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Abstract. By a result of Berkowitz (1982), the monotone circuit complexity of slice functions 
cannot be much larger than the circuit (combinational) complexity of these functions for arbitrary 
complete bases. This result strengthens the importance of the theory of monotone circuits. We 
show in this paper that monotone circuits for slice functions can be understood as special circuits 
called set circuits. Here, disjunction and conjunction are replaced by set union and set intersection. 
All the main methods known for proving lower bounds on the monotone complexity of Boolean 
functions fail to work in their present form for slice functions. Furthermore, we show that the 
canonical slice functions of the Boolean convolution, the Nechiporuk Boolean sums, and the 
clique function can be computed with a linear number of gates. 

1. Introduction 

We investigate the complexity of slice functions. A function f: (0, 1)” + (0, 1)” is 
called a k-slice iff f(x) equals the O-vector if x has less than k ones and f(x) equals 
the l-vector if x has more than k ones. That means the interesting part off happens 
when x has exactly k ones. 

For the computation of Boolean functions we consider Boolean circuits (for the 
definition and elementary properties, see [6]) and the circuit complexity (combina- 
tional complexity) either over the complete basis of all binary Boolean functions 
or over the monotone basis consisting of binary codunction and disjunction. These 
complexity measures are denoted by C and C,. One knows that one may prove 
NPZ P by proving a nonpolynomial lower bound on the circuit complexity of a 
function in NP. In general, we know only little about the relation between C and 
C,. Berkowitz [2] was able to show that these two complexity measures are closely 
connected for slice functions. In Section 2 we present these results in more detail. 

In Section 3 we show by standard arguments the existence of many hard slice 
functions. In Section 4 we investigate the structure of monotone circuits for slice 
functions. If one ignores an additive 0( n log n) term for the complexity, one may 

* Supported in part by DFG Grant No. We 1066/l-l. 

0304-3975/85/$3.30 @ 1985, Elsevier Science Publishers B.V. (North-Holland) 



56 I. Wegener 

replace conjunctions by set intersections and disjunctions by set unions. Set circuits 
are the heart of circuits and monotone circuits for slice functions. 

Many important functions like Boolean convolution, Boolean sums or the clique 
functions have the property that all prime implicants have the same length. If this 
length is k, the proper k-slice may be called the canonical slicefunction. It has among 
others the same prime implicants as the given function, while the (k - 1)-slice equals 
the kth threshold function and all other slices have only other prime implicants. 
We show in Section 5 that the canonical slice of Boolean convolution has linear 
complexity while the monotone complexity of Boolean convolution is at least n3’* 
[ll]. In Section 6 we show a similar result for Boolean sums. In this situation one 
gets also a one-output function f where the set complexity of the canonical slice is 
linear and where one believes that the monotone complexity of f is 0(n3’2). 
Furthermore, we show in Section 7 that the canonical slice of each clique function 
can be computed with a linear number of gates. 

By these results and the result of Section 2 that a hard function has hard slices 
one has to ask which slices of a given hard Boolean function are the hard ones. 
And one may ask which methods for proving large lower bounds work for slices. 
By the results of Sections 5 and 6 and some additional observations we show in 
Section 8 that the known methods in their present form do not work for slice 
functions. 

2. Circuits for slice functions vs. monotone circuits 

Definition 2.1. A Boolean functionf: (0, 1)” + (0, 1)” * 1s called a k-slice iff f( x) equals 
the O-vector if x contains less than k ones and equals the l-vector if x contains 
more than k ones. 

Definition 2.2. Let Tz denote the threshold-m-function on n variables, computing 
1 iff the input has at least m ones. Let Ek denote the exactly-m-function, computing 
1 iff the input has exactly m ones. 

Definition 2.3. For an arbitrary Boolean function f its k-slice fs,_k is defined by 

fsl-k := U-A K) v G+,. 

It is easy to see that fsl_k = (f~ 7’;) v T;+,. 

Definition 2.4. If all prime implicants of a monotone function have length k, we 
call fs,_k the canonical slice off and denote it by fcsl. 

We notice that in this situation all prime implicants off are prime implicants of 
its canonical slice and no prime implicant off is a prime implicant of any other 
slice with the sole exception of the (k - 1)-slice which equals Tz. For monotone f 
with prime implicants of length k only we have f& =f v T;f+,. 
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It is well known that the set of all threshold functions T” = (Ty, . . . , Tz) has 
linear complexity over a complete basis [6] and has complexity 0( n log n) over the 
monotone basis [l]. Furthermore, C,( Tt) is O(n) if k is fixed. Thus, the slices 
cannot be much harder than the given function J: It is also easy to see that some 
slices can be very easy (e.g., k = 1 or k = n) even if f is hard. But we can prove that 
not all slices of a given hard function can be easy. 

Proposition 2.5 

(i) C(f) d c aLLk)+ob), 
Isksn 

(ii) C(_L-k) s C(f)+W), 

(iii) G(_Lk) d C,(f) + O( n log n 1, 

(iv) Cm(fsl_,J s C,(f) +0( n) ifk is$xed. 

Proof. Obviously, the first assertion follows from the facts that 

f=, y n(frl_k~EL), E~=T~AT~+, and C(T”)=O(n). 
S=S 

The second, third and fourth assertion follow from the definition offs,+ C( T”) = 
O(n), C,(T”)=O(nlogn), and C,.,,(Tc)=O(n) for fixed k. Cl 

Proposition 2.5 states that in order to prove large lower bounds on the (monotone) 
circuit complexity off it is sufficient to consider all slices of J: For a complete basis 
we know that some slice of a hard function has to be hard. This cannot be proved 
for the monotone basis directly since we cannot computefmonotonely from its slices. 

Until now we can prove nonlinear lower bounds for the monotone complexity 
of n-output functions only [ 10,l l] and not for complete bases. It seems to be much 
easier to prove lower bounds for the monotone basis than for complete bases. The 
following result of Berkowitz shows that for slice functions the monotone complexity 
and the circuit complexity are closely related. Thus, a hard Boolean function must 
have a slice whose monotone complexity is large. This proves the importance of 
the theory of monotone circuits. 

Theorem 2.6. Let f be a k-slice. Then 

C,(f)~O(C(f))+0(n min{k, n+l-k,log* n}). 

Remark 2.7. Berkowitz [2] proved that C,,.,(f) s 0( C(f)) +0( n* log n). Valiant [9] 
improved the additive term to 0( n log2 n). Here we give a shorter and, as we hope, 
easier proof of this bound. The result for small or large k uses ideas of Paterson also. 

Proof of Theorem 2.6. At first we show how to change a circuit forf into a monotone 
circuit. An optimal circuit for f may be replaced by a circuit of conjunctions, 
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disjunctions, and negations only. The complexity increases by a constant factor 
only. By the rules of De Morgan we can then get a circuit where only the variables 
are negated and the complexity is at most doubled. 

The problem is how to compute Zi over the monotone basis. This is in general 
impossible, but we may use the following trick. Let X := {x,, . . . , x,} and Xi := 
X -{Xi}. For inputs with exactly k ones it holds that xi = 0 iff TL-‘(Xi) = 1, that 
means Tie1 (Xi) = ZzIi. We replace in our circuit for f, Zi by Ti-‘( Xi). The new circuit 
again computes f: This follows for inputs with k ones by the considerations above. 
For inputs with more than k ones, Tk “-‘(Xi) = 1 and by monotonicity the circuit 
again computes 1. For inputs with less than k ones, Ti-‘( Xi) = 0 and by monotonicity 
the circuit again computes 0. Thus we have shown that 

Now we are going to estimate 

C,( ?y’(X,), . . . , T;-‘(X,)). 

The following algorithm is efficient for small k Obviously, 

TE-‘(Xi)= V Ti-'(Xl, s e e ,Xi_l) A Tie'(Xi+,, e * * 7 X,)* 
p+q=k 

If we have computed all Ti(x,, : . . , Xi) and all Tpn-‘(Xi+l, . . . , x,) (1 d p d k, 1 d is 
n), 2nk gates are sufficient to compute all Tz-‘(Xi). Since 

qx,, . . . )  Xi) =  Ti-'(Xly s s s 9 Xi-l) V (TiYl(X,, s s a 9 Xi-l) A Xi), 

we can compute all Ti(x,, . . . , xi) by at most 2nk gates and similarly also all 
Tpnwi(Xi+l, s w . , x,) by at most 2nk gates. Thus, C,( TEel(X1), . . . , Tc-‘(X,,)) Q 6nk. 

By changing the roles of disjunction and conjunction, a monotone circuit for Tz 
becomes a monotone circuit for Ti+r_k. Thus, we obtain a similar algorithm with 
at most 6n( n + 1 - k) gates. 

For k not too small and not too large, another approach is more efficient. It is 
well known that each comparator network can directly be used as a monotone circuit 
for the threshold functions. We assume w.1.o.g. that n = 2”; in general, we have to 
add at most n dummy variables which are constant 0. Let i = p2’ + q where 1 d q d 2’ 
and let Xi,, := {~~y+~,...,~(~+~)2 r} be the 2’-block of variables containing Xi. Let Y,., 
be the complement of Xi,,, i.e., Y,, := X - Xi,r, and let Zi,r be the buddy of Xi,r, i.e., 
Z,r ‘= xi,r+ 1 -Xi,,. We have to compute the kth element of Yi.0 = Xi. 

At first we use the well-known Batcher sorting network of size O(n log’ n) to sort 
X. By this network we sort also all Xi,, and Zi,r (1 d i d n, 1 G r s m). Since Yi,, = 
Yi,r+l i, Zi,r, we may SOIT Yi,, by merging the sorted lists of Yi,,+l and Zi,,. We are 
only interested in the kth element of Yi,o and not in the whole sorted list of Yi,,. 
We claim that we only need 2’+l elements of Yi,,+l, namely only the elements with 
rankk-2’+‘+1,..., k If we merge these 2’+* elements of Yi,,+l and the 2’ elements 
of zi,,, we get a sorted list of 3.2’ elements. It is easy to see that the elements with 
rank 2’+ 1,. . . ,2’+* in this list are the elements with rank k - 2’+ 1, . . . , k in Yi,,. 
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We start with the sets Y&,_, which are the two halves of X and therefore already 
sorted by the Batcher network. For r = m - 2 to 0 we compute for each Y,,, the 
elements with rank k -2’+ 1,. . . , k by merging the elements of Y&+1 with rank 
k-2’+‘+1,. . . , k and all elements of ,&. This is done by a Batcher merging network 
whose size is 0( r2’) for r > 0. Since Yi,, = X -Xi,,, there exist exactly n2-’ = 2”-’ 
different sets Y,,, for fixed r. The cost of the merging networks for fixed r > 0 is 
therefore 0( r2”‘) = 0( nr). For r = 0 the cost is O(n). Since we have to perform this 
procedure for r E (0, . . . , m - 2}, the cost altogether is 0( nm’). Thus we have shown 
that 

C,( T;:_‘(X,), . . . , T;-‘(X”)) = O(n log2 n). cl 

Altogether we have shown that a function f with a slice whose monotone com- 
plexity is large has a hard slice and is therefore hard itself. 

3. The number of slice functions 

By a well-known counting argument due to Shannon [7] we know that nearly all 
Boolean functions have complexity 0(2”/n). By the results of Section 2 there have 
to exist hard slices. Furthermore, we know that nearly all monotone Boolean 
functions have circuit complexity 0(2”/ n3”) [5,7]. What about slices? We consider 
only rfn]-slices. There are ( ,,,T2,) possible prime implicants. Each subset S defines 
another slice, namely the canonical slice of the disjunction of all monomes in S. 
Therefore, there are at least 2’rnyzl’ slice functions which yields the following propo- 
sition. 

Proposition 3.1. Neady all slice functions have circuit complexity 0(2”/ n3’*). 

Combining Propositions 2.5(i) and 3.1 we get the following. 

Proposition 3.2. Each function with complexity 0(2”/n) has at least J2( n1’2) hard 
slices, namely slices of circuit complexity 0(2”/ n*). 

4. Monotone circuits for slice functions vs. set circuits 

We have shown that it is important to investigate the monotone complexity of 
slice functions. Here we will show that the main structure of a monotone circuit for 
a slice function is given by a set circuit which we define later. 

Let us consider a k-slice J: We are interested in monotone circuits for functions 
f’ which compute 0 if the input has less than k ones, which equal f for k ones, and 
which are arbitrary for inputs with more than k ones. Since f =f v Tz,, we get 
again a monotone circuit for f whose cost is larger than the cost of the circuit for 
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f’ by an additive term of at most O(n log n). For constant k this additive term can 
be reduced to O(n) since C,.,,( 7’:) = O(n) if k is fixed. At first we manipulate the 
inputs. 

Proposition 4.1. If we replace in a monotone circuit for a k-slice f each variable input 
xi by xi A Tz, the new circuit again computes J: The complexity of the new circuit is 
only by an additive term of n -i- C,.,,( Tz) larger than the complexity of the given one. 

Proof. The second assertion is obvious. Since Xi A TE d Xi and because of the 
monotonicity of the circuit the function p computed by the new circuit has the 
property p s$ Let us assume that, for some input a,fk( a) = 0 and f(a) = 1. Then, 
again by monotonicity, ai = 1 and ai A T;(a) = 0 for some i. Thus, TE( a) = 0 which 
implies, by the definition of a k-slice, f(a) = 0, a contradiction. 0 

Investigating the main structure of monotone circuits for slice functions we may 
assume w.1.o.g. that we have changed the circuit in the way described in Proposition 
4.1. The effect of this transformation is that afterwards all functions computed in 
the circuit have prime implicants of length at least k only. Let f := VtEPIk(Ij t where 
PIk( f) is the set of all prime implicants of f of length k. Then, f’ is one of the 
functions described at the beginning of this section where f =f’ v Tz,,. In our 
monotone circuit for f we use now supergates instead of monotone gates. A supergate 
(super A -gate or super v -gate) works at first like a normal A - or v -gate and 
afterwards it destroys all prime implicants with more than k variables. By the first 
replacement rule of Mehlhorn and Galil [3] for monotone circuits, the new circuit 
computes f’ instead off: This can be easily shown by induction on the topological 
order of the gates. Instead of some function g we now compute everywhere g’ := 

V tEPIk(g) t* 
Altogether we now have a monotone (super-) circuit for f where all prime 

implicants of all computed functions have length k Let us consider the effect of 
supergates. Let g, and g2 be two functions of the described class and let g’ := super- v 
(g,, g2) and g”:= super- A (g,, g2). We can conclude that PI( g’) = PI( gl) u PI( g2). 
The property “ E ” always holds. Here, “ 2 ” holds too. The absorption rule cannot 
be applied since all prime implicants have the same length. Also, PI( g”) = PI( g,) n 
PI( g2)_ For g := g, A g, we have 

All t and t’ have length k If t E PI( gl) n PI( g2), it is always a prime implicant of 
g too. Since it has length k, it is a prime implicant even of g”. All products tt’ where 
t f t’ have length larger than k and become destroyed. 

These observations motivate the following definition. 

Definition 4.2. Let g be a monotone function whose prime implicants all have length 
k. A set circuit for g has inputs xi A Ti for 1 s id n and uses n - and u -gates. For 



On the complexity of slice functions 61 

two functions gl and g2 whose prime implicants all have length k, g’ := g, u g, and 
g”:= g, n g, are defined by 

PI( g’) := PI( g,) u PI( g2) and PI( g”) := PI( g,) n PI( g2). 

The set complexity of g denoted by SC,(g) is the minimal number of gates in a 
set circuit computing g. 

Theorem 4.3. Let f be a k-slice and g := VIEPIk(fj t. 

(i) C-U) d SCd d + O(n log 4. 

(ii) Ifk isjxed, C,(f)GX,(g)+O(n). 

(iii) SC,( g) s Cm(f). 

Proof. (i) In order to compute f by a monotone circuit we compute all Xi A T; (cost 
0( n log n)). We use afterwards an optimal set circuit for g, where the inputs are 
already computed, and replace all n by A and all u by v (cost SC,( g)). We 
compute a function f where all prime implicants have length at least k and where 
PIk(S) = PI/J g) = PI/Jf). Thus f=f v T” k+l and f can be computed from f’ with 
cost O(n log n). 

(ii) The proof is similar to the proof of (i). 
(iii) In order to compute g by a set circuit we use an optimal monotone circuit 

for f: We replace the inputs Xi by the inputs Xi A T;’ which are given for free in set 
circuits. Furthermore, we replace all v by u and all A by n. By our previous 
observations we obtain a set circuit for g. Cl 

Theorem 4.3 shows that the heart of a monotone circuit for a slice function is a 
set circuit. Thus, for investigating the monotone complexity of slice functions one 
should work in the model of set circuits. 

To gain even more structure we make the following observations. Let us at first 
assume that we may partition the set of variables to k subsets and that each prime 
implicant of g contains exactly one variable of each subset. This property is fulfilled 
for the Boolean convolution or the Boolean matrix product for k = 2 and for the 
generalized Boolean matrix product [lo] for arbitrary k Let xj denote a variable of 
the ith subclass. We can compute with n -k gates all hi, the disjunction of all 
variables in the ith subclass. Let gi := A\j+i hj for 1 G i d k These ‘punctured conjunc- 
tions’ can be computed with p(k) = 3k - 6 gates from the functions hp If k is even 
we compute with $k gates the pairs h, A h2, . . . , hk_l A hb With&k) gates we compute 
the punctured conjunctions of these $k terms. Afterwards, we need only one gate 
for the computation of each gi. Thus p(k) =p(ik) +$k if k is even. If k is odd, 
+( k - 1) gates are sufficient for the computation of the pairs h, A h2, . . . , hk-2 A hk_l. 
For the recursion we have i( k + 1) terms, namely the i( k - 1) pairs and hb Afterwards, 
k - 1 gates are sufficient since gk is already computed. Thus p(k) = p&k + 1)) + Sk - $ 
if k is odd. Since p(2) = 0, we can conclude that p(k) = 3 k - 6. Altogether, all gi can 
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be computed with n + 2k -6 = O(n) gates. Proposition 4.1 and the appropriate 
version of Theorem 4.3 remain correct if we replace each xj by xj A gi. The advantage 
of this procedure is the following. The set of all possible prime implicants is the 
set of all combinations of one variable of each class, that means it is a k-dimensional 
discrete block or even a k-dimensional discrete cube if all classes have the same 
size. Each input is a (k - 1)-dimensional subblock or subcube. The prime implicants 
form an arbitrary subset (pattern) of the points of the block or cube. 

The problem of constructing optimal set circuits for g (or optimal monotone 
circuits for slice functions f) is therefore equivalent to the geometric problem of 
constructing the subset of points of a k-dimensional block formed by the prime 
implicants of g by intersections and unions of its (k - 1)-dimensional subblocks. 

Arbitrary functions with prime implicants of length k only can be changed in the 
following way in order to apply the geometric approach. The set of variables 

{XI, - - -, x,} is replaced by the kn variables x: (1 d id k, 1 d j d n). The prime 
implicants Xi, . . . Xi, where i, < - - * < ik are replaced by xi, . . . x;. 

We combine our results. We are interested in the circuit complexity of J Instead 
of that we may investigate the circuit complexity of the slices off: For slice functions 
it is nearly equivalent to consider monotone circuits. Finally, we have shown that 
this problem can be replaced by the investigation of the set complexity of g :- 

V rGPII,(Js,_k) t. On one hand, this last problem turned out to be the key problem but 
on the other hand we will show for some slices the existence of set circuits whose 
efficiency is remarkable. 

5. The Boolean convolution 

The canonical slice is that slice which at first sight is most similar to the given 
function. Here and in the following sections we show that the canonical slice may 
be much easier than the given function. 

Definition 5.1. The Boolean convolutionf: (0, 1}2n + (0, 1}2”-’ on the set of variables 

1x1, - * *, %I, Yl, * - - 9 Y,,} is given by f:= Vi+j=k xaj for 2~ ka 2n. 

Weiss [l l] has shown that C,(f) = a( n3’2) an one conjectures that C,(f) = d 
O( n2). 

Theorem 5.2. The monotone complexity of the canonical slice of the Boolean convolution 
is linear. 

Proof. By Theorem 4.3 it is sufficient to prove SC,(f) = O(n). This follows from 
the facts that here the canonical slice is the 2-slice and that f equals the function 
g of Theorem 4.3. 
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We use the geometric approach and consider the square 0, * - - 7 n}2 where the 
input Ai=xi/\(ylv * * * v yn) of the set circuit corresponds to the ith row of the 
square and Bj = yj A (x1 v - * - v x,) corresponds to the jth column. The output fk 
corresponds to the k-diagonal of all (i, j) where i + j = k. We assume that n = m2 
for some natural number 172. Otherwise, we could add some variables which we fix 
afterwards to 0. We use the following algorithm. 

Step 1. D,:= IJ Acl_l)m+i (lcZ<m) (cost m2 - m). 
Isi<m 

Step 2. El:= U B[/_l)m+i (1 d 1s m) (cost m2 - m). 
IsiSm 

Step 3. Fv:= Din Ej (1 S i, js m) (cost m’). 

( Fu is the subsquare (i, j) of side length m.) 

Step4. G/I= U fii (2sZ9m) 
i+j=/ 

(cost m2-2m+ 1). 

(G, is the Z-diagonal of subsquares, see Fig. 1.) 

- F 
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1 I I I I 

Fig. 1. n = 16, G4. 

Step 5. H,:= IJ Aci_l)m+l (1~ Is m) 
IsiSm 

(cost m2 - m). 

Step 6. I, := IJ Bci_l)m+l (l~Z~?n) (cost F?z2 - m). 
Icicm 

Step 7. Jg := Hi n 4 (1 d i, js m) (cost m2). 

(Jii is the pattern consisting of the (i, j)-elements of each subsquare.) 

Step 8. K, := U Jii (2aZsm) (cost m2-2m+l). 
r+j=I 

(K, is the union of all Z-diagonals of all subsquares, see Fig. 2.) 

The set corresponding to fk is Tk :=.IJi+j=k(Ai n Bj), the k-diagonal of the whole 
square. A typical situation is given in Fig. 3. Tk touches one or two diagonals of 



JO ‘((q)zpx u I+t’/)‘f~) n ((?)‘Px u (‘f)‘Q) =: 7~. ‘6 dqs 

‘6 dais iiq u~qq.~O%p? Ino ys!uy k?u~ 3~ 

snyLL ‘(p = (z~)zp pue 8 = (z~)Ip ‘a.m%y mo u!) I+(a)qf) JO samnbsqns ayl JO (y )Zp 
p3uo%“!p 3I.p pm (?)y~ JO samnbsqns aye JO (y)Ip p~otae~p aq~ Am ‘samnbsqns 
%urpuodsamo:, ay, JO p~~o%e!p autos s! (‘+(y)‘fg put? Q Qaapmdsal) (?‘1”3 pue “J JO 
uo~~~as~av~~ aq~+ *p~~o%e~p-~ put? -c ayl a.m%y mo u! ‘I+(?)~Q pue (Y)q;3 Icss ‘scmnbsqns 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 

X X X X 

X X X X 

X X X X 

X X X X 

X X X X 

X X X X 

X X X X 

X X X X 

X X X X 

X X X X 

X X X X 
X X X X 

Aauaaa~ ‘I P9 



On the complexity of slice jiunctions 65 

Let us assume n = p2 where p is a prime. Nechiporuk [4] constructed the following 
function f: (0, 1)” + (0, 1)“. We consider an n x n-matrix M of zeroes and ones. We 
partition this matrix to p2 submatrices of size p xp each, which we denote by Mae6. 
A4,.b has exactly p ones as shown in Fig. 4 where h := a6 mod p. 

P 

r- 
,I- 

I_ 

h 

0 

’ 0 
1 

O ‘1 

1 
1 

0 

0 
1 

1 
1 

1 

0 

Fig. 4. p = 11, a = 8, b = 6, h = ab mod p = 4. 

J corresponds to the ith row of M. J is the disjunction of all yj such that the ith 
row of M has a one at position j. Nechiporuk [4] proved C,,,(ft, . . . ,fn) = O( n3’2). 
If we let gi := xi AJi for some new 

C&1, *. *, g,) = O( n3’2). One conjectures 
C,( g) = O( n3j2). 

variables x1, . . . , x,, obviously also 
that also for g := g, v - - - v g, we have 

Theorem 6.1. The monotone circuit complexity of the canonical slice of ( g,, . . . , gn) 
and of g is linear. 

Proof. Let U, U,, . . . , U, be the patterns corresponding to g, g,, . . . , g,. We use the 
algorithm of Theorem 5.2 and compute with less than 14n gates in a set circuit all 
diagonals but here we take the diagonals from left to right. We need to compute 
the sets Na,b corresponding to the ones of the submatrices Ma,b of Fig. 4. This can 
be done by taking the union of two diagonals and afterwards the intersection with 

Mo,b. Ma,b corresponds to some FU of the algorithm of Theorem 5.2. That means 
that two gates are sufficient for each submatrix, altogether 2n gates. Since U is the 
union of all N,,,, we may construct U with another n - 1 gates. Finally, Uj is the 
intersection of U and the ith row which is given as input. Altogether, SC,(g) d 17n 
and SC,( g,, . . . , g,)a 18n. Cl 

7. Clique functions 

Definition 7.1. The k-clique function fk: (0, l}N -+ (0, 1) where N = (2”) is defined in 
the following way. The variables are denoted by xii where 1 d i <j d n. xij corresponds 
to the possible edge between i and j in an n-vertex graph G. fk computes 1 iff the 
graph specified by the variables xii contains a clique of size k. 
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It is well known that the clique problem is NP-complete. Therefore, one believes 
that there does not exist any polynomial size circuit for the clique function if k is 
chosen in an appropriate way. Valiant [8] has shown an exponential lower bound 
for monotone circuits of three logical levels. Yao [12] improved this result to four 
levels. If the conjecture above is correct, the clique function must have hard slices. 
We prove that the canonical slice is easy to compute. Therefore, one has to raise 
the question which slices may be hard. The canonical slice is the K-slice where 
K = (5). 

Theorem 7.2. The circuit complexity of the canonical slice of any clique-function is 
O(N) and its monotone complexity is 0( N log N). For jixed k even the monotone 
complexity is O(N). 

Proof. The results on the monotone complexity follow as always in the same way. 
Let f* be the canonical slice of the k-clique function on graphs with n vertices. 

By Definition 2.3, 

TE and Tg+l can be computed with O(N) gates. In the above formula for fr we 
may replace f by any function g which coincides with f on the set of inputs where 
E;(X) = 1. Let Xi := {Xi,, . . . , Xi-l, i:, Xi,i+l, . . . , Xi,n}s We shall replace f by 
T;( T;:::(X,), . . . , T;Zi(X,)). Each TcT:(Xi) and afterwards the function Tc may 
be computed with O(n) gates, therefore we only need 0( n’) = O(N) gates for g. 
Altogether, we have proved the theorem if the replacement is correct. The justification 
of the replacement is given by the proof of the following graph-theoretical claim. 

Graphs with exactly K edges contain a k-clique if and only if at least k vertices 
have outdegree at least k - 1. 

“Only if”: The k-clique has K edges. That means a graph with K edges and a 
k-clique contains exactly the edges of the k-clique. The k vertices of the clique have 
outdegree k - 1. 

“If “: Since the graph has K edges and since each edge joins two vertices, the 
sum over all outdegrees is 2K = k( k - 1). If at least k vertices have outdegree at 
least k - 1, there are exactly k vertices with outdegree k - 1 and all other n - k 
vertices are isolated. A vertex with outdegree k- 1 is connected to k - 1 other 
vertices. The only possible vertices are the k - 1 other nonisolated vertices. Thus 
the k nonisolated vertices form a k-clique. Cl 

8. Methods for proving lower bounds 

Until now we have not been able to prove nonlinear lower bounds for the circuit 
complexity, monotone complexity or set complexity of one-output functions in NP. 
Even for n-output-functions we do not know any nonlinear bound on the circuit 
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complexity. The results of this paper show the importance of proving lower bounds 
on the monotone complexity or set complexity of slice functions. We discuss here 
which of the known methods for nonlinear lower bounds on the monotone com- 
plexity of n-output-functions may work also for slice functions. 

All those methods used for lower bounds for the Boolean convolution or Boolean 
sums are no longer available in their pure form as has been shown in Theorems 5.2 
and 6.1. 

Let us consider the important replacement rules due to Mehlhorn and Galil [3]. 
The first replacement rule, the elimination of prime implicants which have no 
lengthening which is a prime implicant of some output, becomes unimportant. For 
k-slices this rule cannot be applied for monomes of length at most k and it is not 
interesting to destroy monomes of length larger than k since they are implicants. 
In set circuits we have this replacement rule implicitly. 

The second replacement rule cannot be applied in the same successful way as 
before. We will show this for the Boolean matrix product 

cii := V a,b, (la i,jsn) 

and its canonical slice. We cite this replacement rule. 
If a monotone circuit computes f and if it computes at some gate s 
(i) ttr, tt,~ PI(s), and 

(ii) Vmonome I Voutputfk: bt,, t&E I(&) =$ ft? I(fk), where I(fk) is the set of 
implicants of fk, 
then we may replace s by s v t and the circuit still computes J: 

For the Boolean matrix product the replacement rule can be applied. For example, 
if t = 1, t, = ail, t2 = ai,, where i f i’, s can be replaced by the constant 1 and the 
given circuit was not optimal. For the canonical slice of the Boolean matrix product 
the second assumption of the replacement rule is no longer correct. (One may easily 
generalize this counter-example to other slices.) Let 7 be a monome consisting of 
two variables which do not form a prime implicant of the matrix product and which 
are unequal to ai, and CLitl. ttt, and fit, are implicants of each output since they 
contain three variables. But fl= i is not an implicant of any output. 

The other important methods are the elimination method and the method of using 
value functions (for a discussion, see [lo]). These methods may be valuable for slice 
functions too. But until now one has used these methods in particular after having 
restructured the given circuit by the replacement rules discussed above. 

Thus we still do not know any nonlinear lower bound on the monotone complexity 
even of n-output slice functions. 

9. Conclusion 

We have seen that monotone circuits and in particular set circuits are important 
tools for the proof of lower bounds on the circuit complexity of hard Boolean 
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functions. The investigation of monotone circuits is sometimes easier than the 
investigation of circuits over a complete basis. But we have indicated that for all 
models it seems to be difficult to prove lower bounds for slice functions. Nevertheless, 
the concept of considering the slice functions of a given function is an important 
new concept. 
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