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Abstract. The paper proposes an extension RPL of the process logic PL of Hare& Kozen and 
Parikh (1980). The PL formula operators f and suf are replaced by the operators chop and slice’, 
corresponding to Kleene’s regular operators - and *, thus enabling formulas to express regular 
sets of paths. The main result is that, in expressive power, PL < RPL, the hard part being in 
showing that PL=z RPL. It is argued that this version of PL comes closer to the desired goal of 
a natural and powerful (yet decidable) logic for reasoning about the ongoing behavior of programs. 

1. Introduction 

Ever since the work of Engeler [5], researchers have tried to provide formalized 
logical tools to enable reasoning about programs. The idea is to incorporate such 
proof methods as those of Floyd [6] into formal logics which can assert many 
properties of interest. Following the ‘input/output’ school of thought cultivated by 
Floyd [6], Hoare [ 131, Manna [15] and others, the Warsaw-based system of algorith- 
mic logic (see [2,22]) and the similar USA-based system of dynamic logic (see [20, 
91) emerged. In particular, the propositional version of dynamic logic, PDL (see 
[7]) seems to have become recognized as an appropriate propositional-level tool for 
the input/output mode of reasoning about sequential programs. Moreover, PDL 
has a decidable validity problem and a simple complete axiomatization [14]. It was 
clear, however, that to reason about concurrent or nonterminating programs, or 
even to reason conveniently about some aspects of the ongoing behaviour of 
sequential programs, it would be necessary to extend PDL (and with it perhaps the 
first-order versions too) to make assertions about the activity during computations 
and not only at their start or end. 
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Some initial work in this direction appears in [21], where the connectives ‘during’ 
and ‘throughout’ were added to PDL, in [lo], where PDL was shown to be unable 
to express such connectives, and in [ 171, where a powerful logic for reasoning about 
states and paths and their properties was shown decidable. Independently, the 
temporal logic approach to reasoning about concurrent and nonterminating programs 
was being developed (see [ 19,S-J). A fundamental difference in the approaches 
between dynamic and temporal logics is the explicit naming of programs in the 
former (as in [ a!]( /3) Y; read “after any execution of program a it is possible to 
execute p making Y true upon termination”), and the presence of a single implicit 
program to which the entire formula refers in the latter (as in Cl 0 Y; read “after 
executing any number of steps of the program it is possible to execute some more 
and satisfy Y”). 

In [16] it was first suggested to combine both approaches, and to allow, say, the 
formula (a) Cl Y, read “it is possible to execute (Y such that Y is true after any 
number of steps, i.e., throughout that execution”. It became clear that, for such a 
suggestion to work, the mode of thought would have to undergo a transition from 
the input/output approach, captured by binary relations on states, to the ‘ongoing’ 
approach captured by paths, i.e., sequences of states. Furthermore, to be acceptable, 
the propositional version of any such proposed logic should be decidable, should 
be at least as powerful as those proposed as first approximations in [21,17,16-J, 
and, above all, should be in some sense the ‘right’ logic for talking about paths. 
This last property means that, on the one hand, it should be built up using natural 
and tractable path connectives but, on the other, should be able to express as large 
a class of path formulas as is reasonably possible. 

In response to this need, a logic, called process Zogic (or PL) following Pratt [21], 
was proposed in [12]. It was indeed a combination of PDL and the propositional 
temporal logic TL, was as powerful as any previously suggested version, and was 
also shown to be decidable and to possess a finite complete axiomatization. In a 
certain sense, the last requirement above was ‘also satisfied: in [8], TL was shown 
to be precisely as powerful as the first-order theory of linear order, a fact taken to 
be evidence that TL was ‘right’. In PL, it was this ‘expressively complete’ version 
of TL which was combined with the PDL apparatus and thus, in the same sense, 
PL was ‘right’ too. 

Nevertheless, the path operators of PL are not all that natural. The central path 
operator, X suf Y, deriving from the X until Y of TL, is true in a path p if there is 
a suffix q of p which satisfies Y, and all suffixes of p of which q is a suffix satisfy 
X. This is clearly a complicated and asymmetric operator. In addition there is the 
construct fX, true in p if X is true in the first state of p regarded as a path of length 
0. Moreover, Wolper [26] showed that there are natural path properties not express- 
ible in TL, and suggested adding to TL operators corresponding to right linear 
grammars, in effect enabling one to say “X is true in the regular set of paths S”. 

In this paper we make another step towards defining the ‘right’ process logic, by 
extending PL in a way similar to that adopted by Wolper for TL. We define RPL, 
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for Regular Process Logic, in which the operators f and suf are replaced by chop 
and slice, corresponding essentially to Kleene’s regular operations of concatenation 
and star. Thus, e.g., X chop Y is true in path p if p consists of the fusion of q and 
r (i.e., concatenation with an overlapping common state), X is true in q and Y in 
r. In this way, the regular operations on programs, (Y u p, c@, cy*, have natural 
counterparts on formulas: X v Y, X chop Y and slice X. This has the immediate 
advantage of enabling one to use any operator which is expressible by regular 
means, for example the ‘shuffle’ operator X 11 Y, which shuffles the paths satisfying 
X and Y and is of importance in reasoning about concurrently executing processes. 

Our main technical result, whose proof takes up most of the paper, is that in the 
presence of these regular operators on formulas, the old ones, f and suf are redundant. 
In other words, PL< RPL. Since an argument similar to Wolper’s [26] can be used 
to show that regular operators can actually say more, we obtain PL< RPL. 

RPL is shown to be decidable (but nonelementary), and it is argued that the 
regular operators could perhaps yield an easier completeness proof than that of 
[12]. Furthermore, in the interest of arguing that RPL is closer to being ‘right’ than 
previously proposed logics, we observe that a slight extension of RPL results in a 
highly undecidable validity problem. 

The approach is taken one step further in Section 5. There it is shown that since 
in RPL the operators on both programs and formulas are the regular ones (in 
addition to 1, which is complementation relative to the set of all paths), and since 
both programs and formulas are interpreted over paths, one can combine both of 
these and define a two-sorted logic R, uniformly closed under the PDL diamond 
operator (X) Y, regular operations and path complementation. The one sort corre- 
sponds to atomic properties of states, and the other to atomic (i.e., binary) transitions 
between states. We show that while naively doing this results in an undecidable 
language by [4], if one disallows complementation inside the ( ), this unified language 
is decidable and is strictly stronger than the restriction of RPL to binary atomic 
programs. 

2. Definitions 

Process Logic, PL, is interpreted over path models, in which one may talk about 
(finite or infinite) paths of states. All formulas of PL are path formulas, i.e., a 
formula X is either true or false in path p. We assume familiarity with the basic 
notions from [ 121 but provide a brief description for self-containment. 

The following are basic notions regarding paths. The first and last state of a path 
p are denoted first(p) and last(p), respectively. If p and q are two paths such that 
last(p) = first(q), then p 0 q denotes the fusion of p and q. If last(p) # first(q), then 
p0 q is not defined. pa q denotes the concatenation of p and q, which is always 
defined. For example, if p = sls2 and q = ~2~3, then p 0 q = ~1~2~3, q - p = ~2~3~1~2, 

and q Op is not defined. For sets of paths G, H, define GO H and G - H in the 
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usual way, and also define G’ = G - . . . - G, i times; G@ is the same with 0, 
G’ = UE, G’, and G@ = Uzr GO. The same notation will be used for words and 
languages. 

Syntax 

The basic elements of PL are a set AF of atomic formulas (denoted by P, Q, . . . ) 
and a set AP of atomic programs (denoted by a, b, . . . ). For programs (Y, p and 
formulas X, Y, cy u p, (Y - p, and CY* are also programs, and X v Y, TX, (cy)X, fX 
and X suf Y are formulas. 

Semantics 

A path model is a triple M = (S, I=, p) where S is a set of states, I= is a satisfiability 
relation for primitive propositions, and p is an assignment of sets of paths to primitive 
programs. A path satisfies primitive proposition P iff its first state does. We write 
p I= P if path p satisfies primitive proposition P, and p E pa if p is a member of the 
set of paths assigned to primitive program a. 

The relations i= and p are extended to compound propositions and programs 
according to the following rules: 

Pavp = PQ u Pp, 

Pa*=UiPnO, 

pl=XvY iff pl=Xorpt=Y, 

pl=~X iff notpI==, 

p t= (a)X iff there is a path q E pa such that p0 q i= X, 

p I= fX iff first(p) t= X, 

p I= X suf Y iff there is q such that 

(i) q is a proper suffix of p and q I= Y, and 

(ii) for each proper suffix r of p, if q is a proper suffix of r, 
then r I= X. 

Define the operator L,-, by: p I= Lo iff p is of length 0. Lo is definable in PL by 
L,, = -1(0 suf 1). Here 1 and 0 stand for true and false. Now, define the two additional 
connectives chop and slice as follows: 

p != X chop Y iff there are paths q, r such that p = q 0 r, q t= X, and r I= Y. 

p t= slice X iff there are ql, . . . , q,, for some n 3 1 such that 
p=q10- --Oq,,and,forall lsi<n,qiI=X. 
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Let PL’ be defined just like PL but with these additional operators added, and 
let RPL be defined just like PL+ but without f or suf, though with Lo. 

We need some notions regarding languages and regular sets. First, we define an 
analog of suf for 1anguages:Given two languages L1, L2, L, suf L2 will denote 
{x 1 there is some proper suffix y of x such that y E Lz, and for each proper suffix z 
of x, if y is a proper suffix of z, then z E L,}. 

Next, we define some classes of regular sets of finite and infinite words. The class 
of A-free regdar expressions over 2, R,(Z), is defined exactly as are standard regular 
expressions, except that + is used instead of *. The set L( R, (2)) of languages 
defined by expressions in R,(Z) is clearly closed under union, intersection, 
concatenation, +, complementation with respect to xc’, suf, fusion, and 0. 

We now turn to deal with infinite words. 2” will denote the set of infinite words 
of order type o over 2. For a set L E Z*, L” denotes the set of all words x E 1:” 
which are an infinite concatenation of nonempty words in L. A set L is w-regular 
if it is a finite union of sets of the form U - V”, where U and V are regular sets. 
The collection of all w-regular sets is denoted by LR,(S). It is known (cf. [3]) that 
LR,(E) is equivalent to the class of all sets definable by McNaughton automata. 

We shall need yet another system of regular sets of infinite words, more suitable 
for our purposes. Define the collection of h -regular expressions (denoted R_ (2)) 
as follows: (1) OE R_(E); (2) if UE R,(E) and A, BE R_(Z), then Au B, Us A, 
-AE R_(Z) (where -A denotes E” -A). Itis known[25]that L(R_(E)) = LR,(E), 
and therefore that L( R_(Z)) is closed under union, intersection, complementation 
with respect to S”, suf, and fusion on the left with h-free regular sets. 

3. Results 

Theorem 3.1. PL < PL+. 

Proof. The proof is similar to that of Wolper [ 261 for TL. Let even = slice( L2) E PL+. 
Here L2 (definable in PL+ as 0 suf (0 suf L,) is true precisely in paths of length 2 
(i.e., consisting of three states). The formula even says that a path is of even length. 
We show that this property cannot be expressed in PL, by constructing a model M 
with only one state s, and empty assignments of pa and i= P for all a E AP, P E AF. 
For a formula X E PL, define nest(X) as the maximal depth of nesting of the suf 
operator in X. The following two claims are easy to prove and yield the result. 

Claim 3.1.1. p I= even iflp = (~~~+l) for some n L 1. 

Claim 3.1.2. Let X E PL. For every i > nest(X), ( si) I= X if (si+*) I= X. El 

The remedy, proposed by Wolper for the similar lack of expressiveness in TL, 
was defining a family of extended operators, each corresponding to some right linear 
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grammar. His extended TL, ETL, is thus equivalent in expressive power to program- 
free RPL. 

Our main theorem, whose proof is sketched in the next section, is the following. 

Theorem 3.2. PL’ = RPL. 

Corollary 3.2.1. PL < RPL. 

We note the following theorem, to be contrasted with the following facts: (i) for 
the weaker but more succint PL the result is not known to hold, and (ii) for TL the 
problem is PspAcE-complete [23]. 

Theorem 3.3. The validity problem for RPL is decidable but is non-elementry even for 
program-free formulas. 

Proof. Decidability is obtained by an easy extension of the reduction of PL to SnS 
in [ 121 (see [ 181). That there is no elementary-time decision procedure even for 
program-free formulas follows from a straightforward linear time reduction from 
the emptiness problem for regular expressions with complementation (see [l]). 0 

Slight extensions of RPL are highly undecidable. For example, let the operator 
JX be defined by p t= JX iff all subpaths q of p obtained by deleting from p an 
equal number of states from either end, satisfy X. This is depicted by the following 
diagram. 

X 

x 
Theorem 3.4. The validity problem for RPL with the additional operator 5 on formulas 
is JI i-complete. 

Proof. Let X0 be defined as 

_LO v (slice((LO A P)chop L,))chop(slice (L, chop(LO A IP))), 

for some PE AF, and where L, (definable in RPL) is true precisely in paths of 
length 1. The formula [X0 can be seen to hold in all paths of even length for which 
P is true along the first half, arrd false along the last half (its value in the middle 
state is immaterial). This set {PiLO( 1 i 2 0) and its dual obtained by switching 
the roles of P and 1P in X0, can serve to reduce to this extension of RPL a 
recurring-dominoes problem, as is done in [ 11, Theorem 4.101. Cl 

4. Proof of Theorem 3.2 

We show in this section that PL+ d RPL, and hence establish PL+ = RPL, and 
PL < RPL. 



Process logic with regular formulas 313 

Define the abbreviation SX = L,, A X. We regard SX as a ‘local appearance’ of X. 
The following immediate lemma shows that the connective f is redundant in PL+. 

Lemma 4.1. For any X E PL+, fX = (sX) chop 1. 

Unfortunately, no such uniform translation is known for suf. The proof that suf 
is nevertheless eliminable goes along the following lines. First, a minor change is 
made in both PL+ and RPL, with no effect on expressiveness. The semantic rule 
for atomic formula P is rephrased to read: p I= P iff 3s( p = (s) and s I== P). Clearly, 
the ‘old’ P can still be expressed (as P chop l), while the ‘new’ P is expressed in 
the original version by sP. 

Next, a sublanguage of RPL, named lot PL, is defined. A formula of the form 
(a)X may appear in lot PL only in local form, i.e., in subformulas of the form 
s(( a)X). The operators chop and slice do not appear in lot PL at all. Instead, two 
new connectives are used, namely, rchop and dice. These are definable using the 
former, and are related to them (by the semantic rules) precisely as concatenation 
( - ) relates to fusion (0). All this enables us to use conjunctions of literals (i.e., 
atomic formulas or their negations) called atoms (see [ 14,241) as the letters of an 
alphabet 2, and to establish a natural correspondence between Rh (Z), R_(1) and 
sublanguages of program-free-lot PL. This will yield the closure of program-free- 
lot PL under chop, slice, and suf, and hence will imply program-free-PL+ d 
program-free-lot PL. 

The presence of programs complicates the situation, since PL+ may in general 
use programs non-locally (i.e., outside the s-connective). Nevertheless, we exhibit, 
for each ar and X, a formula of lot PL equivalent to (a)X. The heart of the proof 
is a rather complex case analysis showing that any formula in lot PL can be 
decomposed into a collection of pairs of formulas which exhaust all possible ways 
of satisfying X by compound paths. 

Definition of lot PL 

First, define the following abbreviations: 

X rchop Y abbreviates (X chop L,) chop Y, 

rslice X abbreviates X v (slice (X chop L,)) chop X, 

The language lot PL is taken to be the sublanguage of RPL, defined by the 
following rules: 

(1) AFc lot PL. 
(2) If a~ is a program and X E lot PL, then s((ar)X), s([a]X) E lot PL. 
(3) If X, YE lot PL, then TX, X v Y, X rchop Y, dice X E lot PL. 
LetT={P,,..., Pk} c AF. An atom for r is a formula u = s(A, A - - - A Ak) where 

Ai E {Pi, lpi}. Denote by Zr the set of atoms for r 
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For any model M=(S,l=,p), let h:(E~~~~)-*2~‘“~~ be defined by 

h(u)={PIPb a} for u E &-, 

h(o,q.. .)=h(a,)h(u,)... fora,,c, ,... E&-. 

Note that, for each p E h(a), 1 pi = 0. The function h induces a partition on the set 
2 ‘+“‘* of paths in M, since if w # w’, then h(w) n h( w’) = 0. 

Over &-, we have the set of h-free regular expressions, R,(Z,-), and the set of 
infinite regular expressions, R_.(&). Define functions I, F as follows: 

I : R_(&) + lot PL 

I(0) = 0, 

For Al, A2c R_(&-) and UE R,(&-): 

I(4 u A2) = I(4) ” W2), 

I( Us A,) = F( U) rchop I(A,), 

I( -A,) = (iI( v inf; 

F:R,(z+locPL 

F(P))=O, . 

F(a)=o for every (TE&, 

for U,, U2E Rh(xr): 

F( u, u U2) = F( K) ” F( U2), 

F( U, - U2) = F( U,) rchop F( U,), 

F( UT) = dice F( U,). 

Here, fin abbreviates Lo v (1 rchop Lo) and it is true precisely in all finite paths, while 
inf is its negation, holding precisely in infinite paths. 

Now define the following sublanguages of lot PL: 

infPL={X(T={P,,..., Pk} c AF, 3A E R_(&), (X = I(A))}, 

finPL={X)3r={P,,..., Pk}~AF,3LkRh(&),(X=F(U))}. 

Note that I and F are 1 - 1 and onto inf PL and fin PL respectively. The idea is 
that p I= X for X E inf PL (respectively fin PL) only if p is infinite (respectively finite). 

The following lemma can easily be proved by induction on X. 

Lemma 4.2. For every path p, and every X E lot PL, 
(1) ifXEfinPL, thenpt=XXhh-l(p)EL(F-l(X)), and 
(2) ifX E inf PL, then p I= Xa h-‘( p) E 15(1-‘(X)). 
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Lemma 4.3. For every program-free formula X E lot PL there are formulas X, E fin PL 
and X1 E inf PL such that X = X, v X1. 

Proof. The claim will be shown by induction on the structure of X, relative to the 
set r = {Pi / Pi E AF, Pi appears in X}. 

Case (X = pi E AF): Take X, = Vi,lq appears positively in u) q and XI = 0. 

In all composite cases assume (by the inductive hypothesis) the existence of 
appropriate Z,, IV, E fin PL and Zr, W, E inf PL for subformulas 2, W of X. 

Case (X = 2 v W): Take XF = 2, v W, and X, = Zr v W,. 
Case (X = 12): R, (&) is closed under A-free complementation, and therefore 

there exists a h-free regular expression U such that L( U) = Zc”, - L( F-‘( 2,)). Take 
X, = F(U) and X1 = 12, A inf. 

Case (X = 2 whop W): Take X, = & whop W, and X1 = 2, whop W,. 
Case (X = rslice 2): Take X, = dice 2, and X1 = 2, v (dice ZF) rchop 2,. 
In all cases, the proof that X, E fin PL, X1 E inf PL, and X = XF v X1 is straight- 

forward. Cl 

Lemma 4.4. Program-free-lot PL is closed under suf, chop, and slice. 

Proof. Let X and Y be program-free-lot PL formulas, with their I and F portions 
as in Lemma 4.3, and let 

r = {Pi 1 Pi E AF, Pi appears in XF, XI, YF, or YI}. 

By the closure properties of R- and R*, there are regular expressions U, , U,, 

&E R,(&-) and A,, A*, A3~ R_(&-) such that 

L(A,) = L(I-‘(X1) suf I-‘( YI)), 

L(A,) = L(F-‘(X,)OI-*( Y1)), 

L(A,) = L(I-‘(XI) u (((F-‘(X,))O)Q I-‘(XI))), 

L( U,) = L( F-‘(XF) suf F-‘( YF)), 

L( U,) = L(F-‘(X,)O F-‘( YF)), 

I4 U,) = L((F-‘(XF))?. 

Now take the final formulas to be F( Ui) v I(Ai) for i = 1,2,3, and the result follows 
from Lemma 4.2. Cl 

Lemma 4.5. Program-free-PL+ S program-free-lot PL. 

Proof. The proof immediately follows from Lemma 4.4. Cl 
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We now proceed to deal with the presence of programs. First define some new 
operators: 

XA Y=1(1Xv1Y), 

X drchop Y = 1(1X rchop 1 Y), 

drslice X = l(rslice IX). 

In the sequel we refer to these as the duals of LO, v, whop, and &ice, respectively, 
and vice versa. Clearly, 

P I= L Q IPI> 

pl=XllY @ pt=Xandpb Y, 

p t= X drchop Y e Vq, r( p = q - r+(q I= X or r t= Y)), 

p I= drslice X e Vnal,q, ,..., qn (p=ql - . . . - qn*3i, 

(l<iinandq,l=X)). 

A formula will be called lo& if it is either in AF or is of the form sX. In this 
sense, every appearance of (a)X (or [cu]X) in lot PL is in local form. 

For formulas in lot PL we now eliminate negations occurring non-locally (except 
in LO and &J according to Table 1, in which X and r? are, respectively, equivalent 
to X and IX. 

Table 1. Elimination of negations. 

For X = let 2 = and _2= 

P 

YopZ 

OPZ 

SC(a) Y) 

au1 Y) 
1Y 

P 

Cop2 

op.2 

St(a) 9, 

S([~lP, 
P 

s(lP)vEo 

? dual 2 

dual z 

i;,vs([cx]F) 

L,vs((a>F) 

P 

for op E { v , A, rchop, drchop) 

for op E {rslice, drslice} 

Let X E lot PL. A finite set of pairs of formulas 

Dx ={(x:,x:)(l SiSm,}ElocPL 

is called a proper decomposition of X if for all paths q and r, 

q * r /= X a for some i, 1 <i<m,,qI=X:andri=Xf. 
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The following lemma contains the main technical fact needed in the sequel. Its 
proof is rather tedious and appears in Appendix A. 

Lemma 4.6. Every formula X of lot PL admits a proper decomposition. 

Using Lemma 4.6 it is now not too hard to finish off the proof of Theorem 3.2. 
As mentioned we need a lot PL equivalent of (a)X. 

Lemma 4.7. Given a formula X E lot PL, let Dx = {(X f , Xf) 11 d i d mx ) be a proper 
decomposition of X, and let X” =s((a)X) v VISiSmx (X; whop (s((a)Xf))). Then 
X” f (0,)X. 

Proof. (+): For a path p, let pi, for is lpi, denote the ith state on p, and let ipj, 
for isjs IpI, denote (pi,. . . , pj). Assume p I= (cw)X, i.e., there is some 4 in pa such 
that pOq t= X. If IpI = 0, then p I= s((a)X), and therefore p I= X”. Otherwise, we 
have l~lpl-l + Xf and p&q + X3, hence piPI I= s((cx)Xf). Therefore, p = 
lplPl_l - pIPI I= Xi rchop (s((ct)X:)), and again we have p I= X”. 

(+): Assume p I= X”. If p I= s((a)X), then clearly p I= (cr)X. Otherwise, there is 
some 1 s id m, for which p I= Xi whop (s((cu)Xf)). Therefore, IpI > 0, lplPl--l I= Xf 
and pIPI I= (cx)X:. The latter means that there is some t in pu such that first(t) = last(p) 
and t I= X:. Since Dx is a proper decomposition, from IplPl-l I= Xf and t I= Xf we 
obtain p 0 t = lplPl_l . t I= X, and hence p I= (a)X. , Cl 

For the following lemma, denote by Xl z the formula obtained from X by replacing 
every occurrence of Y with 2. The lemma completes the proof that PL+ s lot PL. 

Lemma 4.8. For every formula X E PL+ there is a formula X’ E lot PL so that X’ = X. 

Proof. The proof follows by induction on the structure of X. 
Case (atomic P): Take X’ = P. 
Case (YvZ,lY): Set (YvZ)‘= Y’vZ’and (lY)‘=lY’. 
Case ((a) Y): By Lemmas 4.6 and 4.7, and since Y’ = Y from the inductive 

hypothesis, there is a formula ( Y’)cl in lot PL equivalent to (a) Y’, and hence to 
((II) Y too. X’ is taken to be ( Y’),. 

Case (slice Y) : Assume Y’ from the inductive hypothesis contains k appearances 
of ( ) on the highest level (i.e., not nested within other (cr)Z). Let these be 
s((~JG), - * . , 4bMd. Let Q1, . . . , Qk be symbols in AF appearing nowhere in 
X, and denote 

yQ = (slice y’)I$~al)zl)I . . . l$rk)zk). 

Y. is program-free, and so by Lemma 4.5 there is an equivalent Xo E lot PL, with 
X0 = Yo. Now take X’ to be 
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It is easy to see that 

X’ = YQl$,)z,jl . . . I$akjzkj = slice Y’ = slice Y = X. 

Case ( Y suf 2, Y chop 2): These cases are similar to slice. Cl 

Finally, from Lemma 4.8 we obtain RPL s PL+ Q lot PL d RPL thus completing 
the proof of Theorem 3.2. 

5. The unified language R 

R has two sets of atomic letters: state formulas, ASF, and transition formulas, 
ATF. It has a single set of operators, which yield the formulas 1X, X v Y, X 0 Y, 
Xe, and (X) Y. The semantic rules of R are the usual. In particular, 

p != X only if p E S for X E ASF, 

pl=X onlyif pESxS forXEATF, 

p I= (X)Y iff 3q(q I= X andpOq l= Y), 

Here, too, we have to include the formula LO as in RPL. 
This definition of R causes, again, undecidability of the validity problem, as is 

shown in [4]. In order to retain decidability, we require that, in formulas of the 
form (X) Y, X contains no occurrences of 7. 

Let binary-RPL be RPL with the interpretations pa for atomic Q restricted so that 
pa c s x s. 

Theorem 5.1. binary-RPL < R. 

Proof. Clearly, binary-RPL is contained in R. On the other hand, the simple formula 
a E ATF cannot be expressed in RPL, as can be easily demonstrated (see [ 181). Cl 

Theorem 5.2. The validity problem for R is decidable but nonelementary. 

Proof. The proof is a modification of the decidability proof of [12] (see [18-J). The 
nonelementariness is shown just as in Theorem 3.3 above. Cl 

Appendix A. Proof of Lemma 4.6 

By the construction of Table 1 we need only consider formulas of lot PL including 
the four operators, their duals, and with negation appearing only locally. We use 
induction on the structure of X, with c, and local formulas taken as the basis of 
the induction. 

For local X, take mx = 0 and Dx = 0. Since q - r t# X for all q and r, the claim holds. 
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(11 P1=4(orp2=r) 

(2) 3t,p,=t-r(orq=p,*t) 

(3) 3t,p,=q*t(orr=t*p2) 

-c----3 
PI P2 

-c + 
PI P2 

f > 
PI PZ 

Fig. A.l. Dividing q * r into p1 and p2. 

For X = &,, take Dx = {( 1, 1)). Clearly, for all paths q, r, q - r t= &, and q I= 1, 
r I= 1 hold. 

In all composite cases we assume (by inductive hypothesis) the existence of 
decompositions DY = {( Yi , Yf) 11 s i s my} and Dz = {( 2:) Zf) 11 s i s mZ} for Y 
and 2. 

Case (X = Y v 2): Take Dx to be Dy u Dz. That Dx behaves right is trivial. 
Case (X = Y whop 2): Take Dx to be 

{( y, 2)) u {( Y;, Yf rchop Z)I 1 ~i~m,}u{(YrchopZ~,Z~)(l~i~m,}. 

To see that Dx is a proper decomposition, consider paths q and r. 
(G): Assume q - t I= Y rchop 2. Then there are paths pl, p2 such that q - T = p1 - p2 

and p1 I= Y, p2 + 2. There are three basic possibilities, illustrated in Fig. A.l. 
(1) p1 = q. In this case, the pair ( Y, 2) meets the condition, since q b Y and r I= 2. 
(2) There is a path t such that p2 = t - r (or q = p1 - t). Hence, t - r t= 2, and by 

the inductive hypothesis there exists some 1 s i s mZ such that t C= Zf and r l= 2:. 
SincepI/= Y,wegetq=p,. t != Y rchop Zf ; hence, the pair (Y rchop 2:) 2:) satis- 
fies the requirement. 

(3) There is a path t such that p1 = q - t (or r = t - p2). The analysis is similar to 
possibility (2). 

(+): Assume q I= Xi and r I= XT for some 1 G i s m,. There are three cases, 
corresponding to the definition of Dx. 

(1) The decomposition is (Y, Z), in which case q - r I= X is immediate. 
(2) For some 1 sjs mZ, (Xi, X:) = ( Y rchop 2;) 2;). In this case, q can be 

divided into q = t, - t2 so that t, I= Y and f2 I= 2:. By the inductive hypothesis on 
2, t2 - r I= 2, and, therefore, q * r = t, - ( f2 * r) I= Y rchop 2. 

(3) For some lsj<my, (Xf,Xf)=( ! Y, , Y; rchop 2). Similar to case (2). 
Case (X = dice Y): Take Dx to be 

{(dice Y, dice Y)} 

u{(Yi, Yf)IlGi<m,} 

u{((rslice Y) rchop Yi, Yf)ll=~ is my} 

u {( Y!, Yf rchop (dice Y)) I 1~ is my} 

u {((Mice Y) rchop Yi, Yf rchop (dice Y))) 1~ id my}. 
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The five sets in this union cover the five ways of dividing a path q - r into n 
sections pl, . . . , p,,, each of which satisfies Y (see Fig. A.2). That this is a proper 
decomposition is proved similarly to the previous case, and is left to the reader. 

(1) n>1,3k1ak<n 
(q=P,‘..-‘Pk,r=Pk+l’...‘Pn) 

(2) n=l 

(3) ?I> 1,3t (p, = t- r) 

. ??

PI‘...‘Pk Pfc+,‘--.‘Pn 

. 
PI 

?? . 
P” 

(4) n>l,zlt(p,=q- t) 

(5) n>2,3Sl<k<n,3t,,t, 
(~k=tl’tZ,q=P1’...‘Pk--l’f,, 

‘=12’pk+,.... .P”) 

. 
Fig. A.2. Dividing the path q - r into n sections p, , . . . , pm. 

Case (X = Y A 2): Take 

For the two remaining cases, we use some additional notation. Let Dx = 
{(Xi, X3 I 1 SiSmx}. Let {gx}, l<i<2 *x, be an enumeration of the subsets of 
(1, * - -, mx}. We now define notations for conjuncts and disjuncts of subsets of 
formulas X’, X2. Let CXf and DX: denote AkEg XL and VkEg; XL, respectively, 
and let SX: denote CX: A AkEg 2:. Here 2 is as defined in Table 1, and is 
equivalent to 1X. CXf , DXj’, and SX: are defined analogously. Now let {fj”}, 
1 <j < 2(ZrnX), enumerate the subsets of { 1, . . . ,2”x}. We define the formulas 

all SX: = (drslice X) drchop 

and 

Now, for the two remaining cases: 
Case (X = Y drchop 2): Take Dx to be 

{(SY; A Y A ( Y drchop DZ’), (DY; drchop 2) A SZj’) 1 

1Sii2my,1djf2mZ} 

u {( SY: A ( Y drchop DZJ), (DYf drchop 2) A 2 A SZ_T) 1 

1s iS2”y, 1SjS2m~}. 
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Case (X = drslice Y): Take Dx to be 

{(drslice Y A SYT A all SY;, DY: A (DY: drchop (drslice Y)) A all DYT A 

(all DY; drchop (drslice Y))) 11 S i S 2my, 1 Sj Q 2’2my’) 

u {(SYf A all SY;, drslice Y A DY; A 

(DY: drchop (d&ice Y)) A all DY; A 

(all DY; drchop (drslice Y))) 11 =S i L 2”y, 1 Sj s 2(2my)}. 

Showing that these are proper decompositions is a tedious but straightforward 
application of the definitions above and the inductive hypothesis. Cl 
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