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A Disjoint Path Cover (DPC for short) of a graph is a set of pairwise (internally) disjoint
paths that altogether cover every vertex of the graph. Given a set S of k sources and a
set T of k sinks, a many-to-many k-DPC between S and T is a disjoint path cover each
of whose paths joins a pair of source and sink. It is classified as paired if each source of
S must be joined to a designated sink of T , or unpaired if there is no such constraint.
In this paper, we show that every m-dimensional restricted hypercube-like graph with at
most m − 3 faulty vertices and/or edges being removed has a paired (and unpaired) 2-DPC
joining arbitrary two sources and two sinks where m � 5. The bound m − 3 on the number
of faults is optimal for both paired and unpaired types.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

An interconnection network is frequently modeled as a graph in which the vertices and edges represent nodes and
links, respectively. Since node and/or link failure is inevitable in a large network, fault tolerance is essential to the network
performance. One of the central issues in the study of interconnection networks is to detect (vertex-)disjoint paths, which
is naturally related to routing among nodes and fault tolerance of the network [17,25].

Disjoint path is one of the fundamental notions in graph theory from which many properties of a graph can be de-
duced [2,25]. A disjoint path cover (DPC for short) of a graph is a set of pairwise (internally) disjoint paths that collectively
cover every vertex of the graph. The disjoint path cover problem finds applications in many areas such as software testing,
database design, and code optimization [1,27]. In addition, the problem is concerned with applications where full utilization
of network nodes is important [32].

Let G be an undirected graph. For a set of k sources S = {s1, s2, . . . , sk} and a set of k sinks T = {t1, t2, . . . , tk} such that
S ∩ T = ∅, a many-to-many k-DPC is a disjoint path cover composed of k paths each of which joins a pair of source and
sink. It partitions the vertex set V (G) into k subsets. The many-to-many k-DPC is called paired if each source si should be
joined to a specific sink ti , whereas it is called unpaired if each source si can be freely joined to a sink t j under an arbitrary
bijection σ from S to T where t j = σ(si). The other two possible k-disjoint path covers are of one-to-many type joining
S = {s} and T = {t1, t2, . . . , tk}, and of one-to-one type joining S = {s} and T = {t}, which are clearly understandable. For
more discussion, refer to [23,32].
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Definition 1. A graph G is called f -fault paired (resp. unpaired) k-disjoint path coverable if f + 2k � |V (G)| and G has a paired
(resp. unpaired) k-DPC joining an arbitrary set S of k sources and a set T of k sinks in G \ F for any fault set F where
S ∩ T = ∅ and |F | � f .

An f -fault paired k-disjoint path coverable graph is, by definition, f -fault unpaired k-disjoint path coverable. Given S
and T in a graph G , it is NP-complete to determine if there exists a one-to-one, one-to-many, or many-to-many k-DPC
joining S and T for any fixed k � 1 [32,33]. The disjoint path cover problems have been studied for graphs such as hy-
percubes [5–7,10,13,19,24], recursive circulants [20,21,32,33], and hypercube-like graphs [18,22,28,33], cube of a connected
graph [29,30], and k-ary n-cubes [35,37]. Necessary conditions for a graph G to be f -fault many-to-many k-disjoint path
coverable have been established in terms of its connectivity κ(G) and its minimum degree δ(G) [32,33], as shown below.

Lemma 1. (a) If a graph G with |V (G)| � f + 2k + 1 is f -fault unpaired k (� 2)-disjoint path coverable, then f + k � δ(G) − 1 [33].
(b) If a graph G is f -fault paired k-disjoint path coverable, then f + 2k � κ(G) + 1 [32].

Meanwhile, Restricted Hypercube-Like graphs (RHL graphs for short) [31] are a subset of nonbipartite hypercube-like
graphs that have received much attention over the recent decades. For example, crossed cubes [12], Möbius cubes [8],
twisted cubes [14], multiply twisted cubes [11], Mcubes [36], and generalized twisted cubes [4] are all RHL graphs.
An m-dimensional RHL graph, which will be defined in the next section, has 2m vertices. It is an m-regular graph of
connectivity m.

Every m-dimensional RHL graph with m � 3 is known to be (a) f -fault unpaired k-disjoint path coverable for any f
and k � 1 subject to f + k � m − 2 [28], and (b) f -fault paired k-disjoint path coverable for any f and k � 2 subject
to f + 2k � m [33]. The bound m − 2 on f + k for the unpaired type and the bound m on f + 2k for the paired type
respectively are one less than the optimal bounds of the necessary conditions of Lemma 1. It is still an open problem
whether the optimal bounds can be achieved for all RHL graphs.

The problem has been partially solved in the sense that recursive circulants have the optimal bounds. Note that every
odd-dimensional recursive circulant G(2m,4) is included in RHL graphs (while not every even-dimensional recursive circu-
lant is). Every m-dimensional recursive circulant G(2m,4) with m � 5 is known to be (a) f -fault unpaired k-disjoint path
coverable for any f and k � 2 subject to f + k � m − 1 [20], and (b) f -fault paired k-disjoint path coverable for any f and
k � 2 subject to f + 2k � m + 1 [21].

In this paper, we achieve the optimal bounds of the necessary conditions of Lemma 1 for all RHL graphs where k = 2.
In other words, we prove our main theorem that every m-dimensional RHL graph is (m −3)-fault paired 2-disjoint path coverable
where m � 5. This leads to the fact that the graph is also (m − 3)-fault unpaired 2-disjoint path coverable. The bound m − 3
on the number of faults is the maximum possible for both paired and unpaired types.

Our contribution can also be seen as a generalization of fault-hamiltonicity of RHL-graphs, discovered in [31], that every
m-dimensional RHL graph is (m −3)-fault hamiltonian-connected, where a graph is said to be hamiltonian-connected if every
pair of vertices are joined by a hamiltonian path. Note that a paired (or unpaired) 2-disjoint path coverable graph is always
hamiltonian-connected [32]. To be precise, a graph G has a hamiltonian path from s to t passing through a prescribed edge
(x, y), where {x, y} ∩ {s, t} = ∅ and x is required to be visited before y, if and only if G has a paired 2-DPC joining the (s, x)
and (y, t) pairs (i.e., s1 = s, t1 = x, s2 = y, and t2 = t). If the order in which the two end-vertices of the prescribed edge
(x, y) are encountered during traversal of a hamiltonian path from s to t does not matter, it suffices to employ an unpaired
2-DPC joining S = {s, t} and T = {x, y} (instead of the paired one).

The rest of this paper is organized as follows. We give preliminaries in Section 2. Sections 3 and 4 are then devoted to a
proof of our main theorem. Finally, we conclude in Section 5.

2. Preliminaries

A 3-dimensional RHL graph is isomorphic to recursive circulant G(8,4) that has a vertex set {vi: 0 � i � 7} and an
edge set {(vi, v j): i + 1 or i + 4 ≡ j (mod 8)}. The 3-dimensional RHL graph is also isomorphic to a 3-dimensional twisted
cube TQ3 or a Möbius ladder with four spokes [26] shown in Fig. 1. An m-dimensional RHL graph, m � 4, is recursively
defined with a graph operation ⊕. Given two graphs G0 and G1 with the same number of vertices and a bijection φ from
V (G0) to V (G1), we denote by G0 ⊕φ G1 the graph whose vertex set is V (G0) ∪ V (G1) and edge set is E(G0) ∪ E(G1) ∪
{(v, φ(v)): v ∈ V (G0)}. To simplify the notation, we often omit the bijection φ from ⊕φ when it is clear in the context.

Definition 2. (See [31].) A graph that belongs to RHLm is called an m-dimensional RHL graph where

• RHL3 = {G(8,4)}, and
• RHLm = {G0 ⊕φ G1: G0, G1 ∈ RHLm−1, φ is a bijection from V (G0) to V (G1)} for m � 4.

Every m-dimensional RHL graph, m � 3, is nonbipartite and has 2m vertices of degree m. It can be easily verified by
induction on m that the graph has no triangle (cycle of length three) and there exist at most two common neighbors for
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Fig. 1. The 3-dimensional RHL graph.

any pair of vertices in the graph. Construction of paired DPCs in RHL graphs was suggested in [32] and improved in [33] as
follows.

Lemma 2. (See [33].) Every m-dimensional RHL graph, m � 3, is f -fault paired k-disjoint path coverable for any f and k � 2 subject
to f + 2k � m.

The disjoint path cover of a graph is naturally related to its hamiltonian properties. For instance, a hamiltonian path
between two distinct vertices in a graph G is in fact a 1-DPC, irrespective of its type, of G joining the vertices. By definition,
a graph of order at least three has a one-to-many 2-DPC for any S = {s} and T = {t1, t2} if and only if it is hamiltonian-
connected. Also, a graph has a one-to-one 2-DPC for any S = {s} and T = {t} if and only if it is hamiltonian. The hamiltonian
properties of RHL graphs were studied in [31] as shown below, where a graph G is said to be f -fault hamiltonian-connected
(resp. hamiltonian) if any pair of vertices are joined by a hamiltonian path (resp. there exists a hamiltonian cycle) in G \ F
for any fault set F where |F | � f . For more discussion, refer to, for example, [15,16,34].

Lemma 3. (See [31].) Every m-dimensional RHL graph, m � 3, is (m − 3)-fault hamiltonian-connected and is (m − 2)-fault hamilto-
nian.

Using a many-to-many disjoint path cover, constructions of a hamiltonian path/cycle passing through prescribed edges
were suggested in [29,32,33]. It was shown that if G is f -fault paired k (� 2)-disjoint path coverable, then for any fault
set F where |F | � f , graph G \ F has a hamiltonian path between arbitrary two vertices s and t that passes through any
sequence of k −1 pairwise nonadjacent edges ((x1, y1), (x2, y2), . . . , (xk−1, yk−1)) in the specified order where s 	= xi, yi and
t 	= xi, yi for all 1 � i � k − 1. The s–t hamiltonian path passes through each edge (xi, yi) in the direction from xi to yi . For
the problem of hamiltonian path/cycle through prescribed edges, refer to [3,9].

Hereafter, a disjoint path cover whose type is not specified is assumed to be paired. We denote by k-DPC[{(s1, t1), . . . ,

(sk, tk)} | G, F ] a k-DPC joining S = {s1, s2, . . . , sk} and T = {t1, t2, . . . , tk} in G \ F where S ∩ T = ∅. Thus, 1-DPC[{(v, w)} |
G, F ] is a hamiltonian path between two vertices v and w in G \ F . In a generalized k-DPC[{(s1, t1), . . . , (sk, tk)} | G, F ],
we allow any source si to be identical to its sink ti . If si = ti , then the si –ti path in the generalized k-DPC is necessarily
one-vertex path. A generalized 2-DPC[{(s1, t1), (s2, t2)} | G, F ] can be derived from one of the following three DPCs unless
s1 = t1 and s2 = t2:

• 2-DPC[{(s1, t1), (s2, t2)} | G, F ] if s1 	= t1 and s2 	= t2,
• 1-DPC[{(s1, t1)} | G, F ∪ {s2}] if s1 	= t1 and s2 = t2, and
• 1-DPC[{(s2, t2)} | G, F ∪ {s1}] if s1 = t1 and s2 	= t2.

Both of the sources and sinks are called terminals. A vertex v is called to be free if it is neither a fault nor a terminal.
An edge (v, w) is called to be free if it is nonfaulty and both v and w are free. Graphs G0 and G1 are called the components
of G0 ⊕ G1. For a vertex v in a component Gi , we denote by v̄ the vertex adjacent to v in the other component G1−i , for
i = 0,1.

3. Paired 2-DPCs in RHL graphs

In this section, we prove our main theorem by induction on m; however, three exceptional cases of the proof will be
deferred to the next section. The induction hypothesis is that both components G0 and G1 of an m-dimensional RHL graph
G0 ⊕ G1 are (m − 4)-fault paired 2-disjoint path coverable for m � 6. Sometimes, we will employ Lemma 2. Another useful
fact from Lemma 3 is that both G0 and G1 are (m −4)-fault hamiltonian-connected and (m −3)-fault hamiltonian for m � 5.
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In case when a single component Gi contains all the m − 3 faults, we need some stronger properties, stated in Lemma 4,
than the aforementioned property that Gi \ F has a hamiltonian cycle. For a graph G with a hamiltonian cycle C , a nonfaulty
edge (x, y) of G is called an x-chord or y-chord w.r.t. (with respect to) C if x, y ∈ V (C) and (x, y) /∈ E(C). A path in a graph
is represented as a sequence of vertices.

Lemma 4. Suppose that a graph Gi of RHLm−1 , m � 5, has a fault set F where |F | = m − 3. Let Ch be a hamiltonian cycle of Gi \ F ,
and u and v be arbitrary two vertices on the cycle Ch.

(a) Gi \ F has a u-chord or a v-chord w.r.t. Ch unless m = 5 and p = 2 where p is the number of faulty common neighbors of u and v.
(b) Let Ch be represented by (u, x, v, y, P ) for some subpath P . Then, Gi \ F has a u-chord different from (u, y) w.r.t. Ch if there is no

v-chord w.r.t. Ch.

Proof. Among the m − 1 edges incident to u, there exist m − 3 candidates for u-chords excluding the two edges of Ch .
Similarly, there also exist m − 3 candidates for v-chords. The total number of candidates for u-chords and v-chords is
2m − 6 if (u, v) /∈ E(G) \ E(Ch); otherwise, the total number is 2m − 7. Observe that a single faulty edge excludes at most
one edge from the candidates; a single faulty vertex excludes one edge from the candidates if it is a neighbor of u or v , but
not both; however, a single faulty vertex excludes two edges from the candidates if it is a common neighbor of u and v .
Keep in mind that Gi has no triangle and any pair of vertices of Gi have at most two common neighbors.

Suppose for the first case that (u, v) /∈ E(G) \ E(Ch). At most |F | + p edges are eventually excluded from the 2m − 6
candidates (where p is the number of faulty common neighbors of u and v). Thus, the number of remaining candidate
chords is at least (2m − 6) − (|F | + p) = (2m − 6) − (m − 3 + p) = m − 3 − p. The number is at least one unless m = 5 and
p = 2 since m � 5 and p � 2. Suppose for the second case that (u, v) ∈ E(G) \ E(Ch). There exists no common neighbor
of u and v since Gi has no triangle. Therefore, at most |F | edges are eventually excluded from the 2m − 7 candidates. As a
result, (2m − 7) − |F | = (2m − 7) − (m − 3) = m − 4 > 0 for every m � 5. Lemma 4(a) is proved.

Suppose that Ch is (u, x, v, y, P ) and there is no v-chord w.r.t. Ch . By Lemma 4(a), there exists a u-chord. Suppose the
u-chord is (u, y); otherwise, we are done. Then, u and v have two nonfaulty common neighbors, x and y. Furthermore,
all the m − 3 faults are adjacent or incident to v since no v-chord exists. These imply that no fault is adjacent or incident
to u, since every common neighbor of u and v is nonfaulty and (u, v) /∈ E(G). Thus, the number of the u-chords is at least
m − 3 � 2, which means that there exists another u-chord different from (u, y). Therefore, Lemma 4(b) is also proved. �

Now, we are ready to prove our main theorem. We do not explicitly separate the base step of m = 5 from the inductive
step of m � 6 to avoid repetition. The three exceptional cases, deferred to the next section, will occur only in the base step
of m = 5.

Theorem 1. Every m-dimensional RHL graph is (m − 3)-fault paired 2-disjoint path coverable where m � 5.

Proof. Let G0 ⊕ G1 be an m-dimensional RHL graph where G0, G1 ∈ RHLm−1 and m � 5. For a virtual faulty edge set F ′ ,
a 2-DPC of G0 ⊕ G1 \ (F ∪ F ′) is also a 2-DPC of G0 ⊕ G1 \ F . Thus, by treating arbitrary m − 3 − |F | nonfaulty edges as
virtually faulty, we assume that

|F | = m − 3.

F0 and F1 denote the fault sets in G0 and G1, respectively. F2 denotes the set of faulty edges between G0 and G1. Then,
F = F0 ∪ F1 ∪ F2. Let f0 = |F0|, f1 = |F1|, and f2 = |F2| so that f = |F | = f0 + f1 + f2 = m − 3. We also denote the number
of source–sink pairs in Gi by ki where i = 0,1, and the number of source–sink pairs between G0 and G1 by k2. Then,
k = k0 + k1 + k2 = 2. We assume without loss of generality (wlog) that

k0 � k1 and if k0 = k1, f0 � f1.

Furthermore, it is assumed that

• s1, s2, t1, t2 ∈ V (G0) if k0 = 2,
• s1, s2, t1 ∈ V (G0) and t2 ∈ V (G1) if k0 = k2 = 1,
• s1, t1 ∈ V (G0) and s2, t2 ∈ V (G1) if k0 = k1 = 1, and
• s1, s2 ∈ V (G0) and t1, t2 ∈ V (G1) if k2 = 2.

We will construct a 2-DPC[{(s1, t1), (s2, t2)} | G0 ⊕ G1, F ] for any sets F , S , and T where |S| = |T | = 2, S ∩ T = ∅, and
|F | = m − 3. There are three cases depending on the distribution of faults.

Case 1. f0 = f = m − 3.
There exists a hamiltonian cycle Ch in G0 \ F0 by Lemma 3. We have four subcases.
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Fig. 2. Illustrations of Cases 1.1 and 1.2 in the proof of Theorem 1.

Case 1.1. k0 = 2.
The hamiltonian cycle Ch can be divided into four disjoint subpaths. For example, let Ch be (s1, P x, x, s2, P y, y, t1, P z, z,

t2, P w , w). Then, the cycle Ch can be divided into subpaths (s1, P x, x), (s2, P y, y), (t1, P z, z), and (t2, P w , w). The subpath
(s1, P x, x) is a one-vertex path (s1) if s1 = x, which means that s1 is adjacent to s2 in Ch . Each of the subpaths (s2, P y, y),
(t1, P z, z), and (t2, P w , w) may also be a one-vertex path. Even if the order of the terminals in Ch is different from that in
the aforementioned example, we can always extract four disjoint paths from Ch . As shown in Fig. 2(a), it suffices to merge
the four paths of G0 and a 2-DPC of G1 to obtain the final 2-DPC of G0 ⊕ G1. For the aforementioned example, we must
use a 2-DPC[{(x̄, z̄), ( ȳ, w̄)} | G1,∅] with the edges (x, x̄), (y, ȳ), (z, z̄), and (w, w̄). The existence of 2-DPC in G1 is due to
Lemma 2.

Case 1.2. k0 = k2 = 1.
The hamiltonian cycle Ch of G0 \ F0 can be expressed in one of the following three representations by traversing it in

the reverse order if necessary. Vertices u and v are used instead of s1 and t1 such that {u, v} = {s1, t1}.
Repr. 1: Ch = (u, P , x, v, P ′, y, s2, P ′′, z) where x̄, ȳ 	= t2. Each of the subpaths (u, P , x), (v, P ′, y), and (s2, P ′′, z) may be

a one-vertex path. As shown in Fig. 2(b), it suffices to merge Ch and a generalized 2-DPC[{(x̄, ȳ), (z̄, t2)} | G1,∅] with (x, x̄),
(y, ȳ), and (z, z̄) and discard (x, v), (y, s2), and (z, u). The generalized 2-DPC exists by Lemma 2 if z̄ 	= t2, and by Lemma 3
otherwise.

Repr. 2: Ch = (u, t̄2, v, w, P , y, s2, P ′, z) where v , w , y, and s2 are all distinct. As shown in Fig. 2(c), it suffices to merge
Ch and a 2-DPC[{( ȳ, z̄), (w̄, t2)} | G1,∅] with (w, w̄), (y, ȳ), and (z, z̄) and discard (v, w), (y, s2), and (z, u). The existence
of 2-DPC in G1 is due to Lemma 2.

Repr. 3: Ch = (u, v, s2, P , z) where v̄ = t2. As shown in Fig. 2(d), it suffices to merge Ch and 1-DPC[{(z̄, t2)} | G1,∅] with
(z, z̄) and discard (v, s2) and (z, u). The 1-DPC of G1 exists by Lemma 3.

Case 1.3. k0 = k1 = 1.
The hamiltonian cycle Ch of G0 \ F0 can be expressed in one of the following three representations.
Repr. 1: Ch = (s1, x, P , y, t1, P ′) where x and y are distinct and moreover x̄ or ȳ is free. If one of x̄ and ȳ is a terminal,

let wlog x̄ be s2. It suffices to merge Ch and a generalized 2-DPC[{(s2, x̄), ( ȳ, t2)} | G1,∅] with the edges (x, x̄) and (y, ȳ)

and discard the edges (s1, x) and (y, t1). The generalized 2-DPC exists by Lemma 2 if x̄ 	= s2, and by Lemma 3 otherwise.
Repr. 2: Ch = (s1, t1, σ2, P , τ2) where {σ̄2, τ̄2} = {s2, t2}. There exists an s1-chord or t1-chord w.r.t. Ch by Lemma 4(a)

since s1 and t1 have no common neighbor. Assume wlog that an s1-chord (s1, w) exists. Then, w /∈ {t1, σ2, τ2} and Ch can
be represented by (s1, t1, σ2, P w , w, z, P z, τ2). Notice that z 	= τ2; otherwise, G0 would have a triangle (s1, w, τ2), which
is a contradiction. It suffices to merge Ch and a 1-DPC[{(σ̄2, z̄)} | G1, {τ̄2}] with the edges (s1, w), (z, z̄), and (τ2, τ̄2) and
discard the edges (s1, t1), (w, z), and (τ2, s1).

Repr. 3: Ch = (s1, x, t1, σ2, P , τ2) where {σ̄2, τ̄2} = {s2, t2}. There exists an x-chord or σ2-chord w.r.t. Ch by Lemma 4(a)
since x and σ2 have a nonfaulty common neighbor t1. Suppose for the first case that there exists an x-chord
(x, w). Then, w /∈ {s1, t1, σ2, τ2}. In addition, there exists a vertex z /∈ {w, σ2, τ2} such that Ch can be represented by
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(s1, x, t1, σ2, P w , w, z, P z, τ2) or (s1, x, t1, σ2, P z, z, w, P w , τ2). Let wlog Ch be the former one. It suffices to merge Ch and
a 1-DPC[{(σ̄2, z̄)} | G1, {τ̄2}] with the edges (x, w), (z, z̄), and (τ2, τ̄2) and discard the edges (x, t1), (w, z), and (τ2, s1).
Suppose for the second case that there exists no x-chord but a σ2-chord (σ2, w). Then, w /∈ {x, t1}; moreover, w is not s1
by Lemma 4(b) even though w might be τ2. In addition, Ch can be represented by (s1, x, t1, σ2, P z, z, w, P w , τ2) for some
z /∈ {σ2, w}. It suffices to merge Ch and a 1-DPC[{(σ̄2, z̄)} | G1, {τ̄2}] with the edges (σ2, w), (z, z̄), and (τ2, τ̄2) and discard
the edges (t1, σ2), (z, w), and (τ2, s1).

Case 1.4. k2 = 2.

The hamiltonian cycle Ch of G0 \ F0 can be expressed in one of the following four representations.
Repr. 1: Ch = (s1, s2, P ). Then, for some distinct vertices x and y, Ch can be represented by (s1, s2, P x, x, y, P y) where

{x̄, ȳ} ∩ {t1, t2} = ∅. It suffices to merge Ch and a 2-DPC[{(x̄, t2), ( ȳ, t1)} | G1,∅] with the edges (x, x̄) and (y, ȳ) and discard
(s1, s2) and (x, y).

Repr. 2: Ch = (s1, P , x, s2, P ′, y) where x̄ 	= t2, ȳ 	= t1, and {x̄, ȳ} 	= {t1, t2}. It suffices to merge Ch and a generalized
2-DPC[{(x̄, t1), ( ȳ, t2)} | G1,∅] with (x, x̄) and (y, ȳ) and discard (x, s2) and (y, s1).

Repr. 3: Ch = (si, τi, s j, P , τ j) where {i, j} = {1,2}, τ̄i = ti , and τ̄ j = t j . Let i = 1 and j = 2 wlog. Then,
Ch = (s1, τ1, s2, P , τ2) where τ̄1 = t1 and τ̄2 = t2. There exists a τ1-chord or τ2-chord by Lemma 4(a). Suppose that there
exists a τ1-chord (τ1, w). Then w /∈ {s1, s2, τ2}; moreover, Ch can be represented by (s1, τ1, s2, P z, z, w, P w , τ2) for some
z 	= s2, w . It suffices to merge Ch and a 1-DPC[{(z̄, t2)} | G1, {t1}] with the edges (τ1, t1), (τ1, w) and (z, z̄) and discard the
edges (s1, τ1), (τ1, s2), and (z, w). Suppose that there exists no τ1-chord but a τ2-chord (τ2, w). Then w /∈ {s1, τ1}; further-
more, w 	= s2 by Lemma 4(b). Thus, Ch can be represented by (s1, τ1, s2, P w , w, z, P z, τ2) for some z 	= w, τ2. It suffices
to merge Ch and a 1-DPC[{(z̄, t2)} | G1, {t1}] with the edges (τ1, t1), (τ2, w), and (z, z̄) and discard the edges (τ1, s2), and
(w, z), and (τ2, s1).

Repr. 4: Ch = (s1, τ1, P , τ2, s2, u, P ′) where u /∈ {s1, s2}, τ̄1 = t1, and τ̄2 = t2. There exists a τ1-chord or τ2-chord by
Lemma 4(a) unless m = 5 and p = 2 where p is the number of faulty common neighbors of τ1 and τ2. The exceptional
case that m = 5 and p = 2 will be dealt with later in Lemma 14 of Section 4.2. Assume wlog that a τ1-chord (τ1, w)

exists. We have three subcases depending on the location of w . In the first subcase of w = s2, it suffices to merge Ch and
a 1-DPC[{(ū, t1)} | G1, {t2}] with the edges (τ1, s2), (τ2, t2), and (u, ū) and discard the edges (s1, τ1), (τ2, s2), and (s2, u).
In the second subcase that w is on the subpath (P , τ2) of Ch , Ch can be represented by (s1, τ1, P z, z, w, P w , τ2, s2, u, P ′),
where the subpath (w, P w , τ2) may be a one-vertex path (τ2). It suffices to merge Ch and a 2-DPC[{(ū, t1), (z̄, t2)} | G1,∅]
with the edges (τ1, w), (z, z̄), and (u, ū) and discard the edges (s1, τ1), (z, w), and (s2, u). In the final subcase that w
is on (u, P ′), Ch can be represented by (s1, τ1, P , τ2, s2, u, P w , w, z, P z), where (u, P w , w) may be a one-vertex path (u).
It suffices to merge Ch and a 2-DPC[{(z̄, t1), (ū, t2)} | G1,∅] with the edges (τ1, w), (u, ū), and (z, z̄) and discard the edges
(s1, τ1), (s2, u), and (w, z).

Case 2. f1 = f = m − 3.

There is a hamiltonian cycle Ch in G1 \ F1 from Lemma 3. We have only two subcases since we assume that k0 � k1 and
moreover f0 � f1 whenever k0 = k1.

Case 2.1. k0 = 2.

Suppose m � 7 for the first case. Then, there exists a pair of free vertices u and v in G0 such that (ū, v̄) is an edge of Ch .
Since G0 is paired 3-disjoint path coverable by Lemma 2, there exists a 3-DPC[{(s1, u), (v, t1), (s2, t2)} | G0,∅]. It suffices to
merge the 3-DPC and Ch with (u, ū) and (v, v̄) and discard (ū, v̄). Suppose m = 6 for the second case. We claim that there
exists a pair of terminal u and free vertex v in G0 such that (ū, v̄) is an edge of Ch . Since G0 has four terminals and G1 has
three faults, there exists a terminal u such that ū is nonfaulty. Let Ch = (x1, x2, . . . , xq) for some q � 25 − 3 = 29, and ū be
x3 wlog. If x̄2 is not a terminal, it suffices to pick up the pair (u, x̄2); similarly, if x̄4 is not a terminal, it suffices to pick up
(u, x̄4). Now assume that both x̄2 and x̄4 (as well as x̄3) are terminals. Then, x̄1 or x̄5, say x̄1, is not a terminal. It suffices
to pick up a pair of terminal x̄2 and free vertex x̄1. Thus, the claim is proved. Assume wlog that s1 is such terminal u of
the claim. It suffices to merge Ch and a 2-DPC[{(v, t1), (s2, t2)} | G0, {s1}] with (s1, s̄1) and (v, v̄) and discard (s̄1, v̄). The
existence of the 1-fault 2-DPC in G0 is due to Lemma 2. The last case of m = 5 will be dealt with later in Lemma 15 of
Section 4.2.

Case 2.2. k0 = k2 = 1.

Let the hamiltonian cycle Ch of G1 \ F1 be (t2, x, P , y) where t2 	= x, y. Suppose {x̄, ȳ} 	= {s1, t1} for the first case. We as-
sume wlog that x̄ /∈ {s1, t1}. Then, it suffices to merge Ch and a generalized 2-DPC[{(s1, t1), (s2, x̄)} | G0,∅] with the edge
(x̄, x) and discard the edge (t2, x). Suppose {x̄, ȳ} = {s1, t1} for the second case. There exists an x-chord or y-chord w.r.t.
Ch by Lemma 4(a). Assume wlog that an x-chord (x, w) exists. Then, w /∈ {t2, y}; moreover, Ch can be represented by
(t2, x, P z, z, w, P w , y) for some z 	= x, w . It suffices to merge Ch and a generalized 2-DPC[{(s1, t1), (s2, z̄)} | G0,∅] with the
edges (z̄, z) and (x, w) and discard the edges (t2, x) and (z, w).



32 S.-Y. Kim, J.-H. Park / Theoretical Computer Science 531 (2014) 26–36
Case 3. f0 < f and f1 < f .
We have four subcases depending on the distribution of terminals: k0 = 2, k0 = k2 = 1, k0 = k1 = 1, and k2 = 2. Suppose

k0 = 2 for the first subcase. Then, there exists a 2-DPC[{(s1, t1), (s2, t2)} | G0, F0] unless m = 5 and f0 = 1. The 2-DPC
exists by the induction hypothesis if m � 6, and by Lemma 2 if m = 5 and f0 = 0. The exceptional case that m = 5 and
f0 = 1 will be dealt with later in Lemma 16 of Section 4.2. A path in the 2-DPC of G0 has an edge (u, v) such that both
(u, ū) and (v, v̄) are free. It suffices to merge the 2-DPC of G0 and a 1-DPC[{(ū, v̄)} | G1, F1] with the edges (u, ū) and
(v, v̄) and discard the edge (u, v). Suppose k0 = k2 = 1 for the second subcase. Unless m = 5 and f0 = 1, there exists a
2-DPC[{(s1, t1), (s2, x)} | G0, F0] for some vertex x such that (x, x̄) is free. The exceptional case that m = 5 and f0 = 1 is
deferred to Lemma 16. It suffices to merge the 2-DPC of G0 and a 1-DPC[{(x̄, t2)} | G1, F1] with edge (x, x̄). In the third
subcase of k0 = k1 = 1, it suffices to merge a 1-DPC[{(s1, t1)} | G0, F0] and a 1-DPC[{(s2, t2)} | G1, F1]. Suppose k2 = 2 for
the last subcase. Unless m = 5 and f0 = 1, there exists a 2-DPC[{(s1, x), (s2, y)} | G0, F0] for some vertices x and y such
that (x, x̄) and (y, ȳ) are free. The exceptional case is deferred to Lemma 16. It suffices to merge the 2-DPC of G0 and a
2-DPC[{(x̄, t1), ( ȳ, t2)} | G1, F1] with edges (x, x̄) and (y, ȳ). The 2-DPC of G1 exists by the induction hypothesis if m � 6,
and by Lemma 2 if m = 5 and f1 = 0. We do not have to consider the situation that m = 5 and f1 = 1 since it arises only
in the deferred case that m = 5 and f0 = 1. This completes the entire proof. �
Corollary 1. Every m-dimensional RHL graph is (m − 3)-fault unpaired 2-disjoint path coverable where m � 5.

Corollary 2. Suppose that a graph G in RHLm has a fault set F where m � 5 and |F | � m − 3. Then, the graph G \ F has a hamiltonian
path between any two vertices s and t that passes through an arbitrary prescribed edge (x, y) in the direction from x to y provided
{s, t} ∩ {x, y} = ∅.

4. Three exceptional cases

We first study several properties on DPCs of 4-dimensional RHL graphs in Section 4.1, and then, utilizing them, deal with
the three exceptional cases of the proof of Theorem 1 in Section 4.2.

4.1. Properties of RHL4

The DPC properties of RHL4 are addressed in Lemmas 5 through 13. All the lemmas given in this subsection, except
Lemma 12, were verified by computer programs that exhaustively searched (generalized) DPCs in the 4-dimensional RHL
graphs mostly on the basis of depth-first-search.

Every graph in RHL4 is 1-fault hamiltonian-connected by Lemma 3; however, none is 2-fault hamiltonian-connected. The
following lemma shows that given two faults, there exist at least two nonfaulty vertices that have a hamiltonian path to
any other nonfaulty vertex.

Lemma 5. Let G ∈ RHL4 have a fault set F , |F | = 2. Then, there exists a subset X of nonfaulty vertices, |X | � 2, such that for each
x ∈ X, there exists a 1-DPC[{(x, y)} | G, F ] for any nonfaulty vertex y 	= x.

Every graph in RHL4 is (paired) 2-disjoint path coverable by Lemma 2; however, none except one graph is 1-fault
2-disjoint path coverable.1 The following lemma shows that given a single fault and three terminals s1, t1, and s2, there
exists a generalized 2-DPC joining pairs (s1, t1) and (s2, x) for some nonfaulty vertex x.

Lemma 6. Let G ∈ RHL4 have a fault set F , |F | = 1, and three terminals s1 , t1 , and s2 be given in G \ F . Then, there exists a subset X
of nonfaulty vertices, |X | � 3, such that for each x ∈ X, there exists a generalized 2-DPC[{(s1, t1), (s2, x)} | G, F ].

No graph in RHL4 is (1-fault) 3-disjoint path coverable by Lemma 1(b). Lemmas 7 and 8 show that given a fault set F ,
|F | � 1, and four terminals s1, t1, s2, and t2, we can always pick up two nonfaulty vertices x and y such that there exists
a generalized 3-DPC: one path of the generalized 3-DPC joins si and ti , and the other two join {s j, t j} and {x, y}, where
{i, j} = {1,2}.

Lemma 7. Let four terminals s1 , t1 , s2 , and t2 be given in G ∈ RHL4 . Then, for any vertex x in G (whether it is a terminal or not), there
exists a subset Yx of vertices (depending on x), |Yx| � 3, such that for each y ∈ Yx, at least one of the following four DPCs exists where
F = ∅:

1 The unique 4-dimensional RHL graph that is 1-fault 2-disjoint path coverable is a graph G0 ⊕φ G1 under a bijection φ such that φ(vi) = w3i for every i,
where V (G0) = {v0, v1, . . . , v7}, V (G1) = {w0, w1, . . . , w7}, vi is adjacent to both vi+1 and vi+4 for every i, and similarly for wi . Here, all arithmetic on
the indices of vertices is done modulo 8.
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Fig. 3. Graphs Ha and Hb .

• a generalized 3-DPC[{(s1, t1), (s2, x), (y, t2)} | G, F ],
• a generalized 3-DPC[{(s1, t1), (s2, y), (x, t2)} | G, F ],
• a generalized 3-DPC[{(s1, x), (y, t1), (s2, t2)} | G, F ], and
• a generalized 3-DPC[{(s1, y), (x, t1), (s2, t2)} | G, F ].

Lemma 8. Let G ∈ RHL4 have a fault set F , |F | = 1, and four terminals s1 , t1 , s2 , and t2 be given in G \ F . Then, there exists a subset
X of nonfaulty vertices (whether terminals or not), |X | � 2, such that for each x ∈ X, there exists a subset Yx of nonfaulty vertices,
|Yx| � 2, such that for each y ∈ Yx, at least one of the four DPCs of Lemma 7 exists.

Hereafter, we are concerned with 4-dimensional RHL graphs with two terminals s1 and s2 given. We introduce the
notions of good, excellent, and perfect vertices.

Definition 3. Let G ∈ RHL4 have a fault set F , and two terminals s1 and s2 be given in G \ F . For a free vertex x, we let Yx be
the set of free vertices such that any y ∈ Yx admits both a 2-DPC[{(s1, x), (s2, y)} | G, F ] and a 2-DPC[{(s1, y), (s2, x)} | G, F ].
Then, x is said to be good, excellent, and perfect, respectively, if |Yx| � 4, |Yx| � 8, and |Yx| = |V (G) \ (F ∪ {s1, s2, x})|.

Lemma 9. Let G ∈ RHL4 have a fault set F , |F | = 1, and two terminals s1 and s2 be given in G \ F .

(a) G \ F has at least eight excellent vertices.
(b) If G \ F has exactly eight excellent vertices, then (i) all the free vertices are good, (ii) at least two free vertices are perfect, and

(iii) there exists a subset Y of free vertices, |Y | � 4, such that for each y ∈ Y , there exists a generalized 2-DPC[{(s1, s1), (s2, y)} |
G, F ] (and symmetrically, there exists a subset Y ′ of free vertices, |Y ′| � 4, such that for each y ∈ Y ′ , there exists a generalized
2-DPC[{(s1, y), (s2, s2)} | G, F ]).

The remaining part of this subsection is concerned with the first exceptional case of the proof of Theorem 1 where
f0 = f = 2 and k2 = 2. Two graphs Ha and Hb introduced below are useful to describe the component G0 of a
5-dimensional RHL graph G0 ⊕ G1 in the first exceptional case. Each of the two graphs Ha and Hb has 14 vertices and
24 edges as shown in Fig. 3. The four vertices of each are labeled with ṡ1, ṡ2, τ̇1, and τ̇2 so that {ṡ1, ṡ2} = {9,12}, τ̇1 = 1,
and τ̇2 = 4. The two graphs have a structural similarity that Ha \ {ṡ1, ṡ2} is isomorphic to Hb \ {ṡ1, ṡ2}.

Lemma 10. Let G0 ∈ RHL4 have a fault set F composed of two vertices. Given two sources s1 and s2 and two free vertices τ1 and τ2 in
G0 \ F , suppose that there exists no pair of vertices u and v in G0 \ F such that u 	= τ2 , v 	= τ1 , {u, v} 	= {τ1, τ2}, and a generalized
2-DPC[{(s1, u), (s2, v)} | G0, F ] exists. Then, G0 \ F is isomorphic to Ha or Hb under a mapping ρ such that ρ(s1) = ṡ1 , ρ(s2) = ṡ2 ,
ρ(τ1) = τ̇1 , and ρ(τ2) = τ̇2 .

Lemma 11. For each triple (u, v, {x, y}) of the following 26 ones, Ha has a 3-DPC[{(ṡ1, u), (ṡ2, v), (x, y)} | Ha,∅] and {u, v, x, y} ∩
{ṡ1, ṡ2, τ̇1, τ̇2} = ∅: (2,6, {8,13}), (2,8, {11,13}), (2,10, {8,13}), (2,13, {7,8}), (6,7, {8,13}), (6,13, {8,10}), (7,3, {8,13}),
(7,8, {10,13}), (7,10, {8,13}), (7,13, {8,15}), (8,3, {6,13}), (8,6, {13,14}), (8,7, {11,13}), (8,10, {7,13}), (8,13, {10,11}),
(10,8, {6,13}), (10,11, {8,13}), (11,3, {8,13}), (11,6, {8,13}), (11,8, {13,14}), (11,13, {6,8}), (13,3, {8,10}), (13,6, {8,11}),
(13,8, {6,7}), (13,10, {8,15}), and (13,11, {7,8}).

Lemma 12. For each (u, v, {x, y}) of the 26 triples of Lemma 11, Hb also has a 3-DPC[{(ṡ1, u), (ṡ2, v), (x, y)} | Hb,∅] and
{u, v, x, y} ∩ {ṡ1, ṡ2, τ̇1, τ̇2} = ∅.

Proof. It holds that {u, v, x, y} ∩ {ṡ1, ṡ2, τ̇1, τ̇2} = ∅ since {ṡ1, ṡ2, τ̇1, τ̇2} of Hb is equal to that of Ha . Suppose that there
is a 3-DPC[{(ṡ1, u), (ṡ2, v), (x, y)} | Ha,∅] in Ha for some triple (u, v, {x, y}). Then, the path starting from ṡ1 in the 3-DPC
definitely includes subpath (9,1,2) since τ̇1 of degree two should be an intermediate vertex of a path in the DPC. Similarly,
the path starting from ṡ2 includes subpath (12,4,3). If the two subpaths (9,1,2) and (12,4,3) respectively are replaced
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with (12,1,2) and (9,4,3), the resulting DPC is indeed a 3-DPC[{(ṡ1, u), (ṡ2, v), (x, y)} | Hb,∅] of Hb for the same triple
(u, v, {x, y}). �

Definition 4 is also concerned with the first exceptional case of the proof of Theorem 1 where f0 = f = 2 and k2 = 2;
thus, two sinks t1 and t2 are given in the component G1 of a 5-dimensional RHL graph G0 ⊕ G1.

Definition 4. For a graph G1 ∈ RHL4 with two sinks t1 and t2 given, a triple (u, v, {x, y}) with {u, v, x, y} ∩ {t1, t2} = ∅ is
called to be successful if at least one of the following four DPCs exists:

• a 3-DPC[{(t1, u), (t2, x), (v, y)} | G1,∅],
• a 3-DPC[{(t1, u), (t2, y), (v, x)} | G1,∅],
• a 3-DPC[{(t2, v), (t1, x), (u, y)} | G1,∅], and
• a 3-DPC[{(t2, v), (t1, y), (u, x)} | G1,∅].

Lemma 13. Let G0 satisfy the conditions of Lemma 10 (i.e., its fault set F is composed of two vertices; two sources s1 and s2 and two
free vertices τ1 and τ2 are given in G0 \ F ; there exists no pair of vertices u and v in G0 \ F such that u 	= τ2 , v 	= τ1 , {u, v} 	= {τ1, τ2},
and a generalized 2-DPC[{(s1, u), (s2, v)} | G0, F ] exists). Let G1 be another graph in RHL4 with two sinks t1 and t2 given. Then, for
every bijection φ from V (G0) to V (G1) such that φ(τ1) = t1 and φ(τ2) = t2 , there exists a triple (u, v, {x, y}) in G0 with {u, v, x, y}∩
{s1, s2, τ1, τ2} = ∅ such that a 3-DPC[{(s1, u), (s2, v), (x, y)} | G0, F ] exists and its corresponding triple (φ(u), φ(v), {φ(x), φ(y)})
of G1 is successful.

Lemma 13 was verified by an expedient discussed below, because a straightforward examination of every bijection is
extremely time-consuming and practically impossible. Each graph G0 of Lemma 13 with F being removed is isomorphic
to Ha or Hb by Lemma 10 under a mapping ρ such that ρ(s1) = ṡ1, ρ(s2) = ṡ2, ρ(τ1) = τ̇1 and ρ(τ2) = τ̇2. Thus, we can
restrict our attention to Ha and Hb although a dozen or so graphs in RHL4 satisfy the conditions of Lemma 10. Besides,
Ha and Hb fortunately have the same set of 26 triples shown in Lemma 11 such that for each triple (u, v, {x, y}) with
{u, v, x, y} ∩ {ṡ1, ṡ2, τ̇1, τ̇2} = ∅, there exists a 3-DPC for pairs (ṡ1, u), (ṡ2, v), and (x, y). Thus, we again restrict our attention
only to Ha .

Each graph in RHL4 with two sinks given turned out to have a dominantly large number of successful triples. Thus,
we list the triples not successful for each pair of terminals t1 and t2 in an arbitrary graph G1 of RHL4 such that for each
triple (u, v, {x, y}) with {u, v, x, y} ∩ {t1, t2} = ∅, there exists none of the four DPCs of Definition 4. After that, it suffices to
check whether or not there exists a bijection φ from V (Ha) ∪ {0,5} to V (G1) such that φ(τ1) = t1, φ(τ2) = t2, and all of
the 26 triples of Lemma 11 are mapped to the triples of G1 not successful. No such bijection was detected for any pair of
terminals t1 and t2 in the graph G1. As a result, Lemma 13 was verified.

4.2. Lemmas for the exceptional cases

The DPC properties of RHL4 discussed in Section 4.1 allow us to prove the three exceptional cases of the proof of
Theorem 1. All of the exceptional cases are for m = 5, which will be dealt with one by one in the following lemmas.

Lemma 14. Every 5-dimensional RHL graph G0 ⊕ G1 has a paired 2-DPC when f0 = f = 2, k2 = 2, G0 contains two faulty vertices,
and G0 \ F has a hamiltonian cycle of the form (s1, t̄1, P , t̄2, s2, u, P ′).

Proof. Suppose that there exists a desirable pair of vertices u and v in G0 \ F such that u 	= t̄2, v 	= t̄1, {u, v} 	= {t̄1, t̄2},
and a generalized 2-DPC[{(s1, u), (s2, v)} | G0, F ] exists. As shown in Fig. 4(a), it suffices to merge the generalized 2-DPC
of G0 and a generalized 2-DPC[{(ū, t1), (v̄, t2)} | G1,∅] with edges (u, ū) and (v, v̄). On the contrary, suppose that there
exists no such desirable pair in G0 \ F . Then, G0 satisfies the conditions of Lemma 10 under the assumption that t̄1 = τ1
and t̄2 = τ2. Thus, there exists a triple (u, v, {x, y}) in G0 \ F with {u, v, x, y} ∩ {s1, s2, τ1, τ2} = ∅, by Lemma 13, such that
a 3-DPC[{(s1, u), (s2, v), (x, y)} | G0, F ] exists and its corresponding triple (ū, v̄, {x̄, ȳ}) of G1 is successful. So, at least one
of the four 3-DPCs of Definition 4 exists. Whichever 3-DPC exists, say a 3-DPC[{(t1, ū), (t2, x̄), (v̄, ȳ)} | G1,∅], it suffices to
merge the 3-DPC of G0 and the 3-DPC of G1 with edges (u, ū), (v, v̄), (x, x̄), and (y, ȳ) as shown in Fig. 4(b). �
Lemma 15. Every 5-dimensional RHL graph G0 ⊕ G1 has a paired 2-DPC when f1 = f = 2 and k0 = 2.

Proof. There exists a nonfaulty vertex x in G1, by Lemma 5, such that a 1-DPC[{(x, x′)} | G1, F1] exists for any non-
faulty vertex x′ 	= x. Then, for the vertex x̄ in G0, there exists at least one vertex ȳ in G0, y /∈ F1, such that one of the
four generalized 3-DPCs of Lemma 7 exists. Recall that |F1| = 2. Whichever generalized 3-DPC exists, say a generalized
3-DPC[{(s1, t1), (s2, x̄), ( ȳ, t2)} | G0,∅], it suffices to merge the generalized 3-DPC of G0 and a 1-DPC[{(x, y)} | G1, F1] of G1
with edges (x, x̄) and (y, ȳ). �
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Fig. 4. Illustration of the proof of Lemma 14.

Lemma 16. Every 5-dimensional RHL graph G0 ⊕ G1 has a paired 2-DPC when f0 = 1 and f1 + f2 = 1.

Proof. The case of k0 = k1 = 1 was already covered in the proof of Theorem 1. There remain three cases.

Case 1. k0 = 2.
There exists a pair of nonfaulty vertices x and y in G0, by Lemma 8, such that one of the four generalized 3-DPCs of

Lemma 7 exists in G0 and x̄, (x, x̄), ȳ, and (y, ȳ) are all nonfaulty. Recall that f1 + f2 = 1. Whichever generalized 3-DPC
exists, it suffices to merge the generalized 3-DPC of G0 and a 1-DPC[{(x̄, ȳ)} | G1, F1] with edges (x, x̄) and (y, ȳ).

Case 2. k0 = k2 = 1.
There exists at least one nonfaulty vertex x in G0, by Lemma 6, such that x̄ 	= t2, x̄ /∈ F , (x, x̄) /∈ F , and a generalized

2-DPC[{(s1, t1), (s2, x)} | G0, F0] exits. It suffices to merge the generalized 2-DPC of G0 and a 1-DPC[{(x̄, t2)} | G1, F1] with
edge (x, x̄).

Case 3. k2 = 2.
Case 3.1. f1 = 0 ( f2 = 1).

Since G0 \ F0 has at least eight excellent vertices by Lemma 9(a), there is an excellent vertex x of G0 such that (x, x̄) is
free. Then, there exists a free vertex y 	= x in G0, due to Definition 3, such that (y, ȳ) is free and a 2-DPC[{(s1, x), (s2, y)} |
G0, F0] exists. It suffices to merge the 2-DPC of G0 and a 2-DPC[{(x̄, t1), ( ȳ, t2)} | G1,∅] in G1 with edges (x, x̄) and (y, ȳ).

Case 3.2. f1 = 1 ( f2 = 0).
There are 16 nonfaulty edges of the type (x, x̄) for x ∈ V (G0) since f2 = 0. Suppose for the first case that there exists an

edge (x, x̄) such that x and x̄ are excellent vertices of G0 and G1, respectively. Then, there exists a subset Yx of free vertices,
|Yx| � 8, in G0 such that for each y ∈ Yx , a 2-DPC[{(s1, x), (s2, y)} | G0, F0] exists. In addition, there exists a subset Yx̄ of free
vertices, |Yx̄| � 8, in G1 such that for each z ∈ Yx̄ , a 2-DPC[{(t1, x̄), (t2, z)} | G1, F1] exists. Since x /∈ Yx and x̄ /∈ Yx̄ , there exists
a free vertex y ∈ Yx where ȳ ∈ Yx̄ . It suffices to merge a 2-DPC[{(s1, x), (s2, y)} | G0, F0] and a 2-DPC[{(t1, x̄), (t2, ȳ)} | G1, F1]
with (x, x̄) and (y, ȳ).

Now, suppose for the second case that there exists no such edge (x, x̄). Since each of G0 and G1 has at least eight excel-
lent vertices by Lemma 9(a), each should have exactly eight excellent vertices. Thus, there exists a perfect vertex x in G0,
by Lemma 9(b), such that x̄ /∈ F1. Then, for any free vertex w 	= x in G0, there exists a 2-DPC[{(s1, x), (s2, w)} | G0, F0] as
well as a 2-DPC[{(s1, w), (s2, x)} | G0, F0]. We have two subcases depending on whether x̄ is a terminal or not. Suppose
for the first subcase that x̄ /∈ {t1, t2}. Then, x̄ is a good vertex of G1 by Lemma 9(b) since G1 has exactly eight excellent
vertices. Thus, there is a subset Yx̄ of free vertices, |Yx̄| � 4, in G1 such that for each y ∈ Yx̄ , a 2-DPC[{(t1, x̄), (t2, y)} |
G1, F1] exists. Since |Yx̄| � 4, it is possible to pick up a vertex y in Yx̄ such that ȳ is free. It suffices to merge a
2-DPC[{(s1, x), (s2, ȳ)} | G0, F0] and the 2-DPC of G1 with edges (x, x̄) and ( ȳ, y). Suppose for the second subcase that
x̄ ∈ {t1, t2}. Let x̄ be t1 first. Then, there exists a subset Y of free vertices, |Y | � 4, in G1, by Lemma 9(b), such that for each
y ∈ Y , a generalized 2-DPC[{(t1, t1), (t2, y)} | G1, F1] exists. It suffices to pick up y in Y such that ȳ is free, and merge a
2-DPC[{(s1, x), (s2, ȳ)} | G0, F0] and the generalized 2-DPC of G1 with (x, x̄) and ( ȳ, y). If x̄ is t2, then symmetrically, it suf-
fices to merge a 2-DPC[{(s1, ȳ), (s2, x)} | G0, F0] and a generalized 2-DPC[{(t1, y), (t2, t2)} | G1, F1], for some y, with (x, x̄)
and ( ȳ, y). �
5. Conclusion

We proved that every m-dimensional RHL graph, m � 5, is (m − 3)-fault paired 2-disjoint path coverable, and thus
it is also (m − 3)-fault unpaired 2-disjoint path coverable. The bound m − 3 on the number of faults is the maximum
possible for the m-dimensional RHL graph to be paired (resp. unpaired) 2-disjoint path coverable. It is our conjecture that
every m-dimensional RHL graph, m � 5, is (a) f -fault unpaired k-disjoint path coverable for any f and k � 2 subject to
f + k � m − 1, and (b) f -fault paired k-disjoint path coverable for any f and k � 2 subject to f + 2k � m + 1.
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