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Abstract. The power of probabilistic linear decision trees is examined. It is shown that the standard 
arguments used to prove lower bounds on deterministic linear decision trees apply to probabilistic 
linear decision trees as well. Examples are next given of problems which randomization helps 
solving. 

1. Introduction 

Randomizing algorithms have drawn much attention in the last years. Problems 
that seem hard to solve when conventional algorithms are used, are easily solved 
by probabilistic methods. 

Many algorithms are usefully represented by the decision tree model. This model 
captures the control flow of the algorithm, that is the decisions taken during 
execution. One represents the tests made and the branch statements executed, and 
ignores the other computations. Randomizing steps can be added to this model, as 
tests whose outcome depend on independent probabilistic experiments, that is ‘coin 
flipping’ tests. 

Manber and Tompa [6] considered nondeterministic and probabilistic decision 
trees. These are decision trees that have guessing nodes, aside from comparison 
nodes. At a guessing node, a choice is made between two alternatives, nondeter- 
ministically for nondeterministic decision trees, or with equal probability for prob- 
abilistic decision trees. 

Manber and Tompa give nonlinear l2(n log n) lower bounds on the depth of 
nondeterministic decision trees needed to solve several problems. Interestingly, their 
upper bounds show that each of these problems can be solved either with 0( n log n) 
comparisons and no guesses, or with O(n) comparisons and O(n log n) guesses. 
Thus, the nonlinear lower bounds do not apply either to comparisons or to guesses 
alone, but only to their sum. 

These lower bounds apply to the weaker, probabilistic model as well, with cost 
being defined as the length of the longest path in the decision tree. 
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Their paper leaves open many interesting questions. In particular, can we obtain 
nonlinear lower bounds on the cost of probabilistic decision trees (using the usual, 
‘expected time’ measure) when only comparisons are counted? Can we extend lower 
bounds known for deterministic decision trees to probabilistic decision trees? And, 
most important of all, can we exhibit problems where randomization yields a 
provable speedup? 

This paper gives a partial answer to these problems. We show that known methods 
for proving lower bounds on deterministic linear decision trees apply to probabilistic 
linear decision trees as well. We consider two methods: the ‘region counting’ 
argument of Dobkin and Lipton [I] and the ‘face counting’ argument of Yao and 
Rivest [lo] (see also [8] for an exposition of their methods). Lower bounds obtained 
by these methods for deterministic linear decision trees turn out to be valid, within 
a constant factor, for probabilistic linear decision trees as well. This holds true, 
even if only comparisons are counted. Thus, decision problems that are known to 
require a( n log n) comparisons in the deterministic case, are shown to require 
a( n log n) comparisons on the average, in a probabilistic algorithm. This includes 
all the problems for which nonlinear lower bounds are proven in [6]. 

These results indicate an interesting distinction between nondeterministic and 
probabilistic decision trees: For the problems considered in [6], the use of randomiz- 
ation does not decrease the number of comparisons needed, whereas comparisons 
can be traded off for guesses in the nondeterministic case. 

Nevertheless, randomization can reduce the complexity of linear decision prob- 
lems. We show that it is possible to build a family of problems P, such that P, can 
be solved by a probabilistic linear decision tree of cost 3”, but cannot be solved by 
a deterministic linear decision tree of cost less than 4”. The problem P, is defined 
by a formula with n alternations of existential and universal quantifiers. 

The proof of this gap involves two interesting methods. The proof of the lower 
bound for deterministic complexity uses an invariance argument: If a problem is 
invariant under a set of transformations, then an optimal solution to this problem 
uses only tests which are invariant under the ‘dual’ set of transformations. The 
upper bound argument for probabilistic complexity uses a very simple form of 
randomization: when the solution to a problem will be obtained by solving either 
the first or the second of two subproblems, then one betters the average running 
time by randomly choosing the order in which these subproblems are attacked. 

2. Definitions 

Let 88” be the space of real n-tuples, and let P c R”. The decision problem D(P) 
is to determine for any input x E I?’ whether x E P. An algorithm for this decision 
problem is represented by a decision tree. This is a labeled binary tree. The internal 
nodes are either 

( 1) test nodes which are labeled with binary tests; the two emanating edges are 
labeled by the possible outcomes of that test; or 
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(2) randomizing nodes which are unlabeled. 
The leaves are labeled either accept or reject. 
For each input x E IL!” the algorithm proceeds by moving down the tree. At test 

nodes the test is performed on X, and one of the two branches is taken according 
to the outcome of the test. At randomizing nodes one of the two branches is taken 
randomly, with probability 4. 

We define the acceptance (rejection) probability T,(X) ( ~Jx)) of an input x to be 
the probability that x reaches an accepting (rejecting) leaf. The decision tree solves 
the problem D(P) with threshold a if: 

(1) if x E P, then x is accepted with probability 2 CX, and 
(2) if xe P, then x is accepted with probability zero (i.e., reaches only rejecting 

leaves). 
The time T(X) required for an input x is the expected number of tests on a path 

followed by X. (We do not charge for randomizing nodes.) The acceptance (rejection) 

time ~(4 (7,(x)) 9 re uired for an input x is the expected number of tests on a path 
followed by x, given that the path leads to an accepting (rejecting) leaf. The 
acceptance (rejection) time is defined to be equal to zero if x never reaches an 
accepting (rejecting) leaf. 

Note that 

The cost c( T) (acceptance cost c,(T), rejection cost c,(T)) of a decision tree T is 
defined to be the maximum, over all possible inputs x, of the time (acceptance time, 
rejection time) required for x. 

If T solves the problem D(P) with threshold (Y, then T,(X) b (Y for each x E P 
and V,(X) = 1 for each x E P. This implies, by (2.1), that c( T) 2 ( I/(Y)c,( T) and 
c( T) 2 c,( T). Thus, lower bounds on acceptance (rejection) cost imply lower bounds 
on cost. 

A decision tree is deterministic if it does not contain randomizing nodes. In that 
case the previous definitions agree with the usual ones for deterministic decision 
trees: each input follows a unique path; the decision tree solves the problem D(P) 
iff each input x reaches an accepting leaf iff x E P; and the cost of a decision tree 
is equal to the depth of the tree. Note that the acceptance cost and rejection cost 
of a minimal deterministic decision tree are equal to its cost. Indeed, if T is minimal, 
then each nontrivial subtree of T contains both accepting leaves and rejecting leaves 
(otherwise the subtree can be replaced by a unique leaf). In particular, 7’ has both 
accepting leaves and rejecting leaves at maximum depth. 

3. Main theorem 

Theorem 3.1. Let T be a probabilistic decision tree that solves a decision problem D(P) 
with threshold CY. Let x1, . . . , x,,, be inputs from P that are accepted in time d t. Then 
for each A > 1 there exists a deterministic decision tree T’ with the following properties: 
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( 1) All the tests occurring in T’ are tests from T 
(2) T’ accepts at least a fraction CY ( 1 - l/A) of the inputs xl, . . . , x,,, in time 9 At. 
(3) T’ accepts only inputs belonging to I? 

Proof. Assume that k randomizing nodes occur in T. Let @p(T) be the set of 2k 
deterministic decision trees obtained from T by replacing in all possible ways each 
of the k random choices by a deterministic choice. Consider the decision procedure 
whereby a tree is randomly chosen from @p(T), next applied to the input. This 
procedure is represented by a probabilistic decision tree I? consisting of k levels of 
randomizing nodes, followed by the 2k trees of @p(T). The construction is illustrated 
in Fig. 1. 

(4 
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(b) 

Fig. 1. (a) Tree T. (b) Tree If 
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It is easily seen that the decision tree ? defines the same probability distribution 
as T. For each input x the acceptance probability of x in T is equal to the acceptance 
probability of x in ? This, in turn, is equal to the fraction of trees in G(T) that 
accept X. The acceptance (rejection) time of x in T is equal to the acceptance 
(rejection) time of x in ? This is equal to the average length of the path followed 
by x in those trees in G(T) that accept (reject) X. 

If x rf P, then x does not reach an accepting leaf in T, and therefore does not 
reach an accepting leaf in any tree from Q(T). Thus, trees in @( 7’) accept only 
inputs from P. 

Each input Xj is accepted by a fraction (Y of the trees in @p(T), and the average 
length of the path followed in these trees by Xj is at most t. Thus, a fraction of 
( 1 - l/A) of the trees in @( T) that accept Xj, accept it in no more than At steps. 
Each input Xj is accepted by at least a fraction cx (1 - l/A) of the trees in @( T) in 
no more than At steps. This implies that there exists a tree in Q(T) that accepts a 
fraction cy (1 - l/A) of the inputs x,, . . . , x,,, in no more than ht steps. n 

4. Region counting 

We restrict ourselves now to linear decision trees, i.e., decision trees using only 
tests of the form f(x) R 0, where f is an affine functional and R is one of the 
relations < , > , d, or a. The set of inputs reaching a leaf of a linear decision tree 
is convex. This implies immediately the following theorem (see [ 1, Theorem 21, [6, 
Theorem 11, and [8, Corollary 3.21). 

Theorem 4.1. Let P c R”, and let x1, . . . , x, E P satisfy the condition that for any pair 
xi, xj with i #j the segment G contains a point yii IZ P. Then if T is a linear decision 
tree solving D(P), each accepting node in T is reached by at most one input from the 
set x1,. . . , x,. In particular, T contains at least m accepting nodes, and has depth at 
least log, m. 

We can use Theorem 3.1 to extend this result to probabilistic decision trees. 

Theorem 4.2. Assume that the conditions of Theorem 4.1 are satis$ed. Then any 
probabilistic linear decision tree solving D(P) with threshold CY has acceptance cost 
greaterthan (l/A)log,m+(l/A)log,cw(l-l/A),foranyA>l. 

Proof. If T is a probabilistic linear decision tree with acceptance cost t, then one 
can build a deterministic linear decision tree ? that accepts at least ma (1 - l/A) 
of the inputs xi, . . . , x, in time <At and accepts none of the inputs yw No leaf of 
? is reached by two distinct inputs xi. It follows that At 2 logz( Q (1 - l/A )m). Cl 

Corollary 4.3. Let a > 0 be a fixed threshold. Then any probabilistic linear decision 
tree that solves one of the following problems has cost a( n log n). 
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( 1) Element uniqueness [ 11: Decide whether x,, . . . , x, are distinct. 
(2) Set disjointness [7]: Given two sets S, and S2 of n numbers each, decide whether 

S, and S2 are disjoint. 
(3) Set equality [7]: Given two sets S, and S2 of n numbers each, decide whether 

they are equal. 
(4) e-distance [3]: Decide whether the distance between every two distinct numbers 

in xl,. . . , x, is larger than E. 

(5) Set maximality in plane [5]: Given 2n inputs x1, y,, . . . , x,, yn, decide whether 
the n points in the plane with these coordinates form a maximal set (the set is maximal 
if for no i f j both xi d xj and yi d yj). 

Proof. For each of these problems it is possible to exhibit n! distinct inputs that 
fulfil the conditions of Theorem 4.1. Cl 

5. Face counting 

We assume now that P is a polyhedral convex set in R” (this restriction can be 
relaxed, see [8, Section 41). Let T be a linear decision tree that solves the problem 
D(P). To each leaf e of T is associated the polyhedral convex set S(e) of inputs 
that reach e. This set is defined by the linear inequalities labeling the edges on the 
path leading to e. We have 

P= U SW. e accepting leaf of T 

If T is deterministic, the union is disjoint. This decomposition of P induces a 
decomposition of the faces of P: Each k-dimensional face of P is the union of 
faces of the sets S(e) of dimension k or less. In particular, each k-dimensional face 
of P contains a k-dimensional face of some set S(e). A k-dimensional face of S(e) 
is obtained by choosing n - k of the inequalities defining S(e), that is n - k of the 
relations labeling edges on the path to e, and replacing the inequalities by equalities. 
There are at most 2d leaves, and for each leaf at most (,$) such possible choices, 
if d is the depth of T. We obtain therefore the following theorem. 

Theorem 5.1. Let fk( P) be the number of k-dimensional faces of a polyhedral convex 
set P. If T is a linear decision tree of depth d that solves D(P), then 

forany Osksn. 

This theorem is proven in [lo] (for deterministic linear decision trees) using an 
adversary argument. 
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Once again we can use Theorem 3.1 to extend this lower bound to the cost of 
probabilistic decision trees. We assume that P is closed so that it contains all its 
faces. Let T be a probabilistic linear decision tree that solves D(P) with threshold 
a and acceptance cost t. Let !P be the family of linear equalities (fs X) = a corre- 
sponding to linear tests occurring in T. We pick from each k-dimensional face F 
of P an input xF E F with the property that x does not fulfil any equality from P 
unless this equality is identically satisfied on F. According to Theorem 3.1 there 
exists a deterministic linear decision tree ? that accepts at least a fraction of 
(Y (1 - l/A) of these inputs in time At, and accepts only inputs from P. Let e be the 
leaf reached in f by x,, and let S(e) be the set of inputs reaching e in ? Then 
S(e) c P and xF is contained therefore in a face F of S(e) such that fi c E The 
choice of + ensures that each of the equalities defining fi is identically satisfied 
on E It follows that dim p b dim F, so that dim fi = k. The sets S(e) associated 
with accepting leaves at depth At or less in ? have therefore at least Q ( 1 - 1 /A )fk( P) 
distinct k-dimensional faces. We have proven the following theorem. 

Theorem 5.2. Let P c IF!” be a closed polyhedral convex set with fk( P) k-dimensional 
faces, k = 0, . . . , n. Let T be a probabilistic linear decision tree that solves D(P) with 
threshold a and acceptance cost t. Then 

foranyh>l andanyoskan. 

Corollary 5.3. Let P = {x E R”: x, 2 Xi, i = 2, . . . , n}. qny probabilistic 
tree that solves D(P) with threshold a (i.e., decides whetherx, = maXi xi) 
cost at least n - 1. 

linear decision 
has acceptance 

Proof. P has a l-dimensional face defined by the equalities xl = - - - = x,. Thus, if 
t is the acceptance cost of a tree which solves D(P), then (!,?!/) > 0 for any A > 1, 
sothat tan-l. Cl 

6. Invariance argument 

We wish to introduce in this section a new principle, which is familiar from other 
fields in mathematics. One way of showing that some problem has a simple structure 
is to show that it is invariant under a large family of transformations. If this is the 
case then we can restrict the search for an efficient solution to algorithms that are 
invariant under the ‘dual’ family of transformations. For example, if x, does not 
occur in the definition of P c R”, a fact that can be expressed by saying that P is 
invariant under translations along the x, axis, then comparisons involving x, do 
not help in solving D(P). This invariance principle will be later used to build a 
family of problems that can be solved faster using randomization. 
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Let V, and V, be linear spaces over R. G: V, + V, is an afine transformation if 
it is of the form G(u) = H(u) + w, where H : V, + V, is linear, and w E V,. We denote 
by V” the linear space of affine functionals, e.g., the space of affine transformations 
from V to IR. If F is an affine transformation in V we denote by F* the dual linear 
transformation in V” defined by the identity (F*f)( v) = f (Fv). The affine functional 
f is sign invariant under the affine transformation F if f (Fv) 3 Oe f( u) b 0. Thus f 
is sign invariant under F iff F maps the hyperplane defined by the equation f( v) = 0, 
and each of the two halfspaces defined by it, into themselves. 

We recall the following result, which is due to Farkas [2]. 

Lemma 6.1. Let V be ajnite-dimensional vector space, f and g be two afine functionals 
over V. The following two assertions are equivalent: 

(1) vuf(U)~O~g(u)~0. 
(2) 3A > 0 such that f = hg. 

The affine functional f is sign invariant under the affine transformation F iff 
(F*f)( u) 2 Oaf(u) 2 0. The last condition is fulfilled, according to Lemma 6.1, iff 
there exists a A > 0 such that F*f = A$ Thus the affine functional f is sign invariant 
under the affine transformation F iff f is a positive eigenvector of F”, i.e., an 
eigenvector of F* with positive eigenvalue. 

Let U be a set of functionals’on R”. The set P is of type U if it can be obtained 
from sets of the form {x : f (x) > 0}, where f E U, using complements, finite unions, 
and finite intersections (P is the truth set of some Boolean combination of assertions 
of the form f(x) > 0). In particular, P is of afine type if P is of type U, where U 
is the set of affine functionals in R”, and P is of linear type if U is the set of linear 
functionals on R”. Note that P is of affine type iff p is the finite union of polyhedral 
convex sets, and of linear type iff it is the finite union of polyhedral convex cones. 

Let P be a set of type U. If each functional f E U is sign invariant under the 
affine transformation F, then F maps the set P onto itself. Let U* be the set of 
such affine transformations. Our claim is that in order to solve the problem D(P) 
it is sufficient to use comparisons involving affine functionals that are sign invariant 
under U”. In order to prove this claim we must first characterize these functionals. 
This is done in the next theorem and the following corollary. 

Theorem 6.2. Let U be a family of nonzero vectors in a$nite-dimensional linear space 
V, and for each u E U let S(u) be a set of nonzero scalars. Let U” be the set of linear 
transformations F on V with the property that each vector u E U is an eigenvector of 
F with eigenvalue in S( IL) ; let U ** be the set of vectors u that are eigenvectors of each 
transformation in U *. Then there exists a finite family of subspaces V,, _ . . , V,+, of V 
such that 

(1) v= V,@ - -0 If,+,. 

(2) FE U* ifl aA,,..., A, such that AiEn,,v,n,S(u) and UE ~jFu=AiU, 
i=l,...,r. 
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(3) u** =u;=, v;., and an eigenvector from Vi can only be associated with eigen- 
values from nuE vin u S( 14). 

Proof. For v E U**, let G, be the mapping from U” to R defined by 

G,(F) = A, where F(u) = Au. 

For each v E U**, the set {w E U** : G,,, = G,} u (0) is a linear subspace of V. Two 
such distinct sets intersect only in 0. Since V is finite-dimensional, there exists a 
finite number of such subspaces, say VI, . . . , V, so that U** c V, 0. . -0 V, 

Let i)E U**. Then u=u,+. - * + t), where Ui E vi. Assume w.1.o.g. that v1 # 0. Let 
FE U”. Then F(Ui) = AiUi, i = 1,. . . , r, and F(U) = AU. Thus 

i AUi=F(o)= i AiZJj. 
i=l i=l 

It follows that A = A,. As this holds true for any FE U*, G, = G,,,, so that t) E V,. 
We have shown that U”* u (0) = IJr=, V. 

If K n U = 0, then transformations FE U” can be defined so that their restriction 
on Vi be an arbitrary linear mapping. Thus 

VnU=O - VinU**=O. 

Thisimpliesthat V;,n UZO, i=l,..., r. As all nonzero vectors in Vi are associated 
with the same eigenvalues, the set of eigenvalues associated with Vi is at most 
n UEiJr\V, S(u). This proves (3). 

The ‘if’ part of (2) follows from the fact that U c U** = IJ r=, V ; the ‘only if’ 
part follows from the definition of V;:. 

Take Vr+l to be the orthogonal complement to V,O- . -0 V, in V; then (1) is 
satisfied. Cl 

Corollary 6.3. Let V be ajkite-dimensional vector space and let V” be the linear space 
of afine functionals over V. Let U be a subset of V”. Let U* be the set of a&e 
transformations under which each functional in U is sign invariant, and let U** be 
the set of afine. functionals that are sign invariant under each transformation in U*. 
Then there exists a direct sum decomposition V” = V, 0. * - 0 V,+, such that: 

(1) If FEU*, then ZA,,.. ., A,>0 such that F*f =f if f~ V, and F*f=Aif 
whenever f E Vi, i = 2, . . . , r ; conversely any linear transformation in V” that fuljils 
these two conditions is the dual of an afine transformation in U”. 

(2) u** =u;=, vi. 

Proof. Note that a linear transformation in V is the dual of an affine transformation 
in V iff it maps the affine functional L(X) = 1 onto itself. Thus, the set of linear 
transformations on V” which are dual to affine transformations in U” are precisely 
all those linear transformations in V that map each f E U to a positive multiple of 
itself, and map L to itself. The claim now follows from the previous theorem. 0 
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The next theorem shows that there exists a minimal cost deterministic linear 
decision tree for D(P) that uses only tests which are sign invariant under those 
affine transformations that preserve P. The proof uses the decomposition for U** 
that was obtained in the last corollary: we replace each test on the tree by a test 
derived from an affine functional that acts only on one subspace vl,. In order to 
show that the derived tree is still correct, we show that each input vector x can be 
‘streched’ separately in each subspace Vi by an affine transformation that preserves 
P, thus obtaining a vector y, so that the answer of the new tree on x is identical to 
the answer of the old tree on y. 

Theorem 6.4. Let P be a set of type U, and let T be a probabilistic linear decision tree 
that solves D(P) with threshold a. Let U* be the set of afine transformations in I!%” 
under which each afine functional in U is sign invariant, and let U*” be the set of 
afine functionals that are sign invariant under each transformation in U*. Then the 
tests in T can be replaced by tests from U**, so that the resulting tree T? solves D(P) 
with threshold (Y, and cost (accepting cost, rejecting cost) no greater than the cost 
(accepting cost, rejecting cost) of T If T is deterministic, then I? is deterministic too. 

Proof. Let VI@- - - 0 V,.+, be a direct sum decomposition of V” that fulfils the 
condition of Corollary 6.3. Let fi, . . . , fk be the affine functionals used in the tests 
occurring in T. Each functional has a decomposition of the form J = ciz: gj, where 
gj E %. Let jj be the index of the first nonzero term in the decomposition off; (=a 

if no such term exists), so that J =crrji gj. 
Let ? be the decision tree obtained from T by replacing each test J(x) R 0 by 

the test A(x) R 0, where j = gj, if 4 d r, or 0 otherwise. ? tests only affine functionals 
from U**, and is deterministic if T is so. We claim that ? solves D(P) at a cost 
no greater then the cost of T. 

Let x E R” be a fixed input. Let S,, . . . , &+, be a sequence of numbers fulfilling 
the following conditions: 

(1) a,+, =O. 
(2) Sj, j=r,r-l,..., 1 fulfils the inequality Sjlgj(X)l> Ck,j S,lgl(x)l, for any i, 

whenever gj( x) > 0. 
Let hj = 6ji/ 8,. We then have: 

(I) A,+, =O. 
(2) h,=l. 
(3) xi h;gj(x) = 0 only if 4 > r. 
(4) If C AjgJ(X) # 0, then sign(C Ajgj(X)) = sign(gji(x)). 
Let G* be the linear transformation on (W”)” defined by the conditions 

G*f=h,f iffE v,i=l,..., r+l. 

According to the previous theorem, G* is the dual of an affine transformation G 
in R”, and each affine functional in U is sign invariant under G. It follows that 
x E P iff G(x) E I? On the other hand for each affine functional J occurring in T 
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we have 

A( Gx) = ( G*$)(x) = i Ajgf(X). 
j= i, 

It follows that sign(J( Gx)) = sign&)). Th us x follows the same path in ? as Gx 
follows in T, and x is accepted (rejected) by ? in time t iff GX is accepted (rejected) 
by T in time t. As T solves D(P), Gx is accepted by T iff GX E P, and GX E P iff 
x E R This concludes the proof. Cl 

Corollary 6.5. Let P be of type U where U is a linear subspace of afine functionals. 
Then there exists a minimal cost probabilistic (deterministic) linear decision tree T that 
uses only tests from U. In particular, if P is defined by linear, homogeneous inequalities, 
then T uses only linear, homogeneous inequalities. 

Proof. If U is a linear subspace, then U** = U. Cl 

Corollary 6.6 ([9]). Let P be a set defined by inequalities of the form xi > xj (P is 
de$ned in terms of the relative order of xi,. . . , x,). There exists a minimal cost 
probabilistic (deterministic) linear decision tree that uses only tests of the form 
1 oixi R 0, where C oi = 0. 

Proof. The linear closure of the functionals f(x) = Xi - Xj consists exactly of all the 
functionals of the form f(x) = C aixi, where C ai = 0. •i 

7. Composite problems 

Let P, and P2 be subsets of R” and R” respectively. The subset PIO P2 of lR”+” 
is defined to be the set {(x, y): x E P1 and y E P2}. We define similarly P1 0 P2 = 
{(x, y): x E P, or y E P2}. Note that if P, and P2 are of affine (linear) type, then both 
P, OP, and P,O P2 are of affine (linear) type. 

Define de(P) to be the minimum cost of a deterministic linear decision tree that 
solves D(P). We have the following theorem. 

Theorem 7.1. Let Pi be of linear type. Then 

dc(P,OP,) = dc(P,OP,) =dc(P,)+dc(P,). 

Proof. Note that P, 0 P2 = (PYO PG)“, where PC is the complement of P, and that 
dc( P) = dc( PC). Thus, the first equality follows from the second one. 

The set P, 0 P2 is invariant under linear transformations of the form (x, y)+ 
(cux, By), where a, /3 > 0. Let f (x, y) = ( u. x) + (OS y) + a be an affine functional on 
R m+n, and assume that u # 0, v # 0. Pick x and y so that (US x) > 0 and (v . y) < 0. 
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Then it is clear that for a>>P>>O,f(cux,py)=a!(u.x)+p(u.y)+a>O, whereas, 
for 0 << a << p, f( ax, /3y) < 0. It follows that if f is sign invariant under these transfor- 
mations, then either u = 0 or 0 = 0. A similar reasoning shows that if f is sign 
invariant, and not constant, then a = 0. Thus f is sign invariant under these transfor- 
mations iff it is linear, and either depends only on x or depends only on y. 

The proof can now be completed using an adversary argument, which is, in fact, 
a game theoretic argument. We associate with each problem D(P) a game G played 
between decider and adversary. Alternately, the decider chooses to perform a linear 
test on the input and the adversary chooses an answer to this test which is consistent 
with its previous answers. The game ends if the answers to the successive tests 
determine membership in P The deterministic complexity of D(P) is c iff c is the 
number of moves the adversary can force in the game. 

Now let G, and G, be the games corresponding to the problems D( P,) and D( P2), 
and let cl and c2 be their respective deterministic complexity. In order to solve 
D( P, 0 P2) for the input (x, y) we have to determine whether x E P, and y E P2, that 
is solve D(P,) and D(P,). According to Theorem 6.4 we can restrict our attention 
in solving the problem D( P, 0 P2) to unmixed comparisons involving only x or only 
y. The deterministic complexity of the problem D( P, 0 P2) is therefore equal to the 
number of moves the adversary can force in the game G, x G2 which is the Cartesian 
product of G, and G2, where moves are either moves of G, or moves of G2, and 
this is equal to c, + c2 [4]. Cl 

The results of the previous section were used in the last proof to show that mixed 
comparisons involving both x’s and y’s do not help. This claim is trivial for decision 
trees using only simple comparisons (we can assume that xi < yj, for each i and j). 
In that case the last result can be proved without using the heavy machinery of the 
previous section. 

The last result does not extend to sets defined by affine inequalities. In [8] we 
give an example of two sets PI, P2 in R such that dc(P,OP,) < dc(P,)+dc(P,). 
Thus, in general, it might be easier to solve two independent problems together 
rather than solving each one separately. 

The last result is not valid either for probabilistic linear decision trees. We have 
the following theorem. 

Theorem 7.2. Let P, and P2 be two sets such that D( Pi) can be solved by a probabilistic 
linear decision tree Y& with threshold a, acceptance cost ac and rejection cost rc. Then: 

(1) WVBP2) can be solved by a probabilistic linear decision tree with threshold 

e*, acceptance cost 2ac and rejection cost rc+iac. 
(2) D(P, 0 P2) can be solved by a probabilistic linear decision tree with threshold 

(Y, acceptance cost ac+$c and rejection cost 2rc. 

Proof. (1) Membership in P, 0 P2 can be decided by performing first the tests in 
T, and, if an accepting node has been reached, performing next the tests from 7’?. 
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The decision tree f, thus defined solves D( Pi @ PJ with threshold CY’, accepts each 
input from the set in no more than 2ac steps on the average, rejects any input whose 
first component is not in P, in rc steps on the average, and rejects any input with 
a first component in P1 and a second component not in P2 in no more than ac+ rc 
steps on the average. Let F2 be the decision tree obtained by reversing the order of 
T, and T2. Then f2 accepts each input in no more than 2ac steps, rejects any input 
whose second component is not in P2 in no more than rc steps, and rejects the 
remaining inputs in no more than ac+ rc steps on the average. Finally, let ? be the 
decision tree consisting of a randomizing node at the root, followed by ?, and F2 
as left and right subtrees. Then ? accepts any input in P, 0 P2 in no more than 2ac 
steps on the average and rejects any input not in Pi @ P2 in no more than i( (ac + rc) + 
(rc)) = rc+$ac steps on the average. 

The proof of (2) is similar. Cl 

Let [Ed, . . . , e,] denote the number with binary representation Ed, . . . , E, (ei E 
(0, 1)). The set P, is defined in R4” by a sequence of 2n alternating quantifiers: 

Pn={x:va,3p,,..., va13PI qa, ,..., an,P1 ,..., p,] = ol(ai9 Pi E (09 ll)* 

We have the following corollary. 

Corollary 7.3. (1) Any deterministic linear decision’ tree solving D( P,) has cost at 
least 4”, and 

(2) P,, can be solved with threshold 1 by a probabilistic linear decision tree with cost 
S3”. 

Proof. Note that P,+] = (P, 0 P,) @ (P, 0 P,), where PO = (0). The deterministic 
complexity of PO, dc( PO) = 1, and Theorem 7.1 implies that dc( P,,+ ,) = 4dc( P,,). This 
proves the first half of the claim. The second half is proven by induction, using 
Theorem 7.2. PO can be solved by a probabilistic linear decision tree with threshold 
1 and cost 1. Assume the claim is valid for P,. Then P,,@ P,, can be solved by a 
probabilistic linear decision tree with threshold 1, acceptance cost d 1.5 x 3” and 
rejection cost 92 x3”, and P,+i can be solved by a probabilistic linear decision tree 
with threshold 1, acceptance cost <3”+’ and rejection cost s2 X 3” +f X 3” < 3”+l. Cl 

A similar result can be obtained even if randomizing steps are accounted for. The 
construction of Theorem 7.2 shows that if P can be solved by a probabilistic linear 
decision tree with threshold 1 and cost k > 2, then (PO P)O( PO P) can be solved 
by a probabilistic linear decision tree with threshold 1 and cost ~3k+2, where the 
term of 2 accounts for the randomizing steps. Iterating this construction one can 
build a sequence P, of problems such that the deterministic complexity of P,, is 
4”k, yet P,, can be solved by a probabilistic linear decision tree with threshold 1 
and cost $3”(k+ I). 
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8. Concluding remarks 

The definition of deterministic decision trees is symmetric with respect to accept- 
ance and rejection. In particular, the problem of deciding membership in P is as 
hard as the problem of deciding membership in the complement PC. We considered 
in this paper one-sided probabilistic decision trees, where rejection may be wrong, 
but not acceptance. The results, therefore, are not symmetric any more. It is quite 
easy to build examples of problems such that the probabilistic complexity of D( PC) 
is lower than the probabilistic complexity of D(P). We do not know how large the 
gap can be. In particular, are O( n log n) lower bounds valid for the complements 
of each of the problems listed in Corollary 4.3? 

We gave in Corollary 7.3 an ad hoc example of a linear decision problem that 
can be solved faster using randomization. It would be of interest to exhibit such 
speedup with respect to a ‘natural’ problem. 

The example we built uses randomization only in a restricted sense, as a threshold 
of 1 is used: An input always reaches a leaf with the correct label. When the threshold 
is below one we are allowed (not too frequent) mistakes with respect to accepted 
inputs. Do there exist problems that exhibit a tradeoff between accepting cost and 
acceptance threshold? 
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