Many-to-many two-disjoint path covers in restricted hypercube-like graphs

Sook-Yeon Kim ${ }^{\text {a }}$, Jung-Heum Park ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Computer and Web Information Engineering, Hankyong National University, Anseong, Republic of Korea
${ }^{\mathrm{b}}$ School of Computer Science and Information Engineering, The Catholic University of Korea, Bucheon, Republic of Korea

ARTICLE INFO

Article history:

Received 16 July 2013
Received in revised form 14 January 2014
Accepted 14 February 2014
Communicated by S.-y. Hsieh

Keywords:

Disjoint path cover
Hypercube-like graph
Hamiltonian path
Hamiltonian cycle
RHL graph
Fault tolerance
Interconnection network

Abstract

A Disjoint Path Cover (DPC for short) of a graph is a set of pairwise (internally) disjoint paths that altogether cover every vertex of the graph. Given a set S of k sources and a set T of k sinks, a many-to-many k-DPC between S and T is a disjoint path cover each of whose paths joins a pair of source and sink. It is classified as paired if each source of S must be joined to a designated sink of T, or unpaired if there is no such constraint. In this paper, we show that every m-dimensional restricted hypercube-like graph with at most $m-3$ faulty vertices and/or edges being removed has a paired (and unpaired) 2-DPC joining arbitrary two sources and two sinks where $m \geqslant 5$. The bound $m-3$ on the number of faults is optimal for both paired and unpaired types.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

An interconnection network is frequently modeled as a graph in which the vertices and edges represent nodes and links, respectively. Since node and/or link failure is inevitable in a large network, fault tolerance is essential to the network performance. One of the central issues in the study of interconnection networks is to detect (vertex-)disjoint paths, which is naturally related to routing among nodes and fault tolerance of the network [17,25].

Disjoint path is one of the fundamental notions in graph theory from which many properties of a graph can be deduced $[2,25]$. A disjoint path cover (DPC for short) of a graph is a set of pairwise (internally) disjoint paths that collectively cover every vertex of the graph. The disjoint path cover problem finds applications in many areas such as software testing, database design, and code optimization [1,27]. In addition, the problem is concerned with applications where full utilization of network nodes is important [32].

Let G be an undirected graph. For a set of k sources $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ and a set of k sinks $T=\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ such that $S \cap T=\emptyset$, a many-to-many k-DPC is a disjoint path cover composed of k paths each of which joins a pair of source and sink. It partitions the vertex set $V(G)$ into k subsets. The many-to-many k-DPC is called paired if each source s_{i} should be joined to a specific sink t_{i}, whereas it is called unpaired if each source s_{i} can be freely joined to a sink t_{j} under an arbitrary bijection σ from S to T where $t_{j}=\sigma\left(s_{i}\right)$. The other two possible k-disjoint path covers are of one-to-many type joining $S=\{s\}$ and $T=\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$, and of one-to-one type joining $S=\{s\}$ and $T=\{t\}$, which are clearly understandable. For more discussion, refer to [23,32].

[^0]Definition 1. A graph G is called f-fault paired (resp. unpaired) k-disjoint path coverable if $f+2 k \leqslant|V(G)|$ and G has a paired (resp. unpaired) k-DPC joining an arbitrary set S of k sources and a set T of k sinks in $G \backslash F$ for any fault set F where $S \cap T=\emptyset$ and $|F| \leqslant f$.

An f-fault paired k-disjoint path coverable graph is, by definition, f-fault unpaired k-disjoint path coverable. Given S and T in a graph G, it is NP-complete to determine if there exists a one-to-one, one-to-many, or many-to-many k-DPC joining S and T for any fixed $k \geqslant 1[32,33]$. The disjoint path cover problems have been studied for graphs such as hypercubes [5-7,10,13,19,24], recursive circulants [20,21,32,33], and hypercube-like graphs [18,22,28,33], cube of a connected graph [29,30], and k-ary n-cubes [35,37]. Necessary conditions for a graph G to be f-fault many-to-many k-disjoint path coverable have been established in terms of its connectivity $\kappa(G)$ and its minimum degree $\delta(G)$ [32,33], as shown below.

Lemma 1. (a) If a graph G with $|V(G)| \geqslant f+2 k+1$ is f-fault unpaired $k(\geqslant 2)$-disjoint path coverable, then $f+k \leqslant \delta(G)-1$ [33]. (b) If a graph G is f-fault paired k-disjoint path coverable, then $f+2 k \leqslant \kappa(G)+1$ [32].

Meanwhile, Restricted Hypercube-Like graphs (RHL graphs for short) [31] are a subset of nonbipartite hypercube-like graphs that have received much attention over the recent decades. For example, crossed cubes [12], Möbius cubes [8], twisted cubes [14], multiply twisted cubes [11], Mcubes [36], and generalized twisted cubes [4] are all RHL graphs. An m-dimensional RHL graph, which will be defined in the next section, has 2^{m} vertices. It is an m-regular graph of connectivity m.

Every m-dimensional RHL graph with $m \geqslant 3$ is known to be (a) f-fault unpaired k-disjoint path coverable for any f and $k \geqslant 1$ subject to $f+k \leqslant m-2$ [28], and (b) f-fault paired k-disjoint path coverable for any f and $k \geqslant 2$ subject to $f+2 k \leqslant m$ [33]. The bound $m-2$ on $f+k$ for the unpaired type and the bound m on $f+2 k$ for the paired type respectively are one less than the optimal bounds of the necessary conditions of Lemma 1 . It is still an open problem whether the optimal bounds can be achieved for all RHL graphs.

The problem has been partially solved in the sense that recursive circulants have the optimal bounds. Note that every odd-dimensional recursive circulant $G\left(2^{m}, 4\right)$ is included in RHL graphs (while not every even-dimensional recursive circulant is). Every m-dimensional recursive circulant $G\left(2^{m}, 4\right)$ with $m \geqslant 5$ is known to be (a) f-fault unpaired k-disjoint path coverable for any f and $k \geqslant 2$ subject to $f+k \leqslant m-1$ [20], and (b) f-fault paired k-disjoint path coverable for any f and $k \geqslant 2$ subject to $f+2 k \leqslant m+1$ [21].

In this paper, we achieve the optimal bounds of the necessary conditions of Lemma 1 for all RHL graphs where $k=2$. In other words, we prove our main theorem that every m-dimensional RHL graph is ($m-3$)-fault paired 2-disjoint path coverable where $m \geqslant 5$. This leads to the fact that the graph is also ($m-3$)-fault unpaired 2-disjoint path coverable. The bound $m-3$ on the number of faults is the maximum possible for both paired and unpaired types.

Our contribution can also be seen as a generalization of fault-hamiltonicity of RHL-graphs, discovered in [31], that every m-dimensional RHL graph is ($m-3$)-fault hamiltonian-connected, where a graph is said to be hamiltonian-connected if every pair of vertices are joined by a hamiltonian path. Note that a paired (or unpaired) 2-disjoint path coverable graph is always hamiltonian-connected [32]. To be precise, a graph G has a hamiltonian path from s to t passing through a prescribed edge (x, y), where $\{x, y\} \cap\{s, t\}=\emptyset$ and x is required to be visited before y, if and only if G has a paired 2-DPC joining the (s, x) and (y, t) pairs (i.e., $s_{1}=s, t_{1}=x, s_{2}=y$, and $t_{2}=t$). If the order in which the two end-vertices of the prescribed edge (x, y) are encountered during traversal of a hamiltonian path from s to t does not matter, it suffices to employ an unpaired 2-DPC joining $S=\{s, t\}$ and $T=\{x, y\}$ (instead of the paired one).

The rest of this paper is organized as follows. We give preliminaries in Section 2. Sections 3 and 4 are then devoted to a proof of our main theorem. Finally, we conclude in Section 5.

2. Preliminaries

A 3-dimensional RHL graph is isomorphic to recursive circulant $G(8,4)$ that has a vertex set $\left\{v_{i}: 0 \leqslant i \leqslant 7\right\}$ and an edge set $\left\{\left(v_{i}, v_{j}\right): i+1\right.$ or $\left.i+4 \equiv j(\bmod 8)\right\}$. The 3 -dimensional RHL graph is also isomorphic to a 3-dimensional twisted cube $T Q_{3}$ or a Möbius ladder with four spokes [26] shown in Fig. 1. An m-dimensional RHL graph, $m \geqslant 4$, is recursively defined with a graph operation \oplus. Given two graphs G_{0} and G_{1} with the same number of vertices and a bijection ϕ from $V\left(G_{0}\right)$ to $V\left(G_{1}\right)$, we denote by $G_{0} \oplus_{\phi} G_{1}$ the graph whose vertex set is $V\left(G_{0}\right) \cup V\left(G_{1}\right)$ and edge set is $E\left(G_{0}\right) \cup E\left(G_{1}\right) \cup$ $\left\{(v, \phi(v)): v \in V\left(G_{0}\right)\right\}$. To simplify the notation, we often omit the bijection ϕ from \oplus_{ϕ} when it is clear in the context.

Definition 2. (See [31].) A graph that belongs to $R H L_{m}$ is called an m-dimensional $R H L$ graph where

- $R H L_{3}=\{G(8,4)\}$, and
- $R H L_{m}=\left\{G_{0} \oplus_{\phi} G_{1}: G_{0}, G_{1} \in R H L_{m-1}, \phi\right.$ is a bijection from $V\left(G_{0}\right)$ to $\left.V\left(G_{1}\right)\right\}$ for $m \geqslant 4$.

Every m-dimensional RHL graph, $m \geqslant 3$, is nonbipartite and has 2^{m} vertices of degree m. It can be easily verified by induction on m that the graph has no triangle (cycle of length three) and there exist at most two common neighbors for

Fig. 1. The 3-dimensional RHL graph.
any pair of vertices in the graph. Construction of paired DPCs in RHL graphs was suggested in [32] and improved in [33] as follows.

Lemma 2. (See [33].) Every m-dimensional RHL graph, $m \geqslant 3$, is f-fault paired k-disjoint path coverable for any f and $k \geqslant 2$ subject to $f+2 k \leqslant m$.

The disjoint path cover of a graph is naturally related to its hamiltonian properties. For instance, a hamiltonian path between two distinct vertices in a graph G is in fact a 1-DPC, irrespective of its type, of G joining the vertices. By definition, a graph of order at least three has a one-to-many 2-DPC for any $S=\{s\}$ and $T=\left\{t_{1}, t_{2}\right\}$ if and only if it is hamiltonianconnected. Also, a graph has a one-to-one 2-DPC for any $S=\{s\}$ and $T=\{t\}$ if and only if it is hamiltonian. The hamiltonian properties of RHL graphs were studied in [31] as shown below, where a graph G is said to be f-fault hamiltonian-connected (resp. hamiltonian) if any pair of vertices are joined by a hamiltonian path (resp. there exists a hamiltonian cycle) in $G \backslash F$ for any fault set F where $|F| \leqslant f$. For more discussion, refer to, for example, [15,16,34].

Lemma 3. (See [31].) Every m-dimensional RHL graph, $m \geqslant 3$, is $(m-3)$-fault hamiltonian-connected and is $(m-2)$-fault hamiltonian.

Using a many-to-many disjoint path cover, constructions of a hamiltonian path/cycle passing through prescribed edges were suggested in [29,32,33]. It was shown that if G is f-fault paired $k(\geqslant 2)$-disjoint path coverable, then for any fault set F where $|F| \leqslant f$, graph $G \backslash F$ has a hamiltonian path between arbitrary two vertices s and t that passes through any sequence of $k-1$ pairwise nonadjacent edges $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k-1}, y_{k-1}\right)\right)$ in the specified order where $s \neq x_{i}, y_{i}$ and $t \neq x_{i}, y_{i}$ for all $1 \leqslant i \leqslant k-1$. The $s-t$ hamiltonian path passes through each edge (x_{i}, y_{i}) in the direction from x_{i} to y_{i}. For the problem of hamiltonian path/cycle through prescribed edges, refer to [3,9].

Hereafter, a disjoint path cover whose type is not specified is assumed to be paired. We denote by k - $\operatorname{DPC}\left[\left\{\left(s_{1}, t_{1}\right), \ldots\right.\right.$, $\left.\left.\left(s_{k}, t_{k}\right)\right\} \mid G, F\right]$ a k-DPC joining $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ and $T=\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ in $G \backslash F$ where $S \cap T=\emptyset$. Thus, 1-DPC[\{(v,w)\}| $G, F]$ is a hamiltonian path between two vertices v and w in $G \backslash F$. In a generalized k - $\operatorname{DPC}\left[\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\} \mid G, F\right]$, we allow any source s_{i} to be identical to its $\operatorname{sink} t_{i}$. If $s_{i}=t_{i}$, then the $s_{i}-t_{i}$ path in the generalized k-DPC is necessarily one-vertex path. A generalized 2-DPC $\left[\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \mid G, F\right]$ can be derived from one of the following three DPCs unless $s_{1}=t_{1}$ and $s_{2}=t_{2}$:

- 2-DPC[$\left.\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \mid G, F\right]$ if $s_{1} \neq t_{1}$ and $s_{2} \neq t_{2}$,
- 1-DPC[\{($\left.\left.\left.s_{1}, t_{1}\right)\right\} \mid G, F \cup\left\{s_{2}\right\}\right]$ if $s_{1} \neq t_{1}$ and $s_{2}=t_{2}$, and
- 1-DPC[\{($\left.\left.\left.s_{2}, t_{2}\right)\right\} \mid G, F \cup\left\{s_{1}\right\}\right]$ if $s_{1}=t_{1}$ and $s_{2} \neq t_{2}$.

Both of the sources and sinks are called terminals. A vertex v is called to be free if it is neither a fault nor a terminal. An edge (v, w) is called to be free if it is nonfaulty and both v and w are free. Graphs G_{0} and G_{1} are called the components of $G_{0} \oplus G_{1}$. For a vertex v in a component G_{i}, we denote by \bar{v} the vertex adjacent to v in the other component G_{1-i}, for $i=0,1$.

3. Paired 2-DPCs in RHL graphs

In this section, we prove our main theorem by induction on m; however, three exceptional cases of the proof will be deferred to the next section. The induction hypothesis is that both components G_{0} and G_{1} of an m-dimensional RHL graph $G_{0} \oplus G_{1}$ are $(m-4)$-fault paired 2 -disjoint path coverable for $m \geqslant 6$. Sometimes, we will employ Lemma 2. Another useful fact from Lemma 3 is that both G_{0} and G_{1} are $(m-4)$-fault hamiltonian-connected and ($m-3$)-fault hamiltonian for $m \geqslant 5$.

In case when a single component G_{i} contains all the $m-3$ faults, we need some stronger properties, stated in Lemma 4 , than the aforementioned property that $G_{i} \backslash F$ has a hamiltonian cycle. For a graph G with a hamiltonian cycle C, a nonfaulty edge (x, y) of G is called an x-chord or y-chord w.r.t. (with respect to) C if $x, y \in V(C)$ and $(x, y) \notin E(C)$. A path in a graph is represented as a sequence of vertices.

Lemma 4. Suppose that a graph G_{i} of $R H L_{m-1}, m \geqslant 5$, has a fault set F where $|F|=m-3$. Let C_{h} be a hamiltonian cycle of $G_{i} \backslash F$, and u and v be arbitrary two vertices on the cycle C_{h}.
(a) $G_{i} \backslash F$ has a u-chord or a v-chord w.r.t. C_{h} unless $m=5$ and $p=2$ where p is the number of faulty common neighbors of u and v.
(b) Let C_{h} be represented by (u, x, v, y, P) for some subpath P. Then, $G_{i} \backslash F$ has a u-chord different from (u, y) w.r.t. C_{h} if there is no v-chord w.r.t. C_{h}.

Proof. Among the $m-1$ edges incident to u, there exist $m-3$ candidates for u-chords excluding the two edges of C_{h}. Similarly, there also exist $m-3$ candidates for v-chords. The total number of candidates for u-chords and v-chords is $2 m-6$ if $(u, v) \notin E(G) \backslash E\left(C_{h}\right)$; otherwise, the total number is $2 m-7$. Observe that a single faulty edge excludes at most one edge from the candidates; a single faulty vertex excludes one edge from the candidates if it is a neighbor of u or v, but not both; however, a single faulty vertex excludes two edges from the candidates if it is a common neighbor of u and v. Keep in mind that G_{i} has no triangle and any pair of vertices of G_{i} have at most two common neighbors.

Suppose for the first case that $(u, v) \notin E(G) \backslash E\left(C_{h}\right)$. At most $|F|+p$ edges are eventually excluded from the $2 m-6$ candidates (where p is the number of faulty common neighbors of u and v). Thus, the number of remaining candidate chords is at least $(2 m-6)-(|F|+p)=(2 m-6)-(m-3+p)=m-3-p$. The number is at least one unless $m=5$ and $p=2$ since $m \geqslant 5$ and $p \leqslant 2$. Suppose for the second case that $(u, v) \in E(G) \backslash E\left(C_{h}\right)$. There exists no common neighbor of u and v since G_{i} has no triangle. Therefore, at most $|F|$ edges are eventually excluded from the $2 m-7$ candidates. As a result, $(2 m-7)-|F|=(2 m-7)-(m-3)=m-4>0$ for every $m \geqslant 5$. Lemma 4(a) is proved.

Suppose that C_{h} is (u, x, v, y, P) and there is no v-chord w.r.t. C_{h}. By Lemma 4(a), there exists a u-chord. Suppose the u-chord is (u, y); otherwise, we are done. Then, u and v have two nonfaulty common neighbors, x and y. Furthermore, all the $m-3$ faults are adjacent or incident to v since no v-chord exists. These imply that no fault is adjacent or incident to u, since every common neighbor of u and v is nonfaulty and $(u, v) \notin E(G)$. Thus, the number of the u-chords is at least $m-3 \geqslant 2$, which means that there exists another u-chord different from (u, y). Therefore, Lemma 4(b) is also proved.

Now, we are ready to prove our main theorem. We do not explicitly separate the base step of $m=5$ from the inductive step of $m \geqslant 6$ to avoid repetition. The three exceptional cases, deferred to the next section, will occur only in the base step of $m=5$.

Theorem 1. Every m-dimensional RHL graph is $(m-3)$-fault paired 2-disjoint path coverable where $m \geqslant 5$.
Proof. Let $G_{0} \oplus G_{1}$ be an m-dimensional RHL graph where $G_{0}, G_{1} \in R H L_{m-1}$ and $m \geqslant 5$. For a virtual faulty edge set F^{\prime}, a 2-DPC of $G_{0} \oplus G_{1} \backslash\left(F \cup F^{\prime}\right)$ is also a 2-DPC of $G_{0} \oplus G_{1} \backslash F$. Thus, by treating arbitrary $m-3-|F|$ nonfaulty edges as virtually faulty, we assume that

$$
|F|=m-3
$$

F_{0} and F_{1} denote the fault sets in G_{0} and G_{1}, respectively. F_{2} denotes the set of faulty edges between G_{0} and G_{1}. Then, $F=F_{0} \cup F_{1} \cup F_{2}$. Let $f_{0}=\left|F_{0}\right|, f_{1}=\left|F_{1}\right|$, and $f_{2}=\left|F_{2}\right|$ so that $f=|F|=f_{0}+f_{1}+f_{2}=m-3$. We also denote the number of source-sink pairs in G_{i} by k_{i} where $i=0,1$, and the number of source-sink pairs between G_{0} and G_{1} by k_{2}. Then, $k=k_{0}+k_{1}+k_{2}=2$. We assume without loss of generality (wlog) that

$$
k_{0} \geqslant k_{1} \text { and if } k_{0}=k_{1}, \quad f_{0} \geqslant f_{1}
$$

Furthermore, it is assumed that

- $s_{1}, s_{2}, t_{1}, t_{2} \in V\left(G_{0}\right)$ if $k_{0}=2$,
- $s_{1}, s_{2}, t_{1} \in V\left(G_{0}\right)$ and $t_{2} \in V\left(G_{1}\right)$ if $k_{0}=k_{2}=1$,
- $s_{1}, t_{1} \in V\left(G_{0}\right)$ and $s_{2}, t_{2} \in V\left(G_{1}\right)$ if $k_{0}=k_{1}=1$, and
- $s_{1}, s_{2} \in V\left(G_{0}\right)$ and $t_{1}, t_{2} \in V\left(G_{1}\right)$ if $k_{2}=2$.

We will construct a 2-DPC[\{(s, $\left.\left.\left.t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \mid G_{0} \oplus G_{1}, F\right]$ for any sets F, S, and T where $|S|=|T|=2, S \cap T=\emptyset$, and $|F|=m-3$. There are three cases depending on the distribution of faults.

Case 1. $f_{0}=f=m-3$.
There exists a hamiltonian cycle C_{h} in $G_{0} \backslash F_{0}$ by Lemma 3. We have four subcases.

Fig. 2. Illustrations of Cases 1.1 and 1.2 in the proof of Theorem 1.

Case 1.1. $k_{0}=2$.
The hamiltonian cycle C_{h} can be divided into four disjoint subpaths. For example, let C_{h} be ($s_{1}, P_{x}, x, s_{2}, P_{y}, y, t_{1}, P_{z}, z$, $\left.t_{2}, P_{w}, w\right)$. Then, the cycle C_{h} can be divided into subpaths (s_{1}, P_{x}, x), (s_{2}, P_{y}, y), (t_{1}, P_{z}, z), and ($\left.t_{2}, P_{w}, w\right)$. The subpath (s_{1}, P_{x}, x) is a one-vertex path (s_{1}) if $s_{1}=x$, which means that s_{1} is adjacent to s_{2} in C_{h}. Each of the subpaths (s_{2}, P_{y}, y), $\left(t_{1}, P_{z}, z\right)$, and ($\left.t_{2}, P_{w}, w\right)$ may also be a one-vertex path. Even if the order of the terminals in C_{h} is different from that in the aforementioned example, we can always extract four disjoint paths from C_{h}. As shown in Fig. 2(a), it suffices to merge the four paths of G_{0} and a 2-DPC of G_{1} to obtain the final 2-DPC of $G_{0} \oplus G_{1}$. For the aforementioned example, we must use a 2-DPC $\left[\{(\bar{x}, \bar{z}),(\bar{y}, \bar{w})\} \mid G_{1}, \emptyset\right]$ with the edges $(x, \bar{x}),(y, \bar{y}),(z, \bar{z})$, and (w, \bar{w}). The existence of 2-DPC in G_{1} is due to Lemma 2.

Case 1.2. $k_{0}=k_{2}=1$.
The hamiltonian cycle C_{h} of $G_{0} \backslash F_{0}$ can be expressed in one of the following three representations by traversing it in the reverse order if necessary. Vertices u and v are used instead of s_{1} and t_{1} such that $\{u, v\}=\left\{s_{1}, t_{1}\right\}$.

Repr. 1: $C_{h}=\left(u, P, x, v, P^{\prime}, y, s_{2}, P^{\prime \prime}, z\right)$ where $\bar{x}, \bar{y} \neq t_{2}$. Each of the subpaths ($\left.u, P, x\right),\left(v, P^{\prime}, y\right)$, and ($s_{2}, P^{\prime \prime}, z$) may be a one-vertex path. As shown in Fig. 2(b), it suffices to merge C_{h} and a generalized 2-DPC[\{($\left.\left.\left.\bar{x}, \bar{y}\right),\left(\bar{z}, t_{2}\right)\right\} \mid G_{1}, \emptyset\right]$ with ($\left.x, \bar{x}\right)$, (y, \bar{y}), and (z, \bar{z}) and discard $(x, v),\left(y, s_{2}\right)$, and (z, u). The generalized 2-DPC exists by Lemma 2 if $\bar{z} \neq t_{2}$, and by Lemma 3 otherwise.

Repr. 2: $C_{h}=\left(u, \overline{t_{2}}, v, w, P, y, s_{2}, P^{\prime}, z\right)$ where v, w, y, and s_{2} are all distinct. As shown in Fig. 2(c), it suffices to merge C_{h} and a $2-\operatorname{DPC}\left[\left\{(\bar{y}, \bar{z}),\left(\bar{w}, t_{2}\right)\right\} \mid G_{1}, \emptyset\right]$ with $(w, \bar{w}),(y, \bar{y})$, and (z, \bar{z}) and discard $(v, w),\left(y, s_{2}\right)$, and (z, u). The existence of 2-DPC in G_{1} is due to Lemma 2.

Repr. 3: $C_{h}=\left(u, v, s_{2}, P, z\right)$ where $\bar{v}=t_{2}$. As shown in Fig. 2(d), it suffices to merge C_{h} and 1-DPC[\{($\left.\left.\left.\bar{z}, t_{2}\right)\right\} \mid G_{1}, \emptyset\right]$ with (z, \bar{z}) and discard $\left(v, s_{2}\right)$ and (z, u). The 1-DPC of G_{1} exists by Lemma 3.

Case 1.3. $k_{0}=k_{1}=1$.
The hamiltonian cycle C_{h} of $G_{0} \backslash F_{0}$ can be expressed in one of the following three representations.
Repr. 1: $C_{h}=\left(s_{1}, x, P, y, t_{1}, P^{\prime}\right)$ where x and y are distinct and moreover \bar{x} or \bar{y} is free. If one of \bar{x} and \bar{y} is a terminal, let wlog \bar{x} be s_{2}. It suffices to merge C_{h} and a generalized 2-DPC[\{($\left.\left.\left.s_{2}, \bar{x}\right),\left(\bar{y}, t_{2}\right)\right\} \mid G_{1}, \emptyset\right]$ with the edges (x, \bar{x}) and (y, \bar{y}) and discard the edges $\left(s_{1}, x\right)$ and (y, t_{1}). The generalized 2-DPC exists by Lemma 2 if $\bar{x} \neq s_{2}$, and by Lemma 3 otherwise.

Repr. 2: $C_{h}=\left(s_{1}, t_{1}, \sigma_{2}, P, \tau_{2}\right)$ where $\left\{\bar{\sigma}_{2}, \bar{\tau}_{2}\right\}=\left\{s_{2}, t_{2}\right\}$. There exists an s_{1}-chord or t_{1}-chord w.r.t. C_{h} by Lemma 4(a) since s_{1} and t_{1} have no common neighbor. Assume wlog that an s_{1}-chord (s_{1}, w) exists. Then, $w \notin\left\{t_{1}, \sigma_{2}, \tau_{2}\right\}$ and C_{h} can be represented by ($s_{1}, t_{1}, \sigma_{2}, P_{w}, w, z, P_{z}, \tau_{2}$). Notice that $z \neq \tau_{2}$; otherwise, G_{0} would have a triangle (s_{1}, w, τ_{2}), which is a contradiction. It suffices to merge C_{h} and a 1 -DPC $\left[\left\{\left(\overline{\sigma_{2}}, \bar{z}\right)\right\} \mid G_{1},\left\{\overline{\tau_{2}}\right\}\right]$ with the edges $\left(s_{1}, w\right)$, (z, \bar{z}), and ($\left.\tau_{2}, \overline{\tau_{2}}\right)$ and discard the edges $\left(s_{1}, t_{1}\right),(w, z)$, and $\left(\tau_{2}, s_{1}\right)$.

Repr. 3: $C_{h}=\left(s_{1}, x, t_{1}, \sigma_{2}, P, \tau_{2}\right)$ where $\left\{\overline{\sigma_{2}}, \overline{\tau_{2}}\right\}=\left\{s_{2}, t_{2}\right\}$. There exists an x-chord or σ_{2}-chord w.r.t. C_{h} by Lemma 4(a) since x and σ_{2} have a nonfaulty common neighbor t_{1}. Suppose for the first case that there exists an x-chord (x, w). Then, $w \notin\left\{s_{1}, t_{1}, \sigma_{2}, \tau_{2}\right\}$. In addition, there exists a vertex $z \notin\left\{w, \sigma_{2}, \tau_{2}\right\}$ such that C_{h} can be represented by
($s_{1}, x, t_{1}, \sigma_{2}, P_{w}, w, z, P_{z}, \tau_{2}$) or ($s_{1}, x, t_{1}, \sigma_{2}, P_{z}, z, w, P_{w}, \tau_{2}$). Let wlog C_{h} be the former one. It suffices to merge C_{h} and a 1 -DPC $\left[\left\{\left(\overline{\sigma_{2}}, \bar{z}\right)\right\} \mid G_{1},\left\{\overline{\tau_{2}}\right\}\right]$ with the edges $(x, w),(z, \bar{z})$, and $\left(\tau_{2}, \overline{\tau_{2}}\right)$ and discard the edges $\left(x, t_{1}\right)$, (w, z), and ($\left.\tau_{2}, s_{1}\right)$. Suppose for the second case that there exists no x-chord but a σ_{2}-chord $\left(\sigma_{2}, w\right)$. Then, $w \notin\left\{x, t_{1}\right\}$; moreover, w is not s_{1} by Lemma $4(\mathrm{~b})$ even though w might be τ_{2}. In addition, C_{h} can be represented by ($s_{1}, x, t_{1}, \sigma_{2}, P_{z}, z, w, P_{w}, \tau_{2}$) for some $z \notin\left\{\sigma_{2}, w\right\}$. It suffices to merge C_{h} and a $1-\operatorname{DPC}\left[\left\{\left(\overline{\sigma_{2}}, \bar{z}\right)\right\} \mid G_{1},\left\{\bar{\tau}_{2}\right\}\right]$ with the edges $\left(\sigma_{2}, w\right),(z, \bar{z})$, and ($\left.\tau_{2}, \overline{\tau_{2}}\right)$ and discard the edges $\left(t_{1}, \sigma_{2}\right),(z, w)$, and $\left(\tau_{2}, s_{1}\right)$.

Case 1.4. $k_{2}=2$.
The hamiltonian cycle C_{h} of $G_{0} \backslash F_{0}$ can be expressed in one of the following four representations.
Repr. 1: $C_{h}=\left(s_{1}, s_{2}, P\right)$. Then, for some distinct vertices x and y, C_{h} can be represented by $\left(s_{1}, s_{2}, P_{x}, x, y, P_{y}\right)$ where $\{\bar{x}, \bar{y}\} \cap\left\{t_{1}, t_{2}\right\}=\emptyset$. It suffices to merge C_{h} and a $2-\operatorname{DPC}\left[\left\{\left(\bar{x}, t_{2}\right),\left(\bar{y}, t_{1}\right)\right\} \mid G_{1}, \emptyset\right]$ with the edges (x, \bar{x}) and (y, \bar{y}) and discard $\left(s_{1}, s_{2}\right)$ and (x, y).

Repr. 2: $C_{h}=\left(s_{1}, P, x, s_{2}, P^{\prime}, y\right)$ where $\bar{x} \neq t_{2}, \bar{y} \neq t_{1}$, and $\{\bar{x}, \bar{y}\} \neq\left\{t_{1}, t_{2}\right\}$. It suffices to merge C_{h} and a generalized $2-\operatorname{DPC}\left[\left\{\left(\bar{x}, t_{1}\right),\left(\bar{y}, t_{2}\right)\right\} \mid G_{1}, \emptyset\right]$ with (x, \bar{x}) and (y, \bar{y}) and discard $\left(x, s_{2}\right)$ and $\left(y, s_{1}\right)$.

Repr. 3: $C_{h}=\left(s_{i}, \tau_{i}, s_{j}, P, \tau_{j}\right)$ where $\{i, j\}=\{1,2\}, \bar{\tau}_{i}=t_{i}$, and $\bar{\tau}_{j}=t_{j}$. Let $i=1$ and $j=2$ wlog. Then, $C_{h}=\left(s_{1}, \tau_{1}, s_{2}, P, \tau_{2}\right)$ where $\bar{\tau}_{1}=t_{1}$ and $\overline{\tau_{2}}=t_{2}$. There exists a τ_{1}-chord or τ_{2}-chord by Lemma 4(a). Suppose that there exists a τ_{1}-chord $\left(\tau_{1}, w\right)$. Then $w \notin\left\{s_{1}, s_{2}, \tau_{2}\right\}$; moreover, C_{h} can be represented by ($s_{1}, \tau_{1}, s_{2}, P_{z}, z, w, P_{w}, \tau_{2}$) for some $z \neq s_{2}$, w. It suffices to merge C_{h} and a $1-\operatorname{DPC}\left[\left\{\left(\bar{z}, t_{2}\right)\right\} \mid G_{1},\left\{t_{1}\right\}\right]$ with the edges $\left(\tau_{1}, t_{1}\right),\left(\tau_{1}, w\right)$ and (z, \bar{z}) and discard the edges $\left(s_{1}, \tau_{1}\right),\left(\tau_{1}, s_{2}\right)$, and (z, w). Suppose that there exists no τ_{1}-chord but a τ_{2}-chord $\left(\tau_{2}, w\right)$. Then $w \notin\left\{s_{1}, \tau_{1}\right\}$; furthermore, $w \neq s_{2}$ by Lemma 4(b). Thus, C_{h} can be represented by ($s_{1}, \tau_{1}, s_{2}, P_{w}, w, z, P_{z}, \tau_{2}$) for some $z \neq w$, τ_{2}. It suffices to merge C_{h} and a 1-DPC[\{($\left.\left.\left.\bar{z}, t_{2}\right)\right\} \mid G_{1},\left\{t_{1}\right\}\right]$ with the edges $\left(\tau_{1}, t_{1}\right)$, $\left(\tau_{2}, w\right)$, and (z, \bar{z}) and discard the edges (τ_{1}, s_{2}), and (w, z), and $\left(\tau_{2}, s_{1}\right)$.

Repr. 4: $C_{h}=\left(s_{1}, \tau_{1}, P, \tau_{2}, s_{2}, u, P^{\prime}\right)$ where $u \notin\left\{s_{1}, s_{2}\right\}, \overline{\tau_{1}}=t_{1}$, and $\overline{\tau_{2}}=t_{2}$. There exists a τ_{1}-chord or τ_{2}-chord by Lemma 4(a) unless $m=5$ and $p=2$ where p is the number of faulty common neighbors of τ_{1} and τ_{2}. The exceptional case that $m=5$ and $p=2$ will be dealt with later in Lemma 14 of Section 4.2. Assume wlog that a τ_{1}-chord (τ_{1}, w) exists. We have three subcases depending on the location of w. In the first subcase of $w=s_{2}$, it suffices to merge C_{h} and a $1-\operatorname{DPC}\left[\left\{\left(\bar{u}, t_{1}\right)\right\} \mid G_{1},\left\{t_{2}\right\}\right]$ with the edges $\left(\tau_{1}, s_{2}\right),\left(\tau_{2}, t_{2}\right)$, and (u, \bar{u}) and discard the edges $\left(s_{1}, \tau_{1}\right)$, $\left(\tau_{2}, s_{2}\right)$, and ($\left.s_{2}, u\right)$. In the second subcase that w is on the subpath $\left(P, \tau_{2}\right)$ of C_{h}, C_{h} can be represented by $\left(s_{1}, \tau_{1}, P_{z}, z, w, P_{w}, \tau_{2}, s_{2}, u, P^{\prime}\right)$, where the subpath (w, P_{w}, τ_{2}) may be a one-vertex path $\left(\tau_{2}\right)$. It suffices to merge C_{h} and a $2-\operatorname{DPC}\left[\left\{\left(\bar{u}, t_{1}\right),\left(\bar{z}, t_{2}\right)\right\} \mid G_{1}, \emptyset\right]$ with the edges $\left(\tau_{1}, w\right),(z, \bar{z})$, and (u, \bar{u}) and discard the edges $\left(s_{1}, \tau_{1}\right),(z, w)$, and $\left(s_{2}, u\right)$. In the final subcase that w is on (u, P^{\prime}), C_{h} can be represented by ($s_{1}, \tau_{1}, P, \tau_{2}, s_{2}, u, P_{w}, w, z, P_{z}$), where (u, P_{w}, w) may be a one-vertex path (u). It suffices to merge C_{h} and a 2-DPC[\{($\left.\left.\left.\bar{z}, t_{1}\right),\left(\bar{u}, t_{2}\right)\right\} \mid G_{1}, \emptyset\right]$ with the edges $\left(\tau_{1}, w\right),(u, \bar{u})$, and (z, \bar{z}) and discard the edges $\left(s_{1}, \tau_{1}\right),\left(s_{2}, u\right)$, and (w, z).

Case 2. $f_{1}=f=m-3$.
There is a hamiltonian cycle C_{h} in $G_{1} \backslash F_{1}$ from Lemma 3. We have only two subcases since we assume that $k_{0} \geqslant k_{1}$ and moreover $f_{0} \geqslant f_{1}$ whenever $k_{0}=k_{1}$.

Case 2.1. $k_{0}=2$.
Suppose $m \geqslant 7$ for the first case. Then, there exists a pair of free vertices u and v in G_{0} such that (\bar{u}, \bar{v}) is an edge of C_{h}. Since G_{0} is paired 3-disjoint path coverable by Lemma 2, there exists a 3 - DPC[\{($\left.\left.\left.s_{1}, u\right),\left(v, t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \mid G_{0}, \emptyset\right]$. It suffices to merge the 3-DPC and C_{h} with (u, \bar{u}) and (v, \bar{v}) and discard (\bar{u}, \bar{v}). Suppose $m=6$ for the second case. We claim that there exists a pair of terminal u and free vertex v in G_{0} such that (\bar{u}, \bar{v}) is an edge of C_{h}. Since G_{0} has four terminals and G_{1} has three faults, there exists a terminal u such that \bar{u} is nonfaulty. Let $C_{h}=\left(x_{1}, x_{2}, \ldots, x_{q}\right)$ for some $q \geqslant 2^{5}-3=29$, and \bar{u} be x_{3} wlog. If $\overline{x_{2}}$ is not a terminal, it suffices to pick up the pair ($u, \overline{x_{2}}$); similarly, if $\overline{x_{4}}$ is not a terminal, it suffices to pick up $\left(u, \overline{x_{4}}\right)$. Now assume that both $\overline{x_{2}}$ and $\overline{x_{4}}$ (as well as $\overline{x_{3}}$) are terminals. Then, $\overline{x_{1}}$ or $\overline{x_{5}}$, say $\overline{x_{1}}$, is not a terminal. It suffices to pick up a pair of terminal $\overline{x_{2}}$ and free vertex $\overline{x_{1}}$. Thus, the claim is proved. Assume wlog that s_{1} is such terminal u of the claim. It suffices to merge C_{h} and a $2-\operatorname{DPC}\left[\left\{\left(v, t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \mid G_{0},\left\{s_{1}\right\}\right]$ with $\left(s_{1}, \overline{s_{1}}\right)$ and (v, \bar{v}) and discard $\left(\overline{s_{1}}, \bar{v}\right)$. The existence of the 1 -fault 2-DPC in G_{0} is due to Lemma 2 . The last case of $m=5$ will be dealt with later in Lemma 15 of Section 4.2.

Case 2.2. $k_{0}=k_{2}=1$.
Let the hamiltonian cycle C_{h} of $G_{1} \backslash F_{1}$ be (t_{2}, x, P, y) where $t_{2} \neq x, y$. Suppose $\{\bar{x}, \bar{y}\} \neq\left\{s_{1}, t_{1}\right\}$ for the first case. We assume wlog that $\bar{x} \notin\left\{s_{1}, t_{1}\right\}$. Then, it suffices to merge C_{h} and a generalized 2-DPC[\{(s $\left.\left.\left.s_{1}, t_{1}\right),\left(s_{2}, \bar{x}\right)\right\} \mid G_{0}, \emptyset\right]$ with the edge (\bar{x}, x) and discard the edge $\left(t_{2}, x\right)$. Suppose $\{\bar{x}, \bar{y}\}=\left\{s_{1}, t_{1}\right\}$ for the second case. There exists an x-chord or y-chord w.r.t. C_{h} by Lemma 4(a). Assume wlog that an x-chord (x, w) exists. Then, $w \notin\left\{t_{2}, y\right\}$; moreover, C_{h} can be represented by $\left(t_{2}, x, P_{z}, z, w, P_{w}, y\right)$ for some $z \neq x, w$. It suffices to merge C_{h} and a generalized 2-DPC[\{($\left.\left.s_{1}, t_{1}\right),\left(s_{2}, \bar{z}\right)\right\} \mid G_{0}$, Ø] with the edges (\bar{z}, z) and (x, w) and discard the edges $\left(t_{2}, x\right)$ and (z, w).

Case 3. $f_{0}<f$ and $f_{1}<f$.
We have four subcases depending on the distribution of terminals: $k_{0}=2, k_{0}=k_{2}=1, k_{0}=k_{1}=1$, and $k_{2}=2$. Suppose $k_{0}=2$ for the first subcase. Then, there exists a 2 - $\operatorname{DPC}\left[\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \mid G_{0}, F_{0}\right]$ unless $m=5$ and $f_{0}=1$. The 2-DPC exists by the induction hypothesis if $m \geqslant 6$, and by Lemma 2 if $m=5$ and $f_{0}=0$. The exceptional case that $m=5$ and $f_{0}=1$ will be dealt with later in Lemma 16 of Section 4.2. A path in the 2-DPC of G_{0} has an edge (u, v) such that both (u, \bar{u}) and (v, \bar{v}) are free. It suffices to merge the 2 -DPC of G_{0} and a 1 -DPC $\left\{\{(\bar{u}, \bar{v})\} \mid G_{1}, F_{1}\right]$ with the edges (u, \bar{u}) and (v, \bar{v}) and discard the edge (u, v). Suppose $k_{0}=k_{2}=1$ for the second subcase. Unless $m=5$ and $f_{0}=1$, there exists a $2-\operatorname{DPC}\left[\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, x\right)\right\} \mid G_{0}, F_{0}\right]$ for some vertex x such that (x, \bar{x}) is free. The exceptional case that $m=5$ and $f_{0}=1$ is deferred to Lemma 16. It suffices to merge the 2-DPC of G_{0} and a 1-DPC[\{($\left.\left.\left.\bar{x}, t_{2}\right)\right\} \mid G_{1}, F_{1}\right]$ with edge (x, \bar{x}). In the third subcase of $k_{0}=k_{1}=1$, it suffices to merge a $1-\operatorname{DPC}\left[\left\{\left(s_{1}, t_{1}\right)\right\} \mid G_{0}, F_{0}\right]$ and a $1-\operatorname{DPC}\left[\left\{\left(s_{2}, t_{2}\right)\right\} \mid G_{1}, F_{1}\right]$. Suppose $k_{2}=2$ for the last subcase. Unless $m=5$ and $f_{0}=1$, there exists a $2-\operatorname{DPC}\left[\left\{\left(s_{1}, x\right),\left(s_{2}, y\right)\right\} \mid G_{0}, F_{0}\right]$ for some vertices x and y such that (x, \bar{x}) and (y, \bar{y}) are free. The exceptional case is deferred to Lemma 16. It suffices to merge the 2 -DPC of G_{0} and a 2-DPC[\{($\left.\left.\left.\bar{x}, t_{1}\right),\left(\bar{y}, t_{2}\right)\right\} \mid G_{1}, F_{1}\right]$ with edges (x, \bar{x}) and (y, \bar{y}). The 2-DPC of G_{1} exists by the induction hypothesis if $m \geqslant 6$, and by Lemma 2 if $m=5$ and $f_{1}=0$. We do not have to consider the situation that $m=5$ and $f_{1}=1$ since it arises only in the deferred case that $m=5$ and $f_{0}=1$. This completes the entire proof.

Corollary 1. Every m-dimensional RHL graph is $(m-3)$-fault unpaired 2-disjoint path coverable where $m \geqslant 5$.

Corollary 2. Suppose that a graph G in $R H L_{m}$ has a fault set F where $m \geqslant 5$ and $|F| \leqslant m-3$. Then, the graph $G \backslash F$ has a hamiltonian path between any two vertices s and that passes through an arbitrary prescribed edge (x, y) in the direction from x to y provided $\{s, t\} \cap\{x, y\}=\emptyset$.

4. Three exceptional cases

We first study several properties on DPCs of 4-dimensional RHL graphs in Section 4.1, and then, utilizing them, deal with the three exceptional cases of the proof of Theorem 1 in Section 4.2.

4.1. Properties of RHL_{4}

The DPC properties of RHL_{4} are addressed in Lemmas 5 through 13. All the lemmas given in this subsection, except Lemma 12, were verified by computer programs that exhaustively searched (generalized) DPCs in the 4-dimensional RHL graphs mostly on the basis of depth-first-search.

Every graph in RHL_{4} is 1 -fault hamiltonian-connected by Lemma 3; however, none is 2 -fault hamiltonian-connected. The following lemma shows that given two faults, there exist at least two nonfaulty vertices that have a hamiltonian path to any other nonfaulty vertex.

Lemma 5. Let $G \in R H L_{4}$ have a fault set $F,|F|=2$. Then, there exists a subset X of nonfaulty vertices, $|X| \geqslant 2$, such that for each $x \in X$, there exists a 1 - $\operatorname{DPC}[\{(x, y)\} \mid G, F]$ for any nonfaulty vertex $y \neq x$.

Every graph in RHL_{4} is (paired) 2-disjoint path coverable by Lemma 2; however, none except one graph is 1-fault 2-disjoint path coverable. ${ }^{1}$ The following lemma shows that given a single fault and three terminals s_{1}, t_{1}, and s_{2}, there exists a generalized 2-DPC joining pairs (s_{1}, t_{1}) and (s_{2}, x) for some nonfaulty vertex x.

Lemma 6. Let $G \in R H L_{4}$ have a fault set $F,|F|=1$, and three terminals s_{1}, t_{1}, and s_{2} be given in $G \backslash F$. Then, there exists a subset X of nonfaulty vertices, $|X| \geqslant 3$, such that for each $x \in X$, there exists a generalized 2-DPC[\{($\left.\left.\left.s_{1}, t_{1}\right),\left(s_{2}, x\right)\right\} \mid G, F\right]$.

No graph in RHL_{4} is (1-fault) 3-disjoint path coverable by Lemma 1 (b). Lemmas 7 and 8 show that given a fault set F, $|F| \leqslant 1$, and four terminals s_{1}, t_{1}, s_{2}, and t_{2}, we can always pick up two nonfaulty vertices x and y such that there exists a generalized 3-DPC: one path of the generalized 3-DPC joins s_{i} and t_{i}, and the other two join $\left\{s_{j}, t_{j}\right\}$ and $\{x, y\}$, where $\{i, j\}=\{1,2\}$.

Lemma 7. Let four terminals s_{1}, t_{1}, s_{2}, and t_{2} be given in $G \in R H L_{4}$. Then, for any vertex x in G (whether it is a terminal or not), there exists a subset Y_{x} of vertices (depending on x), $\left|Y_{x}\right| \geqslant 3$, such that for each $y \in Y_{x}$, at least one of the following four DPCs exists where $F=\emptyset:$

[^1]

Fig. 3. Graphs H_{a} and H_{b}.

- a generalized 3-DPC[\{($\left.\left.\left.s_{1}, t_{1}\right),\left(s_{2}, x\right),\left(y, t_{2}\right)\right\} \mid G, F\right]$,
- a generalized 3-DPC[\{($\left.\left.\left.s_{1}, t_{1}\right),\left(s_{2}, y\right),\left(x, t_{2}\right)\right\} \mid G, F\right]$,
- a generalized 3-DPC[\{($\left.\left.\left.s_{1}, x\right),\left(y, t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \mid G, F\right]$, and
- a generalized 3-DPC[\{($\left.\left.\left.s_{1}, y\right),\left(x, t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \mid G, F\right]$.

Lemma 8. Let $G \in R H L_{4}$ have a fault set $F,|F|=1$, and four terminals s_{1}, t_{1}, s_{2}, and t_{2} be given in $G \backslash F$. Then, there exists a subset X of nonfaulty vertices (whether terminals or not), $|X| \geqslant 2$, such that for each $x \in X$, there exists a subset Y_{x} of nonfaulty vertices, $\left|Y_{x}\right| \geqslant 2$, such that for each $y \in Y_{x}$, at least one of the four DPCs of Lemma 7 exists.

Hereafter, we are concerned with 4-dimensional RHL graphs with two terminals s_{1} and s_{2} given. We introduce the notions of good, excellent, and perfect vertices.

Definition 3. Let $G \in R H L_{4}$ have a fault set F, and two terminals s_{1} and s_{2} be given in $G \backslash F$. For a free vertex x, we let Y_{x} be the set of free vertices such that any $y \in Y_{x}$ admits both a 2-DPC $\left[\left\{\left(s_{1}, x\right),\left(s_{2}, y\right)\right\} \mid G, F\right]$ and a 2-DPC $\left[\left\{\left(s_{1}, y\right),\left(s_{2}, x\right)\right\} \mid G, F\right]$. Then, x is said to be good, excellent, and perfect, respectively, if $\left|Y_{x}\right| \geqslant 4,\left|Y_{x}\right| \geqslant 8$, and $\left|Y_{x}\right|=\left|V(G) \backslash\left(F \cup\left\{s_{1}, s_{2}, x\right\}\right)\right|$.

Lemma 9. Let $G \in R H L_{4}$ have a fault set $F,|F|=1$, and two terminals s_{1} and s_{2} be given in $G \backslash F$.
(a) $G \backslash F$ has at least eight excellent vertices.
(b) If $G \backslash F$ has exactly eight excellent vertices, then (i) all the free vertices are good, (ii) at least two free vertices are perfect, and (iii) there exists a subset Y of free vertices, $|Y| \geqslant 4$, such that for each $y \in Y$, there exists a generalized 2-DPC[\{($\left.\left.s_{1}, s_{1}\right),\left(s_{2}, y\right)\right\} \mid$ $G, F]$ (and symmetrically, there exists a subset Y^{\prime} of free vertices, $\left|Y^{\prime}\right| \geqslant 4$, such that for each $y \in Y^{\prime}$, there exists a generalized $\left.2-\operatorname{DPC}\left[\left\{\left(s_{1}, y\right),\left(s_{2}, s_{2}\right)\right\} \mid G, F\right]\right)$.

The remaining part of this subsection is concerned with the first exceptional case of the proof of Theorem 1 where $f_{0}=f=2$ and $k_{2}=2$. Two graphs H_{a} and H_{b} introduced below are useful to describe the component G_{0} of a 5-dimensional RHL graph $G_{0} \oplus G_{1}$ in the first exceptional case. Each of the two graphs H_{a} and H_{b} has 14 vertices and 24 edges as shown in Fig. 3. The four vertices of each are labeled with $\dot{s}_{1}, \dot{s_{2}}, \dot{\tau}_{1}$, and $\dot{\tau}_{2}$ so that $\left\{\dot{s_{1}}, \dot{s_{2}}\right\}=\{9,12\}, \dot{\tau}_{1}=1$, and $\dot{\tau}_{2}=4$. The two graphs have a structural similarity that $H_{a} \backslash\left\{\dot{s_{1}}, \dot{s_{2}}\right\}$ is isomorphic to $H_{b} \backslash\left\{\dot{s_{1}}, \dot{s_{2}}\right\}$.

Lemma 10. Let $G_{0} \in R H L_{4}$ have a fault set F composed of two vertices. Given two sources s_{1} and s_{2} and two free vertices τ_{1} and τ_{2} in $G_{0} \backslash F$, suppose that there exists no pair of vertices u and v in $G_{0} \backslash F$ such that $u \neq \tau_{2}, v \neq \tau_{1},\{u, v\} \neq\left\{\tau_{1}, \tau_{2}\right\}$, and a generalized 2-DPC[\{($\left.\left.\left.s_{1}, u\right),\left(s_{2}, v\right)\right\} \mid G_{0}, F\right]$ exists. Then, $G_{0} \backslash F$ is isomorphic to H_{a} or H_{b} under a mapping ρ such that $\rho\left(s_{1}\right)=\dot{s_{1}}, \rho\left(s_{2}\right)=\dot{s_{2}}$, $\rho\left(\tau_{1}\right)=\dot{\tau_{1}}$, and $\rho\left(\tau_{2}\right)=\dot{\tau_{2}}$.

Lemma 11. For each triple $(u, v,\{x, y\})$ of the following 26 ones, H_{a} has a $3-\operatorname{DPC}\left[\left\{\left(\dot{s_{1}}, u\right),\left(\dot{s_{2}}, v\right),(x, y)\right\} \mid H_{a}, \emptyset\right]$ and $\{u, v, x, y\} \cap$ $\left\{\dot{s_{1}}, \dot{s_{2}}, \dot{\tau}_{1}, \dot{\tau}_{2}\right\}=\emptyset:(2,6,\{8,13\}),(2,8,\{11,13\}),(2,10,\{8,13\}),(2,13,\{7,8\}),(6,7,\{8,13\}),(6,13,\{8,10\}),(7,3,\{8,13\})$, $(7,8,\{10,13\}),(7,10,\{8,13\}),(7,13,\{8,15\}),(8,3,\{6,13\}),(8,6,\{13,14\}),(8,7,\{11,13\}),(8,10,\{7,13\}),(8,13,\{10,11\})$, $(10,8,\{6,13\}),(10,11,\{8,13\}),(11,3,\{8,13\}),(11,6,\{8,13\}),(11,8,\{13,14\}),(11,13,\{6,8\}),(13,3,\{8,10\}),(13,6,\{8,11\})$, $(13,8,\{6,7\}),(13,10,\{8,15\})$, and $(13,11,\{7,8\})$.

Lemma 12. For each $(u, v,\{x, y\})$ of the 26 triples of Lemma $11, H_{b}$ also has a 3-DPC[\{(定, $\left.\left.\left.u\right),\left(\dot{s_{2}}, v\right),(x, y)\right\} \mid H_{b}, \emptyset\right]$ and $\{u, v, x, y\} \cap\left\{\dot{s_{1}}, \dot{s_{2}}, \dot{\tau_{1}}, \dot{\tau_{2}}\right\}=\emptyset$.

Proof. It holds that $\{u, v, x, y\} \cap\left\{\dot{s_{1}}, \dot{s_{2}}, \dot{\tau}_{1}, \dot{\tau}_{2}\right\}=\emptyset$ since $\left\{\dot{s_{1}}, \dot{s_{2}}, \dot{\tau}_{1}, \dot{\tau_{2}}\right\}$ of H_{b} is equal to that of H_{a}. Suppose that there is a 3-DPC $\left[\left\{\left(\dot{s_{1}}, u\right),\left(\dot{s_{2}}, v\right),(x, y)\right\} \mid H_{a}, \emptyset\right]$ in H_{a} for some triple $(u, v,\{x, y\})$. Then, the path starting from $\dot{s_{1}}$ in the 3-DPC definitely includes subpath $(9,1,2)$ since $\dot{\tau}_{1}$ of degree two should be an intermediate vertex of a path in the DPC. Similarly, the path starting from $\dot{s_{2}}$ includes subpath $(12,4,3)$. If the two subpaths $(9,1,2)$ and $(12,4,3)$ respectively are replaced
with $(12,1,2)$ and $(9,4,3)$, the resulting DPC is indeed a $3-\operatorname{DPC}\left[\left\{\left(\dot{s_{1}}, u\right),\left(\dot{s_{2}}, v\right),(x, y)\right\} \mid H_{b}, \emptyset\right]$ of H_{b} for the same triple (u, v, $\{x, y\}$).

Definition 4 is also concerned with the first exceptional case of the proof of Theorem 1 where $f_{0}=f=2$ and $k_{2}=2$; thus, two sinks t_{1} and t_{2} are given in the component G_{1} of a 5-dimensional RHL graph $G_{0} \oplus G_{1}$.

Definition 4. For a graph $G_{1} \in R H L_{4}$ with two sinks t_{1} and t_{2} given, a triple ($u, v,\{x, y\}$) with $\{u, v, x, y\} \cap\left\{t_{1}, t_{2}\right\}=\emptyset$ is called to be successful if at least one of the following four DPCs exists:

- a 3-DPC[\{ $\left.\left.\left(t_{1}, u\right),\left(t_{2}, x\right),(v, y)\right\} \mid G_{1}, \emptyset\right]$,
- a 3-DPC[\{ $\left.\left.\left(t_{1}, u\right),\left(t_{2}, y\right),(v, x)\right\} \mid G_{1}, \emptyset\right]$,
- a 3-DPC[\{($\left.\left.\left.t_{2}, v\right),\left(t_{1}, x\right),(u, y)\right\} \mid G_{1}, \emptyset\right]$, and
- a 3-DPC[\{(t2,v), $\left.\left.\left(t_{1}, y\right),(u, x)\right\} \mid G_{1}, \emptyset\right]$.

Lemma 13. Let G_{0} satisfy the conditions of Lemma 10 (i.e., its fault set F is composed of two vertices; two sources s_{1} and s_{2} and two free vertices τ_{1} and τ_{2} are given in $G_{0} \backslash F$; there exists no pair of vertices u and v in $G_{0} \backslash F$ such that $u \neq \tau_{2}, v \neq \tau_{1},\{u, v\} \neq\left\{\tau_{1}, \tau_{2}\right\}$, and a generalized 2-DPC[\{($\left.\left.\left.s_{1}, u\right),\left(s_{2}, v\right)\right\} \mid G_{0}, F\right]$ exists). Let G_{1} be another graph in $R H L_{4}$ with two sinks t_{1} and t_{2} given. Then, for every bijection ϕ from $V\left(G_{0}\right)$ to $V\left(G_{1}\right)$ such that $\phi\left(\tau_{1}\right)=t_{1}$ and $\phi\left(\tau_{2}\right)=t_{2}$, there exists a triple $(u, v,\{x, y\})$ in G_{0} with $\{u, v, x, y\} \cap$ $\left\{s_{1}, s_{2}, \tau_{1}, \tau_{2}\right\}=\emptyset$ such that a 3-DPC[\{(s, $\left.\left.\left.u\right),\left(s_{2}, v\right),(x, y)\right\} \mid G_{0}, F\right]$ exists and its corresponding triple $(\phi(u), \phi(v),\{\phi(x), \phi(y)\})$ of G_{1} is successful.

Lemma 13 was verified by an expedient discussed below, because a straightforward examination of every bijection is extremely time-consuming and practically impossible. Each graph G_{0} of Lemma 13 with F being removed is isomorphic to H_{a} or H_{b} by Lemma 10 under a mapping ρ such that $\rho\left(s_{1}\right)=\dot{s_{1}}, \rho\left(s_{2}\right)=\dot{s_{2}}, \rho\left(\tau_{1}\right)=\dot{\tau_{1}}$ and $\rho\left(\tau_{2}\right)=\dot{\tau_{2}}$. Thus, we can restrict our attention to H_{a} and H_{b} although a dozen or so graphs in $R H L_{4}$ satisfy the conditions of Lemma 10. Besides, H_{a} and H_{b} fortunately have the same set of 26 triples shown in Lemma 11 such that for each triple ($u, v,\{x, y\}$) with $\{u, v, x, y\} \cap\left\{\dot{s_{1}}, \dot{s_{2}}, \dot{\tau}_{1}, \dot{\tau}_{2}\right\}=\emptyset$, there exists a 3-DPC for pairs $\left(\dot{s_{1}}, u\right),\left(\dot{s_{2}}, v\right)$, and (x, y). Thus, we again restrict our attention only to H_{a}.

Each graph in RHL_{4} with two sinks given turned out to have a dominantly large number of successful triples. Thus, we list the triples not successful for each pair of terminals t_{1} and t_{2} in an arbitrary graph G_{1} of $R H L_{4}$ such that for each triple ($u, v,\{x, y\}$) with $\{u, v, x, y\} \cap\left\{t_{1}, t_{2}\right\}=\emptyset$, there exists none of the four DPCs of Definition 4. After that, it suffices to check whether or not there exists a bijection ϕ from $V\left(H_{a}\right) \cup\{0,5\}$ to $V\left(G_{1}\right)$ such that $\phi\left(\tau_{1}\right)=t_{1}, \phi\left(\tau_{2}\right)=t_{2}$, and all of the 26 triples of Lemma 11 are mapped to the triples of G_{1} not successful. No such bijection was detected for any pair of terminals t_{1} and t_{2} in the graph G_{1}. As a result, Lemma 13 was verified.

4.2. Lemmas for the exceptional cases

The DPC properties of RHL_{4} discussed in Section 4.1 allow us to prove the three exceptional cases of the proof of Theorem 1. All of the exceptional cases are for $m=5$, which will be dealt with one by one in the following lemmas.

Lemma 14. Every 5-dimensional RHL graph $G_{0} \oplus G_{1}$ has a paired 2-DPC when $f_{0}=f=2, k_{2}=2, G_{0}$ contains two faulty vertices, and $G_{0} \backslash F$ has a hamiltonian cycle of the form ($\left.s_{1}, \overline{t_{1}}, P, \overline{t_{2}}, s_{2}, u, P^{\prime}\right)$.

Proof. Suppose that there exists a desirable pair of vertices u and v in $G_{0} \backslash F$ such that $u \neq \overline{t_{2}}, v \neq \overline{t_{1}},\{u, v\} \neq\left\{\overline{t_{1}}, \overline{t_{2}}\right\}$, and a generalized 2-DPC[\{($\left.\left.\left.s_{1}, u\right),\left(s_{2}, v\right)\right\} \mid G_{0}, F\right]$ exists. As shown in Fig. 4(a), it suffices to merge the generalized 2-DPC of G_{0} and a generalized $2-\operatorname{DPC}\left[\left\{\left(\bar{u}, t_{1}\right),\left(\bar{v}, t_{2}\right)\right\} \mid G_{1}, \emptyset\right]$ with edges (u, \bar{u}) and (v, \bar{v}). On the contrary, suppose that there exists no such desirable pair in $G_{0} \backslash F$. Then, G_{0} satisfies the conditions of Lemma 10 under the assumption that $\overline{t_{1}}=\overline{\tau_{1}}$ and $\overline{t_{2}}=\tau_{2}$. Thus, there exists a triple ($u, v,\{x, y\}$) in $G_{0} \backslash F$ with $\{u, v, x, y\} \cap\left\{s_{1}, s_{2}, \tau_{1}, \tau_{2}\right\}=\emptyset$, by Lemma 13 , such that a 3-DPC[\{(s,$\left.\left.u),\left(s_{2}, v\right),(x, y)\right\} \mid G_{0}, F\right]$ exists and its corresponding triple $(\bar{u}, \bar{v},\{\bar{x}, \bar{y}\})$ of G_{1} is successful. So, at least one of the four 3-DPCs of Definition 4 exists. Whichever 3-DPC exists, say a 3-DPC[\{($\left.\left.\left.t_{1}, \bar{u}\right),\left(t_{2}, \bar{x}\right),(\bar{v}, \bar{y})\right\} \mid G_{1}, \emptyset\right]$, it suffices to merge the 3-DPC of G_{0} and the 3 -DPC of G_{1} with edges $(u, \bar{u}),(v, \bar{v}),(x, \bar{x})$, and (y, \bar{y}) as shown in Fig. 4(b).

Lemma 15. Every 5-dimensional RHL graph $G_{0} \oplus G_{1}$ has a paired 2-DPC when $f_{1}=f=2$ and $k_{0}=2$.
Proof. There exists a nonfaulty vertex x in G_{1}, by Lemma 5, such that a $1-\operatorname{DPC}\left[\left\{\left(x, x^{\prime}\right)\right\} \mid G_{1}, F_{1}\right]$ exists for any nonfaulty vertex $x^{\prime} \neq x$. Then, for the vertex \bar{x} in G_{0}, there exists at least one vertex \bar{y} in $G_{0}, y \notin F_{1}$, such that one of the four generalized 3-DPCs of Lemma 7 exists. Recall that $\left|F_{1}\right|=2$. Whichever generalized 3-DPC exists, say a generalized $3-\operatorname{DPC}\left[\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, \bar{x}\right),\left(\bar{y}, t_{2}\right)\right\} \mid G_{0}, \emptyset\right]$, it suffices to merge the generalized 3-DPC of G_{0} and a 1-DPC[\{(x,y)\}| $\left.G_{1}, F_{1}\right]$ of G_{1} with edges (x, \bar{x}) and (y, \bar{y}).

Fig. 4. Illustration of the proof of Lemma 14.
Lemma 16. Every 5-dimensional RHL graph $G_{0} \oplus G_{1}$ has a paired 2-DPC when $f_{0}=1$ and $f_{1}+f_{2}=1$.
Proof. The case of $k_{0}=k_{1}=1$ was already covered in the proof of Theorem 1. There remain three cases.
Case 1. $k_{0}=2$.
There exists a pair of nonfaulty vertices x and y in G_{0}, by Lemma 8, such that one of the four generalized 3-DPCs of Lemma 7 exists in G_{0} and \bar{x}, $(x, \bar{x}), \bar{y}$, and (y, \bar{y}) are all nonfaulty. Recall that $f_{1}+f_{2}=1$. Whichever generalized 3-DPC exists, it suffices to merge the generalized 3-DPC of G_{0} and a 1-DPC[\{($\left.\left.\left.\bar{x}, \bar{y}\right)\right\} \mid G_{1}, F_{1}\right]$ with edges (x, \bar{x}) and (y, \bar{y}).

Case 2. $k_{0}=k_{2}=1$.
There exists at least one nonfaulty vertex x in G_{0}, by Lemma 6 , such that $\bar{x} \neq t_{2}, \bar{x} \notin F,(x, \bar{x}) \notin F$, and a generalized $2-\operatorname{DPC}\left[\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, x\right)\right\} \mid G_{0}, F_{0}\right]$ exits. It suffices to merge the generalized 2-DPC of G_{0} and a 1 -DPC $\left[\left\{\left(\bar{x}, t_{2}\right)\right\} \mid G_{1}, F_{1}\right]$ with edge (x, \bar{x}).

Case 3. $k_{2}=2$.
Case 3.1. $f_{1}=0\left(f_{2}=1\right)$.
Since $G_{0} \backslash F_{0}$ has at least eight excellent vertices by Lemma 9(a), there is an excellent vertex x of G_{0} such that (x, \bar{x}) is free. Then, there exists a free vertex $y \neq x$ in G_{0}, due to Definition 3 , such that (y, \bar{y}) is free and a $2-\operatorname{DPC}\left[\left\{\left(s_{1}, x\right),\left(s_{2}, y\right)\right\} \mid\right.$ $\left.G_{0}, F_{0}\right]$ exists. It suffices to merge the 2 -DPC of G_{0} and a 2 -DPC $\left[\left\{\left(\bar{x}, t_{1}\right),\left(\bar{y}, t_{2}\right)\right\} \mid G_{1}, \emptyset\right]$ in G_{1} with edges (x, \bar{x}) and (y, \bar{y}).

Case 3.2. $f_{1}=1\left(f_{2}=0\right)$.
There are 16 nonfaulty edges of the type (x, \bar{x}) for $x \in V\left(G_{0}\right)$ since $f_{2}=0$. Suppose for the first case that there exists an edge (x, \bar{x}) such that x and \bar{x} are excellent vertices of G_{0} and G_{1}, respectively. Then, there exists a subset Y_{x} of free vertices, $\left|Y_{x}\right| \geqslant 8$, in G_{0} such that for each $y \in Y_{x}$, a 2-DPC $\left[\left\{\left(s_{1}, x\right),\left(s_{2}, y\right)\right\} \mid G_{0}, F_{0}\right]$ exists. In addition, there exists a subset $Y_{\bar{x}}$ of free vertices, $\left|Y_{\bar{x}}\right| \geqslant 8$, in G_{1} such that for each $z \in Y_{\bar{x}}$, a $2-\operatorname{DPC}\left[\left\{\left(t_{1}, \bar{x}\right),\left(t_{2}, z\right)\right\} \mid G_{1}, F_{1}\right]$ exists. Since $x \notin Y_{x}$ and $\bar{x} \notin Y_{\bar{x}}$, there exists a free vertex $y \in Y_{x}$ where $\bar{y} \in Y_{\bar{x}}$. It suffices to merge a $2-\operatorname{DPC}\left[\left\{\left(s_{1}, x\right),\left(s_{2}, y\right)\right\} \mid G_{0}, F_{0}\right]$ and a $2-\operatorname{DPC}\left[\left\{\left(t_{1}, \bar{x}\right),\left(t_{2}, \bar{y}\right)\right\} \mid G_{1}, F_{1}\right]$ with (x, \bar{x}) and (y, \bar{y}).

Now, suppose for the second case that there exists no such edge (x, \bar{x}). Since each of G_{0} and G_{1} has at least eight excellent vertices by Lemma 9(a), each should have exactly eight excellent vertices. Thus, there exists a perfect vertex x in G_{0}, by Lemma 9(b), such that $\bar{x} \notin F_{1}$. Then, for any free vertex $w \neq x$ in G_{0}, there exists a 2 - $\operatorname{DPC}\left[\left\{\left(s_{1}, x\right),\left(s_{2}, w\right)\right\} \mid G_{0}, F_{0}\right]$ as well as a $2-\operatorname{DPC}\left[\left\{\left(s_{1}, w\right),\left(s_{2}, x\right)\right\} \mid G_{0}, F_{0}\right]$. We have two subcases depending on whether \bar{x} is a terminal or not. Suppose for the first subcase that $\bar{x} \notin\left\{t_{1}, t_{2}\right\}$. Then, \bar{x} is a good vertex of G_{1} by Lemma 9 (b) since G_{1} has exactly eight excellent vertices. Thus, there is a subset $Y_{\bar{x}}$ of free vertices, $\left|Y_{\bar{x}}\right| \geqslant 4$, in G_{1} such that for each $y \in Y_{\bar{x}}$, a 2 - $\operatorname{DPC}\left[\left\{\left(t_{1}, \bar{x}\right),\left(t_{2}, y\right)\right\} \mid\right.$ G_{1}, F_{1}] exists. Since $\left|Y_{\bar{x}}\right| \geqslant 4$, it is possible to pick up a vertex y in $Y_{\bar{x}}$ such that \bar{y} is free. It suffices to merge a 2-DPC[\{($\left.\left.\left.s_{1}, x\right),\left(s_{2}, \bar{y}\right)\right\} \mid G_{0}, F_{0}\right]$ and the 2 -DPC of G_{1} with edges (x, \bar{x}) and (\bar{y}, y). Suppose for the second subcase that $\bar{x} \in\left\{t_{1}, t_{2}\right\}$. Let \bar{x} be t_{1} first. Then, there exists a subset Y of free vertices, $|Y| \geqslant 4$, in G_{1}, by Lemma $9(\mathrm{~b})$, such that for each $y \in Y$, a generalized 2-DPC[\{($\left.\left.\left.t_{1}, t_{1}\right),\left(t_{2}, y\right)\right\} \mid G_{1}, F_{1}\right]$ exists. It suffices to pick up y in Y such that \bar{y} is free, and merge a 2-DPC[\{($\left.\left.\left.s_{1}, x\right),\left(s_{2}, \bar{y}\right)\right\} \mid G_{0}, F_{0}\right]$ and the generalized 2-DPC of G_{1} with (x, \bar{x}) and (\bar{y}, y). If \bar{x} is t_{2}, then symmetrically, it suffices to merge a 2-DPC[\{($\left.\left.\left.s_{1}, \bar{y}\right),\left(s_{2}, x\right)\right\} \mid G_{0}, F_{0}\right]$ and a generalized 2-DPC[\{(t,y), ($\left.\left.\left.t_{2}, t_{2}\right)\right\} \mid G_{1}, F_{1}\right]$, for some y, with (x, \bar{x}) and (\bar{y}, y).

5. Conclusion

We proved that every m-dimensional RHL graph, $m \geqslant 5$, is ($m-3$)-fault paired 2-disjoint path coverable, and thus it is also ($m-3$)-fault unpaired 2-disjoint path coverable. The bound $m-3$ on the number of faults is the maximum possible for the m-dimensional RHL graph to be paired (resp. unpaired) 2-disjoint path coverable. It is our conjecture that every m-dimensional RHL graph, $m \geqslant 5$, is (a) f-fault unpaired k-disjoint path coverable for any f and $k \geqslant 2$ subject to $f+k \leqslant m-1$, and (b) f-fault paired k-disjoint path coverable for any f and $k \geqslant 2$ subject to $f+2 k \leqslant m+1$.

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. 2012R1A1A2005511). This work was also supported by the Catholic University of Korea, Research Fund, 2013.

References

[1] K. Asdre, S.D. Nikolopoulos, The 1-fixed-endpoint path cover problem is polynomial on interval graphs, Algorithmica 58 (3) (2010) 679-710.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, 2nd printing, Springer, 2008.
[3] R. Caha, V. Koubek, Hamiltonian cycles and paths with a prescribed set of edges in hypercubes and dense sets, J. Graph Theory 51 (2) (2006) 137-169.
[4] F.B. Chedid, On the generalized twisted cube, Inform. Process. Lett. 55 (1995) 49-52.
[5] X.-B. Chen, Many-to-many disjoint paths in faulty hypercubes, Inform. Sci. 179 (18) (2009) 3110-3115.
[6] X.-B. Chen, Paired many-to-many disjoint path covers of hypercubes with faulty edges, Inform. Process. Lett. 112 (3) (2012) 61-66.
[7] X.-B. Chen, Paired many-to-many disjoint path covers of the hypercubes, Inform. Sci. 236 (2013) 218-223.
[8] P. Cull, S. Larson, The Möbius cubes, in: Proc. of the 6th IEEE Distributed Memory Computing Conf., 1991, pp. 699-702.
[9] T. Dvořák, P. Gregor, Hamiltonian paths with prescribed edges in hypercubes, Discrete Math. 307 (2007) 1982-1998.
[10] T. Dvořák, P. Gregor, Partitions of faulty hypercubes into paths with prescribed endvertices, SIAM J. Discrete Math. 22 (4) (2008) $1448-1461$.
[11] K. Efe, A variation on the hypercube with lower diameter, IEEE Trans. Comput. 40 (11) (1991) 1312-1316.
[12] K. Efe, The crossed cube architecture for parallel computation, IEEE Trans. Parallel Distrib. Syst. 3 (5) (1992) 513-524.
[13] P. Gregor, T. Dvořák, Path partitions of hypercubes, Inform. Process. Lett. 108 (6) (2008) 402-406.
[14] P.A.J. Hilbers, M.R.J. Koopman, J.L.A. van de Snepscheut, The twisted cube, in: J. Bakker, A. Nijman, P. Treleaven (Eds.), PARLE: Parallel Architectures and Languages Europe, vol. I: Parallel Architectures, Springer, 1987, pp. 152-159.
[15] S.-Y. Hsieh, C.-W. Lee, Conditional edge-fault hamiltonicity of matching composition networks, IEEE Trans. Parallel Distrib. Syst. 20 (4) (Apr. 2009) 581-592.
[16] S.-Y. Hsieh, C.-W. Lee, Pancyclicity of restricted hypercube-like networks under the conditional fault model, SIAM J. Discrete Math. 23 (4) (2010) 2100-2119.
[17] L.-H. Hsu, C.-K. Lin, Graph Theory and Interconnection Networks, CRC Press, 2008.
[18] S. Jo, J.-H. Park, K.Y. Chwa, Paired 2-disjoint path covers and strongly Hamiltonian laceability of bipartite hypercube-like graphs, Inform. Sci. 242 (2013) 103-112.
[19] S. Jo, J.-H. Park, K.Y. Chwa, Paired many-to-many disjoint path covers in faulty hypercubes, Theoret. Comput. Sci. 513 (2013) 1-24.
[20] S.-Y. Kim, J.-H. Lee, J.-H. Park, Disjoint path covers in recursive circulants $G\left(2^{m}, 4\right)$ with faulty elements, Theoret. Comput. Sci. 412 (35) (2011) 4636-4649.
[21] S.-Y. Kim, J.-H. Park, Paired many-to-many disjoint path covers in recursive circulants G(2m ${ }^{m}$), IEEE Trans. Comput. 62 (12) (Dec. 2013) $2468-2475$.
[22] P.-L. Lai, H.-C. Hsu, The two-equal-disjoint path cover problem of matching composition network, Inform. Process. Lett. 107 (1) (2008) 18-23.
[23] J.-H. Lee, J.-H. Park, General-demand disjoint path covers in a graph with faulty elements, Int. J. Comput. Math. 89 (5) (2012) 606-617.
[24] D. Liu, J. Li, Many-to-many n-disjoint path covers in n-dimensional hypercubes, Inform. Process. Lett. 110 (14-15) (2010) $580-584$.
[25] J.A.M. McHugh, Algorithmic Graph Theory, Prentice-Hall, Englewood Cliffs, NJ, 1990.
[26] J.P. McSorley, Counting structures in the Möbius ladder, Discrete Math. 184 (1-3) (1998) 137-164.
[27] S.C. Ntafos, S.L. Hakimi, On path cover problems in digraphs and applications to program testing, IEEE Trans. Softw. Eng. 5 (5) (Sept. 1979) 520-529.
[28] J.-H. Park, Unpaired many-to-many disjoint path covers in hypercube-like interconnection networks, J. KISS 33 (10) (2006) 789-796 (in Korean).
[29] J.-H. Park, I. Ihm, Disjoint path covers in cubes of connected graphs, Discrete Math. (2014), http://dx.doi.org/10.1016/j.disc.2014.02.010.
[30] J.-H. Park, I. Ihm, Single-source three-disjoint path covers in cubes of connected graphs, Inform. Process. Lett. 113 (14-16) (2013) 527-532.
[31] J.-H. Park, H.-C. Kim, H.-S. Lim, Fault-hamiltonicity of hypercube-like interconnection networks, in: Proc. IEEE International Parallel and Distributed Processing Symposium IPDPS 2005, Denver, Apr. 2005.
[32] J.-H. Park, H.-C. Kim, H.-S. Lim, Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements, IEEE Trans. Parallel Distrib. Syst. 17 (3) (Mar. 2006) 227-240.
[33] J.-H. Park, H.-C. Kim, H.-S. Lim, Many-to-many disjoint path covers in the presence of faulty elements, IEEE Trans. Comput. 58 (4) (Apr. 2009) 528-540.
[34] J.-H. Park, H.-S. Lim, H.-C. Kim, Panconnectivity and pancyclicity of hypercube-like interconnection networks with faulty elements, Theoret. Comput. Sci. 377 (1-3) (2007) 170-180.
[35] Y.-K. Shih, S.-S. Kao, One-to-one disjoint path covers on k-ary n-cubes, Theoret. Comput. Sci. 412 (35) (2011) 4513-4530.
[36] N.K. Singhvi, K. Ghose, The Mcube: a symmetrical cube based network with twisted links, in: Proc. of the 9th IEEE Int. Parallel Processing Symposium IPPS 1995, 1995, pp. 11-16.
[37] S. Zhang, S. Wang, Many-to-many disjoint path covers in k-ary n-cubes, Theoret. Comput. Sci. 491 (2013) 103-118.

[^0]: * Corresponding author.

 E-mail addresses: sookyeon@hknu.ac.kr (S.-Y. Kim), j.h.park@catholic.ac.kr (J.-H. Park).
 http://dx.doi.org/10.1016/j.tcs.2014.02.014
 0304-3975/© 2014 Elsevier B.V. All rights reserved.

[^1]: ${ }^{1}$ The unique 4-dimensional RHL graph that is 1-fault 2-disjoint path coverable is a graph $G_{0} \oplus_{\phi} G_{1}$ under a bijection ϕ such that $\phi\left(v_{i}\right)=w_{3 i}$ for every i, where $V\left(G_{0}\right)=\left\{v_{0}, v_{1}, \ldots, v_{7}\right\}, V\left(G_{1}\right)=\left\{w_{0}, w_{1}, \ldots, w_{7}\right\}, v_{i}$ is adjacent to both v_{i+1} and v_{i+4} for every i, and similarly for w_{i}. Here, all arithmetic on the indices of vertices is done modulo 8.

