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Abstract

Amazons is a young, abstract, strategic, two-player game, in which the 1rst player unable to
move loses. We present a database for small Amazons positions, which for every position holds
the canonical combinatorial game theory values, its thermograph and the corresponding move
for every canonical option.
Such a database is useful to 1nd values and structures in games that were unknown before and

hard or impossible to 1nd or verify by hand. In Amazons we were able to prove the existence
of nimbers, of fractions down to 1

64 and of various in1nitesimals, but these results also suggest
that there is no easy construction for most of these values. The database also demonstrates how
complex canonical forms in Amazons can be and that many Amazons positions have properties
and values that are totally counterintuitive.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In 1997 Berlekamp proposed to analyze the game Amazons with the means of combi-
natorial game theory. Our approach was to study Amazons by creating a large database
of Amazons positions and their game theoretic values. First results were presented at
the Combinatorial Game Theory Workshop at Berkeley in 2000, see [8]. This article
describes the continuation of this work and further results.
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Fig. 1. Amazons starting position.

1.1. Amazons

Amazons was invented in 1988 by the Argentinian Walter Zamkauskas. It is a strate-
gic, abstract game for two players, played on a board of 10 times 10 squares. The
starting position can be seen in Fig. 1.
The players move alternately, White starts. Each move consists of moving an amazon

and shooting an arrow with that same amazon. Amazon and arrow move like a Chess
queen, i.e. diagonally, vertically or horizontally as far as the player wants and no
object, amazon or arrow, blocks its path. Neither amazon nor arrow jump over any
other piece, nor is any piece captured. There is an in1nite supply of arrows. Arrows
remain on the square where they are placed and are never moved again. Therefore
the board is slowly 1lled with arrows, one arrow per move. The 1rst player unable to
move loses.
With these simple rules Amazons oCers abundant tactical possibilities and strategic

depth. There is now also an active Amazons programming scene and an Amazons
program tournament is a 1xed part of the yearly Mind Sports Olympiad [6].

1.2. Combinatorial game theory

Combinatorial game theory has its historic roots in the study of the game Nim [4].
Some decades ago the theory was generalized and applied to partizan games, too [3],
i.e. games in which the players have diCerent moves available.
For combinatorial game theory to apply we need a 1nite game for two players, who

alternate moves. The 1rst player unable to move loses. Additionally, the game must
not contain any chance elements and it has to be a perfect information game. Amazons
ful1lls all of these conditions.
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Fig. 2. A sum of two Amazons positions.

Combinatorial game theory is especially powerful in analyzing sums of independent
games. In such a sum the player to move may choose in which of the games he
will make his next move. Quite often it is easy to decide which move is best for a
particular game, but very diEcult to see in which game to move next. In these cases
combinatorial game theory oCers practical exact solutions to decide in which game a
move is most urgent.
If the exact solution is too complex and diEcult, one has powerful heuristics at one’s

disposal, especially thermography. Berlekamp introduced the concept of an enriched
environment, in which thermography practically is the exact solution [1].
Some games automatically split up in several independent subgames, which can be

analyzed on their own. The endgame of Go is a good example. The arrows in Amazons
also have a tendency to split the board into several independent rooms. These can then
be examined individually. Therefore the application of combinatorial game theory to
Amazons is not only possible but also useful.
Fig. 2 shows a sum of two Amazons positions. Here combinatorial game theory

can provide an exact solution. The left position has value 1 = {0|}, the right position
has value − 1

2 = {−1|0}. The expression in brackets describes the diCerent canonical
move options of player Left (Black) and Right (White), e.g. in the right position Black
can move to −1 and White to 0. By the way, combinatorial game theory traditionally
assigns positive numbers to black and negative numbers to white. We will content
ourselves with these few sentences as an introduction to combinatorial game theory.

2. Database

Our idea was to build a database of small Amazons positions and their game theoretic
values, then to search for structures within the database. With Berlekamp’s theoretic
work about Amazons positions on boards of size n× 2 [2] we also had a tool to check
the correctness of our results.

2.1. Construction

The database was built bottom-up. Within a given maximal game board every pos-
sible smaller game board up to a certain number of living squares, i.e. unblocked by
arrows, was constructed. For example, in order to stick to the work of Berlekamp we
started with a maximal game board of size 11× 2. Within this frame we constructed all
possible shapes of smaller game boards up to 22 living squares, i.e. all smaller boards
that 1t within the 11× 2 restriction. Within other restrictions we could not reach the
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maximum, e.g. within the restrictions of 5× 4 we only constructed all game boards up
to 12 squares.
Every shape was included only once. All mirrored, turned or moved copies were

represented by just one game board. The only other condition for inclusion of a shape
was that the game board had to be at least diagonally connected. Unconnected game
boards were considered as two diCerent game boards.
For every game board thus found we then constructed every possible position with

one black and one white amazon or just one single black amazon. We eliminated all
positions where the places of the black and white amazons were simply exchanged.
Every position with no empty squares left has value 0, because neither player can

move. When we know the values of all positions with n empty squares, we can de-
termine the value of a position with n + 1 empty squares by playing every possible
move from this position for both players. As every move kills a square, we are now
reduced to a position with a maximum of n empty squares, whose value we already
know. The values that result from all possible moves are then combined according to
the rules of combinatorial game theory to form the value of our position in question.
In addition to the game theoretic value, we also included in our database the ther-

mograph of every position and the actual moves that lead to all diCerent subgames
of the game theoretic value. While the game theoretic value of a position is suEcient
to determine the exact outcome of any sum of games, the thermograph is merely a
heuristic to determine which game in the sum is the most urgent. The advantage of
the thermograph is that it is easier to compute and that one can see the temperature
of a game, i.e. the urgency, at a glance and also the mean of the game, its projected
value one can expect.
In some cases we also computed the values for two amazons versus one or for two

amazons versus two.
In essence this is a bottom-up brute-force calculate-all approach. The algorithm de-

scribed above is straightforward and so are most of the algorithms which attack the
subproblems. Only in few special cases more elaborate means of problem solving were
needed. The biggest problem were time and space constraints, as the number of possible
positions grows exponentially with the number of live squares.

2.2. Scope

The complete scope of the database can be seen in Table 1.
Positions with amazons of only one color are necessary only as a basis for all other

positions. They oCer some challenges, as these positions can be defective, see [7]. But
as all such positions are integers, their game theoretic aspects are not very interesting.
Altogether the database contains 66,214,767 positions with game theoretic values,

thermographs and moves. There is some redundancy in the database, because smaller
positions, which are the basis for all positions on bigger game boards, are included
anew for every set of restrictions, e.g. the starting position with just two squares and
one black amazon exists for restrictions 11× 2, 6× 3, 5× 4 and 10× 10.
As the data contained in Table 1 is the absolute maximum our workstation could

handle with 1:5GB RAM and the given program, there will be no further enlargements
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Table 1
Scope of the database

Restrictions No. of Amazons Max. No. of live No. of positions
(b, w) connected squares

11× 2 1, 0 22 937,163
11× 2 1, 1 22 6,212,539
11× 2 2, 0 18 6,141,318
11× 2 2, 1 12 7,383,708
6× 3 1, 0 18 260,379
6× 3 1, 1 18 1,262,552
6× 3 2, 0 12 1,011,507
6× 3 2, 1 11 6,053,802
6× 3 2, 2 10 5,570,592
5× 4 1, 0 12 871,063
5× 4 1, 1 12 4,194,977
10× 10 1, 0 10 8,822,106
10× 10 1, 1 9 4,850,948
10× 10 2, 0 9 4,850,948
10× 10 2, 1 8 3,506,154
10× 10 2, 2 8 4,285,011

of the database in the near future. It is certainly conceivable to produce larger databases
of Amazons positions if only the thermographs for every position are stored, an ap-
proach that is followed by Tegos [10] at the University of Alberta.

3. Results

Only the game positions within the restrictions 11× 2 and a maximum of one black
and one white amazon were evaluated and discussed in [8]. Here we will present some
interesting discoveries in the parts of the database recently calculated.

3.1. Fractions

Some combinatorial games are numbers. A number represents an advantage of moves
for Black, if it is positive, and for White, if it is negative. It may not be obvious at
once, but the players can also have an advantage of a fraction of a move. Fig. 2 shows
an example. The justi1cation to evaluate a position with − 1

2 is that exactly two copies
of such a position are needed to oCset a position with value 1, i.e. − 1

2 − 1
2 + 1 = 0.

Whoever moves 1rst in this sum loses.
Fractions in general are of the form x=2n = {(x − 1)=2n|(x + 1)=2n}, where x=2n is

canceled down as far as possible. This means that Left (Black) can move to (x−1)=2n
and Right to (x + 1)=2n. Before our automated search the fraction with the largest
denominator—canceled down as far as possible—known in Amazons was 1

4 . In [8] a
position with value − 1

16 was presented.
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Fig. 3. Simplest construction of a 1
16 .

Our enlarged database oCers a 1
16 on a smaller game board. The construction of this

position is shown in Fig. 3.
Interestingly, there is no way to add another square to the 1

16 in Fig. 3 to obtain a
1
32 . Nevertheless, positions with denominator 32 and even 64 do exist. Fig. 4 shows
one example.
Altogether the database contains eight positions with denominator 64. All of these

positions have value 1
64 . They are listed in Fig. 5.

All positions with value 1
64 follow the same pattern. White’s amazon circles around

the black amazon or around a hole in the middle of the game board and shoots oC a
distant square. Black on the other hand can move to 0 from these positions. Despite
this seemingly simple scheme up to now no position with a value whose denominator
is 128 or more has been found. Amazons is even more resilient when one tries to
1nd a construction for positions with values 1=2n in general. None has been found
yet. Early in 2003 a construction for Amazons position with values of arbitrary dyadic
fractions has been found [8a].

3.2. Nimbers

Nimbers are the combinatorial games which were studied 1rst. They describe the po-
sitions of the game Nim, which was analyzed as early as 1902 by Charles Bouton [4].
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Fig. 4. Construction of a 1
64 .

In fact every neutral game is a nimber. This surprising theorem was discovered inde-
pendently by Sprague and Grundy in the 1930s [9,5]. In a neutral game both players
have the same canonical options from every possible position.
The simplest nimber is 0 = {|}. Both players have no moves available. It is also

called ∗0. Beginning with 0 the other nimbers are constructed iteratively: ∗ = ∗1 =
{0|0}, ∗2 = {0; ∗1|0; ∗1} and so forth, in general:

∗n = {0; ∗1; : : : ∗ (n− 1)|0; ∗1; : : : ∗ (n− 1)}:
Positions with value 0 and ∗ are very common in most combinatorial games, even
in games which are not neutral, so called partizan games. But values of ∗n; n¿2 are
a diCerent matter. Even ∗2 poses a problem, as both sides must have exactly the
same options, and not only one option each, but more than one. In a partizan game
like Amazon, where both sides have diCerent pieces to move, such extraordinarily
symmetric positions are hard to imagine, and in many partizan games no higher nimbers
than ∗ have been found yet.
But in Amazons other nimbers have been found, see [8]. Fig. 6 shows the smallest

Amazon position with value ∗2. Tegos [10] was 1rst to 1nd positions with value ∗3
with only one black and one white amazon. As ∗3 = ∗2 + ∗, the next big step would
be to discover a ∗4 in Amazons. None is known yet.
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Fig. 5. All positions with value 1
64 .

Fig. 6. Smallest position with value ∗2.

But Amazons oCers symmetry even where it is totally unexpected. Fig. 7 shows one
of the strangest examples of a nimber our database has to oCer. Not only are the board
and the positions of the amazons not symmetric, not even the number of amazons is
equal. And yet Black’s amazon in the upper left is not useless. It plays an essential
role in this position as it adds to Black’s options as soon as the other black amazon
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*0,

Fig. 7. A strange nimber.

moves away. Without this square and the second black amazon the position would not
have value ∗2 but − 1

4 .
White in Fig. 7 needs only one move. In this position White’s move has a special

property, the so called reversibility. It means that Black enhances his positions by
answering White’s move at once and that it is analytically correct to consider this
White/Black exchange as instantaneous. So White’s options from this position really
are his options after his 1rst move and Black’s answer, which is not shown in the
1gure.

3.3. Special cases of interest

There are many other interesting facts and data one can 1nd in our database. Here
we just want to give some few examples.
Hunting for records is one possibility. The maximum number of subgames in an

Amazons positions in our database is 293,752. One can imagine this to be the game
tree that originates from the position where no further simpli1cation (domination,
reversibility) is possible.
A record of another sort is shown in Fig. 8. In this position Black has 18, White

15 canonical options. They are depicted in the seven lower diagrams of the 1gure. In
each you can see one move of one of the amazons. The black and white circles mark
the possible spots for shooting the arrow after the move.
That an option is canonical means that it cannot be eliminated without altering the

value of the positions. To put it in another way: for every one of these canonical
options it is possible to 1nd a combinatorial game which, if added to the position in
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Fig. 8. Maximum number of canonical options in database: 18 left, 15 right.

>>

Fig. 9. A counterintuitive relation.

Fig. 8, makes the move that corresponds with this option the one and only winning
move—not one of these options can be pruned.
Amazons is a game about territory. Having the own amazons positioned in territories

with many empty squares means one has many more moves at one’s disposal. Yet
sometimes the relation between some Amazons positions is completely counterintuitive.
Fig. 9 shows an example. The symmetric position to the left has value 0, whoever

moves 1rst loses. In the right position we add a square next to the black amazon.
Yet the value of the position is {{{1|0}|0}|0}, a negative in1nitesimal, which is won
for White no matter who moves 1rst. The reason for this strange behavior is that the
optimal moves for both sides more or less result in an exchange of their positions, the
white amazon ending up (or threatening to end up) on the left half of the board and
vice versa. The additional square next to the black amazons 1nally only helps White.
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4. Conclusion

Amazons is a complex game. It is challenging strategically and tactically. Addi-
tionally, it is ideal for the application of combinatorial game theory. Amazons oCers a
plethora of diCerent values, amazing and fascinating positions with unexpected behavior
and interesting properties.
Yet it is hard to 1nd regular patterns in Amazons. Exhaustive search and brute

force methods, as used in the construction of our database, are useful tools to detect
interesting positions, whose evaluation by hand would be next to impossible. Amazons,
it seems, is an ideal testbed for experimental mathematics.
Our database as it exists now is not publicly accessible. Its size and programming

structure pose serious problems for a possible internet presentation. Up to now the only
means to get access to the data is via the author.
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