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OF k-ARY TREES* 

Urbana-Champaign, 

Abstract. In this paper, we study the permutation representation of k-at-y trees. First, we extend 
the notion of traversals, from binary trees to k-ary trees. A pair of k-at-y tree traversals can be 
used to assign a permutation of the integers 1,2, . . . to each k-ary tree T. A pair of traversals is 
a valid k-ary tree Representation Scheme (k-RS) if it does not assign the same permutation to 
two distinct k-at-y trees. We characterize such pairs of traversals. We also characterize those k-RS 
which assign permutations that have their lexicographic order being consistent with some well- 
known ‘natural’ order defined on the trees they represent. 

1. Introduction 

The problem of representing k-ary trees by integer sequences has been studied 
extensively. The main motivation is to find efficient algorithms to generate, rank, 
and unrank k-ary trees with respect to some order defined either on the set of all 
k-ary trees (with n internal nodes), or on the set of integer sequences chosen to 
represent them. Ruskey and Hu [8] and Ruskey [9] studied a representation using 
the sequence of level numbers of the leaves of the tree. Zaks [l l] studied a 
representation using balloting sequences on (0, 1). Knott [l], Rotem and Varol [6], 
and Trojanowski [lo] studied a representation of binary trees using permutations 
of the integers 1,2, . . . . They label the nodes of a binary tree with the integers 
1,2,... in the order they are visited according to one traversal, and read off these 
labels in the order the nodes are visited according to another traversal. This procedure 
assigns a permutation of the integers 1,2, . . . to each binary tree. The two traversals 
are so chosen that no two trees will be assigned the same permutation. Knott [l] 
and Rotem and Varol [6] label the nodes according to inorder, and read off the 
labels according to preorder. Knott [l] and Rotem [5,7] also observed that the set 
of all permutations assigned to binary trees is the set of stack sortable permutations. 
Rotem and Varol [6] represent these permutations by balloting sequences, as 
described in [5]. Trojanowski [lo] labels the nodes according to preorder, and reads 
off the labels according to inorder. Liu [3] extended the idea of using a pair of 
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traversals to assign permutations to binary trees, to k-ary trees. However, his 
representation is based on permutations of a multiset of integers, which, as we shall 
see later, is a special case of the representation studied here. 

The lexicographic order of the integer sequences, or the permutations, induces 
an order on the trees they represent. The order induced by the permutations of 
Knott [l] and Rotem and Varol [6] coincides with a well-known order on trees, 
defined below as A-order. Zaks [l l] showed that the order induced by the integer 
sequences of Ruskey and Hu [8] and Ruskey [9] coincides with another well-known 
order on trees, defined below as B-order. He also showed that the order induced 
by the permutations of Trojanowski [lo], and the balloting sequences of Zaks [ 1 l] 
coincides with B-order. The order induced by the permutations of Liu [3] also 
coincides with B-order. 

In this paper we study the permutation representation of k-ary trees. We first 
generalize the notion of traversals (e.g., preorder, inorder, and postorder traversals 
of binary trees) to k-ary trees. Then we show how a pair of k-ary tree traversals 
can be used to assign a permutation of the integers 1,2, . . . to each k-ary tree T, by 
extending the idea used by Knott [ 11, Liu [3], Rotem and Varol[6], and Trojanowski 
[lo]. A pair of k-ary tree traversals will be called a Representation Scheme if it does 
not assign the same permutation to two distinct k-ary trees. 

Our main results are to characterize: (1) those pairs of traversals that are valid 
Representation Schemes (Section 2), and (2) those Representation Schemes which 
are such that, the order induced on trees by the lexicographic order of the permuta- 
tions they assign, coincides with some of the well-known ‘natural’ orders on k-ary 
trees (Section 3). 

2. Characterization of Representation Schemes 

The following definition of k-ary trees is well known. 

Definition 2.1. A k-ary tree T is defined recursively as being either a leaf node, or 
an internal node r called the root of T, together with an ordered sequence 

(T,, G,..., Tk) of k-ary trees. r is referred to as the ith subtree of T. 

Hereafter, tree will mean a k-ary tree as defined above. It is clear that if a k-ary 
tree T has N leaves, then N = n( k - 1) + 1, where n is the number of internal nodes 
in T. We let 17’1 denote the number of internal nodes in T. 

The following definition extends the notion of traversals from binary trees to 
k-ary trees. 

Definition 2.2. A k-ary tree traversal t#~ is a permutation of the symbols T,, T2, . . . , Tk 

and M (M > 0) copies of the symbol r, where T,, T2, . . . , Tk appear in that order 
in 4. r denotes the root. 
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A traversal specifies the order in which we recursively visit the internal nodes of 
a k-ary tree T Note that each internal node of T will be visited M times when we 
traverse T in the order specified by 4. We let 141 denote M. We let ri denote i 
consecutive occurrences of r in 4. For example, 4 = rrT, TzrTj T4 will be written as 
4 = r2T, T2rT3 T4. This means that we visit the root twice, then recursively visit the 
first subtree, followed by the second subtree, and again visit the root, and then 
recursively visit the third subtree, and then the fourth subtree. In this example, k = 4 
and I#1 = 3. Note also that the preorder, inorder, and postorder traversals of a binary 
tree are rT, T2, T, rT,, and TI T2r, respectively. 

Definition 2.3. A compatible pair of k-at-y tree traversals ( c#J,, cPJ is a pair of k-ary 
tree traversals c#+ and 4’2, with (+rI = (+J. 

Let (4,, 4,) be a compatible pair of k-ary tree traversals, and let T be a k-ax-y 
tree. We assign a permutation of the integers 1,2, . . . , l41( x I TI to T as follows: 
Label the internal nodes of T with the integers 1,2, . . . in the order the nodes are 
visited according to C#Q. Each internal node will be visited l+rl times and hence 
assigned as many labels. Labels at a node are ordered in the order they are assigned, 
namely in increasing order. Now traverse the tree in the order specified by &. Each 
time an internal node is visited during this traversal, read off the smallest label of 
the node and remove it from the set of labels assigned to that node. 

To keep the figures legible, we will not be showing the @leaves of the trees. We 
indicate that an internal node in the tree is the ith son of its father, by placing the 
integer i adjacent to the edge joining the two nodes. 

We shall now illustrate the above definitions and notations by an example. 

Example 2.4. Let T be the 4-ary tree shown in Fig. 1. Let (&, e2) be a pair of 
traversals, where $q = r2T, T2rT3 T4 and & = T,rT,T,rT,r. The labels assigned to the 
internal nodes according to the traversal C#Q are also shown in the figure. Now, when 

L =(1,2,12) L,, = (9,10,11) LN = (%6,7) 

L 21= (3,4,8) L2j = (13,14,15) &= (16,17,18) 

Fig. 1. 
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we read off the labels of the nodes in the order they are visited by &, we obtain 
the permutation 

V(T) = 3 5 6 7 4 8 19 10 11 13 16 17 18 14 15 2 12. 

Clearly, if 4, and q!+ were not chosen carefully, then two distinct k-ary trees with 
n internal nodes might be assigned the same permutation. This leads us to the 
following definition. 

Definition 2.5. A compatible pair of k-ary tree traversals (&, &) is called a k-ary 
tree Representation Scheme (k-RS), if it does not assign the same permutation to 
two distinct k-ary trees. 

Let ( c$~, C#IJ be a compatible pair of k-ary tree traversals, with I&,[ = l&l = M. Let 

4, = PlT1ra2T2. . . rakTkrak+l and & = rblTIrb2Tz. . . rbkTkrbkAl. 

We let Ai denote cl=1 Uj, and Bi denote Cj=, bj Note that AL+, = Bk+, = M. We also 
let V(T) denote the permutation assigned to a k-ary tree T by a specified compatible 
pair (4,, &) of k-ary tree traversals, and T( r’j) denote the bj labels in T(T) 
corresponding to the term r% in I&. Now, we present the main theorem of this section. 

Theorem 2.6. A compatible pair of k-ary tree traversals (&, &) is a k- RS if and only 
if the following conditions hold: 

(i) There exists no i, 1 s i < k, such that Ai = Ai+l, and Bi = Bitt. 
(ii) There exist no i, j, 1 s i <j d k, such that Ai = Bi, and Aj = BP 

Proof. First let us prove the necessity of the two conditions. Let (+,, &) be a 
compatible pair of k-ary tree traversals for which condition (i) fails to hold. So 
there exists an i, 1 s i < k, such that Ai = Ai+,, and Bi = Bi+l. Let T and T’ be two 
k-ary trees with two internal nodes each, such that T and T:,, are the only nonempty 
subtrees of T and T’, respectively. Considering, separately, each of the three cases 
Ai < Bi, Ai = Bi, and Ai > Bi, it is easy to see that T and T’ are assigned the same 
permutation. 

Now let (&, +J be a compatible pair of k-ary tree traversals for which condition 
(ii) fails to hold. So there exist i, j, 1 d i <j 9 k, such that Ai = Bi, and Aj = By Let 
T and T’ be two k-ary trees with two internal nodes each, where Ti and Tj are the 
only nonempty subtrees of T and T’, respectively. It is easily seen that both T and 
T’ are assigned the same permutation, namely the trivial permutation 1 2 . . . (2M). 

Now let us prove the suficiency of the conditions. Let (&, &) be a compatible 
pair of k-ary tree traversals that satisfies conditions (i) and (ii). Let T and T’ be 
two distinct k-ary trees which are assigned permutations n(T) and T( T’), respec- 
tively. Note that )T( T)I = I TI x 1+11, and Iv(T’)I=IT’I x14,1. So if IT~# IT’I, then 
T( T) Z W( T’). Hence, we only need to consider the case I Tj = 1 T’I. 
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We claim that if T and 7” are two distinct k-at-y trees with ) TI = ) T’I, then 
T(T) # n( T’). The proof proceeds by induction on 1 TI. If I TI = 1, then our claim is 
vacuously true, since there is only one k-ary tree with one internal node. Let our 
claim be true for all I TJ < n. Now let I TI = IT’I = n. Let their subtrees be denoted by 
z and Ti respectively, for 1 <i<k.Let ZVi=T:forall i,lsi<h,and T,fTI,for 
some h, 1 d h d k. So we have 

7r( T) = 7r( rbl)7r( T1)7r( rb2)7r( T2) . . . ~(r~h).rr( Th) . . . r( rbk)n( Tk)r( rbk.+l), 

r( T’) = n( rrbl)T( T:)?r(r’b2)T( T;) . . . T(rlbh)T( 7-i) . . . ?r( llbk)T( Tk)n( rlbk+l). 

Since 7]: = Ti for all i, 1 d i < h, the underlined parts of rTT( T) and 7r( T’) have the 
same length. If they are not identical, we are done. So, suppose they are identical. 
If IT,,1 = 17-;ll, th en T( Th) # n( Th) by induction hypothesis, implying that 7~( T) # 
7~( T’). So, without loss of generality, let 1~~l-c ITkI. Note that this implies h < k. 

Now there are three different cases to consider. 
Case 1. A,, < Bh. Let m be the smallest integer, h < m G k, such that 

l7il+lc+*l+ * * * +lT,l=(T~l+lT~+,l+ - * * +(7-‘,I. 

Since I T( = I T’(, such an m exists. Since Ah < Bh, the underlined parts of 7r( T) and 
?T( T’) contain labels assigned to the roots of T and T’ respectively, after the traversal 
of their hth subtrees. If these labels were assigned to their roots before the traversal 
of their mth subtrees, then the underlined parts cannot be identical, contradicting 
our assumption. So, we have ai = 0 for all i, h c id tn. But then by condition (i) of 
the theorem, we have bi > 0 for all i, h < is m. In particular, bh+i > 0. So the first 
element of 7r(rbh+l ), which is greater than A, + C,“=, I ?I x M, is greater than every 
element of 7r( T;). Since IT( < l,r( TL)J, this implies that 7r( T) z 7r( T’). 

Case 2. Ah = Bh. Note that the labels in 7~( Ti) are consecutive integers. If 
7~( T) = V( T’), then we must have one of the following two subcases. 

Subcase 2.1. r( Tk) is a prefix of 7r( Th)r(rbh+l)7r( Th+,)r( rbh+2) . . . r( q_,)n( rbj), 

but not a prefix of T( Th)7r( rbh+l)~( 7”+i) rTT( lbh+2) . . . T( q_1), for some j, h <j d k. 
Clearly, this implies that bi > 0. Since IP( TL)I is a multiple of M, we have that 
Bj = M, Ah = Bh = 0, and V( Tk) = 7r( Th)m( rbh+l)n( Th+l)~( rbh+2) . . . 7r( 7j_,)n( rbj). 

Let 172 be the smallest index, j s m G k, such that T, is not empty. Since 
ITl=IT’I, such an m exists. We have B, = Bj = M. If A, < M, then 
T( Th)w(rbh+l)~( Th+l)n(rbh+2) . . . 7~( Tj_l)r( r”j) contains a label that was assigned 
to the root of T after the traversal of T,, and hence is larger than any label in 
rTT( T,). Since rTT( Tk) does not contain any element of 7r( T,), such a label would 
also be larger than any label in 7r( Tk), implying that n( Tk) # 
r( Th)n(rbh+l)n( Th+1)v(rbh+2) . . . n( 7j_1)r( r’j), a contradiction. Hence A, = B, = 
M. This, together with Ah = Bh = 0, violates condition (ii) of the theorem. So we 
conclude that v(T) # W( T’). 

Subcase 2.2. r( Th) is a prefix of T( Th)r(rbh+l)v( Th+I)r( rbh+2) . . . TT( r’j)~( Tj), 

but not a prefix of T( Th)v( rbh+l)r( Th+,)r( rbh+2) . . . r( r’j), for some j, h <j s k. If 
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Bj < Aj, then there is a label assigned to the root of T after the traversal of Th, but 
before the traversal of ?;, that will appear in T( Th), but not in 
7F(Th)*(lbh+l)~(Th+l)~(rbh+2). . . cTT( r’j)r( Tj), a contradiction. So we have Bj 2 Aj 
This also implies that Bj > A) Otherwise, we have Aj = Bj, and A,, = Bh, violating 
condition (ii) of the theorem. 

Suppose T( Tk) is a proper prefix of v( Th) 7r( rbh+l) 7r( Th+l)fl( rbht2) . . . T( rbl)n( Tj). 

Since Bj > Aj, there is a label assigned to the root of T after the traversal of q, that 
will appear in T( Tj)~(r~h+l)~( Th+L)~(~bh+2) . . . v(rbj), but not in T( Tk), a contra- 
diction. 

So let T( Ti) = V( T’)T( I~~+I)T( Th+J7c( rbh+2) . . . v( rbj)m( q). This implies Ah = 
Bh = 0 and Bi = M. Let 111 be the smallest index, j < m d k, such that T, is not empty. 
Since 1 T( = ( T’I, such an m exists. If Bj > A,, then we have 7~( TL) Z 
T( Th)T( tbh+l)7r( &+1)7r( rbh+2) . . . r( rbj)v( Tj), a contradiction. So we have A, = 
B, = M. This, together with Ah = Bh = 0, violates condition (ii) of the theorem. So 
we conclude that T(T) # T( T’). 

Case 3. Ah > Bb Let us assume that T( T) = T( T’) = p,p2 . . . pnM Label the internal 
nodes of T and T’ with the sequence of labels p,, p2, . . . , p,,M, in the order the nodes 
are visited according to ti2. Read off the labels of the nodes in the order the nodes 
are visited according to &. Now we will obtain the same permutation 1 2 . . . (nM) 

for both T and T’. But in Case 1 we proved that this is not possible. 
Thus we conclude that (4i, b2) is a k-RS. Cl 

In [2, Section 2.3.1, Example 71, it is shown that ( rT1 T2, T,rT,) is a 2-RS. It is 
also well known that ( T1 rT2, T, T2r) is a 2-RS, whereas (rT, T2, Tl T2r) is not. Theorem 
2.6 generalizes these results to k-ary trees. 

Corollary 2.6.1. (+r, +2) is a k-RS if and only if (4~~, 4,) is a k-RS. 

Corollary 2.6.2. For any k- RS, M 3 [ik 1 .l M oreover, for any k there exists a k-RS 
with M = [ikl. 

Proof. By condition (i) of Theorem 2.6, for any k-RS M b [$( k - 1) 1. 
When k is even, the pair of traversals (41, 42), where 

+,=rT,rT2.. . rqkqiIk+, . . . Tk and +2= TlT2.. . qTiIkrT&+,r.. . Tk, 

is a k-RS with M = ik. 
However, when k is odd, any pair of k-ary tree traversals (&, dj2) with l+,l= 1+21 = 

i( k - l), that satisfies condition (i) of Theorem 2.6, will have A, = B, = 0, and 
Ak=Bk =&k - 1). This violates condition (ii) of the theorem. But it is easily seen 

’ [xl denotes the smallest integer greater than or equal to x. 
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that the pair of k-ary tree traversals (&, &), where 

41 = rT,rT, . . . rq!;(k+,&+3j . . . Tk 

and 

& = Tl T2. . . T~c;r(k+,jrrl;Ick+3y. . . T,cr, 

is a k-RS with M=$(k+l)= [+k]I’ 0 

3. A-order and B-order Representation Schemes 

In this section, we characterize those k-RS with Ic$,~ = l&l 6 k - 1 which are such 
that the order induced on k-ary trees by the lexicographic order of the permutations 
they assign coincides with some of the well-known ‘natural’ orders on k-ary trees. 

First, we present the definition of two well-known natural orders on k-ary trees. 
The order given in [2] for binary trees, and in [lo] for k-ary trees is as follows. 

Definition 3.1. Given two k-ary trees T and T’, we say that T < T’ in A-order if 

(i) l Tl < IQ or 
(ii) I TI = I T’J, and for some i, 1 d i d k, we have 

(a) q= T; forj=1,2 ,..., i-l, and 
(b) 71. < T;. 

The order used in [ 1 l] is as follows. 

Definition 3.2. Given two k-ary trees T and T’, we say that T < T’ in B-order if 
(i) T is a single leaf node, and T’ has at least one internal node, or 

(ii) T has at least one internal node, and, for some i, 1 d i d k, we have 
(a) Tj= T; forj=1,2 ,..., i-l, and 
(b) T < T;. 

Now we shall define the order induced on k-ary trees by a k-RS. 

Definition 3.3. Given two k-ary trees T and T’ such that I TI = I T’I, we say that 
T < T’ in (&, &)-order if 7r( T) < m( T’) in the usual lexicographic order. 

Note that (@,, &)-order is defined only on trees that have the same humber of 
internal nodes. Let r,, denote the set of all k-ary trees with n internal nodes. We 
have the following definition. 

Definition 3.4. A k-RS (&,, &) is an A-order k-ary tree Representation Scheme 
(k- ARS) if ( &,, Q-order and A-order coincide on T, for all n. 

A k-BRS is defined analogously. 
Now, we shall present the theorems characterizing k-ARS and k-BRS, when 

l&,1= 1421 s k - I. 
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Theorem3.5. Let (&, cf+) beak-RS with )&1=1#~~1~ k-l. Then (&, &) isak-ARS 
if and only if 4, = T,rT,r.. . Tk_lrTk and c#+= rT,rT,. . . rTk_lTk. 

Proof. Let (&, &) be a k-ARS with 14,1= l&l< k- 1. We shall prove that 4, = 
T,rT,r. . . Tk_, rTk and & = rT, rT, . . . rTk-, Tk in a sequence of steps. 

Step 1. We claim that Ai < Bi for all i, 1 d i < k. If not, let j be the smallest index, 
1 ~j < k, such that Aj > BP Consider the trees T and T’, shown in Fig. 2, where the 
labels assigned to the nodes according to 4, are also shown. Note that T < T’ in 
A-order. 

The permutation assigned to T is of the form 

v(T)=12... Bj(Aj+ l)(Aj+2) e m s (Aj+ Bj)(2Aj+ 1) * a * a 

If Bk > Bj, then the permutation assigned to T’ is of the form 

rr(T’)=12... Bj(Aj+ l)(Aj+2) . * .(Aj+Bj)(Aj+Bj+l)+... 

Since Aj > Bj, we have T(T) > v( T’), a contradiction. SO, we must have Bj = Bk. 
But then by the uniqueness condition (i) of Theorem 2.6, we have Aj < Ak. 

Now consider the trees T and T’, T< T’, as shown in Fig. 3. The permutations 
assigned to T and T’ are of the form V(T) = 12. . . pj(Ak + 1) . . . and r( T’) = 
12... Bj(Aj+l).... Since Aj <‘A,, we have r(T) > V( T’), a contradiction. 

Step 2. We claim that Ai < Bi for all i, 1 s i < k. If not, let j be the smallest index, 
l<j<k, such that Aj=Bj Since (&,&) is a k-RS, Ah#Bh for any h,j<hsk. 
Let T and T’ be two k-ary trees with two internal nodes each, where Tk and TJ are 
the only nonempty subtrees of T and T’, respectively. Clearly, T < T’. Since Aj = Bj, 
n( T’) = 1 2 . . . (2M). Hence, T(T) > rr( T’), a contradiction. 

Step 3. We claim that Ai < Ai+1 for all i, 1 d i < k If not, let j be the smallest 
index, 1 sj < k, such that Aj = Ai+,. Since (+i, &) is a k-RS, we have Bj < Bj+,. 
From Step 2 we have Aj < BP SO, Aj = Aj+, < Bj < Bj+, e 

Let T and T’ be two k-ary trees, T < T’, as shown in Fig. 4. Labels assigned to 
the nodes are also shown in this figure. The permutations assigned to T and T’ are 
of the form 

?r(T)=12... Aj(Aj+M+l)(Aj+M+2) . . e (Bj+M) 

(Bj+M+l).-.(Bj+1+M).m., 

74T’)=12.. sAj(Aj+M+l)(Aj+M+2) e e e (Bj+M)(Aj+l). . . . 

Since Aj < Bj, we have r( T) > v( T’), a contradiction. 
Step 4. Let M be no larger than k - 1. Then, from Step 3, we have that & = 

TI rT,r . . . Tk_-l rTk. 
Step 5. Again, let M be no larger than k - 1. Then we claim that 42 = 

rT,rT,. . . rTk_l Tk. From Steps 2 and 4 it is clear that Bi 2 i for all i, 1 s i < k. So 
bk = 0. Let j be the smallest index, 1 s j < k, such that 6j > 1. 
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L 
L,,=(l,2 ,..., Aj,Aj+2M+l,Aj+2M+2,...,A,+2M,Ak+3M+l, 

A,+3M+2,. . . ,4M) 

L,,=(Aj+l, Aj+2,..., 2Aj, 2Aj+M+l, 2Aj+M+2,..e9Aj+2M) 

L,,=(A,+2M+1,A,+2M+2,...,Ak+3M) 

L’,, = (1,2,. . . , Aj,Aj+3M+l,Aj+3M+2,...,4M) 

L~,=(Aj+l,Aj+2,...,Aj+A,,...) 

L~,=(Aj+A,+l,Aj+A,+2,...,Aj+2A,...) 

LL,=(Aj+2A,+l,Aj+2A,+2,...,Aj+2A,+M) 

(b) 
Fig. 2. (a) T. (b) T’. 

Let T and T’ be two k-ary trees as shown in Fig. 5. Labels assigned to the roots 
of T and T’ are also shown. The permutations assigned to T and T’ are of the form 

m(T)=12...(j-l)(j+2M)(j+3M+l)..., 

~(T’)=12...(j-l)(j+2M)(j+2M+l).... 

So T(T) > T( T’), a contradiction. 
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L*1=(1,2,..., A,A,+M+l,A,+M+2 ,..., 2M) 

LZ,=(Ak+1,Ak+2 ,..., A,+M) 

(4 

L’lr=(1,2,..., Aj,Aj+M+l,Aj+M+2,..-,2M) 

Li,=(Aj+l,Aj+2,...,Aj+M) 

(b) 

Fig. 3. (a) ? (b) f’. 

From Steps 4 and 5 we finally conclude that if (&, &) is a k-ARS, then & = 
T&r.. . Tk-,rTk and & = rT,rT, . . . TT~-~ Tk. 

Now we shall prove that the pair of traversals (&, &), where C#I~ = T,rT,r. . . rTk 
and &=rTIrTZ... rTk_lTk, is a k-ARS. We shall use subscripts to distinguish 
between the T’S. So let C/J, = T,r,T,r,. . . Q_~T~ and &= rlT,r,T,. . . T~-~T~-~T~. We 
claim that if T and T’ are two k-ary trees, T < T’, and (TI = 1 T’I = p, then V(T) < 
*TT( T’). The proof is by induction on p. For p = 1, the claim is vacuously true since 
there is only one k-ary tree with one internal node. Let the claim be true for all 
p c n. Let 1 TI = ) T’I = n. Let j be the smallest index, 1 s j 6 k, such that IT; = T: for 
all i, 1 d i <j, and q < T;. 

The permutations assigned to T and T’ are 

r(T’)= r(r;)?~(T;)r(r;)7~(T;). . . r(rl__l)r(T;-I) 

?r(r;)r( T;) . . . ~TT(~Ld~(TL-,)dTJ, 

respectively. 
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Li* = (1,2,. . . , Aj,Aj+M+l,Aj+M+2,...,2M) 

LZl=(Aj+l,Aj+2,...,Aj+M) 

(4 

Li,=(1,2,... ,Aj,Aj+M+l,Aj+M+2,...,2M) 

Fig. 4. (a) T. (b) T’. 

Since z = T: for all i, 1 d i <j, the underlined 
identical. Now we need to consider two cases. 

Case 1. j = k This implies that lTkl = 1 T$ By 
T( Ti), and hence T(T) < n( T’). 

parts of T(T) and T( 7”) are 

induction hypothesis, T( &) < 

Case 2. j < k In this case, there are two subcases to consider. 
Subcase 2.1. Iql= I T$ In this case, W( 5) = T( rj), and, by induction hypothesis, 

T( ?;-) < T( 7’;). So we have T(T) < T( T’). 
Subcase 2.2. ITI< I T$ In this case, T( rj) < V( rJ), and so ?T( T) < T( T’). 
So we conclude that ( T,rT,r . . . Tk_trTk, I-T, rT2 . . . rTk-, Tk) is the only k- ARS 

with l41l=)+2/s k-l. •I 

It is well known that the 2-RS ( TIrT2, rT, T2) is a 2-ARS [ 11. Theorem 3.5 
generalizes this result to k-ary trees. 

Now we shall present the theorem characterizing k-BRS with l+1l = I+*1 < k - 1. 

Theorem3.6. Let (c#Q, &) bea k-RS with ~~1~=~~2~~ k-l. Then (&, c#+) isa k-BRS 
if and only if the following conditions hold: 
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L,1= (I,& * - - ,j_l,j+2M,j+3M+l,j+3M+2,...,4M) 

(a) 

Li,=(1,2,... ,j_l,j+2M,j+2M+l,..., 3M) 

(b) 

Fig. 5. (a) T. (b) T’. 

(i) & = T,rT,r.. . Tk_lt-Tk, 

(ii) Ai>Bi for i=l,2 ,..., k-l, and 
(iii) Ak= Bk=k-1. 

To prove the theorem, we need the following lemma. 

Lemma 3.7. Let ( C#Q, &) be a k-RS satisfying the conditions mentioned in the theorem. 
Let T and T’ be two k-ary trees such that T < T’ in B-order. Then 

(i) ifITI=IT’I, then r(T)<r(T’). 
(ii) ifITI<IT’(, h t en v(T) 4 the prefix of rr( T’) of length IP( T)). 

(iii) if)Tl> IT’I, h t en v( T’) > the prefix of rTT( T) of length )T( T’)I. 

Proof. Let max{( T(, 1 T’(} = p, f or some p > 0. We shall prove that the result stated 
in the lemma holds, by induction on p. Clearly, for p = 1 the result holds. Let the 
result hold for all p < n. Now let max{ 1 TI, I T’I} = n. If ) TI = 0, then the proof is trivial. 
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So assume that 1 TI > 0. Let j be the smallest index, 1 <j d k, such that 7;: = Ti for 
all i, 1~ i <j, and q < TJ. Clearly, max{I 17;1, 1 T# < n. 

Using the notations introduced earlier, we see that 

T(T) = ~(Tl)T(rl)T(T*)T(r2) * - - m(rj-*) 
T( 7j)T( rj) . . . d Tk-Mrk-M Tk), 

77( T’) = 7r( Ti)?r( ri)7r( Ti)7r( rh) . . . T( rJ-l) 

7r( T,!)7r(rJ . . . 4 TLMLM G). 

Since Ai 2 Bi for all i, 1 d i d k, the underlined parts of the permutations are identical. 
We shall now consider two cases. 

Case I. j = k. If I TI = ITI, then Iql= I T$ By induction hypothesis, r( T) < 7r( TJ). 
Hence 7r( T) < T( T’). 

If I TI c ITI, then ) ?I< I T$ By induction hypothesis, 7r( q) s the prefix of 7r( TJ) 
of length )7r( T)l. S o GT( T) s the prefix of 7r( T’) of length I& T)I. 

If ( TI > I ~‘1, then I IT;.I > IT$ By induction hypothesis, V( T,!) > the prefix of 7r( T) 
of length I?T(T;)(. So 7r( T’) > the prefix of 7r( T) of length I7r( T’)(. 

Case 2. j< k. If l~jl= IT& th en, by induction hypothesis, 7r( T) < r( Ti), and we 
are done. 

If1’1;-I<IT:l,then~(Ti)~theprefixof7T(T~)oflengthI~(~)I.SinceAj>Bj,~(rj) 
is less than every element of V( T,!). Hence 7r( q)rTT( 4) < the prefix of r( Ti) of length 
Iv( Tj)l+ I, and we are done. 

If I TJ > / TJ, then, by induction hypothesis, nn( Tj) > the prefix of 7r( T) of length 
I~F(TJ)(, and we are done. Cl 

Proof of Theorem 3.6. Let (&, &) be a k-BRS with I411 = I~JG k- 1. We shall 
prove that it satisfies the conditions stated above, in a sequence of steps. 

Step 1. First, we claim that Ai 2 Bi for all i, 1 s i < k If not, let j be the smallest 
index, 1 d j < k, such that Aj < Bj 

Let T and T’ be two k-ary trees, T< T’, as shown in Fig. 6. Labels assigned to 
the roots of T and T’ are also shown in this figure. The permutations assigned to 
T and T’ are of the form r(T)=12...Aj(Aj+3M+l)...and T(T’)= 
12... Aj(Aj+2M+l).... So we have rr( T) >_r( T’), a contradiction. 

Step 2. We claim that Ai > Bi for all i, 1 s i < k From Step 1 we have that Ai b Bi 
for all i, 1 s i < k Let j be the smallest index, 1 s j < k, such that Aj = BP Then, by 
Theorem 2.6, Ah # Bh for any h, j < h s k In particular, Ak # Bk. 

Let T and T’ be two k-ary trees with two internal nodes each, where Tk and TJ! 
are the only nonempty subtrees of T and T’, respectively. Clearly, T < T’. Since 
Aj = Bj, we have that r( T’) = 12 . . . (2M). So T(T) > T( T’), a contradiction. 

Step 3. We claim that Bi < Bi+l for all i, 1~ i < k. If not, let j be the smallest 
index, 1 <j < k, such that Bj = BJ+l. From Theorem 2.6 we have Aj < Aj+l. SO, from 
Step 2 we have Bj = Bj+l <Aj <I$+,. 
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L,1=(1,2 ,..., Aj,Aj+3M+l,Aj+3M+2,..*,4M) 

(4 

Li,=(l, 2 ,...) Aj, Aj+2M+l,Aj+2M+2,...,A,+2M, A,+3M+l, 

Ak+3M+2,...,4M) 

(b) 

Fig. 6. (a) If. (b) T’. 

Let T and T’ be two k-ary trees, T< T’, as shown in Fig. 7. Labels assigned to 
the nodes are also shown in this figure. The permutations assigned to T and T’ are 
of the form 

&J-)=12... Bj(Aj+, + l)(Aj+l+ 2) * e . (A,+1 + M) . * * 7 

7T(T’)=12.. mBj(Aj+l)(Aj+2)..s(Aj+M).*., 

respectively. Since Aj+, > Aj, we have T(T) > T( T’), a contradiction. 
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L,,=(l, 2 ,..‘, Aj+i, Aj+,+M+l,Aj+,‘M+‘,...,‘M) 

L21=(Aj+l+l,Aj+l+2,-..,Aj+l+M) 

(a) 

L:, = (1,2,. . . , Aj,Aj+M+l,Aj+M+2,-..,2M) 

L~,=(Aj+l,Aj+2,...,Aj+M) ’ 

@I 

Fig. 7. (a) T. (b) T’. 

Step 4. If we restrict ourselves to, the case l&l = l&l Q k - 1, then, from Step 3 we 
conclude that c#+ = T,rT,r. . . Tk_*rTk. 

So we conclude that if (&, &) is a k-BRS, then it satisfies the conditions in the 
theorem. 

To prove the sufficiency part, let (&, &) be a k-RS that satisfies the conditions 
of the theorem. Let T and T’ be two k-ary trees, such that I TI = ITI, and T< T’. 
From the preceding lemma it follows that 7r( T) < r( T’). So we conclude that ( c$,, &) 
is a k-BRS. Cl 

Trojanowski [lo] studied the 2-RS (rT, T2, Ti rTJ. Zaks [ 1 l] has shown that this 
is a 2-BRS. Theorem 3.6 generalizes this result to k-ax-y trees. 

4. Conclusions 

In Sections 2 and 3 we studied some of the main properties of k-ary tree 
Representation Schemes that are of interest. It is clear that some Representation 
Schemes are more useful than others. 
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The Representation Scheme studied by Liu [3] can be thought of as the special 
case+,=tk-17’1Tz... T’and+,=T,rT,r... 7”-1rTb If we label the nodes with the 
sequence of integers 1,2, . . . as described in Section 2, each node will be labeled 
with k - 1 consecutive integers. Instead, Liu labels the nodes with the sequence of 
integers 1 k-12k-’ . . .I TI k-1 (i’ denotes j copies of the integer i). Consequently, each 
node is labeled with k - 1 copies of the same integer, and each k-ary tree is assigned 
a permutation of the multiset { 1,2, . . . ,I TI} k-1. 

We can also characterize those Representation Schemes which assign permutations 
that are either all stack realizable, or all stack sortable. This is discussed in [4]. 
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