that the rotation of any tile whose type is among {0; C; S; X} is deter-
mined by the fact whether the tile is linked to the tile above it and to the tile left from
it. Hence it is possible to determine the only possible rotations of all the tiles in linear
time by sweeping a given instance of the problem from left to right and from top to
bottom.

Theorem 4. An instance of the 0STX-tiling problem can be properly rotated iB it
contains only the empty tiles. Hence the 0STX-tiling problem can be solved in linear
time.

Proof. An instance which contains only the empty tiles can be trivially properly rotated.
Take an instance of the 0STX-tiling problem which contains a tile which is not the
0-tile and consider such a tile Z in the top most row and the left most column. This
tile cannot be linked to the tile above and to the tile to the left (this neighboring tile
either is an 0-tile or does not exist). But then the tile Z cannot be properly rotated.

5. Reductions

In this section, we use simulation of tiles by larger gadgets using fewer types of
tiles to classify the remaining problems. First, we de:ne what type of simulation we
use for other tiles. We say for an odd integer k that a k × k gadget G simulates a
Z-tile, Z ∈ {0; C; D; S; T; X} if
• In every proper rotation of the gadget (we do not demand by de:nition that only the

empty sides of the tiles may touch the boundary of the gadget), each tile touches
the boundary of the gadget by its empty side, with possible exceptions for the tiles
in the middle row and in the middle column.

• For each rotation of a Z-tile, there is a proper rotation of G such that G can be
linked in the same directions (up, down, right, left) as the Z-tile, and vice versa, for
each proper rotation of G, there is a corresponding rotation of a Z-tile.
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Fig. 9. The DS-gadgets which simulate the empty tile.

Fig. 10. Regions in the (4k + 1) × (4k + 1) grid from the proof of Lemma 6.

A Z-tile can be simulated by k × k gadget if there exists a gadget G with the
above described properties. If a gadget G contains only tiles of types from a set
Y ⊆ {0; C; D; S; T; X}, G is a Y -gadget.

First of all, we show that the empty tiles may be simulated by DS-gadgets.

Lemma 5. For each integer k¿5, the empty tile may be simulated by a DS-gadget
of order k.

Proof. Consider the gadget from Fig. 9, the construction is extended for larger integers
in a natural way. To prove that the gadgets simulate the empty tile, it is enough to
prove that the con:gurations of the gadgets depicted in Fig. 9 are the only possible
ones. The rotations of all the S-tiles have to be the same. They cannot be vertical,
because of the D-tile in the second row and the third column. Hence, all the S-tiles are
rotated as in the :gure and the rotations of the remaining D-tiles are forced, too.

Next, we prove other lemmas on existence of suitable types of gadgets.

Lemma 6. For each integer k¿3 the Z-tile can be simulated by a DSZ-gadget of
order 4k + 1 for any Z ∈ {0; C; D; S; T; X}.

Proof. Let k¿3 be a :xed integer. We divide the (4k + 1) × (4k + 1) grid into 9
regions (see Fig. 10): The corner regions have sizes 2k × 2k, the intermediate ones
between them have sizes 1 × 2k and 2k × 1 and the size of the middle one is just
1 × 1.
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Fig. 11. The 0DS-gadget of order 5 which simulates the X-tile.

Fig. 12. The 0CDS-gadget of order 5 which simulates the C-tile.

Fig. 13. The 0DS-gadget of order 5 which simulates the T-tile.

We place in each of the four corner regions a DS-gadget of order 2k which simulates
the 0-tiles (Lemma 5) and we put in each of the four intermediate regions 2k D-tiles
and we place in the middle region the Z-tile. Since the gadgets in the corner regions
have only one possible rotation, the whole gadgets behave like if there were only the
empty tiles in the corner regions and the tiles in the intermediate regions just transport
the linking signal from the middle tile to the boundary; it is important that 2k is even
in order not to negate the signal. Hence the gadget really simulates the Z-tile.

Lemma 7. The 0DSTX-tiles can be simulated by 0DS-gadgets of order 5. The C-tiles
can be simulated by 0CDS-gadgets of order 5.

Proof. The 0DS-tiles can be simulated by 0DS-gadgets of order 5 in a way similar
to Lemma 6; the corner 2 × 2 regions are :lled by 0-tiles and the remaining regions
are :lled exactly in the same way as in Lemma 6. The other simulation gadgets are
depicted in Fig. 11–13. It is straightforward to verify that the con:gurations of the
gadgets depicted in the :gures are the only possible ones.

We are now ready to prove the main theorem of this section.

Theorem 8. Both the CDS-tiling problem and the CST-tiling problems are
NP-complete.
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Fig. 14. The border around the complementary grid formed by the C-tiles and the T-tiles.

Table 1
The summary of our complexity results

0 C D S T X Complexity

? ? ? × ? ? Polynomial (Theorem 2)
? ? × √ × ? Polynomial (Theorem 3)
?

√ √ √
? ? NP-complete (Theorem 8)

?
√

?
√ √

? NP-complete (Theorem 8)
? × × √

? ? Polynomial (Theorem 4)
? × √ √

? ? The same (unknown) complexity (Theorem 9)

The sign
√

means that the corresponding type of tiles is present, the sign × means that it is not present
and ? means that it does not matter.

Proof. The general 0CDSTX-tiling problem is NP-complete due to Theorem 1. The
0CDS-tiling problem is NP-complete due to Lemma 7 and :nally the CDS-tiling problem
is NP-complete due to Lemmas 5 and 6 (used for Z = C, D and S).

We reduce an instance of the CDS-tiling problem to an instance of the CST-tiling
problem. First complement the tiles, i.e., replace the D- with T-tiles and keep both
the C- and S-tiles. Next, create a boundary around the grid consisting of the C- and
the T-tiles as shown in Fig. 14. The obtained instance of the problem has a proper
rotation iC the original instance has one: It is enough to complement the tiles, e.g.,
if a curve tile is linked to the tiles above and to the right, then in the complement,
the tile is linked to the tiles down and to the left. Hence, the CST-tiling problem is
NP-complete.

6. The unsettled cases

What cases remain unsettled? If S-tiles are not allowed, the tiling problem can be
solved in polynomial time by Theorem 2. If neither D- nor T-tiles are allowed, the
problem can be solved in polynomial time due to Theorem 3. The remaining cases are
those where S-tiles are allowed together with D- or T-tiles. If even C-tiles, besides S- and
D-tiles or T-tiles, are allowed, then the problem is NP-complete due to Theorem 8. Only
the cases where C- are not allowed remain. If neither C-tiles nor D-tiles are allowed,
the problem can be solved in polynomial time due to Theorem 4, see Table 1. Hence
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the unsettled problems are the Y -tiling problems where {D; S} ⊆ Y ⊆ {0; D; S; T; X}. We
show that all these cases have the same complexity.

Theorem 9. The complexity of the DS-tiling problem and the complexity of the 0DSTX-
tiling problem are the same.

Proof. The 0DSTX-tiling problem can be reduced to the 0DS-tiling problem due to
Lemma 7 and the 0DS-tiling problem can be reduced to the DS-tiling problem due to
Lemma 5 and 6 (used for Z = D and S).

7. Conclusion

The summary of the obtained complexity results can be found in Table 1. The
unsettled case of the problem turns out to be surprisingly hard. We sketch the reasons
why we think to be so.

First, we prove a claim which shows that a similar NP-completeness reduction based
on gadgets is unlikely to exist because we cannot construct non-trivial gadgets, in
particular an identity turn, or a negating gadget with inputs on the opposite sides.
This also implies a non-existence of a gadget simulating a C-tile, since such a gadget
would allow us to construct an identity turn. The proof uses a parity argument in
conjunction with the planarity of the grid structure. The claim intentionally leaves
vague the question of representation of the gadget inputs, since its variants seem to
work for any representation. In fact, the claim seems to be pointing to some general
invariant which we do not fully understand.

The statement of the claim is: Suppose we want to make a DS-gadget with two input
points A and B belonging to diCerent inputs of the gadget such that A and B are in
even distance (i.e., leaving from the squares of the opposite colors in the chessboard
coloring) and there is no other input point between A and B (i.e., going from A
clockwise along the border of the gadget, B is the next input point). If there exist two
proper orientations assigning to A=B values false=true and true=false (in the notation of
the proof of Theorem 1), respectively, then there also exists two proper orientations
assigning to A=B values false=false and true=true. (A similar claim can be shown for
A and B on squares of the same color: If false=false and true=true con:gurations are
both possible, then also false=true and true=false are possible.)

Proof of the claim. Take a false=true con:guration and :ll (draw) all the used pipes by
blue and then take a true=false con:guration and :ll (draw) all the used pipes by red.
A pipe which is both red and blue is purple. Erase all purple pipes. Each square either
(i) is empty, or (ii) contains two crossing straight pipes of distinct colors (it origins
from an S-tile), or (iii) two dead ends of distinct colors (the square origins from a
D-tile). Furthermore, both the input pipe entering A is red and the input pipe entering
B is blue. Start at the input pipe to A and go left (i.e., in the direction to B) along the
outside contour along the red and blue pipes. This gives you an alternating path: at a
square of type (ii) you always turn and thus change color, or (iii) you change color
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no matter if you turn or not. By parity, the alternating path cannot end at B. Since it
was the contour, it shows that the pipes of the inputs A and B are disconnected in the
blue–red graph. This means that in each of the components we can switch the colors
separately, and thus get the remaining con:gurations false=false and true=true.

On the other hand, our NP-completeness result can be extended to the case without
C-tiles if we allow to draw a grid on any surface. More precisely, we allow a “board”
to be glued from diCerent rectangles with the restriction that it is locally correct.
(In particular, the whole “board” can be non-planar.) On such a “board” it is easy
to construct a gadget simulating a C-tile (simply replace the tile by two D-tiles, one
connected to the right and left neighbor of the original C-tile and the other connected to
the remaining two neighbors). Thus we can construct all the other needed gadgets and
the NP-hardness proof applies. So any potential polynomial algorithm for the remaining
open case needs to make an essential use of the planarity of the grid structure in the
problem.
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