
Theoretical Computer Science 531 (2014) 37–46
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Optimal algorithms for semi-online machine covering
on two hierarchical machines

Yong Wu a,b, T.C.E. Cheng b, Min Ji c,∗
a Department of Fundamental Education, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, PR China
b Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong
c School of Computer Science and Information Engineering, Contemporary Business and Trade Research Center,
Zhejiang Gongshang University, Hangzhou 310018, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 October 2013
Accepted 14 February 2014
Communicated by D.-Z. Du

Keywords:
Scheduling
Semi-online
Hierarchy
Two machines
Competitive ratio

This paper investigates the semi-online machine covering problem on two hierarchical
machines where the jobs are correspondingly classified into two hierarchical classes. The
objective is to maximize the minimum machine load. We show that if we only know
the size of the largest job, no algorithm with a bounded competitive ratio exists. So we
consider the case where we know both the size and the class of the largest job. If we know
the size of the largest job and that it belongs to the higher class, then an optimal algorithm

with a (1 +
√

2
2)-competitive ratio exists. If we know the size of the largest job and that

it belongs to the lower class, we design an optimal algorithm with an α-competitive ratio,
where α ≈ 2.48119 is the largest root of the equation x3 − 2x2 − 2x + 2 = 0. For the case
where the total size of all the jobs is known in advance, we show that the competitive
ratio of an optimal algorithm is 2.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study semi-online variants of the machine covering problem on two hierarchical machines where the
jobs are correspondingly classified into two hierarchical classes. The goal is to maximize the minimum machine load under
the constraint that all the requests are satisfied. First proposed by Deuermeyer et al. [5], the machine covering problem
has application in the sequencing of maintenance activities for modular gas turbine aircraft engines. Bar-Noy et al. [1] first
studied hierarchical scheduling. It is a common practice in the service industry that differentiated services are provided
to customers based on their entitled privileges that are assigned according to their classes in the service hierarchy. While
hierarchy is a subjective concept, it is often put into practice in terms of different levels of access privilege to service
capacity. Hierarchical scheduling has many applications, such as in the service industry, computer systems, hierarchical
databases etc.

We focus on semi-online algorithms in this paper. In online and semi-online scheduling, the performance of an algorithm
is often measured by its competitive ratio. For a problem instance J and an algorithm A, let C A(J) (or C A in short)
be the objective value produced by A and let C∗(J) (or C∗ in short) be the optimal value of the corresponding offline
version (i.e., the optimal offline value). Then the competitive ratio of A is the smallest number c such that for any instance
J , C∗(J) � cC A(J). If the competitive ratio of an algorithm is at most α, we say that the algorithm is α-competitive.

* Corresponding author.
E-mail addresses: wuyong@nit.zju.edu.cn (Y. Wu), edwin.cheng@polyu.edu.hk (T.C.E. Cheng), jimkeen@163.com (M. Ji).
http://dx.doi.org/10.1016/j.tcs.2014.02.015
0304-3975/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2014.02.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:wuyong@nit.zju.edu.cn
mailto:edwin.cheng@polyu.edu.hk
mailto:jimkeen@163.com
http://dx.doi.org/10.1016/j.tcs.2014.02.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.02.015&domain=pdf

38 Y. Wu et al. / Theoretical Computer Science 531 (2014) 37–46
If no c satisfying the inequality exists, we say that the competitive ratio is unbounded or ∞. An online (semi-online)
scheduling problem has a lower bound ρ if no online (semi-online) algorithm has a competitive ratio smaller than ρ . An
online (semi-online) algorithm A is called optimal if its competitive ratio matches the lower bound for the problem.

In recent years, there have been many results on the study of hierarchical scheduling. Hwang et al. [7] study offline
hierarchical scheduling to minimize the makespan and propose an approximation algorithm LG-LPT. They prove that its
makespan is not greater than 5/4 times the optimal makespan for m = 2 and not greater than 2 − 1

m−1 times the optimal
makespan for m � 3, where m is the number of hierarchical machines. Glass and Kellerer [6] give an improved algorithm
with a worst-case ratio at most 3/2 for m machines. Ji and Cheng [8] propose a fully polynomial-time approximation scheme
(FPTAS) for hierarchical scheduling to minimize the makespan on m parallel machines.

For online hierarchical scheduling to minimize the makespan, Bar-Noy et al. [1] first present an (e + 1)-competitive
algorithm for the general case with m machines, which Crescenzi et al. [4] also provide. For the case with two machines,
Park et al. [12] and Jiang et al. [10] independently propose an optimal algorithm with a competitive ratio 5/3. Jiang [9]
extends the result to the case where there are exactly two hierarchical job classes on m machines. He proves that 2 is
a lower bound for online algorithms and proposes an online algorithm with a competitive ratio (12 + 4

√
2)/7. Zhang et

al. [16] improve the ratio to 1 + m2−m
m2−mk+k2 � 7/3, where k is the number of machines that can process the high class jobs.

First to study semi-online hierarchical scheduling to minimize the makespan, Park et al. [12] propose an optimal algo-
rithm with a competitive ratio 3/2 for the case where the total size of all the jobs is known in advance. Liu et al. [11] study
the case with bounded jobs, i.e., the processing time of each job is bounded within an interval [a,αa]. Recently, Zhang et
al. [15] provide optimal algorithm for the problem. Wu et al. [14] consider the cases where the optimal offline value of the
instance is known in advance and where the largest size of the jobs is known in advance. They provide optimal algorithms
for both problems. Extending hierarchical scheduling to the case with two uniform machines, Chassid and Epstein [2] study
online and semi-online problems and provide optimal algorithms.

In this paper we consider the semi-online hierarchical machine covering problems on two parallel identical machines. We
study two cases where the total size of all the jobs (denoted by T) is known in advance and where the size of the largest
job (denoted by pmax) is known in advance. T and pmax are often assumed to be known in advance in the semi-online
scheduling literature for various reasons as stated in [3], and [13]. For the case where pmax is known in advance, we show
that there exists no algorithm with a bounded competitive ratio. In order to overcome this barrier, we assume that both
the size and class of the largest job are known in advance, i.e., we know Jmax = (pmax, gmax) in advance. For the case where

gmax = 1, we design an optimal algorithm with a competitive ratio 1 +
√

2
2 . For the case where gmax = 2, we design an

optimal algorithm with a competitive ratio α, where α ≈ 2.48119 is the largest root of the equation x3 − 2x2 − 2x + 2 = 0.
Finally, we study the case where T is known in advance and provide an optimal algorithm with a competitive ratio 2 for
the problem.

The rest of the paper is organized as follows: In Section 2 we introduce the notation and formulate the problems. In
Section 3 we propose optimal algorithms for the case where we know the largest job and its class in advance. In Section 4
we provide an optimal algorithm for the case where we know the total size of the jobs in advance. Finally, we conclude the
paper and suggest topics for future research in Section 5.

2. Problem definitions

We are given two parallel identical machines M1 and M2, and a set J of n independent jobs J1, J2, . . . , Jn . We denote
each job by J i = (pi, gi), where pi is the size of J i and gi ∈ {1,2} is the class of J i . Machine Mk has a certificate g(Mk) = k,
k = 1,2, associated with it. Machine Mk can process J i only when g(Mk) � gi . pi and gi are not known until the arrival of
job J i . Each job J i emerges immediately after J i−1 is scheduled. Let G1 = { J i | gi = 1} and G2 = { J i | gi = 2}, so J = G1 ∪G2.
We define the load of a machine as the completion time of the machine, i.e., the total size of all the jobs processed on it. Let
L1 and L2 denote the loads of machines M1 and M2, respectively. We must assign all the jobs to one of the two machines
and the objective value of a schedule is min{L1, L2}. We state the online problem as follows:

Given J , find a schedule to maximize min{L1, L2}.
Knowing T (or pmax , or Jmax) in advance, we state the semi-online variant of the problem as follows:

Given J and T (or pmax, or Jmax), find a schedule to maximize min{L1, L2}.
To ease presentation and exposition, we introduce the following notation for use in the remainder of the paper.

• Gk
i is the set of jobs of class i, i = 1,2, in the first k jobs.

• Gk
2i is the set of jobs of class 2 assigned to machine Mi , i = 1,2, immediately after job Jk is assigned.

• t(δ) is the total size of the jobs in any job set δ.
• t(Gk

i) is the total size of the jobs in the job set Gk
i , i = 1,2. It follows that t(Gn

i) = t(Gi), i = 1,2.
• pmax is the largest size of all the jobs.
• J B = (pmax, gmax) is the first largest job with size pmax and of class gmax that we know in advance.

Y. Wu et al. / Theoretical Computer Science 531 (2014) 37–46 39
3. Largest job is known

We first show in Lemma 1 that if we only know the size of the largest job, then no algorithm with a bounded competitive
ratio exists. In addition, the job instances used in the proof of Lemma 1 also prove that no algorithm with a bounded
competitive ratio exists for the online machine covering problem on two hierarchical machines. Thus more specific models
need to be studied.

Lemma 1. Any semi-online algorithm for the problem, where we know pmax in advance, has an unbounded competitive ratio.

Proof. Consider an algorithm A and the following sequence of jobs. Let ε be a sufficiently small number. The first job is
J1 = (ε,2) and we must assign it to machine M2, else a second job J2 = (pmax,1) arrives. Job J2 must be assigned to
machine M1, and we get C A = 0 and C∗ = ε . It follows that C∗/C A = ∞.

Otherwise, the second job is J2 = (pmax,2) and we must assign it to machine M1, else we get C A = 0, so C∗ = ε and
C∗/C A = ∞ again.

Finally, a third job J3 = (pmax,1) arrives. We must assign it to machine M1 together with job J2. At this point, C A = ε
while C∗ = pmax , which yields C∗/C A → ∞ as ε → 0. �

The following lemma generalizes an upper bound for the off-line optimal value C∗ . This result is useful throughout the
paper.

Lemma 2. For the machine covering problem on two hierarchical machines, we have C∗ � min{t(G2), (t(G1) + t(G2))/2}.

Proof. If t(G2) � t(G1), then C∗ � t(G2) since all the jobs of class 1 in G1 must be assigned to machine M1. If t(G2) > t(G1),
then C∗ � T /2 � (t(G1) + t(G2))/2 and we get the result. �

In the next two subsections, we study the case where we know the largest job and its class, i.e., Jmax = {pmax, gmax} in
advance. We design an optimal algorithm for each case depending on the class of the largest job.

3.1. Largest job of class 1

Theorem 1. A lower bound for the case where we know Jmax = (pmax,1) in advance is at least 1 +
√

2
2 .

Proof. First, we declare that the size of the largest job is 1, i.e., pmax = 1. We begin with jobs J1 = (1,1) and J2 = (x,2),
where the exact value of x(� 1/2) will be decided later. Job J1 must be assigned to machine M1. If job J2 is assigned to
machine M1, then no more jobs arrive. At this point, C∗ = x and we have C A = 0, so C∗/C A → ∞. Thus job J2 must be
assigned to machine M2 and we generate job J3 = (x,2). If job J3 is scheduled on machine M1, then no more jobs arrive,
which yields C∗/C A � 2. Otherwise, if job J3 is scheduled on machine M2, then we generate job J4 = (2x,2). If job J4 is
assigned to M1, then job J5 = (1,1) arrives and we have C∗/C A � 2. Otherwise, job J4 is assigned to M2 and we generate
the remaining job(s) with J5 = (1,2) (when J5 is assigned to M2) or J5 = (1,2), J6 = (1,1), and J7 = (1,1) (when J5 is
assigned to M1). Thus, we have C∗/C A � min{1 + 2x,1 + 1/4x}. Letting x = √

2/4, we have C∗/C A � 1 + √
2/2. �

Letting α = 1 + √
2/2, we present the following semi-online algorithm and prove that it is optimal with a competitive

ratio α.

Algorithm HM1.

1. Let J i = {pi, gi} be the current job;
2. If gi = 1, then assign J i to machine M1;
3. If gi = 2 and t(Gi−1

21) + pi � (1 − 1/α)t(Gi
2), then assign J i to machine M1; otherwise, assign J i to machine M2;

4. If no more jobs arrive, then stop; else, let i = i + 1 and go to Step 2.

Theorem 2. The competitive ratio of Algorithm HM1 for the problem is at most α = 1 + √
2/2.

Proof. According to Algorithm HM1, we have t(Gn
21) � (1−1/α)t(Gn

2). It follows that L2 = t(Gn
22) = t(G2)−t(Gn

21) � t(G2)/α.
Lemma 2 shows that C∗ � t(G2), so C∗/L2 � α. If we also have C∗/L1 � α, then we get the result. Thus, we assume that
C∗/L1 > α, i.e., L1 = t(Gn

21) + t(Gn
1) < C∗/α.

At this point, we have L1 < C∗
α � L1+L2

2α by Lemma 2. It follows that

L1 = t(G1) + t
(
Gn

21

)
<

1
L2. (1)
2α − 1

40 Y. Wu et al. / Theoretical Computer Science 531 (2014) 37–46
Let job Jk = {pk,2} be the last one assigned to machine M2 by Algorithm HM1. By inequality (1), we get

t(G1) + t
(
Gk−1

21

)
� t(G1) + t

(
Gn

21

)
<

1

2α − 1
L2 = 1

2α − 1
t
(
Gk

22

)
� 1

2α − 1
t
(
Gk

2

)
.

Noting that there exists a largest job Jmax = {pmax,1} in G1 and pk � pmax , we have the following inequality

pk + t
(
Gk−1

21

)
� t(G1) + t

(
Gk−1

21

)
� 1

2α − 1
t
(
Gk

2

)
. (2)

Inequality 1
2α−1 = 1 − 1

α holds since α = 1 +√
2/2. By (2), we know that job Jk must be assigned to machine M1 by Step 3

of Algorithm HM1. This contradicts the definition of job Jk . Therefore, we also have C∗/L1 � α, yielding the result. �
From Theorems 1 and 2, we know that HM1 is an optimal algorithm with a competitive ratio α for the case where we

know Jmax = (pmax,1) in advance.

3.2. Largest job of class 2

Theorem 3. A lower bound for the case where we know Jmax = (pmax,2) in advance is at least α, where α ≈ 2.48119 is the largest
root of the equation x3 − 2x2 − 2x + 2 = 0.

Proof. First, we assume without loss of generality that the size of the largest job is 1, i.e., pmax = 1. We begin with jobs J1 =
(1,2) and J2 = (1

α2−1
,2). If we assign both jobs to the same machine, then no more jobs arrive and we get C∗/C A → ∞.

If we assign job J1 to machine M1, then jobs J3 = (1,1) and J4 = (1
α2−1

,1) arrive. At this point, we have C∗ = α2

α2−1

and C A = 1
α2−1

, so C∗/C A = α2 > α. Thus we must assign job J1 to machine M2 and job J2 to machine M1, and we

generate job J3 = (α−1
α2−1

,2). If job J3 is scheduled on machine M2, then no more jobs arrive. It follows that C∗/C A � α.
Otherwise, if job J3 is scheduled on machine M1, then we generate job J4 = (1,2). If job J4 is assigned to M2, then no
more jobs arrive, and we have C∗ = 1 + 1

α2−1
and C A = α

α2−1
, which shows that C∗/C A � α. Otherwise, job J4 is assigned

to M1 and we generate jobs J5 = (1,1), J6 = (1,1), and J7 = (α
α2−1

,1). Thus, we have C∗ = 2 + α
α2−1

and C A = 1. So

C∗/C A � min{α,2 + α
α2−1

} = α. �
Let α be the largest root of the equation x3 − 2x2 − 2x + 2 = 0. We propose Algorithm HM2 for this problem. We

assume that J B is the first job of the sequence and always assign it to machine M2. Such an assumption does not affect
the correctness of the result because partial information ensures the existence of J B . One can easily modify Step 4 of
Algorithm HM2 given below to solve instances without the above assumption by always taking pB into account when
considering the current sizes of t(Gi−1

22) and t(Gi
2), i.e., modifying the definitions of the current sizes of t(Gi−1

22) and t(Gi
2)

right before the assignment of J i as t(Gi−1
22) and t(Gi

2), respectively, as follows:

t
(
Gi−1

22

) =
{

t(Gi−1
22) + pmax if J i comes before J B ,

t(Gi−1
22) otherwise.

t
(
Gi

2

) =
{

t(Gi
2) + pmax if J i comes before J B ,

t(Gi
2) otherwise.

Algorithm HM2.

1. Assign job J B = {pmax,2} to M2;
2. Let J i = {pi, gi} be the current job;
3. If gi = 1, then assign J i to machine M1;
4. If gi = 2, then assign J i by the following rule:

4.1 if t(Gi−1
21) + pi � (α − 2)pmax , then assign J i to machine M1;

4.2 else if t(Gi−1
22) + pi − pmax � (α − 1)t(Gi−1

21), then assign J i to machine M2;

4.3 else if t(Gi−1
21) + pi � (1 − 1/α)t(Gi

2), then assign J i to machine M1;
4.4 otherwise, assign J i to machine M2;

5. If no more jobs arrive, then stop; else, let i = i + 1 and go to Step 2.

Theorem 4. The competitive ratio of Algorithm HM2 for the problem is at most α ≈ 2.48119.

Y. Wu et al. / Theoretical Computer Science 531 (2014) 37–46 41
Proof. According to Algorithm HM2, we have t(Gn
21) � (1 − 1/α)t(Gn

2), which yields

t
(
Gn

22

)
� t

(
Gn

2

)
/α. (3)

Next, we distinguish two cases according to the performance of the algorithm.

Case 1. There is no job J i = (pi,2) that makes t(Gi−1
21) + pi > (1 − 1/α)t(Gi

2), 1 � i � n.

In this case, we have only assigned jobs to machine M2 by Step 4.2 of Algorithm HM2. If CHM2 = min{L1, L2} =
min{t(Gn

1) + t(Gn
21), t(Gn

22)} = t(Gn
22), then we get C∗/CHM2 � α by Lemma 2 and inequality (3).

If CHM2 = t(Gn
1) + t(Gn

21) < t(Gn
22), then we have t(G2) > t(G1) and t(Gn

22) − pmax � (α − 1)t(Gn
21). Otherwise, if t(Gn

22) −
pmax > (α − 1)t(Gn

21), then there exists a job assigned to machine M2 according to Step 4.4 of Algorithm HM2. This is a
contradiction. In the offline optimal schedule, we must assign job J B = {pmax,2} to machine M2 and some of the other jobs
of class 2 to machine M1. Thus,

C∗ � t(G2) − pmax + t(G1) = t
(
Gn

22

) − pmax + t
(
Gn

21

) + t(G1)

and it follows that

C∗

CHM2
�

t(Gn
22) − pmax + t(Gn

21) + t(G1)

t(Gn
1) + t(Gn

21)
�

αt(Gn
21) + t(G1)

t(Gn
1) + t(Gn

21)
� α.

Case 2. There exists at least one job J i = (pi,2) that satisfies t(Gi−1
21) + pi > (1 − 1/α)t(Gi

2), 1 � i � n.

Let job Jk = {pk,2} be the first such job, which is assigned to machine M2 according to Step 4.4 of Algorithm HM2. We
can derive a lemma about the size of job Jk .

Lemma 3. Let t(β) be the total size of all the jobs assigned to machine M2 by Step 4.2 of Algorithm HM2 before job Jk, then we have
pk > (α − 1)(pmax + t(β)) − t(Gk−1

21).

Proof. At this point, t(Gk
2) = t(Gk−1

21) + t(Gk−1
22) + pk and t(Gk−1

22) = pmax + t(β). According to the definition of job Jk , we
have

t
(
Gk−1

21

) + pk > (1 − 1/α)t
(
Gk

2

) = (1 − 1/α)
(
t
(
Gk−1

21

) + pmax + t(β) + pk
)
.

It follows that pk > (α − 1)(pmax + t(β)) − t(Gk−1
21). �

According to inequality (3) and Lemma 2, we have L2 = t(Gn
22) � C∗/α. Note that CHM2 = min{L1, L2}. If we also have

L1 = t(G1) + t(Gn
21) � C∗/α, then we are done.

Suppose that the theorem is false in this case, i.e.,

CHM2 = min{L1, L2} = t(G1) + t
(
Gn

21

)
< C∗/α. (4)

There must exist a problem instance that we call a counter example for which Algorithm HM2 yields a schedule with
CHM2 < C∗/α. Then, the counter example with the least number of jobs is defined as the minimum counter example. For
notational ease in the remainder of this paper, we let J = { J1, J2, . . . , Jn} be the minimum counter example. We provide a
lemma about the minimum counter example.

Lemma 4. For a minimum counter example J = { J1, J2, . . . , Jn}, (α − 2)pmax < t(Gn
21) < 1

2α−3 pmax and t(G2) < 2α
2α−3 pmax.

Proof. According to Lemma 3, we have pk + t(Gn
21) � pk + t(Gk−1

21) > (α − 1)pmax . Note that pk � pmax . So we get t(Gn
21) >

(α − 2)pmax .
According to Lemma 2 and inequality (4), we have

L1 = t(G1) + t
(
Gn

21

)
<

1

2α

(
t(G1) + t(G2)

)
.

Note that t(G2) = t(Gn
21) + t(Gn

22). So we have

t
(
Gn

22

)
> (2α − 1)

(
t(G1) + t

(
Gn

21

))
(5)

and

42 Y. Wu et al. / Theoretical Computer Science 531 (2014) 37–46
t(G2) = t
(
Gn

22

) + t
(
Gn

21

)
> 2αt

(
Gn

21

)
. (6)

According to Algorithm HM2, we have

t
(
Gn

21

)
> (1 − 1/α)t(G2) − pmax. (7)

Otherwise, if t(Gn
21) � (1 − 1/α)t(G2) − pmax , then t(Gn

21) + pmax � (1 − 1/α)t(G2). Note that in the minimum counter
example, there are at least two jobs assigned to machine M2. Thus the last job assigned to machine M2 must be assigned
to machine M1 by Step 4.3.

Together with inequalities (6) and (7), we have t(Gn
21) > (1 − 1

α) · 2αt(Gn
21) − pmax . It follows that

t
(
Gn

21

)
<

1

2α − 3
pmax. (8)

Next, we prove that t(G2) < 2α
2α−3 pmax . Otherwise, assuming that t(G2) � 2α

2α−3 pmax , we have t(Gn
21) + pk > (1 −

1
α)t(G2) � 2α−2

2α−3 pmax by the definition of job Jk . Note that pk � pmax . So we have t(Gn
21) � 1

2α−3 pmax . This contradicts
inequality (8). �
Lemma 5. For a minimum counter example J = { J1, J2, . . . , Jn}, there exists only one job Jk that is assigned to machine M2 by
Step 4.4 and job Jk is also the last job assigned to machine M2 .

Proof. We first show the uniqueness of job Jk . Assume that there is another job Ja = {pa,2} that is assigned to machine
M2 by Step 4.4. Note that job Jk is the first one, so job Ja arrives after job Jk . Lemmas 3 and 4 show that

pk > (α − 1)pmax − t
(
Gn

21

)
>

(
α − 1 − 1

2α − 3

)
pmax ≈ 0.971611pmax. (9)

According to the definition of job Ja , we have

t
(
Ga−1

21

) + pa >

(
1 − 1

α

)
t
(
Ga

2

) =
(

1 − 1

α

)(
t
(
Ga

21

) + t
(
Ga

22

))
and

t
(
Ga

22

)
� t

(
Gk

22

) + pa = (
pmax + t(β) + pk + pa

)
,

which yields t(Ga−1
21) + pa > (α − 1)(pmax + pk). Note that t(Ga−1

21) � t(Gn
21). Combining with inequality (9), we have

pa > α

(
α − 1 − 1

2α − 3

)
pmax ≈ 2.41076pmax,

a contradiction.
Next we show that job Jk is the last one assigned to machine M2 by Algorithm HM2. If this is not true, let job

Ja = {pa,2} be the last job assigned to machine M2. It is clear that job Ja is assigned to machine M2 by Step 4.2 of
Algorithm HM2.

At this point, we have t(Ga−1
22) − pmax + pa � (α − 1)t(Ga−1

21) and t(Gn
22) = t(Ga−1

22) + pa . It follows that t(Gn
22) − pmax �

(α − 1)t(Ga−1
21) � (α − 1)t(Gn

21). Similar to Case 1, we have

C∗

CHM2
�

t(Gn
22) − pmax + t(Gn

21) + t(G1)

t(Gn
1) + t(Gn

21)
�

αt(Gn
21) + t(G1)

t(Gn
1) + t(Gn

21)
� α.

This contradicts the assumption that J is a minimum counter example. Therefore, job Jk is the last one assigned to machine
M2 by Algorithm HM2. �

By Lemma 5, we know that Gn
22 = { J B} ∪ β ∪ { Jk}, where β is the set of all the jobs except J B assigned to machine M2

before job Jk . In the rest of the proof, we show that the minimum counter example J = { J1, J2, . . . , Jn}, which contains
job Jk , does not exist. Next, we find the total size of all the jobs in β and then we distinguish three possible subcases
according to the number of jobs in Gn

21 and the size of t(β).
Lemmas 3 and 4 show that

pk >

(
α − 1 − 1

2α − 3

)
pmax + (α − 1)t(β).

Combining with pk � pmax , we have

t(β) <
5 − 2α

2α − 3
pmax ≈ 0.01917pmax. (10)

Y. Wu et al. / Theoretical Computer Science 531 (2014) 37–46 43
Subcase 2.1. There is only one job in Gn
21.

At this point, we have

CHM2 = L1 = t(G1) + t
(
Gn

21

)
, t

(
Gn

22

) = pmax + t(β) + pk.

Combining with inequalities (5) and (10), we have

t(G1) + t
(
Gn

21

)
<

1

2α − 1
t
(
Gn

22

)
� 1

2α − 1

(
2pmax + t(β)

)
<

1

2α − 3
pmax.

It follows that t(G1) + t(Gn
21) + t(β) < 1

2α−3 pmax + 5−2α
2α−3 pmax < 0.52875pmax . Therefore, in the optimal schedule, the only

one job in Gn
21 must be assigned together with one of the two jobs Jmax and Jk . It is clear that

C∗ � min
{

pmax + t(β) + t(G1), t
(
Gn

21

) + pk + t(G1)
}

� pmax + t(β) + t(G1).

Note that C∗ > αCHM2. So we get pmax + t(β) + t(G1) > α(t(G1) + t(Gn
21)). Combining with Lemma 4, we get t(β) > (α(α −

2) − 1)pmax ≈ 0.19394pmax . This contradicts inequality (10). A minimum counter example of this case does not exist.

Subcase 2.2. There are at least two jobs in Gn
21 and t(β) > 0.

Since there are at least two jobs of class 2 assigned to machine M1, let job Jb = {pb,2} be the last one and δ be the set
of all the jobs of class 2 assigned to machine M1 before Jb . In this subcase, the job set Gn

22 = { J B} ∪ β ∪ { Jk}. Note that all
the jobs in β are assigned to machine M2 by Step 4.2, which yields

t(δ) + t(β) > (α − 2)pmax ≈ 0.48119pmax. (11)

According to the definition of job Jb , we have t(β) + pb > (α − 1)t(δ); otherwise, job Jb must be assigned to machine M2
by Step 4.2. It follows that

t(δ) + t(β) + pb > αt(δ). (12)

According to inequalities (8) and (10), we have

t(δ) + t(β) + pb <

(
6 − 2α

2α − 3

)
pmax. (13)

Combining with (12) and (13), we obtain t(δ) < 6−2α
α(2α−3)

pmax . This implies that

t(δ) + t(β) <
6 − 2α

α(2α − 3)
pmax + 5 − 2α

2α − 3
pmax ≈ 0.23227pmax,

which contradicts inequality (11). A minimum counter example of this case does not exist.

Subcase 2.3. There are at least two jobs in Gn
21 and t(β) = 0.

Similar to Subcase 2.2, let job Jb = {pb,2} be the last one and δ be the set of all the jobs of class 2 assigned to
machine M1 before Jb . The equality t(β) = 0 shows that the job set Gn

22 = { J B} ∪ { Jk}. In this subcase, we have CHM2 =
t(G1) + t(δ) + pb � 1

2α−3 pmax . Next, we prove that G1 = ∅ for a minimum counter example. Otherwise, if G1
= ∅, let
J ′ = J ∪ G1 be a minimum counter example, where all the jobs in J are of class 2. We now provide the relations
between the competitive ratios of both job sequences J ′ and J . Let C∗(J ′) and C∗(J) be the optimal values in an offline
version, and CHM2(J ′) and CHM2(J) be the objective values produced by HM2 of J ′ and J , respectively. It is clear that
CHM2(J ′) = CHM2(J) + t(G1), and C∗(J ′) � C∗(J) + t(G1). Since J ′ is a counter example, we have

C∗(J ′)
CHM2(J ′)

> α.

It follows that

C∗(J)

CHM2(J)
>

C∗(J) + t(G1)

CHM2(J) + t(G1)
� C∗(J ′)

CHM2(J ′)
> α.

This shows that instance J is also a counter example and the number of jobs in J is fewer than that in J ′ since G1
= ∅.
This contradicts the assumption that J ′ is a minimum counter example. Therefore, G1 = ∅ in a minimum counter example.

44 Y. Wu et al. / Theoretical Computer Science 531 (2014) 37–46
Since G1 = ∅, we have CHM2 = L1 = t(δ) + pb � 1
2α−3 pmax by Lemma 4 and t(Gn

22) = pmax + pk � 2pmax . In the optimal
offline schedule, job Jb must be assigned to one machine, together with one of the two jobs J B and Jk . Thus, C∗ �
pmax + t(δ). Since C∗/CHM2 > α, we have

CHM2 = L1 = t(δ) + pb <
1

α

(
pmax + t(δ)

)
. (14)

Combining with Lemma 4, we have 1
α (pmax + t(δ)) > (α − 2)pmax and it follows that

t(δ) >
(
α(α − 2) − 1

)
pmax. (15)

According to the definition of job Jb , we have pb > (α − 1)t(δ). Otherwise, pb + t(β) = pb � (α − 1)t(δ) = (α − 1)t(Gb−1
21)

and job Jb must be assigned to machine M2 by Step 4.2. Inequality (14) shows that pb < 1
α pmax + (1

α − 1)t(δ). Therefore,

(α − 1)t(δ) < pb < 1
α pmax + (1

α − 1)t(δ) and it follows that

t(δ) � 1

α2 − 1
pmax. (16)

Note that 1
α2−1

= (α(α−2)−1) since α is the root of the equation x3 −2x2 −2x+2 = 0. Inequalities (15) and (16) contradict
each other. A minimum counter example of this case does not exist.

The above analysis confirms that there exists no such minimum counter example. Therefore, the competitive ratio of
Algorithm HM2 is at most α. �

From Theorems 3 and 4, we know that HM2 is an optimal algorithm with a competitive ratio α for the case where we
know Jmax = (pmax,2) in advance.

4. Total size is known

In this section we design an optimal algorithm for the case where the total size of all the jobs T = ∑
1� j�n p j is known

in advance. We first provide a lower bound on the competitive ratio.

Theorem 5. Any semi-online Algorithm A for the problem has a competitive ratio at least 2.

Proof. First, we assume without loss of generality that the total size of all the jobs is 4, i.e., T = 4, and begin with job
J1 = (1,2). If job J1 is scheduled on machine M1, then we generate jobs J2 = (2,1) and J3 = (1,2). At this point, C∗ = 2
and we have C A � 1 since job J2 must be scheduled on machine M1, so C∗/C A � 2. If job J1 is scheduled on machine
M2, we generate job J2 = (2,2). If job J2 is scheduled on machine M1, then we generate job J3 = (1,1), which yields
C∗/C A � 2. Otherwise, if job J2 is scheduled on machine M2, then we generate job J3 = (1,2). We have C∗ = 2 and C A � 1
no matter which machine job J3 is assigned to. Thus the competitive ratio of any algorithm for this problem is at least 2. �
Algorithm HS.

1. Assign all the jobs of class 1 to machine M1;
2. Always assign the current job of class 2 to machine M2 until there exists a job J i = {pi,2} such that t(Gi−1

22) + pi > 3T
4 ;

2.1 If t(Gi−1
22) � T

4 , then assign J i and all the remaining jobs of class 2 to M1;

2.2 else if T −pi
2 � t(Gi−1

22) < T
4 , then assign J i to machine M1 and all the remaining jobs of class 2 to M2;

2.3 otherwise, t(Gi−1
22) <

T −pi
2 < T

4 , then assign J i to machine M2 and all the remaining jobs of class 2 to M1.

Theorem 6. The competitive ratio of Algorithm HS for the problem is at most 2.

Proof. We distinguish two cases according to the final load of machine M2.

Case 1. L2 = t(Gn
22) � 3T

4 .

In this case, we have L1 = T − L2 � T
4 . By Lemma 2, we have C∗ � T

2 . If we also have L2 � T
4 , then C H S = min{L1, L2} �

T
4 � C∗

2 and we are done.
Assume that L2 < T

4 . So we have C A = L2 and L1 = t(G1)+t(Gn
21) > 3T

4 . If t(Gn
21) = 0, then Algorithm HS gives an optimal

schedule. If t(Gn
21)
= 0, then there is at least one job in Gn

21. Let job Jk = {pk,2} be the last one (may be the only one) of

class 2 assigned to machine M1. It is clear that t(Gk−1
22) � L2 < T

4 , which yields that job Jk is assigned to machine M1 by
Step 2.2 of Algorithm HS. Therefore, we have the following inequality

Y. Wu et al. / Theoretical Computer Science 531 (2014) 37–46 45
T − pk

2
� t

(
Gk−1

22

)
� L2 <

T

4
. (17)

It follows that pk > T
2 . In the optimal schedule, we must assign job Jk to machine M2 alone and all the other jobs to

machine M1. Combining with inequality (17), we have

C∗ = T − pk � 2t
(
Gk−1

22

)
� 2L2 = 2CHS.

Case 2. L2 = t(Gn
22) > 3T

4 .

In this case, we have C A = L1 = t(G1) + t(Gn
21) = T − L2 < T

4 . Let job Jk = {pk,2} be the last job assigned to machine

M2. It is clear that t(Gn
22) = t(Gk−1

22) + pk > 3T
4 and t(Gk−1

21) � L1 < T
4 . So job Jk is assigned to machine M2 by Step 2.3 of

Algorithm HS. The following inequality holds

t
(
Gk−1

22

)
� T − pk

2
<

T

4
. (18)

It follows that pk > T
2 . In the optimal schedule, we must assign job Jk to machine M2 alone and all the other jobs to

machine M1, so C∗ = T − pk . Combining with inequality (18), we have

CHS = L1 = T − t
(
Gn

22

) = T − t
(
Gk−1

22

) − pk � T − pk

2
= C∗

2
.

From the above analysis, we see that the competitive ratio of HS is at most 2. �
From Theorems 5 and 6, we know that HS is an optimal algorithm for the case where the total size of all the jobs is

known in advance and its competitive ratio is 2.

Corollary 1. For the case where we know both the total size of all the jobs and the largest size of the jobs in advance, Algorithm HS is
also optimal with a competitive ratio 2.

Proof. Assume that we know T = 4 and pmax = 2 in advance. Then we can prove that a lower bound for the problem is 2
by using the job sequences used in the proof of Theorem 5. Then Theorem 6 shows that Algorithm HS is also optimal for
this problem with a competitive ratio 2. �
5. Conclusions

In this paper we study several cases of the semi-online version of the machine covering problem on two hierarchical
parallel identical machines, where we know T , pmax , or Jmax in advance. We provide optimal algorithms for all these cases.
It is an interesting problem to design (optimal) algorithms for the case where there are m > 2 hierarchical parallel identical
machines. To design optimal algorithms for the case where there are uniform machines with general speeds is another
challenging topic for future research.

Acknowledgements

Wu was supported in part by Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ13A010010) and
Ningbo Natural Science Foundation (Grant No. 2012A610023). Ji was supported in part by the Humanities and Social Sci-
ences Planning Foundation of the Ministry of Education (Grant No. 13YJA630034), the National Basic Research Program
of China (973 Program) (Grant No. 2012CB315804), the Key Innovation Team of Science Technology Department of Zhe-
jiang Province (Grant No. 2010R50041), and the Contemporary Business and Trade Research Center of Zhejiang Gongshang
University, which is the Key Research Institute of Social Sciences and Humanities of the Ministry of Education of China.

References

[1] A. Bar-Noy, A. Freund, J. Naor, On-line load balancing in a hierarchical server topology, SIAM J. Comput. 31 (2001) 527–549.
[2] O. Chassid, L. Epstein, The hierarchical model for load balancing on two machines, J. Comb. Optim. 15 (2008) 305–314.
[3] T.C.E. Cheng, H. Kellerer, V. Kotov, Semi-on-line multiprocessor scheduling with given total processing time, Theoret. Comput. Sci. 337 (2005) 134–146.
[4] P. Crescenzi, G. Gambosi, P. Penna, On-line algorithms for the channel assignment problem in cellular networks, Discrete Appl. Math. 137 (3) (2004)

237–266.
[5] B.L. Deuermeyer, D.K. Friesen, M.A. Langston, Scheduling to maximize the minimum processor finish time in a multiprocessor system, SIAM J. Algebr.

Discrete Methods 3 (1982) 190–196.
[6] C.A. Glass, H. Kellerer, Parallel machine scheduling with job assignment restrictions, Naval Res. Logist. 54 (2007) 250–257.
[7] H.C. Hwang, S.Y. Chang, K. Lee, Parallel machine scheduling under a grade of service provision, Comput. Oper. Res. 31 (2004) 2055–2061.

http://refhub.elsevier.com/S0304-3975(14)00108-X/bib4261722D4E6F7932303031s1
http://refhub.elsevier.com/S0304-3975(14)00108-X/bib4368617373696432303038s1
http://refhub.elsevier.com/S0304-3975(14)00108-X/bib4368656E6732303035s1
http://refhub.elsevier.com/S0304-3975(14)00108-X/bib4372657363656E7A6932303034s1
http://refhub.elsevier.com/S0304-3975(14)00108-X/bib4372657363656E7A6932303034s1
http://refhub.elsevier.com/S0304-3975(14)00108-X/bib44464C3832s1
http://refhub.elsevier.com/S0304-3975(14)00108-X/bib44464C3832s1
http://refhub.elsevier.com/S0304-3975(14)00108-X/bib476C61737332303037s1
http://refhub.elsevier.com/S0304-3975(14)00108-X/bib4877616E6732303034s1

46 Y. Wu et al. / Theoretical Computer Science 531 (2014) 37–46
[8] M. Ji, T.C.E. Cheng, An FPTAS for parallel-machine scheduling under a grade of service provision to minimize makespan, Inform. Process. Lett. 108
(2008) 171–174.

[9] Y.W. Jiang, Online scheduling on parallel machines with two GoS levels, J. Comb. Optim. 16 (2008) 28–38.
[10] Y.W. Jiang, Y. He, C.M. Tang, Optimal online algorithms for scheduling on two identical machines under a grade of service, J. Zhejiang Univ. Sci. A 7 (3)

(2006) 309–314.
[11] M. Liu, C.B. Chu, Y.F. Xu, F.F. Zheng, Semi-online scheduling on 2 machines under a grade of service provision with bounded processing times, J. Comb.

Optim. 21 (2011) 138–149.
[12] J. Park, S.Y. Chang, K. Lee, Online and semi-online scheduling of two machines under a grade of service provision, Oper. Res. Lett. 34 (2006) 692–696.
[13] Z.Y. Tan, Y. Wu, Optimal semi-online algorithms for machine covering, Theoret. Comput. Sci. 372 (2007) 69–80.
[14] Y. Wu, M. Ji, Q.F. Yang, Optimal semi-online scheduling algorithms on two parallel identical machines under a grade of service provision, Int. J. Prod.

Econ. 135 (2012) 367–371.
[15] A. Zhang, Y.W. Jiang, L.D. Fan, J.L. Hu, Optimal online algorithms on two hierarchical machines with tightly-grouped processing times, J. Comb. Optim.

(2013), http://dx.doi.org/10.1007/s10878-013-9627-7.
[16] A. Zhang, Y.W. Jiang, Z.Y. Tan, Online parallel machines scheduling with two hierarchies, Theoret. Comput. Sci. 410 (2009) 3597–3605.

http://refhub.elsevier.com/S0304-3975(14)00108-X/bib4A6932303038s1
http://refhub.elsevier.com/S0304-3975(14)00108-X/bib4A6932303038s1
http://refhub.elsevier.com/S0304-3975(14)00108-X/bib4A69616E6732303038s1
http://refhub.elsevier.com/S0304-3975(14)00108-X/bib4A69616E6732303036s1
http://refhub.elsevier.com/S0304-3975(14)00108-X/bib4A69616E6732303036s1
http://refhub.elsevier.com/S0304-3975(14)00108-X/bib4C697532303131s1
http://refhub.elsevier.com/S0304-3975(14)00108-X/bib4C697532303131s1
http://refhub.elsevier.com/S0304-3975(14)00108-X/bib5061726B32303036s1
http://refhub.elsevier.com/S0304-3975(14)00108-X/bib54616E32303037s1
http://refhub.elsevier.com/S0304-3975(14)00108-X/bib577532303132s1
http://refhub.elsevier.com/S0304-3975(14)00108-X/bib577532303132s1
http://dx.doi.org/10.1007/s10878-013-9627-7
http://refhub.elsevier.com/S0304-3975(14)00108-X/bib5A68616E6732303039s1

	Optimal algorithms for semi-online machine covering on two hierarchical machines
	1 Introduction
	2 Problem deﬁnitions
	3 Largest job is known
	3.1 Largest job of class 1
	3.2 Largest job of class 2

	4 Total size is known
	5 Conclusions
	Acknowledgements
	References

