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Abstract. Boolean automata are a generalization of finite automata in the sense that the next state 
(the result of the transition function, given a state and a letter) is not just a single state (deterministic 
automata) or a set of states (nondeterministic automata) but a boolean function of the states. 
Boolean automata accept precisely the regular languages; also, they correspond in a natural way 
to certain language equation involving complementation as well as to sequential networks. In a 
previous note we showed that for every n 2 1, there exists a boolean automaton B,, with n states 
such that the smallest deterministic automaton for the same language has 22” states. In the present 
note we will show a precisely attainable lower bound on the succinctness of representing regular 
languages by boolean automata; namely, we will show that, for every n 3 1, there exists a reduced 
automaton D, with n states such that the smallest boolean automaton accepting the same language 
has also n states. 

Notation 

A boolean automaton (for more details and proofs, see [2,3,5]) is a quintuple 
B = (A, Q, T, So, F) where A is the input alphabet, Q is the finite nonempty set of 
states, T: Q x A + B, is the transition function, B, denoting the free boolean algebra 
generated by Q, f’~ B, is the initial function and Fs Q is the set of final states. 
The transition function is extended to B, x A* in the usual way. We define a relation 
= ,= as follows: Let Si = 1 if qi E F, otherwise 6, = 0. For any f~ B, f=,=a iff 
f(&, - - * 7 &I) =a where Q={q,,..., q,,} and LY E (0, 1). A word w E A* is accepted 
by B if and only if r(fO, w) = F 1; the set of all such words is denoted by L(B). 

If f” E Q and +r( qi, Uj) E Q for all i, j, then B is a deterministic (finite) automaton; 
iff’ is a union of states and all the T( qi, Uj) are unions of states, B is a nondeterminis- 
tic automaton. We will always assume that our boolean automata are connected, 
i.e., for no Ps Q, {~(f’, w ) 1 w E A*} is a subset of BP E; B, It is known [2,3] that 
L(B) is always a regular language. Furthermore, the derived deterministic automaton 
AB accepts precisely L(B) ; AB is defined as follows: AB = (A, P, p, f”, G) where 
P={~(f0,~)~~~A*}~Bg,G={f~P~f=F1},and~(~(f0,w),a)=~(f0,wa)for 
all WE A*, Q E A. Clearly, if B has n states, As can have no more than 22” states. 
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The reverse NP of a (connected) deterministic finite automaton N = (A, Q, T, qo, F) 
is defined as follows. For any w E A*, let Qw = {q E Q( T(q, w) E F}. Then NP = 
(A, Q, p, po, G) where P = {pi p = Q,,, for some w E A*}, p. = F, G = {p E PI q. E p) 

and p( p, a) = {q E Q( T(q, a) E p} for p E P, a E A. NP is always reduced, has at most 
2” states if N has n states, and the language accepted by NP is precisely the reverse 
of the language accepted by N, ( J~(N))~ = L(NP) (see [ 11). 

1. Introduction 

It is well known that for every n L 1 there exists a nondeterministic finite automaton 
N, with n states such that the smallest deterministic finite automaton for L(N,,) has 
2” states. In other words, there exist regular languages of nondeterministic com- 
plexity n whose deterministic complexity is 2”. In [6] we posed the same problem 
for boolean automata. More specifically, we showed that for every n 2 1 there is a 
boolean automaton B, with n states such that the reduced automaton for L(B,,) 
has exactly the attainable maximum, namely 2*” states. Thus there are languages 
of boolean complexity n whose deterministic complexity is 2*“. Furthermore, an 
alphabet of two letters suffices; for three-letter alphabets the result had been proven 
earlier by Kozen [3]. Thus, boolean automata provide a very succinct representation 
of regular languages, although ‘not as succinct as extended regular expressions [7]. 

In this note we are interested in the ‘worst case’ of this representation, namely 
we ask what is the largest number of states of boolean automata which is required 
for representing regular languages accepted by reduced automata with n states, as 
a function of n. This question has of course an analogue for nondeterministic finite 
automata. There it is known that for every n L 1 there exist languages of deterministic 
complexity n which are also of nondeterministic complexity n. For example, a”-‘~* 
over the alphabet {a} is such a language. It is clear that it is of deterministic 
complexity n. To see that no nondeterministic automaton with fewer than n states 
can accept this language, consider any shortest path from an initial state to a final 
state in such an automaton. This immediately leads to a contradiction. That the 
situation for boolean automata is not so easy, directly follows from [6, Theorem I] 
which states that the reverse of every language of deterministic complexity n is of 
boolean complexity [log, m 1. Consequently, languages over a single-letter alphabet 
or single words will suffer a logarithmic reduction in complexity when going from 
deterministic to boolean. 

In the following we will prove nevertheless that there are languages whose 
deterministic complexity equals their boolean complexity. Again an alphabet of two 
letters suffices. 

2. The Theorem 

We prove the following theorem. 



Representation of regular languages II 135 

Theorem. For every n y > 1 there exists a reduced automaton D, with n states such that 
any boolean automaton B which accepts precisely L(D,) has at least n states. 

proof. For n = 1 the result holds trivially. Thus assume n > 2. Consider the 
deterministic finite automaton D, = ((0, l}, (0, 1, . . . , n - l}, r,, 1, F,) with F,, = 

{ iI 0 s i G n - 1 and i even} and the transition function given by 

r,,(i,O)=(i+l)mod n, T,(i, I)= 
OSiCn-1 

, i=n-2,nll. 

From [6] we will use that this automaton has the property that (D,)P has exactly 
2” states. It is known that the reverse of any deterministic automaton is reduced 
provided the given automaton is connected (see [ 11). From this it follows first of 
all that D, is reduced; for assume there were another deterministic automaton D’ 
with fewer than n, say m, states which accepts L( 0,). Then the reverse ( D’)P would 
have at most 2” states which is strictly less than 2”. This is a contradiction to the 
fact that (0,)” is reduced; D, is reduced for all n 2 2. 

The next fact we need is the result due to Kozen ([4]; see also [6]) that the reverse 
of any language accepted by an n-state boolean automaton can be accepted by a 
deterministic automaton with no more than 2” states. Now assume that there exists 
a boolean automaton B with fewer than n states, say s, which accepts L(D,). By 
Kozen’s theorem it follows that the reverse of L( 0,) can be accepted by a determinis- 
tic automaton with at most 2’ states. This is in contradiction to the fact that (D,)P 
has precisely 2” (>2”) states and is reduced. Thus the theorem follows. 0 

From the proof of this result we can derive two corollaries. 

Corollary 1. Every regular language of deterministic complexity n whose reverse 
language has deterministic complexity 2” is also of boolean complexity n. 

Corollary 2. Every regular language of deterministic complexity n whose boolean 
complexity is n is also of nondeterministic complexity n. 

This last observation immediately follows from the fact that every nondeterministic 
automaton can be considered a boolean automaton. 
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