
Theoretical Computer Science 38 (1985) 1-16
North-Holland

1

MAXIMAL SERIALIZABILITY OF ITERATED TRANSACTIONS

M.P. FL6 and G. ROUCAIROL
Laboratoire de Recherche en Informatique, Universite’ de Paris-Sud, B&iment 490, 91405 Orsay,
France

Communicated by M. Nivat
Received December 1983
Revised December 1984

Abstract. The serializability condition is usually considered in order to maintain the consistency
of a Database in the presence of conflicting accesses to the Database performed by concurrent
transactions. This serializability condition is considered herein as a general synchronization
problem among transactions (or processes) which can be iterated infinitely often. The behaviour
of such a system of transactions is represented by an infinite word over the alphabet of the
operations performed by the transactions. Then a characterization of the prefixes of such behaviours
satisfying the serializability condition-so-called correct behaviours-is given and it is shown that
the set of all correct behaviours can be controlled by a finite automaton. As an example, the
classical ‘dining philosophers’ problem is shown to be entirely modelled and solved as a
serializability problem.

1. Introduction

Mainly studied in the framework of Data Base Systems, the serializability problem
is a very general synchronization problem which can be defined as follows: let us
consider a system characterized by a so-called consistency property of its states. (In
an airline reservation system, such a property could be: one seat in a plane cannot
be booked to more than one passenger.) Let us assume that any transaction or
process operating on the system states, transforms individually a state, correct with
respect to the consistency property, into another correct state. Clearly, any sequential
composition of the transactions preserves the consistency property. Thus, the
serializability problem is to synchronize the transactions in order to allow only
concurrent behaviours which are equivalent to some sequential composition of the
transactions.

In the literature on serializability [l], a transaction is considered to be a finite
sequence of operations. In this paper we assume that the sequence of operations
performed by a transaction can be infinitely often repeated as for instance might
behave a pre-existing service process in an operating system. As an example, we
shall formalize in Section 7 a resource allocation problem (the classical ‘dining
philosophers’ problem) as a serializability problem. Therefore, a behaviour of a

2 M.P. Fl.6, G. Roucairol

system of transactions will be understood herein as an infinite behaviour and
we shall represent a behaviour by an infinite word formed by interleaving the
transactions.

The equivalence which is generally used is such that two behaviours are said
equivalent if the relative ordering of so-called conflicting operations is the same in
both behaviours. (In Data Base systems, conflicts are deduced from the way
operations of different transactions access to shared data.) If we call correct a
behaviour which is equivalent in that sense to some sequential behaviour, we shall
say (Section 3) that a system of transactions is maximally serializable (or maximally
concurrent) if its set of possible behaviours is the set of correct ones. In Section 4
we characterize a maximally serializable system by a property of the prefixes of its
behaviours. This property extends a result from Papadimitriou [9] and allows us to
point out that the classical ‘two-phase locking’ synchronization algorithm [5] does
not guarantee maximal concurrency (Section 5). This property will be used in Section
6 in order to show that the language of the prefixes of behaviours of a maximally
serializable system is a regular language (the main result). This result is important
in the sense that it shows that the serializability of iterated transactions can be
finitely controlled. Moreover, some recent developments [3] point out that this result
gives new insights into the theory of partially commutative free monoids.

2. Notations and basic definitions

Let X be a finite alphabet. X” is the free monoid generated by X. A is the empty
word. X” is the set of infinite words over X.

If u is in X*, uW is the word obtained by catenating u infinitely often with itself,
proj y(~) (Y G X), the erasing homomorphism which suppresses from u the symbols
not in Y; let x be in X*uX”; u d x (respectively u < x) means that u is a prefix
(respectively strict prefix) of x; 1x1,, a E X, denotes the number of occurrences of
a in x; r(x) denotes the set of strict right factors of x.

If W is a subset of Xx w X”, Pref(W) is the set of prefixes of the items of W If
x is in X* u X”, Pref(x) is the set of prefixes of x.

The interval [1, n], n E N, will be noted [n].
A subset K of X” is said closed if K is exactly the set of words of X” every prefix of

which is in Pref(K), i.e., K = {x E X” IVu < x, u E Pref(K)}. A subset B of X” is said
closed in a subset H of X” if B is the intersection of a closed set and the set H.

Definition 2.1. A transaction z, i E N, is a finite sequence of distinct operations:
Ti=ai,r . . . a,,,,; we shall call Ai the set of operations of a transaction Tie

In the sequel, we will consider concurrent computations
each being possibly infinitely often iterated.

Let T={T,, T2 ,..., T,} be a family of n transactions.

of several transactions,

Maximal serializability of iterated transactions 3

Definition 2.2. A concurrent computation x of transactions in T is an infinite word
over A = Uy=, Ai obtained by shuffling possibly infinite loops of the transactions;
we shall note by CC(7) the set of concurrent computations of transactions in T, i.e.,

CC(T) ={x~A~(Vi~[n],proj,+(~)~ {T,)*u{TY}).

In the sequel, the term computation will be understood as concurrent computation.
Now, we are able to give the following definition.

Definition 2.3. A transaction system is a triple TS = (T, B, R), where:
- T={T,,..., T,} is a finite set of transactions. In the sequel, we shall assume that

the sets of operations of different transactions are disjoint, i.e.,

Vi,j,[n], AinAjf@ e i=j.

- B is the set of behaviours of TS; it is a subset of the set CC(T).
- I? c A x A is a symmetric relation, the so-called ‘conflict relation’ among the

operations of different transactions, i.e.,

ViE[n], RnAiXAi=0.

Example 2.4. Let us consider two transactions T, and T2 performing the following
sequences of instructions on two variables A and B satisfying the consistency
predicate ‘A = B’:

&:A:= A*2; B:= B*2 T,:A:=A+lO; B:= B+lO

Calling a (respectively a’) the first operation of TI (respectively T2) and b (respec-
tively b’) the second operation of T, (respectively TJ, a transaction system TS
modelling the concurrent and infinite behaviours of these transactions can be given
bY

T=-V,, U,

B = (ab, aa’bb’, a’b’, a’ab’b)“,

R = {(a, a’), (a’, 4, (b, b’), (b’, b)l.
We can remark that this transaction system has the property that all its behaviours
preserve the consistency predicate.

Remarks. We consider each operation performed by a transaction as atomic. This
assumption is not too restrictive as far as we are concerned in this paper by the
relative ordering of conflicting operations only.

Parallelism among transactions is represented in behaviours by the fact that some
occurrences of transactions can start while some others are not achieved. For
instance, in (au’bb’)w (see Example 2.4), T, begins before T, is achieved.

4 M.P. Fit!, G. Roucairol

3. Correct computations and maximal serializability of a transaction system

Definition 3.1. A computation of a transaction system is sequential if it is obtained
by some catenation of the transactions only, i.e., if it is an item of T”.

A computation of a transaction system is said correct if it is equivalent to some
sequential computation. The equivalence which is mainly used in the literature on
serializability can be formalized by an equivalence defined by Keller [8]. It concerns
the comparison of occurrences of conflicting operations.

Definition 3.2. Let x and y be two computations. x is said equizdent to y (x-y)
if and only if:

(i) VU E A, projl(ll(x) = proj,,,(y) (identical occurrences of operations),
(ii) V(a, 6) E R, proj Ia,b)(x) = proj,,,,(y) (identical ordering of occurrence of

conflicting operations).

Example 3.3. The following computations taken from Example 2.4 are equivalent:

x = (uu’bub’b)w, y = (ubu’b’ub)“.

Definition 3.4. A computation. x is correct if and only if there exists a sequential
computation equivalent to x, i.e., 3y E T” such that x-y.

We denote by Cor(TS) the set of correct computations of a transaction system TS.

Example 3.5. The computation x taken from Example 3.3 is correct.

A semantic justification of this notion of correctness can be given by the following
arguments: Let us assume that the conflict relation is derived from the way two
operations access to a common variable (read-write and write-write conflict); then
we know (Keller [S]) that the history of values assigned to a variable is the same
for two equivalent behaviours under any interpretation; assuming that every transac-
tion preserves some consistency predicate (which is a property of the variables used
by the operations), then so does any sequential behaviour and therefore so does
any correct behaviour.

Definition 3.6. A transaction system TS is said maximally serializable if and only if
its given set of behaviours B is exactly the set of correct computations: B = Cor(TS).

This notion of maximal serializability can be understood as a notion of maximal
concurrency. As a matter of fact, concurrency is represented in our formalism by
the possibility of shuffling sequences of operations. Therefore, the more behaviours
has a transaction system, the more possibilities of shuffling the transactions sequences
exist, so the more concurrent is this transaction system.

Maximal serializability of iterated transactions 5

4. Characterization of maximal serializability

In order to characterize the set of correct computations, we associate to each
prefix of a computation a precedence relation among occurrences of transactions.
This relation is deduced from the order of occurrences of conflicting operations.

Definition 4.1. Let u be a prefix of a computation. We say that the hth occurrence
of ?;: precedes in u the kth occurrence of q and we write (K, h) cu (7;, k) if and
only if:

either i = j, h < k, and the first operation of 7;- occurs at least k - 1 times in u, i.e.,
- Ju[,,~, 3 k - 1.
- or i #j and there exists one operation a in Ai, conflicting with one operation b

in Aj, such that the hth occurrence of a in u must precede the kth occurrence of
b if it occurs in u or in any extension of u, i.e., a(a, b) E R n Ai X 4, (v,, v,, v3) E
A* x A* x A*, such that

Example 4.2. Let us consider the transaction system given in Example 2.4: u = a
implies (T,, 1) <” (T,, 2) and (T,, 1) cU (T2, 1) because (a, a’) E R. u = au’ implies
(&, 1)<,(7A,2), (T,, l)%(%, 1), (G l)%(G,2) and (G, 1)<,(&,2) because
(Lz’, U)E R.

For u = aa’b’, we have these four relations and (T2, 1) <” (T,, 1) because (b’, b) E
R.

Let us denote <z the transitive closure of cU and let us call Ord(TS) the set of
prefixes u of computations for which the relation <z is an order relation:

Ord(TS) = {u E Pref(CC(T)) 1 <z is an order relation}.

For instance, in Example 4.2, au’ is in Ord(TS) and aa’b’ is not.
In the following definition, we extend the cU relation from prefixes to computa-

tions.

Definition 4.3. Let x be a computation. The relation cX is the union of the relations
cU for every prefix u of x, i.e., cX = U,<, cu.

This relation allows to give a necessary and sufficient condition for a prefix of a
computation to be extended into a correct computation and to characterize correct
computations.

Proposition 4.4.1. Ord(TS) = Pref(Cor(TS)).

Proposition 4.4.2. Let x be in A”.

6 M. f? F/C!, G. Roucairol

l7te following conditions are equivalent :
(i) x is correct,

(ii) x is a computation and every prejx of x is in Ord(TS),
(iii) x is a computation and <$ is an order relation.

In order to prove Propositions 4.4.1 and 4.4.2, we introduce some notations.

Notations. We know that each T’ can be written as ai,, . . . a,,;. We shall denote by
\r& the number I&,., of transactions started in a prefix u of a computation, by
A(a) the alphabet containing an operation a, and by T(a) the transaction whose
alphabet is A(a). This is well defined since Vi, j E [n], i # je Ai n Aj = 0.

The proof of Propositions 4.4.1 and 4.4.2 is based upon the following lemmas.

Lemma 4.5. u E Ord(TS)+3z E A* such that <zz is an order relation and Vi E [n],
projAl(uz) = (T,)k with k = 1~1~;.

This means that if u is in Ord(TS), there always exists a way of ending all the
transactions yet started in u, while staying in Ord(TS).

Proof of Lemma 4.5. We consider a total order over { T,, . . . , T,} which contains
the relation

L=UG T,):(G lul+Z(T,, I+), i,jOlL
induced by the <E relation over the last occurrences of the transactions.

Since <z is an order relation, so is L; then we can build by induction the sequences
Cki)ic[n]9 Cwi)iE[n] such that T’, is one minimal element, for the relation L, of the
set Vi,. -. , XJ-Uk,, . . . , TkJ.

wi E r(Tk,) and proj,+,,(u)wi = (Tki)’ where s = IuIT,.
Let z = w, . . . w, ; obviously, < & is an order relation. Cl

Lemma 4.6. Let x and y be two computations. If x - y, then <z = < :.

This is a direct consequence of the definition of - and <z.

Lemma 4.7. Let x and y be two computations with identical occurrences of operations,
i.e., Qa E A, proj,,,(x) = proj,,,(y). If <z and <z are identical and order relations,
then x - y.

Proof. We obtain the claim of the lemma by assuming proj,,,,(x) Z proj,,,,(y)
where (a, b) E R A Ai X Aj for some i and j in [n]. Then ua < x (I), and vb < y (2)
for some u and v such that 1~1~ = 1~1~ and lulh = Iu[~ (3).

Maximal serializability of iterated transactions 7

(1) implies (~,I~l~+l)<~(~,(~l~+l) and then (T,,JuJ,+I)<~(Ti,Ju(b+l), (2)
and (3) imply (Tj, I&+ W, CT;_, I&+ 1).

This contradicts the fact that < y* is an order relation. El

Lemma 4.8. If x is a sequential computation, then <z is an order relation.

This follows straightforwardly from the definition of <z.

Lemma 4.9. Let x be a computation. <z is an order relation u Q u < x, < z is an
order relation.

Proof. The proof comes from the fact that for all prefixes u and u of some
computation x, we have:

Lemma 4.10. Let x be a computation. cx * is an order relationqx is correct.

Proof. Let x E CC(T). We will build a sequential computation y such that <z = <,*
and Qa E A, projl,)(x) = proj,,,(y). Due to Lemma 4.7, we then have x-y and so
x will be proved to be correct.

Let X={(?;., k):ksIxIT, iE[n]}.
Let us prove the two following properties of X.

Property 1. Q(z, k) E X, the set {t 1 t E X, t cx (77:, k)} is finite.

This means that, in the set X, the number of immediate predecessors of an
occurrence of a transaction is finite.

This is due to the fact that, since (K, k) E X, every operation of this transaction
occurs at least k times in x (see the definitions of a transaction and of CC(T)), so
it cannot exist an infinity of occurrences of operations before the kth occurrence
of a finite number of operations.

Property 2. Qt E X, there does not exist any in$nite sequence (Ki, hj)jGN such that

Q.iW CT,+,, hj+,)<x(K,, hi) and (KI.l,hl)<xt.

This means that no element of X has an infinite chain of predecessors.

Proof of Property 2. Suppose such an infinite chain exists; then it contains an infinity
of couples (S, kj)jeN (since the number of transactions is finite). Then we would
have an infinite sequence of strictly decreasing integers (since (S, kj) < z (S, ki) =+ kj <
ki). This is impossible.

8 Ml? FE, G. Roucairol

By Properties 1 and 2 and Koenig’s lemma, each item of X has a finite number
of predecessors in the relation <: and we can define the following mapping:

Z:X+fW, where

k&x, f(f)=
0 if t is without any
sup{j:3t,, . . . , tj and

predecessor,
t] <xt* s e e f j <,f}.

Z(t) is the length of the longest chain of predecessors of t.
Let Xk={tEXIZ(t)=k}. For every k,X, is finite since Xkc{(z,j), jsk+l,

i E [n]}.
Let wk be the word formed by an arbitrary ordering of the items of Xk and let

Z =W , . . . wk.. . . Let y be the word over the alphabet of the transactions obtained
by erasing from z the numbers of occurrence of each transaction, i.e., ViE N, if
z[i] = (Tk, j), then y[i] = Tk.

In other words: Vi E N, Vk E [n], z[i] = (Tk,j)Gy[i] is the jth occurrence of Tk in
y. Then it is easy to see by construction that

(1) <,=<.v.
(2) Va E A pro.&,(x) = pro&,&y). 0

Proof of Proposition 4.4.1. Every IA in Ord(TS) can be extended into a word uz
where z is defined as in Lemma 4.5.

<zZ being an order relation, so is <zZ,s o for some transaction S; then, from
Lemma 4.10, uzSw is correct.

Conversely, from Lemmas 4.6 and 4.8, every u in Pref(Cor(TS)) is in Ord(TS). Cl

The proof of Proposition 4.4.2 is obviously obtained from Lemmas 4.6, 4.8, 4.9,
and 4.10.

From Propositions 4.4.1 and 4.4.2 we deduce the following characterization
theorem for maximal serializability, which generalizes a result from Papadimitriou
[91*

Theorem 4.11. (T, B, R) is maximally serializable (B = Cor(TS)) if and onZy if B is
cZosed in CC(T) and Pref(B) = Ord(TS).

Proof. Necessary condition: The fact that Pref(B) = Ord(TS) is a direct consequence
of Proposition 4.4.1.

Let K = {x E A”’) Vu < x, u E Ord(TS)}. Clearly K is a closed set and, from Proposi-
tion 4.4.2, B = K n CC(T); then B is closed in CC(T).

Suficient condition : Suppose x is correct; then by Proposition 4.42, every prefix
u of x is in Ord(TS), so, u is in Pref(B). Since B is closed in CC(T), B = K n CC(T)
where K is a closed set; then x is in K ; on the other hand, x being correct, x is a
computation. So x is in B.

Suppose x is in B. Then x is a computation and every prefix of x is in Ord(TS),
so, by Proposition 4.4.2, x is correct. c]

Maximal serializability of iterated transactions 9

5. Comparison with two-phase locking algorithm

The ‘two-phase locking’ [5] algorithm is used in Data Base Systems in order to
control transactions which access to shared entities. It consists in interleaving lock
and unlock operations in the transactions in the following way:

For every transaction S,
_ if an operation Q of S accesses to an entity e, then a lock{ e) must precede a without

any unlock(e) between it and Q.
- if an operation a = lock(e) has been interleaved in S, then there is no other lock(e)

before it in S.
- there is an unlock operation c in S such that neither another unlock operation

precedes c nor any lock operation occurs after c.
A schedule is any shuffle of the interleaved transactions. Such a word is said legal
if two lock(e)‘s cannot occur in it without any unlock(e) between them. We shall
say that a computation is legal if it is the projection, over the alphabet of the
operations of the transactions, of a legal schedule.

In order to show that the ‘two-phase locking’ algorithm does not guarantee
maximal concurrency, we are going to give an example of a transaction system
where, for any interleaving of the lock and unlock operations corresponding to the
‘two-phase locking’ algorithm, there exists a correct computation which is not a
legal one. (One can verify that the notion of correctness of a computation, when
the conflict relation is deduced from the way two operations access to a common
variable, is the same as the notion of consistent schedule in [S].)

Let us consider the following transaction system:

T={T,, T2, T3} with 7’, = 44, T2 = b(e); c(f), T3 = d(f).

R = {(44, b(e)), (b(e), a(e)), (c(f), d(f)), (d(f), c(f))).

The interleaving for T1 and T3 is unique:

T1 : lock(e) ; a(e) ; unlock(e),

T3 : lock(f) ; d (f) ; unlock{ f).

For T2, lock(f) must precede unlock(e). Then, one can verify that the word
b(e) ; a(e) ; d(f) is a prefix of a correct computation but is not a prefix of a legal one.

6. Regularity of maximal serializability

In this section we show (Theorem 6.1) that the set of prefixes of correct computa-
tions of a transaction system is a regular language. The rule of acceptance of correct
computations is then characterized over the automaton which recognizes the set of
their prefixes.

10 M. I? FE, G. Roucairol

Since, for a transaction system TS, Pref(Cor(TS)) = Ord(TS) (Proposition 4.4.1),
we prove the following.

Theorem 6.1. Ord(TS) is a regular language.

Proof. The regularity of Ord(TS) is obtained by proving that the number of
equivalence classes of the relation A defined by

Vu, 21‘~ Ord(TS),

u A ueVz~A*, (uz~Ord(TS)~uz~Ord(TS)),

is finite.
For every u in Ord(TS), we consider the set C(u) of some extensions of u

compatible with the <: relation. These extensions allow to end every transaction
started but not finished in u and also restart every transaction once more, i.e., we
can state the following definition.

Definition 6.2. C: Ord(TS) + 2** is a mapping defined by:

Vu E Ord(TS),

C(U)={ZE A*IV~E [n], proj,+(z)s siI&;:, s; E r(T), UZE Ord(TS)}.

Let us consider

P={ZEA*IViE[n],projAi(Z)isi~,&Er(~)}.

P is a finite set and obviously we have: Vu E Ord(TS), C(u) c P. So, the number
of equivalence classes of the relation ‘C(u) = C(u)’ is finite. Then the regularity of
Ord(TS) will come from the following proposition.

Proposition 6.3

Vu, 2, E Ord(TS), C(u) = C(U) e u ^ZJ.

Proof of Proposition 6.3. Suficient condition is obvious.
The necessary condition consists, under the assumption C(u) = C(v), in proving

that the following properties hold.

Property A. Vz E A*, uz E Pref(CC(7)) * 2rz E Pref(CC(T)).

Property B. Vz E A*, if uz E Pref(CC(T)) and <zz is an order relation, then <zz is
an order relation.

The first property is easily obtained from the definition of CC(T) and the following
lemma.

Maximal serializability of iterated transactions

Lemma 6.4. If C(u) = C(v), then,

Vi E [n], 3Si E Pref(x),

proj,&) = (Ti)k s, 3 or some k e proj,, (u) = (r)h~i for some h.

This means that all the operations which appear in the last occurrence of a
transaction in u also appear as the last occurrence of this transaction in u and
conversely. This is a direct consequence of Lemma 4.5, the definition of C and the
fact that C(U) = C(U).

The difficulty lies in the proof of Property B: we suppose that <zz is an order
relation and we assume that there exists a circuit in the graph of the relation < Vz,
i.e., there exists a p in N and sequences of integers (ij)jEtpl and (kj)jc[pl such that
the graph Gkk = {(r,_,, kj_l), (Kj, kj), jE[p]} is a circuit and G:k E <VT Then we
prove that it is possible to choose Gjk in order to build a word F(z) such that:

(1) F(z)E C(U), and
(2) the relation cvFtzJ contains a circuit.

Since C(U) = C(U), the contradiction will come from the fact that C(t)) contains F(z)
and the relation <$cz, is not an order relation.

The proof of Property B consists now in the construction of F(z) and in proving
(1) and (2).

We need the following lemma.

Lemma 6.5. There exists a circuit G’qh E cVZ such that

Vr,mE [l,q-11, q,# q,. (*)

This means that there exists a circuit made of occurrences of different transactions.

Proof of Lemma 6.5. Suppose (*) is not true in Gik, (i.e., for q = p, h = k, and j = i).
Let r and m be such that (r, m)E[l,p-11, zr= Km and k,<k,,,.

Since (T,,,, k,) cuZ (z,,,, k,,l), we have:
- either i,,, = i,,,+l and then (T, S) cVZ (Km+,, km+,>,
- or vzE(w,aw2, w,aw,bw,} for some (w,, wz, w3) E A* x A* x A* such that 1 w,la =

km - 1, (ww(b = km+, -1, and (a,b)ERnAim XAi,+,.
Since k, s k, lwal, = k, for some w s w1 and therefore (Ti, k,) cuZ (Tim+,, k,,,).
Then there exists a circuit included in Gik which does not contain the couple

(7;:,, k,). By repeating the same argument we can build a circuit Gih satisfying (*). Cl

Now let us assume that Gik satisfies (*). Then, we are able to build F(z) by
erasing from z all the occurrences of operations except those belonging to the single
occurrence of transactions involved in Gik or started but not finished in V, i.e., we
can state the following definition.

12 M.P. Fit?, G. Roucairol

Definition 6.6. Let us write z = z1 . . . z,, where r E N and Vj E [r], zj E A. Then F(z) =
f(z, 1) . . .f(.z, r), where Vj~[r],

f(,)=[z, .
Zj if3hE[p],zjEAih,JUzI...zjlz/=khorlUz,...zjjz,=IU/T(zI),
h otherwise.

The following lemmas state some useful properties of the previous erasing
homomorphism E

Lemma 6.7

Vs, tEN,s<t,ViEN,Va, bEAi

I VZ~ ..* z,lo = luz, . . . &lb * Ivf(z, 1) - * -f(z, 4, = luf(z, 1) * - .f(z, t)lb.

This means that all the operations belonging to the same occurrence of some
transaction in uz are either globally suppressed or globally conserved by the
homomorphism F.

The proof of this lemma can easily be obtained from the definition of F, by
induction on lvz, . . . zs(,.

Lemma 6.8. VS, t E N, s < t, Vh E [p], Va, b E Aih, VW E A*:

(9 lf IN@, 1). . .f(z,s-l)l,=luf(z, l)...f(z, t-l)lb and f(z,s)=a, then
uz1 . . . Z,-,la = lUZl . . . Z,&

(ii) If wa d IA and (WI, = (uf(z, 1). . .f(z, t- I)lb, then lwla = luz, . . . z,_,(~.

Lemma 6.8 is a kind of reciprocal of Lemma 6.7. We prove this by applying
Lemma 6.4 and by using the definition of E

As we said above, we now need to prove the following lemmas.

Lemma 6.9. F(z) E C(u).

Lemma 6.10. The relation <uFCzj contains a circuit.

Proof of Lemma 6.9. We must show that:
(1) Vi E [n], proj,,F’(z) d siT, Si E r(‘T;:) and uF(Z) E Pref(CC(T)).
(2) The relation c&,, is an order relation.
Proof of (1): The erasing homomorphism obviously preserves the order of the

operations in the transactions. Moreover, from the definition of F and Lemma 6.5
we have:

Vii[n],VtE[2, mJ, IF(z)I and IF(Z)I= s 1.

We have now obtained (1).

Maximal serializability of iterated transactions 13

Proofof (2): We assume that < &, is not an order relation. Then 3q E N, (hi)iecgl,
hi EN, (qi)iEcrll such that

viE[q-ll, (Tji9 h)<uF(z) (qi+,., hi+,) and (q,, k,) = (q,, h).

Then Vie [q - 13, 3(~1, ~2, ~1) E A” X A* X A*, (u, b) E Aj, X Aj,+, r\ I? such that

uF(z) E (w,awz, W*UW*bW,}y lWll=hi-l, JW*aW*(6=hj+I-l* t-V

Vie[q- 13, we define:

If 3~ E Aj,, s E ItI, f(~, S) = a,)u~(z, 1) . . .f(z, s)14 = hi, then
g(hi)= lUZ* * *a zsla (this is well defined due to Lemma 6.8).

If 3 w E A*, a E Aj,, wa s U, 1 wal. = hi, then hi.

Due to (t), g(hi) is defined for every i in [q - 11.
WeshowthatViE[q-l],(Tj,g(h,)) < Uz (qi+,, g(hi+,)). This obviously shows that

-CUz contains a circuit. ??

Proof of Lemma 6.10. The existence of Gjk means that Vh E [p - 13, 3(w,, w2, w3) E

A* X A* X A*, (CZ, b) E Ai, X Aih+, CT R such that

vz E {wluw2, w,aw,bw,}, lwllo = kh - 1, Iwlaw21b = kh+, - 1. (W

This allows us to define, Vh E [p - 11,

If3aEAi,,, SEN, z,=a, Ivz~...z~[,=~~, then

g(k) = luf(s I). . .f(z, 4la (h’ t IS is well defined due to Lemma 6.7)
If 3 w E A*, u E Aih, wa d V, 1 WCZJ, = kh, then kh

Due to (tt), g(k,,) is defined for every h in [p - 11. For every h E [p - 11, by looking
at (tt), we examine the different cases v 4 w,a, w,a < v < wlawZbw3, wlaw2bw3 s v,
and inside each case, the cases uz = w I aw2 and vz = w1 uw2bw3 in order to show that
(Tk,,, dkn)) (s(z) (Tkh+,, dkh+dh ??

This achieves the proof of Theorem 6.1. Cl

Example 6.11. For the transaction system of Example 2.4, the finite automaton
accepting Ord(TS) is:

14 M.P. Flk, G. Roucairol

Remark. One might think that in order to build the set C(u), only the end of every
transaction yet started in u has to be considered, i.e.,

The following counter-example shows that it is not possible.

Example 6.12. Let TS be a transaction system such that

T = {albl, a2, &1,

and

R = {(a,, a2), (a,, 4, h ad, b3, a,), (b,, W, (h, WI.
Then, C(a,)= 6, and C(a,a2)= 6,; but a,a,b, is in Ord(TS) and a,a2a,b, is not.

Let & = (qo, Q, r, F) be the automaton over the alphabet A defined by Q = {C(u),
u E Ord(TS)} (see Definition 6.2) is the set of states of &, q. = C(A) is the initial
state, 7: Q x A + Q is the transition function defined by: Vq E Q, T(q, a) = C(ua)
for some u such that C(u) = q (this is well defined due to Proposition 6.3), F = Q
is the set of terminal states.

Due to Proposition 6.3, Ord(TS) is the language accepted by &.
In order to characterize Cor(TS) with respect to J-&, we introduce the following

definition (in a way similar to Buchi’s [2]).
Let x be in A”; x passes infinitely often through a subset K of states if the

following property is satisfied:

Wu<x 3v~A*, us v<x and T(qo, v)E K.

Let i be in [n]; let Ki be the set of states which correspond to the fact that transaction
T is terminated, i.e.,

Ki={qE QI3u~Ord(TS),proj&u)~{‘T;}*and q=C(u)}.

The following proposition says that Cor(TS) is characterized by the set of infinite
words which, for every i in [n], pass infinitely often through Ki.

Proposition 6.13

Cor(TS)={x~AwIVu<x,Vi~[n],3v~A*, US V<X, T(qo, V)E Ki}.

Proof. Let x be in Cor(TS); due to Proposition 4.4.2, we have the following property:

Vu<x, Vi~[n], 3v~Ord(TS), u~v<x,proj,,(v)~{~}*.

Then T(40, V) E Ki.
Let x be an infinite word such that

Vu<x, Vi~[n], 3vEOrd(TS), u~v<x,~(q~,v)~K~.

Maximal serializability of iterated transactions 15

So C(V) E Ki and therefore C(U) = C(w) for some w in Ord(TS) such that proj,,(w) E
{z}*. By Lemma 6.4, this implies proj,,(u) E { &;:)* and so x is a computation and,
by Proposition 4.4.2, x is correct. Cl

Let us remark that the initial state plays a particular role since we have

Then, infinite words which pass infinitely often through {q,,} are correct computations
such that after some finite delay every transaction is terminated. Moreover, for such
computations, it is easy to check that every prefix, for which all the transactions
are terminated, is equivalent to some finite sequential computation and vice-versa.
In Example 6.11, considering only those’computations insures the predicate ‘A = B’
become true infinitely often.

7. Application to the ‘dining philosophers problem’ [4]

Let us assume that the individual behaviour of one philosopher Pi is: think,;
tfi ; tf j+ 1 ; eat,; rfj; rfi+‘, where, for k E {i, i + I}, tf: (respectively rf:) means that
philosopher Pi takes (respectively releases) fork. k.

Let us consider the following transaction system: T = {P,, . . . , P,,},

R = {(tfj_,, rfi), (rfj, tfj-,), (rfj-,, tfj), (tfj, rfi-,), iE[2, n]}.

Let us show that in a correct computation of this transaction system, two neighbours
cannot eat concurrently and conversely. Then, by applying the previous results, the
maximal concurrency of the philosophers can be controlled, in a correct way, by a
finite automaton.

Notation. For two operations a and b, two integers h and k and a computation x,
we shall denote by (a, h) +x (b, k) (respectively (a, h)+, (b, k)) the fact that x can
be written uavbw (respectively uavbw or uav), with (~1, = h and luavl, = k. Obviously,
-+, and ax are order relations.

The fact that, in a computation x, two neighbours cannot eat concurrently is
expressed by the following property Q:

Q: If(tfL,p)+,(tfi,q)withh=i-1 and k=iorh=iand k=i-1,then
(tfi, p) -+ 0-f;, p)3 (tfi, 4).

This means that if two neighbours successively take the same fork then, between
these actions, the first of them must have released this fork.

Let x be a correct computation and let us assume:
(1) (tfAJJ)+,(tfA 4).

16 M.P. Hi, G. Roucairol

From the definitions of 19: and CC(T), we have
(2) (tfi, p) +X (rf;, p), and
(3) (tfk, 4) -f, (rfi, 4).

So, from (I) and (3), we have (Ph,p) cX(Pk, q). From (1) and (3), we can suppose
that (tf:, q) dx (rfk, p). This implies: (Pk, q) cx (I$, p). This is impossible since,
due to Theorem 4.11, <z is an order relation. So, (rfL,P)+x(tf;(, q) and then x
satisfies Q.

Conversely, we suppose that x satisfies Q. Let us show that if (Ph, p) cX (Pk, q),

then (tfi+‘, p)+X (tft+‘, q).

U’h, PI cx U%., 4) implies (tfk pk (rfk q) (1) or (rfk P)=& <tfk q) (21, with

h=i-1 and k=i (3) or h=i and k=i-1 (4).
In case (3), let us suppose that (tfj+‘, q) +,x (tfj_,, p). So (tfi, q) +x (tfj_,, p) and,

therefore due to property Q, (tfi, q) -sx (rfj, q) +x (tfj_,, p).
This is incompatible with (1) and (2).
In case (4), let us suppose that (tfi_,, q)+x (tfi”, p) (5). Then,

- if (tf:, P)+~ (tfj-,, q) then, due to property Q, we have (tfi, P)+~ (rfi, p) -+X
(tfi-1, 4).

This is incompatible with (5).
- if (tfj-,, q) 3, (tfi, p), then, due to property Q, we have (tfj_,, q)+x

(rfi-,, q) Jx (tfi, p). .

This is incompatible with (1) and (2).
By extension, we have (P,,, p) <c (Pk, q) implies (tftcl, p) 3, (tfi+‘, q).

Since 3, is an order relation, so is <,*. Then, x is a correct computation.

References

[I] P.A. Bernstein and N. Goodman, Concurrency control in distributed data base systems. Computing
Surueys 13 (2) (1981) 185-221.

[2] J. Biichi, On a decision method in restricted second-order arithmetic, in: Znternat. Congress Logic
Method Phil. Sci. (Standford Univ. Press, 1962).

[3] R. Cori and D. Perrin, Sur la reconnaissabilite dans les monoides partiellement commutatifs Iibres,
Rapport de Recherche, UniversitC de Bordeaux 1, 1984; ZUZRO Inform. Thkorique, to appear.

[4] E.W. Dijkstra, Hierarchical ordering of sequential process, Acta Znformatica 1 (2) (1971) 115 138.
[5] K.P. Eswaran, J.N. Gray, R.A. Lorie and J.L. Traiger, The notions of consistency and predicate

locks in data base systems, Comm. ACM 19 (11) (1976) 624-633.
[6] M.P. FlC and G. Roucairol, On serializability of iterated transactions, ACM SZGACT-SZGOPS

Symp. on Principles of Distributed Computing, Ottawa, Canada (1982) 194-200.
[7] R.M. Karp and R.E. Miller, Parallel program schemata, J. Comput. System Sci. 3 (1969) 147- 195.
[8] R.M. Keller, Parallel program schemata and maximal parallelism, J. Assoc. Comput. Mach. 20 (3)

(1973) 514-537.
[9] C.H. Papadimitriou, P.A. Bernstein and J.B. Rothnie, Some computational problems related to data

base concurrency control, Proc. ConJ on Theoretical Computer Science, Waterloo, Canada (1977)
272-282.

[lOI G. Roucairol, Mots de synchronization, ZUZRO Znformatique/Computer 12 (4) (1978) 277-290.

