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Abstract

We consider the single-hop version of one-dimensional peg duotaire, a two player version of
peg solitaire in which players move alternatively and the last player to move wins. We determine
the nim-values of all positions consisting of two sets of consecutive pegs separated by a hole. We
show that two classes of positions produce periodic sequences of nim-values, and we conjecture
that two other classes exhibit similar periodicity.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

One-dimensional peg duotaire is a two-player version of a one-dimensional version
of peg solitaire. The game is played on a row of holes that can hold pegs. Each move
consists of jumping one peg over another adjacent peg and landing in an empty hole;
the peg that was jumped over is removed. In the solitaire version, the goal is to 8nd a
sequence of moves which reduces the initial position to a single peg. In Ref. [2] it was
shown that the set of solvable positions is a regular language. In the two-player version
(peg duotaire), originally proposed in Ref. [3], the winner is the last player to move. In
[2] two variations of duotaire were considered: multi-hop duotaire, in which multiple
jumps can be made with the same peg on a given turn, and single-hop duotaire, in
which a turn consists of exactly one jump. In this paper we focus exclusively on the
single-hop version of the game.
Since peg duotaire is an impartial game, its positions are completely characterized

by their Grundy values. The Grundy value (or nim-value) G(X ) of a position X is the
smallest non-negative integer not appearing in the nim-values of its options [1]. Fig. 1
gives the nim-values of some simple positions.
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G(◦) = G(•) = 0 G(••) = G(• • •) = 1
G(• ◦ ••) = 2 G(•n) = �n=2� (mod 2)

Fig. 1. Some easy-to-compute nim-values in peg duotaire (•=peg; ◦=hole).

In [2] it is conjectured that there are peg duotaire positions with arbitrarily large
nim-values. To investigate this claim, we considered sequences of positions of the form
XPn, where X and P are duotaire positions, hoping to 8nd an increasing sequence of
nim-values. Instead, for many choices of X and P that we considered we found the
sequence G(XPn) to be eventually periodic. In this paper we present some of our
results concerning this periodicity. In Section 2, we begin by determining the value
G(•m ◦ •n) of for arbitrary m; n. In Section 3 we show that for two simple positions
P, G(XPn) is eventually periodic for any X . We conjecture that the same is true for
two other positions P; our conjectures have been veri8ed by computer for all positions
X of length at most 8.

2. G (•m ◦ •n)

We begin with two simple lemmas.

Lemma 1. In the position X ◦ ◦, no sequence of moves can place a peg in the second
hole.

Proof. The proof is by induction on the number of pegs in X ; the base cases with
zero pegs or one pegs are trivial. The only way to place a peg in the second hole is
to jump over a peg in the 8rst hole, and the only way to place a peg in the 8rst hole
is jump there from X (not necessarily on the 8rst move). After this jump the position
will be

Y ◦ ◦ • ◦
for some position Y with fewer pegs than X . By induction no sequence of moves can
place a peg in the second hole to the right of Y , hence we can never jump to the
rightmost hole.

Lemma 2. G(X ◦ ◦ ◦ Y )=G(X )⊕G(Y ) for any positions X; Y , where ⊕ denotes
nim-addition.

Proof. By Lemma 1, neither X nor Y can place a peg in the middle hole. It follows
that this hole will always be empty, so the sub-games X and Y will never interact.

A slightly stronger version of these lemmas appears in [2], but the current formula-
tion is suDcient for our purposes. The following theorem provides a stepping stone to
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our main result. In the statement of the theorem and all that follows, we write X ≡Y
to denote G(X )=G(Y ) for positions X; Y .

Theorem 1. For a; b; c; d¿0, let Pa;b; c; d= •2a◦(◦•)b(•◦)c◦•2d. Then for a¿2; Pa+2; b; c; d
≡Pa;b; c; d, and similarly for b; c; d.

Proof. Our proof is by simultaneous induction in all four indices on the number of
pegs. The base case is a; b; c; d64, which we have veri8ed by computer. From the
position Pa;b; c; d there are at most six moves: jump left=right from the 8rst group of 2a
stones, jump left=right from the last group of 2d stones, or jump left=right from the
two stones in the center. Thus, Pa;b; c; d has the following options:

Pa−1;b;c;d; Pa−1;b+1;c;d; Pa;b;c;d−1; Pa;b;c+1;d−1;

Pa;b−1;1;0 ⊕ P0;0;c−1;d; Pa;b−1;0;0 ⊕ P0;1;c−1;d; (1)

where an option is valid only if its indices are non-negative. For the last two terms
we have used Lemma 2, which tells us that a jump in either direction from the center
splits the position into the disjunctive sum of two sub-positions. Now suppose that
a¿2 and consider Pa+2; b; c; d. Replacing a with a+ 2 in (1) gives us its options

Pa+1;b;c;d; Pa+1;b+1;c;d; Pa+2;b;c;d−1; Pa+2;b;c+1;d−1; Pa+2;b−1;1;0 ⊕ P0;0;c−1;d;

Pa+2;b−1;0;0 ⊕ P0;1;c−1;d: (2)

The base case is a; b; c; d64, so we can assume that one of a; b; c; d is greater than
4. Suppose 8rst that a¿4. Then by induction each term of (2) is equal to the cor-
responding term of (1), so Pa+2; b; c; d and Pa;b; c; d have the same options and hence
the same nim-values. Next suppose that b¿4. Then b − 3¿2, so once again we
can apply induction to the terms of (2), this time in the second index, and we
8nd that Pa+2; b; c; d ≡Pa+2; b−2; c; d. But Pa+2; b−2; c; d has fewer pegs than Pa+2; b; c; d, so by
induction Pa+2; b−2; c; d ≡Pa;b−2;c;d ≡Pa;b; c; d, hence Pa+2; b; c; d ≡Pa;b; c; d. The cases c¿4
and d¿4 are identical, so in all cases Pa+2; b; c; d ≡Pa;b; c; d. Finally, the arguments
for the other three indices are the same as the argument for a, so our induction is
complete.

From Theorem 1 it follows that to 8nd the nim-value of Pa;b; c; d for arbitrary a; b; c; d
it suDces to generate the values for a; b; c; d63. Note that an easy induction on the
number of pegs gives us

Pa;b;c;d ≡ •Pa;b;c;d ≡ Pa;b;c;d• ≡ •Pa;b;c;d • : (3)

We are now ready to state our main result

Theorem 2. For m; n¿0, let Am;n= •m ◦•n. Then for m¿7; Am+4; n ≡Am;n.

Proof. Once again our proof is by induction on the number of pegs. This time the
base case is m; n612, which we have again veri8ed by computer. The options of
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Table 1
Nim-values of •m ◦ •n

Am;n 0 1 2 3 4 5 6 7 8 9 10

0 0 0 1 1 0 0 1 1 0 0 1
1 0 0 2 2 1 1 0 0 1 1 0
2 1 2 0 3 1 2 0 3 1 2 0
3 1 2 3 1 4 0 2 1 3 0 2
4 0 1 1 4 0 0 1 1 0 0 1
5 0 1 2 0 0 1 4 0 1 1 0
6 1 0 0 2 1 4 0 2 1 3 0
7 1 0 3 1 1 0 2 1 3 0 2
8 0 1 1 3 0 1 1 3 0 2 1
9 0 1 2 0 0 1 3 0 2 1 3

10 1 0 0 2 1 0 0 2 1 3 0

The periodic region is highlighted.

Am;n are

Am−2;n; Am;n−2; P�(m+1)=2�0;0;�(n−2)=2�; P�(m−2)=2�0;0;�(n+1)=2�; (4)

where the Foor functions of the third and fourth terms are justi8ed by observation (3)
above. Now suppose that m¿7 and consider Am+4; n. Its options are

Am+2;n; Am+4;n−2; P�(m+1)=2�+2;0;0;�(n−2)=2�; P�(m−2)=2�+2;0;0;�(n+1)=2�: (5)

The base case is m; n612, so we can assume that one of m; n is greater than 12. First
suppose that m¿12. Then by induction the 8rst two terms of (5) are equal to the 8rst
two terms of (4). Furthermore, since �(m − 2)=2�¿5¿2, we can apply Theorem 1
to the third and fourth terms of (5) to show that they are equal to the correspond-
ing terms of (4). Thus, Am+4; n ≡Am;n. Next suppose that n¿12. Then n − 6¿7 and
�(n−2)=2�−2¿3¿2, so we can apply induction and Theorem 1 to the terms of (5) in
the ‘n’ indices to 8nd that Am+4; n ≡Am+4; n−4. Finally, Am+4; n−4 has fewer pegs, so by
induction Am+4; n−4 ≡Am;n−4 ≡Am;n. Thus, in both cases Am+4; n ≡Am;n so our induction
is complete.

Table 1 gives the nim-values of Am;n up to the 8rst period in both m and n.

3. Periodic sequences of nim-values

Given two duotaire positions X and P, we can de8ne a sequence of nim-values
gn=G(XPn). Our motivation for considering these sequences was to try to 8nd an in-
creasing sequence of nim-values; instead what we found was a collection of eventually
periodic sequences of nim-values. In this section we consider four diIerent positions
P. For the 8rst two, we show that gn is eventually periodic for any position X . We
conjecture that the same is true for the other two positions as well.
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3.1. P= ◦ •

Theorem 3. For any position X , we have X ◦ • ◦ • ≡X ◦ • ◦ • ◦ • ◦ •.

Proof. It suDces to show that the second player can win the in game X ◦ • ◦ • ⊕X ◦
•◦•◦•◦•. The winning strategy is to play symmetrically; when the 8rst player moves
in one copy of X , the second player makes the same move in the other copy. If the
8rst player never jumps into the space to the right of X then the second player can
always copy the 8rst player’s move and therefore wins. Otherwise, after this jump is
made and mimicked the position will be

X ′ ◦ ◦ • • ◦ • ⊕ X ′ ◦ ◦ • • ◦ • ◦ • ◦ •:
By Lemma 1, X ′ can never place a peg in the second hole, so we can rewrite this as

Y | ◦ • • ◦ • ⊕Y | ◦ • • ◦ • ◦ • ◦•;
where we use the notation Y |◦ to denote that the position Y can never place a peg in
the hole to its right. The second player continues to copy the 8rst player’s moves, and
at some point the 8rst player must, in one of the sub-games, jump from the peg pair
to the right of Y . If the jump is to the right then after the corresponding move in the
other sub-game the position is

Z | ◦ ◦ ◦ • • ⊕Z | ◦ ◦ ◦ • • ◦ • ◦• = Z ⊕ • • ⊕Z ⊕ • • ◦ • ◦• ≡ • • ⊕ • • ◦ • ◦ •:
Here we have used Lemma 2. But G(••)≡G(• • ◦ • ◦•)= 1, so • • ⊕ • • ◦ • ◦ • ≡ 0
and the second player wins. On the other hand if, the jump is to the left, then after
the corresponding move the position is

Z • ◦ ◦ ◦ • ⊕Z • ◦ ◦ ◦ • ◦ • ◦• ≡ Z • ⊕Z• ≡ 0

so in all cases the second player wins.

From Theorem 3 it follows that gn=G(XPn) is periodic with period 2.

3.2. P= •

This position is trickier to work with than the previous one. We will make heavy
use of the following:

Lemma 3. Let Xn; n¿0, be a sequence of positions in an impartial game such that
Xn is an option of Xn+1 for all n. Let Gn= {G(Y ) |Y is an option of Xn; Y 
=Xn−1}.
If Gn is eventually periodic with period 2, then so is G(Xn).

Proof. Let gn=G(Xn) and suppose that Gn is eventually periodic with period 2. Then
for large enough n we have g2n=mex(S ∪ {g2n−1}), where S =G2n is a 8xed set
and mex(T ) is the smallest non-negative integer not in the set T . It follows that
if g2n−1 
=mex(S) then g2n=mex(S), otherwise g2n=mex(S ∪ {mex(S)}). Thus, for
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large n, the sequence {g2n} takes on at most two distinct values, so it either alternates
between mex(S) and mex(S ∪ {mex(S)}) or contains two consecutive terms which are
the same. The former case is impossible, for if g2n=mex(S) and g2n+2 =mex(S ∪
{mex(S)}) then by the previous remarks g2n+1 =mex(S)= g2n which is impossible
since X2n is an option of X2n+1: Thus g2n= g2n+2 for some n large enough such that
Gn is periodic. But then

g2n+3 = mex(G2n+3 ∪ {g2n+2}) = mex(G2n+1 ∪ {g2n}) = g2n+1

and so inductively gm+2 = gm for all m¿2n. Thus, gn is eventually periodic with
period 2.

Theorem 4. For any position X; G(X •n) is eventually periodic with period 4.

Proof. We use induction on the number of pegs in X ; the nature of our argument does
not require the base cases to be considered separately. The options of X •n are X ′•n
(where X ′ is an option of X ), X •n−2, and if X is of the form Y◦ then also Y •◦◦•n−2.
By induction, G(X ′•n) is eventually periodic for each option X ′ of X . If we can show
that G(Y • ◦ ◦ •n) is eventually periodic with period 4, then we can apply Lemma 3
separately to the odd and even terms of {X •n} to show that G(X •n) is also eventually
periodic. Thus, it suDces to show that G(X ◦ ◦•n) is eventually periodic with period 4
for any position X .
We again use induction on the number of pegs in X . The options of X ◦ ◦•n are

X ′ ◦ ◦•n, X ◦ ◦•n−2, X ◦ • ◦ ◦•n−2, and if X is of the form Y • • then also Y ◦ ◦ • ◦•n.
Repeating the previous argument, it suDces to show that G(X ◦•◦◦•n) and G(X ◦◦•◦•n)
are eventually periodic for any position X . Equivalently, using Lemma 1, it suDces to
show that G(X ◦ • ◦ ◦•n) and G(X | ◦ • ◦ •n) are eventually periodic, where as before
we use the notation X |◦ to denote a position that can never place a peg in the hole to
its right.
Once again we use induction. The options of X ◦•◦◦•n are X ′ ◦•◦◦•n, X ◦•◦◦•n−2,

X ◦ • ◦ • ◦ ◦•n−2, and, if X is of the form Y • •, then also Y ◦ ◦ • • ◦ ◦•n. The options
of X | ◦ • ◦ •n are X ′| ◦ • ◦ •n, X | ◦ • ◦ •n−2, and X | ◦ • • ◦ ◦ •n−2. Thus, again using
Lemma 1, it suDces to show that G(X ◦•◦•◦◦•n) and G(X | ◦••◦◦•n) are eventually
periodic.
We use induction yet again. The options of X ◦ • ◦ • ◦ ◦•n are X ′ ◦ • ◦ • ◦ ◦•n,

X ◦ • ◦ • ◦ ◦•n−2, X ◦ • ◦ • ◦ • ◦ ◦•n−2, and if X is of the form Y • • then also
Y ◦ ◦ • • ◦ • ◦ ◦•n. The options of X | ◦ • • ◦ ◦ •n are X ′| ◦ • • ◦ ◦ •n, X | ◦ • • ◦ ◦ •n−2,
X | ◦ • • ◦ • ◦ ◦ •n−2, X • ⊕ •n (which is periodic), and X ⊕ • ◦•n (which is also
periodic since • ◦ •n=A1; n). Thus it suDces to show that G(X ◦ • ◦ • ◦ • ◦ ◦•n) and
G(X | ◦ • • ◦ • ◦ ◦ •n) are eventually periodic.
We begin with X | ◦ • • ◦ • ◦ ◦ •n, using induction once again. The options of X | ◦ • •

◦•◦◦•n are X ′|◦••◦•◦◦•n, X |◦••◦•◦◦•n−2, X |◦••◦•◦•◦◦•n−2, X • ⊕ •n (which
is periodic), and X ⊕ • • ◦ ◦•n (which is also periodic since • • ◦ ◦ •n=P1;0;0;�n=2�).
Thus, it suDces to show that G(X | ◦ • • ◦ • ◦ • ◦ ◦ •n) is eventually periodic. We can
in fact prove directly and more generally that X | ◦ •(•◦)m ◦ •n+4 ≡X | ◦ •(•◦)m ◦ •n for
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m¿3 by showing that the second player has a winning strategy in the game

X | ◦ •(•◦)m ◦ •n+4 ⊕ X | ◦ •(•◦)m ◦ •n: (6)

The strategy is to copy the 8rst player’s moves, which keeps the game in the same
form, until one of two events occurs: either the 8rst player makes a move that cannot
be copied, or the 8rst player jumps in one of the games from the peg pair to the right
of X . If the 8rst event occurs, then at that point the position has n=0 or 1 and the
move is a jump from the group of n+4 pegs. In this case the second player jumps in
the same direction from the remaining n + 2 pegs. If the jump was to the right, then
the resulting position is X | ◦ •(•◦)m ⊕X | ◦ •(•◦)m ≡ 0. If the jump was to the left, then
the resulting position is X | ◦ •(•◦)m+2 ⊕X | ◦ •(•◦)m which, since m¿3, is also zero
by Theorem 3, so in both cases the second player wins. If the second event (a jump
from the peg pair to the right of X ) occurs, then the second player copies the jump.
If the jump was to the left then the resulting position is X • ⊕ •n+4 ⊕X • ⊕ •n ≡ 0
(since •n+4 ≡ •n), and if the jump was to the right then the resulting position is

X ⊕ •(•◦)m−1 ◦ •n+4 ⊕ X ⊕ •(•◦)m−1 ◦ • ≡ P0;1;m−1;�n=2�+2 ⊕ P0;1;m−1;�n=2�:

But we can verify that P0;1; c; d+2 ≡P0;1; c; d for c=2; 3 and d=0; 1. From Theorem 1
it follows that P0;1; c; d+2 ≡P0;1; c; d for all d when c=2 or 3, and therefore (applying
Theorem 1 again in the ‘c’ index) the same is true for all c¿2. Thus P0;1; m−1;�n=2�+2 ⊕
P0;1; m−1;�n=2� ≡ 0 (since m¿3), so in all cases the second player wins.
Finally, it remains to show that G(X ◦•◦•◦•◦◦•n) is eventually periodic. We prove

directly and more generally that X ◦ (•◦)m ◦•n+4 ≡X ◦ (•◦)m ◦•n for m¿3 by showing
that the second player has a winning strategy in the game X ◦(•◦)m◦•n+4 ⊕X ◦(•◦)m◦•n.
Again, the strategy is to copy the 8rst player’s moves until one of two events occurs:
either the 8rst player makes a move that cannot be copied, or the 8rst player jumps
into the hole to the right of X . In the 8rst case, the same argument used for game (6)
shows that the second player wins. In the second case, after the second player copies
the move the position is of the form (6) so again the second player wins. Thus in all
cases the second player wins, and we have 8nally managed to tie up all the loose ends
and complete the proof of Theorem 4.

3.3. Conjectures

We conjecture, but are unable at this time to prove, that a statement similar to that
of Theorem 4 can be made for P= ◦ ◦ • • and P= ◦ ◦•. Speci8cally:

Conjecture 1. For any position X; G(X (◦◦••)n) is eventually periodic with period 8.

Conjecture 2. For any position X; G(X (◦ • •)n) is eventually periodic with period
17. (!)

For speci8c positions X , we can verify by computer that the sequences are periodic
as follows:



424 J.P. Grossman / Theoretical Computer Science 313 (2004) 417–425

Lemma 4. Let An=(◦ • •◦)n, Bn=An•, Cn= • An•. Then An ≡An−8 for n¿10, and
similarly for Bn; Cn.

Proof. The options of An are Ak ⊕Bn−k−1, the options of Bn are Bk ⊕Bn−k−1 and
Ak ⊕Cn−k−1, and the options of Cn are Ck ⊕Bn−k−1 (06k6n − 1 in all cases). We
can verify the claim by hand for n¡20. If n¿20, then for 06k6n − 1 one of
(k; n−k−1) must be ¿10. We can therefore apply induction to either the left or right
summand of each option of An to show that An and An−8 have the same options and
hence An ≡An−8. The proofs for Bn; Cn are the same.

Theorem 5. Let X | be a position from which we can never jump to the right past |.
If N is a positive integer such that
(1) X ′|An ≡X ′|An−8 and X ′|Bn ≡X ′|Bn−8 for n¿N and for all options X ′ of X ,
(2) X |An ≡X |An−8 and X |Bn ≡X |Bn−8 for N − 106n¡N
then X |An ≡X |An−8 and X |Bn ≡X |Bn−8 for all n¿N .

Proof. Suppose that N is as described and n¿N . The options of X |An are X ′|An; X |Ak
⊕Bn−k−1, X |Bk ⊕An−k−1 and the options of X |Bn are X ′|Bn, X |Ak ⊕Cn−k−1, X |Bk ⊕
Bn−k−1. As k varies from 0 to n−1, we always have either n−k−1¿10 or k¿n−10
¿N − 10. We can therefore use induction for each option to show that the options
of X |An are the same as the options of X |An−8, hence X |An ≡X |An−8, and similarly
X |Bn ≡X |Bn−8.

Note that X (◦ ◦ ••)n can be rewritten as X |(◦ • •◦)n, thus Theorem 5 allows us to
inductively check the periodicity of G(X (◦ ◦ ••)n) by computer. The corresponding
lemma and theorems for X (◦ ◦ •)n are similar, and the proofs are virtually identical
(though more involved) so we leave them as exercises for the reader.

Lemma 5. Let Pn=(◦ • •)n, Qn=(◦ • •)n•, Rn=(◦ • •)n ◦ •, Sn= • (◦ • •)n•, Tn=
• (◦••)n ◦•, Un= ••• (◦••)n•. Then Pn ≡Pn−17 for n¿69, and similarly for Qn; Rn,
Sn; Tn; Un.

Theorem 6. Let X | be a position from which we can never jump to the right past |.
If N is a positive integer such that
(1) X ′|Pn ≡X ′|Pn−17, X ′|Qn ≡X ′|Qn−17, and X ′|Rn ≡X ′|Rn−17 for n¿N and all

options X ′ of X ,
(2) X |Pn ≡X |Pn−17, X |Qn ≡X |Qn−17, and X |Rn ≡X |Rn−17 for N − 696n¡N ,
then X |Pn ≡X |Pn−17, X |Qn ≡X |Qn−17, and X |Rn ≡X |Rn−17 for all n¿N .

Theorem 7. Let X be any position. If N is a positive integer such that
(1) X ′ • •Pn ≡X ′ • •Pn−17, X ′ • •Qn ≡X ′ • •Qn−17, and X ′ • •Rn ≡X ′ • •Rn−17 for

n¿N and all options X ′ of X ,
(2) X • •Pn ≡X • •Pn−17, X • •Qn ≡X • •Qn−17, and X • •Rn ≡X • •Rn−17 for

N − 696n¡N
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then X • •Pn ≡X • •Pn−17, X • •Qn ≡X • •Qn−17, and X • •Rn ≡X • •Rn−17 for all
n¿N .

Using Theorems 5–7, we have veri8ed the two conjectures by computer for all
positions X of length (pegs+holes) at most 8. As a 8nal note, the largest nim-value
we have observed for any position that cannot be decomposed as in Lemma 2 is 193,
which was calculated for the following position:

• • ◦(◦ • • ◦ • ◦ •◦)20601 • :
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