
Theoretical Computer Science 313 (2004) 463–472
www.elsevier.com/locate/tcs

Periodicity and arithmetic-periodicity
in hexadecimal games
S. Howse, R.J. Nowakowski∗;1

Department of Mathematics, Statistics & Computer Science, Dalhousie University, Halifax,
Canada NS B3H 3J5

Received 29 April 2002; received in revised form 16 September 2002; accepted 25 August 2003

Abstract

We investigate 1-, 2- and some k-digit (k¿ 3) hexadecimal games with the help of a new
arithmetic-periodicity theorem. We also note that not all hexadecimal games are periodic or
arithmetic-periodic.
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1. Introduction

A Taking-and-Breaking game [3] is an impartial, combinatorial game, played with
heaps of beans on a table. A move for either player consists of choosing a heap,
removing a certain number of beans from the heap and then possibly splitting the
remainder into several heaps, the winner is the player making the last move. The
number to be removed and the number of heaps that one heap can be split into, is
given by the rules of the game.
The rules for an hexadecimal game are found in the hexadecimal code 0:d1d2 : : : du,

where 06di615. We use the usual letters A, B, C, D, E, F for the numbers 10
through 15, respectively. If di =0 then a player cannot take i beans away from a heap.
If di = �323 + �222 + �121 + �020 where �j is 0 or 1, a player can remove i beans from
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the heap provided he leaves the remainder in exactly j heaps for some j with �j =1.
If, for all i, 06di67 then this is called an octal game. This restriction allows for a
heap to be split into no more than 2 heaps. A subtraction game has di ∈ {0; 3}, i.e. a
player can remove beans but cannot split the heap.
The followers of a game are all those positions which can be reached in one move.

The minimum excluded value of a set S is the least non-negative integer which is
not included in S and is denoted by mex(S). The nim-value of an impartial game G,
denoted by G(n), is given by

G(G) = mex{G(H) |H is a follower of G}:
The values in the set {G(H) |H is a follower of G} are called excluded values for
G(G). An impartial game G is a previous player win, i.e. the next player has no good
move, if and only if G(G)= 0.
The nim-sum of two non-negative integers is the Exclusive or (XOR), written ⊕ ,

of their binary representations. It can also be described as adding the numbers in
binary without carrying. A game G is the disjunctive sum of games H and K , written
G=H+K , if, on each turn, the players must choose one of H and K and make a legal
move in that game. From the theory of impartial games (see [3] or [5]) if G=H +K ,
then G(G)=G(H)⊕G(K).
Taking-and-Breaking games are examples of disjunctive games—choose one heap

and play in it. To know how to play these game well, it suEces to know what the
nim-values are for individual heaps. For a given game G, let G(i) be the game played
with a heap of size i. We deGne the G-sequence for a Taking-and-Breaking game to
be the sequence G(0);G(1);G(2); : : : .
For subtraction games, in [1] it is shown that the sequence of nim-values of games

with small subtraction sets can have long periods. SpeciGcally, that game with sub-
traction set {s; 4s; 12s + 1; 16s + 1} has a period length of 56s3 + 52s2 + 9s + 1 for
s=1; 2; : : : ; 26.
A compendium of periods and results for octal games can be found in [3]. Gangolli

and Plambeck [7] found the periods of 0.127, 0.16, 0.376 and 0.56. Flammenkamp
has a web site [6] that lists the latest computations and results concerning octal games
with at most three digits. At the time this paper was written, some of these calculations
have been taken up as far as heap size 235. In addition, Grundy’s game (choose a heap
and split it into two unequal heaps) has been analysed [6] to heap size 5× 232 and
Couples-are-Forever [4] (choose a heap and split it into two but a heap of 2 cannot be
split) has been analyzed to heap size 5× 107 and neither show any sign of becoming
periodic.
Examples of hexadecimal games were known that exhibit one of two types of ‘pe-

riodic’ behavior. The Grst is normal periodicity, i.e. there exists N and p such that
G(n + p)=G(n) for all n¿N . Such periodicity occurs also in subtraction and oc-
tal games. The second is arithmetic-periodicity: there exists N , p and s such that
G(n + p)=G(n) + s for all n¿N , where s is called the saltus. For example, the
G-sequence for 0.137F is 0; 1; 1; 2; 2; 3; 3; : : : ; where G(2m− 1)=G(2m)=m for m¿1.
In this case, the saltus is 1 and the period length is 2 or, G(n+2)=G(n)+1 for n¿1.
A Taking-and-Breaking game is split arithmetic periodic, periodic regular or sapp
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regular for short, if there exist integers e, s, and p, and a set S ⊆ {0; 1; 2; : : : ; p − 1}
such that
• G(i + p)=G(Li) for i¿e and (imodp)∈ S,
• G(i + p)=G(Li) + s for i¿e and (imodp) 
∈ S.
In [9], some octal games, where one heap has a pass move associated with it, are
shown to be sapp regular.
Arithmetic-periodicity does not occur in octal or subtraction games. This paper pre-

sents theorems for testing hexadecimal games for periodicity and arithmetic-periodicity.
We note however, that not all hexadecimal games are eventually one or the other. We
note that 0.123456789 exhibits a new type of periodicity. Starting with n=0, the Grst
Gfteen G-values are 0, 1, 0, 2, 2, 1, 1, 3, 2, 4, 4, 5, 5, 6, 4, and thereafter

G(2m − 1) = G(2m) = m − 1; except G(2k + 6) = 2k−1:

The G-sequence is essentially arithmetic-periodic but with an inGnite number of ex-
ceptional values that occur in a geometric fashion. That this is the G-sequence can be
found in [10]. Also, 0.2048 has the regularity (called a ruler regularity in [8]): if k¿0
and j ∈ {1; 2; 3; 4; 6; 7; 8; 9; 10; 12; 13; 18} then G(13k + j)= 4k +G(j) unless j=2 and
k is of the form (q+1)2m+1 +2m+1 (q; m¿0). For q; m¿0, then G(13((q+1)2m+1 +
2m + 1) + 2)=2m+3q+ 2m+2 + 2.
The game 0.660060008 now calculated up to 390,000 terms, is showing a tendency

to be sapp regular with a period length of 96,640.
That an hexadecimal game probably has an increasing G-sequence can be shown

heuristically. Let a move allow the removal of i beans and then splitting the heap into
three. For a heap of size n, a subset of the options are {k; k; n−i−2k | k =1; : : : ; �(n−i)=
2�} and the G values are G(k)⊕G(k)⊕G(n − i − 2k)=G(n − i − 2k), k =1; : : : ;
�(n− i)=2�. That is, every second value in the G-sequence for heaps of size 1 through
n − i − 2 is an excluded value for G(n). This observation gives a proof of the next
result which we leave to the reader.

Lemma 1. Suppose that G= 0:d1d2 : : : dt is an hexadecimal game and that there exists
non-negative integers i, odd, and j, even with di¿8 and dj¿8 then

lim
n→∞ G(n) = ∞:

The tables in [3] show some hexadecimal games with periodic behavior and Kenyon
had found that 0.3F was arithmetic-periodic with period 6 and saltus 3. Austin proved
the following theorem:

Theorem 2 (Austin [2]). Suppose that G= 0:d1d2 : : : dt is an hexadecimal game and
that there exists non-negative integers e, p¿t + 2 with e¿p and m¿0 such that
(1) G(i + p)=G(i) + 2m for all i, e¡i¡e + 7p+ t,
(2) G(i)¡2m for all i6e,
(3) G(i)¡2m+1 for all i6e + p,
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(4) either there exists d2v+1¿8 and d2w¿8 and for each g, 06g¡2m+1, there exists
i¿0 such that G(i)= g, or there exists du¿8 and for each g¿0, 06g¡2m+1,
there exists 2v+ 1; 2w¿0 such that G(2v+ 1)=G(2w)= g.

Then for all i¿e, G(i + p)=G(i) + 2m.

Austin noted that in order to apply the Theorem one may need to take larger than
the minimum values of p and s. For example in the tables in Section 2, 0.BA had
period 1 and saltus 1. However, t=2, so that to apply the theorem we need to take
p=3 and s=3.
One of the main approaches taken in analyzing Taking-and-Breaking games is to

Gnd theorems that say for some function f

if G(n+p)=G(n) (or G(n+p)=G(n)+ s) for all e¡n¡f(n) then G(n+p)=G(n)
(or G(n+ p)=G(n) + s) for all n¿e.

Such results allow a computer program to generate values and check to see if a pur-
ported period has repeated enough times without having to call the operator. In this
paper we give two such theorems: Theorem 3 for hexadecimal games which are peri-
odic and Theorem 4 which generalizes Austin’s theorem to cover all saltuses but the
bounds are greater than those in Austin’s Theorem. In Section 1 we give a specialized
version of Theorem 4 for games where G(Ap+Bq+ r)=Bp+ r for some constants A,
B and C. The bounds are considerably reduced. These allow us to prove the arithmetic-
periodicity of 0.3F3; 0.209; 0.338; 0.2092; 0.228; 0.2282; 0.608 and 0.6082. We also
extend the tables given in [3]. The web page [11] contains the latest information.

1.1. Games with saltus 0

Games with saltus 0 are periodic games. The next theorem is used as a simple test
for periodicity.

Theorem 3. Let G be an hexadecimal game with dt a non-zero digit with the largest
index t. If G(n + p)=G(n) for e¡n63(e + p) + t then the G-sequence is periodic
with period length p and pre-period length e.

This is a straightforward generalization of the periodicity result for octal games
[3, p. 100].

1.2. Arithmetic-periodic games

Here, we generalize Theorem 2 and derive suEcient conditions to test a G-sequence
for arithmetic-periodicity for an arbitrary saltus. The bounds on the number of repeti-
tions is much larger than 7 and depends on a couple of new factors.
We need the following deGnition for the theorem. For any s, s=2kr, where r is an

odd number. Then by the Euler–Fermat Theorem, since gcd(r; 2)=1, there are positive
integers w and j such that rw=2j − 1, where we may assume that j is the least
possible.
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Theorem 4. Suppose that T= 0:d1d2 : : : du is an hexadecimal game and that there
exist integers e, 3p¿u+ 2 and s=2 −1 + j where j¡2 −1 such that
1. G(i + p)=G(i) + s for all i in the range

e ¡ i ¡ t +max{3e + p(20 + 2 +1 + 22 +1−k + 23 +3−2k);

e + p(1 + 2j+k+3− )};
2. G(i)¡s for all i6e,
3. G(i)¡2s for all i6e + p,
4. either there exist d2v+1; d2v both of which contain 8, and for each g, 06

g¡2s, there exists i¿0, such that G(i)= g, or there exists dt which contains
8, and for each g, 06g¡2s, there exist 2v + 1, 2w¿0 such that G(2v + 1)=
G(2w)= g.

Then for all i¿e, G(i + p)=G(i) + s.

The proof can be found in [10].
As examples, we speciGcally evaluate the bounds on the coeEcient of p given in

Theorem 4 for the Grst few values of s which are not powers of 2.

s  j k 20 + 2 +1 + 22 +1−k + 23 +3−2k 1 + 2j+k+3− 

3 2 2 0 572 9
5 3 4 0 4260 17
6 3 2 1 1124 9
7 3 3 0 4260 9
9 4 6 0 33,332 33
10 4 4 1 8500 17
11 4 10 0 33,332 513
12 4 2 2 2228 9

Fortunately, these bounds can be improved for some games and this is given in the
next section.

1.3. Games with G(Ax + By + z)=Bx + z

For some of the games we found with saltus 3 and 5, the Grst bound given in
the previous section can be eliminated. This is because the G-sequence has the form
G(Ax + By + z)=Bx + z. For example, 0.3F has the G-sequence

0, 1, 2, 0, 1, 2, 3, 4, 5, 3, 4, 5, 6, 7, 8, 6, 7, 8: : :

which can be written as G(6x + 3y + z)= 3x + z, x=0; 1; 2; : : :, y=0; 1; 2, z=0; 1; 2.
Now, it must be shown that Bx + z is not an excluded value for G(Ax + By + z).

For some x, y and z suppose that Bx+ z were an excluded value for G(Ax+ By+ z).
We may now assume that x, y and z are such that this is the Grst time this occurs.
There are values $x, $y, $z, %x, %y, %z and  x,  y,  z, such that when we take away
t and split the heap into three. From splitting into three heaps we get the following
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Table 1
Standard forms for games with solutions in the next tables

Game Standard form

0.08 0.111333777F
0.0A 0.13137F
0.0B 0.130F
0.0C 0.1133737F
0.0E 0.13377F
0.0F 0.137F
0.29 0.300F
0.209 0.3100F
0.2092 0.3103F
0.228 0.3300F
0.2282 0.3303F
0.608 0.3700F
0.6082 0.3703F
0.48, 0.4A 0.13737F
0.4C, 0.4E 0.13777F
0.8, 0.84 0.113377F
0.81, 0.85 0.10F
0.82 0.1337F
0.88, 0.8C 0.113377FF
0.89, 0.8D 0.10FF
0.8A, 0.8E 0.1337FF
0.8B, 0.8F 0.13FF
0.A, 0.A1, 0.A4, 0.A5 0.30F
0.A2, 0.A3, 0.A6, 0.A7 0.33F
0.A8 ,0.A9, 0.AC, 0.AD 0.30FF
0.AA, 0.AB, 0.AE, 0.AF 0.33FF
0.C, 0.C2, 0.C4, 0.C6 0.1377F
0.C8, 0.CA, 0.CC, 0.CE 0.1377FF
0.C9, 0.CB, 0.CD, 0.CF 0.17FF
0.E8, 0.E9, 0.EA, 0.EB, O.EC, 0.ED, 0.EF 0.37FF

equation:

A$x + B$y + $z + A%x + B%y + %z + A x + B y +  z + t = Ax + By + z:

We will shorten the notation by setting &s = $s + %s +  s for s∈ {x; y; z}.
This special form allows an improvement over the bounds of the previous theorem.

Theorem 5. Suppose that T= 0:d1d2 : : : du is an hexadecimal game and that 3p¿u+2.
Let A=BD, B odd, 06y¡D, 06z¡B.
1′. If G(Ax + By + z)=Bx + z for all n=Ax + By + z, 06n6B(1 + 2jB+kB+3− ).
4′. Either there exist d2v+1; d2v both of which contain 8, and for each g; 06g¡2s,

there exists i¿0, such that G(i)= g or there exists dt which contains 8, and for each
g; 06g¡2s, there exist 2v+ 1, 2w¿0 such that G(2v+ 1)=G(2w)= g.
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Table 2
Games with saltus 0

Game Pre-period length Period length Saltus Nim-values

0.10F 0 2 0 00̇1̇
0.30F 0 2 0 0̇1̇
0.33F 0 4 0 0̇123̇
0.B 0 2 0 0̇1̇
0.B1 2 2 0 012̇0̇
0.B2 1 4 0 01̇023̇
0.B3 1 4 0 01̇203̇
0.B5 2 2 0 012̇0̇
0.B7 1 4 0 01̇203̇
0.D 0 2 0 0̇1̇
0.F 0 2 0 0̇1̇
0.F1 3 2 0 0121̇00̇
0.F2 1 4 0 01̇023̇
0 F3 0 4 0 0̇123̇
0.F5 1 2 0 01̇2̇

5′. The equations

(A − B)&x + B&y + t + 2d = (A − B)x + By;

2Dd+ t = (D − 1)(&z − z) + B(y − &y)

have no solutions; then G(Ax + By + z)=Bx + z for all n=Ax + By + z.

Again, the proofs can be found at [10].

2. Tables

An hexadecimal game is said to be in standard form if d1 is odd. A game D=
0:d1d2 : : : du with d1 even can be reduced to a game E= 0:e1e2 : : : in standard form by
the following operations (see [3, p. 100]):

er contains 1 (i.e. is odd) if dr+1 contains 1,

er contains 3 (i.e. is of the form 4m+ 3) if dr contains 2,

er contains 7 (i.e. is of the form 8m+7) if dr−1 contains 4 and in general er contains
2h+2 − 1 if dr−h contains 2h+1 (h¿− 1).

If e1 is not odd then we repeat this procedure as often as is necessary. It is not hard
to show that GE(n)=GD(n+ 1).
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Table 3
Games with saltus 2i

Game Pre-period Period Saltus Nim-Values
length length

0.10FF 3 4 2 0101̇222̇
0.111333777F 1 4 1 01̇111̇
0.113377F 1 3 1 01̇11̇
0.113377FF 0 3 1 0̇11̇
0.13137F 1 2 1 01̇1̇
0.130F 4 2 1 01102̇2̇
0.1133737F 1 3 1 01̇11̇
0.1337F 1 2 1 01̇1̇
0.13377F 1 2 1 01̇1̇
0.1337FF 0 2 1 0̇1̇
0.1373F 1 2 1 01̇1̇
0.1377F 0 2 1 0̇1̇
0.1377FF 0 2 1 0̇1̇
0.13777F 1 2 1 01̇1̇
0.137F 1 2 1 01̇1̇
0.13FF 7 7 4 01122334̇455667̇
0.17FF 2 3 2 011̇22̇
0.1A 5 2 1 010012̇2̇
0.1B 5 2 1 011002̇2̇
0.300F 1 53 16 01̇01201012323453434567

67897678989ABABCABABC
DEFEFDEFEḞ

0.30FF 3 4 2 011̇232̇
0.33FF 0 1 1 P0
0.37FF 0 1 1 P0
0.9B 8 7 4 011002233̇445566̇
0.9C 28 36 16 0100222333666333888777555999

ḂBADDDFFEGGGIIIKKK
MMCJJJOOONNNLLLPPḢ

0.9E 4 3 2 01002̇23̇
0.9F 4 3 2 01002̇23̇
0.B8 9 7 4 0101023234̇545676̇
0.BA 3 1 1 010 P2
0.BB 4 1 1 0120 P3
0.BC 4 6 4 01012̇32454̇
0.BE 3 1 1 010 P2
0.BF 4 1 1 0120 P3
0.F8 7 6 4 01010232̇34545̇
0.FA 3 1 1 0102̇
0.FB 5 4 4 012304̇
0.FC 7 5 4 01012324̇5467̇
0.FE 3 1 1 0102̇
0.FF 0 1 1 0̇
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Table 4
Games with saltus other than 0 or 2i

Game Pre-period Period Nim-Values
length length Saltus

0.3100F 0 9 3 0̇12012012̇
0.338 0 9 3 0̇12012012̇
0.3F 0 6 3 0̇12012̇
0.3F3 0 10 5 0̇123401234̇
0.3103F 0 9 3 0̇12012012̇
0.3300F 0 9 3 0̇12012012̇
0.3303F 0 9 3 0̇12012012̇
0.3700F 0 6 3 0̇12012̇
0.3703F 0 6 3 0̇12012̇

Although we examined all the 2 digit games we only investigated the 3-digit games
which are in standard form. Theorem 5 could not be applied directly to some of the
2-digit games only to the standard form of the game. The standard forms are listed in
the tables.
Table 1 gives the conversion of games to standard form, Table 2 lists the games

with saltus 0, Table 3 lists those games with saltus equal to a power of 2, and Table 4
lists games with other saltuses.
In these tables, the dots signify the beginning and end of the period. The values

in one period are increased by the saltus from the previous period. In Table 2, every
saltus is 0 so the given values repeat. For example, 0.B1 has pre-period 2, and the
period has length 2 and the total sequence is 01202020202 : : : ; where the 2 and 0
alternate. In Tables 3 and 4, the saltus is non-zero so every repetition is accompanied
by an increase in the nim-values. For example, 0.10FF has pre-period 3 and a period
of length 4 with saltus 2. The values are 010; 1222; 3444; 5666; : : : ; where the commas
delineate the periods, each is 2 greater than the previous one.
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