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Abstract. For any given binary relation p defined on the context-free grammars, there is the 
associated computational problem of determining, for a pair of grammars (G, H), if G p Z-Z. We 
study the complexity of this problem for a number of grammatical similarity relations whose 
definitions involve mappings between the symbols of related grammars. The relations considered 
include Reynolds covering, weak Reynolds covering, onto grammar homomorphism, grammar 
isomorphism, interpretation of grammar forms, and weak interpretation of grammar forms. 

A single general theorem is used to show that the computational problem associated with each 
of these grammatical relations, except grammar isomorphism, is NP-complete. In contrast, deter- 
ministic polynomial time algorithms are presented for testing if Gp H, when H is structurally 
unambiguous and the relation p is Reynolds covering, onto grammar homomorphism, or grammar 
isomorphism. These results provide a rare example of. a nontrivial natural algebraic and/or 
combinatorial structure, namely the unambiguous context-free grammars, with polynomial time 
algorithms for homomorphism, onto homomorphism, and isomorphism. 

We also show that the grammar isomorphism problem is polynomially equivalent to the graph 
isomorphism problem. + 

1. Introduction 

A variety of binary relations on context-free grammars have been defined in the 
literature. These relations model some concept of similarity between two grammars. 
Besides their intrinsic mathematical interest, concepts of grammatical similarity are 
relevant to compiler construction. Often one grammar is used as a reference grammar 
to which semantic specifications are added. But a second grammar is used for 
parsing. These two grammars are called the semantic grammar and the parsing 
grammar respectively. The reason for using two grammars is as follows. The semantic 
grammar is a more natural basis to which semantic specifications can be added. But 
it may not belong to a given class of grammars having an efficient parsing method. 
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A survey of grammatical similarity relations appears in [22]. The most extensively 
studied ways of precisely defining a similarity relationship between the semantic 
and parsing grammars involve mappings between productions or between nonter- 
minals. Relationships defined in terms of a map between productions are called 
coverings [ 11,171. In this paper we study covering-type relationships that are based 
on maps between grammatical symbols. Such relationships include Reynolds cover- 
ing, weak Reynolds covering, onto grammar homomorphism, grammar isomorphism, 
interpretation of grammar forms, and strict interpretation of grammar forms. 

For any grammatical similarity relation p, there is the associated computational 
problem of determining, for a given pair of grammars (G, H), if G p If. In applica- 
tions to compilers, this is the problem of determining if a semantic grammar and a 
possible parsing grammar are appropriately related. In this paper we study the 
complexity of such problems. 

In Section 2 we give definitions and notation. 
In Section 3 we show that, for a number of grammar relations, the set of pairs 

of related grammars is NP-complete. These problems are NP-complete even when 
the grammars are regular grammars. The relations considered include Reynolds 
covering, weak Reynolds covering, onto grammar homomorphism, skeletal 
grammars, interpretation, and strict interpretation. A single theorem and proof 
apply to many different relations. Consequently, our results are insensitive to many 
possible variations in the definitions of particular similarity relations. This is desir- 
able since it is often not obvious just what the formal definition corresponding to 
an intuitive concept of ‘grammars with closely related structure’ should be. We also 
present results relevant to grammar forms and their associated grammatical families 
[5]. In contrast to the NP-completeness results in Section 3, testing a pair of grammars 
for left covering or right covering [ll] is undecidable for context-free grammars 
and is PsPAcE-complete for regular grammars [ 141. 

In Section 4 we present deterministic polynomial time algorithms for testing for 
Reynolds covering, onto grammar homomorphism, and grammar isomorphism when 
the parsing grammar, i.e., H, is structurally unambiguous. Thus, since the class of 
structurally unambiguous context-free grammars contains the class of unambiguous 
context-free grammars, there is a deterministic polynomial time algorithm for testing 
for Reynolds covering, onto grammar homomorphism, and grammar isomorphism 
when the proposed parsing grammar is a member of most of the grammar 
classes corresponding to parsing methods used in compilers [ 1, 161. Thus, although 
testing for Reynolds covering and for onto grammar homomorphism are likely 
to be hard in general, there are efficient algorithms for the cases of practical 
interest. 

In Section 5 we show that testing for grammar isomorphism and for several related 
problems are polynomially equivalent to the graph isomorphism problem. 

A preliminary version of some of the results in Sections 3 and 5 has appeared in 
[ 121, and a preliminary version of some of the results in Section 4 has appeared in 
D31. 
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2. Definitions and notation 

In this section, a number of definitions needed to read this paper are presented. 
We begin with definitions concerning binary relations. 

Definition 2.1. Let A be a nonempty set. Let CF and p be binary relations on A. We 
say that relation CT includes relation p if and only if, for all x, y in A, x py implies 
xay. 

Definition 2.2. Let A be a nonempty set. Let p, o, and T be binary relations on A. 
We say that relation u is between relations p and r if and only if u includes p and 
T includes (T. 

We assume that the reader is familiar with the basic definitions and results 
concerning context-free grammars and parsing; otherwise, see [ 11. 

We denote the empty word by A. 

Definition 2.3. A context-free grammar G = (N, 2, P, S) is a four-tuple, where N 
and 2 are disjoint finite sets of nonterminals and terminals respectively, the start 
symbol S is an element of N, and P, the set of productions, is a finite subset of 
Nx(NuX)*. 

Productions are written in the form A + (Y rather than (A, a). In the remainder 
of this paper, we will use ‘grammar’ as an abbreviation for ‘context-free grammar’. 

Definition 2.4. A regular grammar G = (N, 2, P, S) is a grammar such that if A -+ (Y 
is a production in P, then (Y is in 2 u 2 ??N. 

Henceforth, we assume that all grammars are reduced, i.e., that each nonterminal 
occurs in some derivation of a terminal string, since this simplifies some of the 
algorithms. The reader should note that there are efficient polynomial time algorithms 
for reducing grammar [ 1,161. 

Definition 2.5. A structure is a derivation tree with all nonterminal labels deleted. 
Two derivation trees are structurally equivalent if they have the same structure. A 
grammar is structurally unambiguous if no two derivation trees generated by the 
grammar are structurally equivalent. 

Definition 2.6. Two productions of a grammar 

A+cY,cQ.. . ark and B-,pl&. . . Pm, 

where each Lyi and pj is a single grammatical symbol, are compatible if k = m and, 
for all i, 1 d id k, ai and pi are identical terminal symbol or ai and pi are both 
nonterminal symbols. Two productions are incompatible if they are not compatible. 
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Next, we give the definitions of several grammatical similarity relations involving 
mappings from nonterminals to nonterminals, but for which terminals are 
unchanged. These relations include onto grammar homomorphism [ll], grammar 
isomorphism [ 111, Reynolds cover [ 18,111, weak Reynolds cover [ 18,111, and skeletal 
grammars [7]. Note that Reynolds cover corresponds to a grammar homomorphism 
that need not be onto. This concept was called a homomorphism in [9]. A skeletal 
grammar string homomorphism [7] is similar to an onto homomorphism, except 
that if there is a production of the form A + I3 in the semantic grammar, where A 
and B both map into the same nonterminal of the parsing grammar, then the parsing 
grammar does not contain the corresponding production (whose left and right side 
would be identical). We note that Schnorr [20] defined a concept called grammar 
homomorphism that is more general than the concept of grammar homomorphism 
considered here. 

Definition 2.7. Let G = (M, 2, P, S) and H = (IV, 2, Q, T) be grammars. Let f be a 
homomorphism from (M u Z)* into (N u Z)* such that f(M) c N and f is the 
identity on 2:. Let f(P) = {f(A) +f( y) 1 A + y is in P}. 

(1) We say that f is a (grammar) homomorphism from G onto H if f( S) = T and 
f(P) = Q. If in addition f is one-to-one, we say that f is a (grummar) isomorphism 
from G onto H. We say that G and H are (grammar) isomorphic if there is a 
(grammar) isomorphism from G onto H. 

(2) We say that G is Reynolds covered by H (or H Reynolds covers G) if there 
exists a homomorphism from (A4 u ,C)* into (N u Z)* as above such that f( S) = T 
and f(P) c Q. 

(3) We say that G is weak Reynolds covered by H (or H weak Reynolds covers 
G) if there exists a homomorphism f from (A4 u Z)* into (N u Z)* as above, such 
that f(S) = T and, for all productions A + y in P, 

J-(A) $-(~1. 

(4) We say that H is a skeletal grammar for G if there exists a homomorphism 
f from (Mu Z)* into (N u Z)* as above, such that f(S) =f( T), and letting S(P) 
be f(P) with all productions of the form C + C deleted, f(P) = Q. 

Next, we give the definitions of several grammatical similarity relations involving 
more general maps which can involve both nonterminals and terminals. These 
relations include strict interpretations [6,10,15-J, some special cases of strict interpre- 
tations [5], and some generalizations that are useful in expressing the general results 
in Section 3. Note that a variant definition of strict interpretation appears in [2]. 
The concept of strict interpretation is applicable to compilers where the semantic 
grammar is a strict interpretation of the parsing grammar, and several terminal 
symbols of the semantic grammar are represented by the same terminal symbol of 
the parsing grammar. These terminal symbols can then be represented as a lexical 
token with the same class part, but different value parts [16]. 
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Definition 2.8. Let G = (M, 2, P, S) and H = (N, A, Q, T) be grammars. Let CL be a 
substitution on (N u A)*, such that ~(a) is a finite subset of Z* for each a in A, 
and p(A) is a subset of M for each A in N. In addition, let p have the properties 
that p(A) n p(B) =$!I for each A and B in N with A# B, and that S is in p(T). 

(1) G is an interpretution of H if for each production A + y of P there is a 
production B + ,$ in Q such that A is in p(B) and y is in I_L (5). 

(2) G is a strict interpretation of H if G is an interpretation of H, ~(a) is a subset 
of tl for each a in A, and ~(a) n p(b) =0 for each a and b in A with a # 6. 

(3) G is an onto strict interpretation of H if G is a strict interpretation of H and, 
for each production B + 6 in Q, there is a production A + y in P such that A is in 
p(B) and y is in p(t). 

(4) G is an isomorphic strict interpretation of H if G is an onto strict interpretation 
of H and p is one-to-one. 

(5) G is a generalized strict interpretation of H if ~(a) is a subset of E for each 
ainA;~(a)n~(b)=~foreachaandbinAwitha#b;andforeachproduction 
A+ y of P there is a B in N and 5 in (N u A)* such that A is in p(B), y is in 
p(5), and B&. 

(6) G is a %enk interpretation of H if either G is an interpretation of H or G is 
a generalized strict interpretation of H. 

An equivalent definition of strict interpretation is that there is a homomorphism 
Sfrom(MuZ)*into(NuA)*suchthatf(M)c N;f(X)cA,f(S)=T,andf(P)c 
Q. Thus, Reynolds covered by, onto homomorphism from, and isomorphism from 
are special cases of strict interpretation of, onto strict interpretation of, and isomor- 
phic strict interpretation of, respectively, where each terminal maps into itself. 

3. Hard covering relations 

In this section we study the complexity of determining if a pair of grammars are 
related by an onto homomorphism, a Reynolds cover, a weak Reynolds cover, an 
interpretation of grammar forms, a strict interpretation of grammar forms, an onto 
strict interpretation of grammar forms, or the skeletal grammar relation. A single 
theorem and proof are presented that imply, for each of these relations, that the 
problem of determining if a pair of grammars are related by the relation is NP-hard. 
We also generalize the concept of ‘a family of grammars represented by a grammar 
form’ [5,6] and give simple sufficient conditions for the decidability of the problem 
of determining if two ‘generalized’ grammar forms represent the same family of 
grammars. 

Theorem 3.1. Let HOM-ONTO and WEAK-INTERP be the binary relations on the set 
of grammars defined by-for all grammars G and H, 
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(1) G HOM-ONTO H if and only if there is a grammar 
H, and 

homomorphism from G onto 

(2) G WEAK-INTERP H if and only if G is a weak interpretation of H. 
Let cr be any binary relation on the set of grammars between the relations HOM-ONTO 

and WEAK-INTERP. 7hen each ofthe sets 

R,={(G, H)jGandH are regular grammars, and G CT H) 
and 

C, = {(G, H) 1 G and Hare grammars, and G a H) 

is NP- hard. 

Proof. The proof consists in showing that there is a deterministic polynomially 
time-bounded reduction of the language 

CLIQUE = {(J, k) 1 J is an undirected graph with n 2 1 nodes, k is the 
unary numeral for a nonnegative integer k s n, and J has a 
clique of size k} 

to the sets R, and C,, for each such binary relation u on the set of grammars. The 
set CLIQUE is known to be NP-hard [S]. 

Let J be an undirected graph with n 2 1 nodes. Let the set of nodes of J be 
{ Ni 11 s i s n}. Let k be a nonnegative integer such that 1 G k s n. Consider the 
mapping from (J, i) to the pair of regular grammars G and H given as follows: 

G=({S}u{Ai(l~i~k}u{Ni~l~i~n},{a, b,c}, P,S),where 

P=P,uP*uP,, 

PI={S+aA~~l~i~k}u{S+aN~~l~iin}, 

P2={Ai+bA~Ii#j,l~i,j~k}u{Ni+bNj)the graph J contains an 
edge connecting 

PJ={Ai+c)l ~i6k}u{Ni+cllai~n}; 

H=({T}U{NiIl s is n}, (a, b, c}, Q, T), where 

Q=Q+JQP-JQ~, 
Q1={T+aNiI1~i~n}, 

Q2 = { Ni + b Nj I the graph J contains an edge 
connecting 

nodes Ni and Nj }, and 

nodes Ni and yj}, and 

Clearly, the regular grammars G and H can be constructed’ from (J, fi) in 
deterministic polynomial time. We claim further that 

(1) if J has a clique of size k, then G HOM-ONTO H, and 
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(2) if J does not have a clique of size k, then -(G WEAK-INTERP H). 
Claims (1) and (2) imply that J has a clique of size k if and only if (G, H) is in 

R,, and thus, imply that the language CLIQUE is deterministic polynomially time- 
bounded reducible to R,. 

We now prove claims (1) and (2). 
Proof of claim (1). Suppose J has a clique of size k. Let one such clique be 

{NV,, NY.,. . . , NVk}. Let f be the function from the alphabet of G to the alphabet 
of H defined by 

(i) f(S) = T, 
(ii) f(Ai)= Nyi for lsisk, 

(iii) f(Ni)=Ni for lsisn, and 
(iv) f(a)=a,f(b)=b,f(c)=c. 
Then f is an onto homomorphism from G to H. Thus, G HOM-ONTO H, and, 

thus, G (T H. 
Proof of claim (2). Suppose J does not have a clique of size k, but G is a weak 

interpretation of H under substitution p. For each i such that 1 c i d k, Ai is the 
image of only one nonterminal of H under p. If Ai were in p(T), then corresponding 
to the production S + a Ai in P1 , Q would have the production T+ aT. Thus, Ai is 
in p( N,,i) for some vi. Corresponding to the production Ai + b Aj in P2, Q2 must 
have the production Nyi + 6 N,,j. If Vi = vj, then Q2 would have the production 
N,,, + b Nyi. Since Q2 does not contain such a production, i #j, and thus, vi # vj. 
Thus NV,, N9,. . . , Nyk are k distinct nonterminals corresponding to a clique of 
size k in the graph J, a contradiction. 

Finally, we note that the NP-hardness of the language R, directly implies the 
NP-hardness of the language C,. Cl 

Theorem 3.2. The following sets are NP-complete: 
(1) {(G, H) 1 G and H are grammars [or G and H are regular grammars] and there 

is a homomorphism from G onto H); 

(2) UG, H)I G and H are grammars [or G and H are regular grammars] and G 
is Reynolds covered by H}; 

(3) {(G, H) 1 G and H are grammars [or G and H are regular grammars] and G 
is weak Reynolds covered by H); 

(4) {(G, H) 1 G and H are grammars [or G and H are regular grammars] and G 
is an interpretation of H); 

(5) ((G, H) ] G and H are grammars [or G and H are regular grammars] and G 
is a strict interpretation of H); 

. (6) {(G, H)I G and H are grammars [or G and H are regular grammars] and G 
is an onto strict interpretation of H); 

(7) UG, H) 1 G and H are grammars [or G and H are regular grammars] and G 
is a generalized strict interpretation of H); and 

(8) {(G, H) 1 G and H are grammars [or G and H are regular grammars] and H 
is a skeletal grammar for G). 
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Proof. From Theorem 3.1, each of sets (l)-(7) is NP-hard. Since a skeletal grammar 
for a regular grammar is the image of an onto homomorphism, the sets of (8) are 
also NP-hard. Finally, it can easily be seen that each of the sets (l)-(8) is in NP. Cl 

Next, we generalize the concept of ‘a grammar form representing a family of 
grammars’ [ 5,6,10,15-J by using an arbitrary grammatical similarity relation to define 
the set of interpretations of a given grammar. 

Definition 3.3. Let p be a binary relation on the set of grammars. Let G be a 
grammar. The family of grammars of G induced by the relation p, denoted by rp( G), 
is the set 

{K 1 K is a grammar and G p K}. 

Two grammars G and H are strongly equivalent grammar forms under p if 
r,(G) = r,,(H). 

Theorem 3.4. Let p be any reflexive and transitive binary relation on the set of grammars. 
Then, for all grammars G and H, G p H if and only if I’,(G) c rP( H). 

Proof. Suppose r,(G) 3 I’,(H). ,Since p is reflexive, H p H, and so H is in rp( H). 
But then H is in I’,(G), so Gp H. 

Now suppose G p H. Suppose K is in r,(H). Then H p K. Since p is transitive, 
GpK, so K is in I’,(G). Thus, I’,(G)II’,,(K). 0 

Each of the grammatical relations of Theorem 3.2 is both reflexive and transitive 
(provided the skeletal grammar relationship is restricted to grammars that do not 
have productions of the form A+ A). Thus the result in [5] that it is decidable if 
the families of grammars associated with two grammar forms are equal can be 
generalized as follows. 

Theorem 3.5. The set 

{(G, H)IG and H are strongly equivalent grammar forms under p) 

is in NP when p is any of the relations: onto homomorphism, Reynolds covers, weak 
Reynolds cover, interpretation, strict interpretation, on to strict interpretation, general- 
ized strict interpretation, and skeletal grammar (for grammars without productions of 
the form A + A). 

Proof. The proof immediately follows from Theorems 3.2 and 3.4. Cl 

Theorem 3.6. The set 

{(G, H) 1 G and H are strongly equivalent grammar forms under p} 
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is NP-complete when p is any of the relations: Reynolds covers, weak Reynolds covers, 
interpretation, strict interpretation, and generalized strict interpretation. 

Proof. Membership in NP follows from Theorem 3.5. NP-hardness follows from 
noting that, in the proof of Theorem 3.1, the constructed grammars G and H are 
always related in one direction by each of the specified relations. Cl 

The three relations included in Theorem 3.5, but not in Theorem 3.6, are onto 
homomorphism, onto strict interpretation, and skeletal grammar (for grammars 
without productions of the form A+ A). It follows directly from the definitions of 
these relations that two grammars are strongly equivalent grammar forms under the 
first or the third of these reiations if and only if they are isomorphic grammars; and 
two grammars are strongly equivalent grammar forms under the second of these 
relations if and only if the grammars are related by isomorphic strict interpretation. 
In Section 5 we show that testing for grammar isomorphism or for isomorphic strict 
interpretation is polynomially equivalent to testing for graph isomorphism. Thus, 
these three grammar form equivalence problems are polynomially equivalent to 
graph isomorphism. 

4. Covering by structurally unambiguous grammars . 

In this section we present deterministic polynomial time algorithms for testing, 
for a grammar G and a structurally unambiguous grammar H, if G is Reynolds 
covered by H, if there is an onto homomorphism from G to H, or if there is an 
isomorphism from G to H. Moreover, if such a Reynolds cover, onto homomorphism, 
or isomorphism exists, the algorithms output appropriate functions from the nonter- 
minals of G to the nonterminals of H. Since the class of structurally unambiguous 
grammars properly contains the class of unambiguous grammars, deterministic 
polynomial time algorithms exist when H is in r, for any class r, of unambiguous 
grammars. Thus, deterministic polynomial time algorithms exist when H is a member 
of most of the grammar classes corresponding to parsing methods used in compilers. 

Theorem 4.1. There is a polynomial time algorithm for testing, for grammar G and 
structurally unambiguous grammar H, if H Reynolds covers G. Moreover, if H Reynolds 
covers G, then this algorithm outputs an appropriate function from the nonterminals 
of G to the nonterminals of H. 

Proof. Let G = (M, 2, P, S), and H = (IV, 2, Q, T). The basis of the algorithm is 
finding, for each A in M, a derivation tree generated by G containing A and a 
structurally equivalent derivation tree 7 generated by H. Since H is structurally 
unambiguous, if there is a Reynolds cover, then A must map into the label of the 
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corresponding node of r. However, these derivation trees are not explicitly construc- 
ted since they may be exponential in the sizes of G and H. Rather, each tree is 
compactly represented without producing it in entirety. 

The algorithm consists of four steps. 
[l] Step 1 of the algorithm consists of computing, for each A in M, a set MATCH(A) 
defined in terms of a specific tree, called TREE(A), that A generates. 

MATCH(A) = {B 1 B is in N, and B generates a tree that is structurally 
equivalent to TREE(A)}. 

The sets MATCH(A), for A in M, are computed in a manner related to the test for 
aliveness in [ 161. The trees TREE(A), for A in M, are not explicitly computed. The 
computation of the MATCH sets is done as follows: 

If MATCH(A) has not already been computed and there is a production 

A+a,a, . . . ak 

in P such that each cri is either a terminal or a nonterminal for which MATCH(CX~) 
has already been computed, then choose one such production and let MATCH(A) = 
{B 1 B is in N; and there is a compatible production 

in 0 for which if pi is a nonterminal, it is in MATCH(cYi)}. 
As an example consider the grammars G and H of Fig. l(a). From productions 

2,7, and 10, MPTCH(A) = (0, E}. From productions 4,8, 11, and 15, MATCH(B) = 
(0, E, G}. From productions 1, 6, and 16, MATCH(S) = {T, G}. From productions 
5, 14, and 17, MATCH(C) = {F, H}. Although they are not explicitly constructed, 
the TREE of each nonterminal is shown in Fig. l(b). 
[2] Step 2 consists of computing, for each A in A.4, an incomplete reachability tree 
for A, called REACH(A). An incomplete reachability tree is a derivation tree produced 
by G having S as its root and frontier nodes that are elements of 2 u M. REACH(A) 
is an incomplete reachability tree in which A is one of the frontier nodes. A 
reachability tree for each nonterminal of G can be found in polynomial time in a 
manner analogous to the reachability test in [16]. The number of productions used 
in each reachability tree is bounded by IMI. The computation of these trees is done 
as follows: 

REACH(S) consists of a single node labeled S. If REACH(B) has not yet been 
computed, and there is a production A+ y where B is a symbol in y, and 
REACH(A) has been computed, then choose one such production and let 
REACH(B) be REACH(A) with the symbols of y appended as descendants of 
some occurrence of A on the frontier of REACH(A). As an example, REACH 
trees for grammar G of Fig. l(a) are shown in Fig. l(c). 

[3] Step 3 consists of computing, for each A in M, a set CANDIDATE(A) of members 
of N that A can map into under a Reynolds cover. 
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For each A in M, define DERIV(A) to be the complete derivation tree obtained 
by appending to each nonterminal B on the frontier of REACH(A), the subtree 
TREE(B). (More accurately, the root of TREE(B) is merged with the occurrence of 
B on the frontier of REACH(A).) Suppose that we distinguish some particular node 
that is labelled with A and occurs on the frontier of REACH(A). This node then 
becomes a distinguished node labelled A in the tree DERIV(A). Any derivation tree 
H that is structurally equivalent to DERIV(A) contains a node corresponding to this 
distinguished node. This corresponding node becomes a distinguished node of H. 
Define 

CANDIDATE(A) = {B 1 B is in N; and B labels the distinguished node of 
a derivation tree of H that is structurally equivalent 
to DERIV( A)}. 

Since, in DERIV(A), the subtree headed by the distinguished node is identical to 
TREE(A), CANDIDATE(A) is a subset of MATCH(A). The set CANDIDATE(A) can 
be computed without constructing DERIV( A). The computation uses REACH(A) and 
the MATCH sets, as follows: 

For each B in MATCH(A), associate a subset of N with each nonterminal node 
of REACH(A) as follows. Associate {B} with one occurrence of A on the frontier 
of REACH(A). With every other nonterminal (Y on the frontier, associate MATCH( (Y). 
The sets associated with the interior nodes of REACH(A) are computed in the 
following bottom-up manner. With each interior node associate the set of nonter- 
minals C in N for which 

(i) there is a production C + & p2 . . . & in Q, and 
(ii) the interior node has k immediate descendants such that, for 1 =S i d k, if the 

ith immediate descendant is a terminal, then pi is the same terminal and if the ith 
immediate descendant is a nonterminal, then pi is one of the nonterminals associated 
with the descendant. 
If T is one of the nonterminals associated with the root of REACH(A), then B is 
included in CANDIDATE(A). 

As an example, Fig. l(d) shows the computation of the CANDIDATE sets for the 
grammars of Fig. l(a). The result of the computation is that CANDIDATE(S) = {T}, 
CANDIDATE(A) = {D}, CANDIDATE(B) = {D}, and CANDIDATE(C) = {F}. 

To see that the computation correctly determines if B is in CANDIDATE(A), note 
that each node of REACH(A) corresponds to a node of the complete tree DERIV(A), 
and also corresponds to the subtree of DERIV(A) headed by that node. From the 
definition of MATCH, each member of N that the computation associates with a 
frontier node of REACH(A) generates the image of the corresponding subtree of 
DERIV(A). Each member of N that the computation associates with an interior 
node of REACH(A) generates the image of the corresponding subtree of DERIV(A) 
because the member of N has a context-free production whose right-hand side 
symbols are associated with the immediate descendants of the interior node and 
generate the corresponding subtrees. Thus, CANDIDATE(A) is correctly computed. 
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(4 

s 
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S 

A A B 

TREE(C) 

S 

A B 

b R B C 

REACH (S) REACH (A) REACH (B) REACH (C) 

Cc) 

Fig. 1. (a) Grammars G and H. (b) The trees TREE(X) for X a nonterminal of G. (c) The REACH trees. 

Because H is structurally unambiguous, H generates at most one derivation tree 

that is structurally equivalent to DERIV(A). Thus, for each A in M, the set CANDI- 

DATE(A) has at most one member. 
(41 Step 4 consists of testing whether the map corresponding to the CANDIDATE sets 

represents a Reynolds cover. 
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Computation of CANDIDATE (B) 

Computation of CANDIDATE (C) 

(4 

Fig. 1. (d) Computation of CANDIDATE sets. 

If the set CANDIDATE(A) is empty for some A in M, then the algorithm halts 
with output “NO”. Otherwise, CANDIDATE represents a map from M to N. Let 
f be the homomorphism from (M u 2)* to (N u X)* that corresponds to 
CANDIDATE on M and is the identity on 2. Then test whether f satisfies the 
definition of a Reynolds cover (Definition 2.7). If f is a Reynolds cover, the 
algorithm halts with output “YES” and the map from M to N. If not, the 
algorithm halts with output “NO”. 

In the example of Fig. 1, the computed CANDIDATE map does indeed represent a 
Reynolds cover. 

Corollary 4.2. (a) There is a polynomial time algorithm that determines if there 
exists an onto homomorphism from a given grammar G to a given structurally unam- 
biguous grammar H, and outputs an appropriate nonterminal map if it exists. 

(b) There is a polynomial time algorithm to determine if there exists an isomorphism 
from a given grammar G to a given structurally unambiguous grammar H, and outputs 
an appropriate nonterminal map if it exists. 
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Proof. Onto homomorphism and isomorphisms are special cases of Reynolds covers. 
As shown in the proof of Theorem 4.1, since H is structurally unambiguous, there 
is at most one Reynolds cover of G by H. Cl 

Next, we note that in using the algorithms of Theorem 4.1 and Corollary 4.2, 
there is no problem in checking that grammar H is structurally unambiguous. A 
structural ambiguity test is implicit in [21]. A deterministic polynomial time structural 
ambiguity test for regular grammars is given in [3]. A deterministic polynomial time 
structural ambiguity test for arbitrary context-free grammars is given in [ 191. Hence, 
Theorem 4.1 and Corollary 4.2 give the following. 

Corollary 4.3. The sets 
(1) W, WI G is a grammar, H is a structurally unambiguous grammar, and G is 

Reynolds covered by H}, 

(2) {(G, H) I G is a grammar, H is a structurally unambiguous grammar, and there 
is an onto homomorphism from G to H), and 

(3) {(G, H) I G is a grammar, H is a structurally unambiguous grammar, and there 
is an isomorphism from G to H) 

are each recognizable in deterministic polynomial time. 

5. Isomorphism problems 

In this section we show that the problems of determining if a pair of grammars 
are related by isomorphism, or by isomorphic strict interpretation, are polynomially 
equivalent to the graph isomorphism problem. The main point of this result is that 
the grammar problems are no harder than the graph problem, even though the 
right-hand side of a grammatical production can contain several nonterminal 
symbols. 

Booth [4] showed that the graph isomorphism problem and the problem of testing 
pairs of deterministic finite automata for isomorphic strict interpretation are poly- 
nomially equivalent. (The relation between finite automata was called ‘isomorphism’ 
in [4], but corresponds to isomorphic strict interpretation because a terminal need 
not be mapped into itself.) Note that the well-known polynomial time decidability 
of the state equivalence problem for deterministic finite automata [ 1,161 implies 
that the isomorphism problem (in the sense used in this paper) is decidable deter- 
ministically in polynomial time for deterministic finite automata. 

Theorem 5.1. The following sets are polynomially equivalent: 

(1) {(G, H)I G and H are isomorphic grammars) ; 
(2) W, WI G and H are isomorphic regular grammars) ; 

(3) {(J, K) I J and K are isomorphic graphs} ; 
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(4) { ( G, H) 1 G and H are regular grammars, and G is an isomorphic strict interpreta- 
tion of H); and 

(5) {(G, H) 1 G and H are grammars and G is an isomorphic strict interpretation 

of HI. 

Proof. (a) A polynomial time reduction of problem (1) to problem (2). 
Let G = (M, 2, P, S) be a grammar. Let A + y be a member of I-? We define the 

template of A+ y to be the string obtained from Ay by replacing each occurrence 
of a nonterminal with an Nj, where if nonterminal B is the ith distinct nonterminal 
occurring in Ay, each occurrence of B is replaced by Ni. For example, the templates 
of S+ aBcSSdCB and A+ aDcAAdBD are identical and equal to 
N,aN,cN, N,dN, N2. Suppose G has t distinct templates. Let the templates of 
G be numbered in lexicographic order so that i <j implies that template i 
lexicographically precedes template j. For each template i, let there be pi productions 
of G with template i and let there be ni distinct Nj’s appearing in template i. For 
instance, ni = 3 for the template given above. 

Let ZUk be the kth distinct nonterminal appearing in the jth production with 
template i. For instance, if the template given above is template 5, and its second 
production is A + aDcAAdBD, then Z,,, is A, Z,,, is D, and Z,,, is B. (Note that 
each Zijk is in M.) 

Let R(G) = (M’, Z’, P’, S) be the regular grammar defined by 
(1) M’=Mu{A,Il~i~ t, lSj<pi}, 
(2) ~‘={a}U{bi~~ 1 ~i~t,l<k<n,}, and 
(3) P’ = P, u P2 u P3, where 

P,={S+aAUll d is t, lSjSpi}, 

P,={A,jbi~Z~~I14i~t,l~j~pi,l~k~ni},and 
P3={X+aIX is in M}. 

We claim that two grammars G = (M, 2, P, S) and H = (N, A, (I, T) are isomor- 
phic if and only if they have the same sets of templates and the regular grammars 
R(G) = (M’, Z’, P’, S) and R(H) = (N’, A’, Q’, T) above are isomorphic. Here we 
sketch the proof of the ‘if’ part of the claim. Thus, assume that G and H have the 
same sets of templates and that R(G) and R(H) are isomorphic. 

Since we are assuming that all grammars are reduced, the assumption that G and 
H have the same set of templates implies that 2 equals A. 

Let t and t’ be the numbers of templates of G and of H respectively. By assumption, 
G and H have the same set of templates. Moreover, this set was lexicographically 
ordered during the constructions of R(G) and of R(H). Thus, 

(1) t= t’ and, for 1 s id t, template i of G equals template i of H. 
Thus, for 1 S i s t, letting ni and n: equal the numbers of distinct nonterminals 
appearing in template i of G and in template i of H, 

(2) ?Ii=?ti. 

Thus Z’= A’. 
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Let 4 be an isomorphism from R(G) to R(H). By assumption, such an isomorph- 
ism exists. We show that 4 induces an isomorphism 6 from G to H. Since 4 is a 
Reynolds cover, inspection of the productions of R(G) and R(H) shows that 
46) = T di(X) is in N for X in M, and +( A,) = Ai, for some m. For 1 d i s t, let 
pi and p: be the number of productions of G and H with template i. Since C#I is an 
isomorphism, pi = pi. 

Let 4 be the mapping from Mu 2 defined as follows: 

icu)=( i(a) 
for all (Y in 2 
forall a! in &. 

Then, 4 is a one-to-one map from M to N. 
For 1 d i s t and 1 s j s pi, corresponding to production j for template i in P, 

grammar R(G) has productions A, + bi, Ziil, A, + bi22$2, . . . , A, + biniAq”, . Suppose 
+(A,) = Ai,. Then R(H) has productions Ai, + bi,+(Zv,), Ai, + bi2~(Zij2), 

-**, Ai, + 6i”,+(Zuni). Thus, production j for template i in P maps into production 
m for template i in Q. Thus, 4 is an isomorphism from G to H. 

(b) A polynomial time reduction of problem (2) to problem (3). 
Let G = (N, -C, P, S) be a regular grammar. A graph GRAPH(G), can be constructed 

from G as described below. An example of the construction is shown in Fig. 2, 
Let the members of 2 be {a,, a2, . . . , a,,,}. Then GRAPH(G) = (N’, E) where the 

setofnodesN’=N,uN2uN,uN,,andthesetofedgesE=E,uE2uE,uE,u 
E5 u E6 u E,, as described below: 

N,={[A,i]IAisinNandl~i~4}, 

N2={[A+akB,i]IA+akB is in P and lsiGk+l}, 

N3={[A-+ak, i]lA+ak is in P and lsisk}, 

N4 = {START}, 

E,={([A,i],[A,j])lA is in N, i#j, lsii4, lsj64}, 

E2={([A+akB, i],[A+akB, i+l])IA-+a,B is in P, l<is k}, 

E3={([A+ak, i],[A+ak, i+l])(A+a, is in P, laisk}, 

E., = {([A, il, CA +akB,l])(A+akB is in P, lsii2}, 

E5={([A+akB, k+l],[B,4])(A+a,B is in P}, 

E6 = W4 il, [A +uk, l])IA+akB is in P, lsis2}, and 

E, = {(START, [S, 41)). 

GRAPH(G) encodes grammar G as follows. The nodes of N, form a disjoint set 
of Q-cliques, where each 4-clique corresponds to a nonterminal of G. The other 
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i-a, A 

A -a 
2 
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IS-a, A31 

I 

(b) 

Fig. 2. (a) Grammar G. (b) The corresponding GRAPH(G). 

nodes of the graph do not participate in 4-cliques. The 4-clique for the starting 
nonterminal is distinguished by ET. Each production is encoded by a chain in the 
graph, where the length of the chain encodes the terminal occurring in the production. 
A production A + uk B is encoded as a chain with k+ 1 nodes, where the chain 
connects two nodes of the clique for A with one node of the clique for B. Having 
at least two nodes in each such chain ensures that these nodes are uninvolved in a 
4-clique. A production A + ak is encoded as a chain of k nodes, with the chain 
connected to two nodes of the clique for A. 

Assume that two regular grammars G and H have the same terminal alphabet, 
and the symbols in this alphabet are enumerated in the same order. We claim that, 
under this assumption, the two grammars are isomorphic if and only if the two 
graphs GRAPH(G) and GFCAPH( H) are isomorphic. The details of the proof are left 
to the reader. 
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(c) The polynomial time reducibility of problem (3) to problem (4) follows from 
the reduction of graph isomorphism to deterministic finite state automata isomorph- 
ism in [4]. 

(d) The polynomial time reducibility of problem (4) to problem (5) is trivial, 
since problem (4) is a special case of problem (5). 

(e) Polynomial time reduction of problem (5) to problem (1). 
Let G = (IV, 2, P, S) be a grammar. Let # be a special symbol. Let Z(G) be the 

grammar (NuZ; #, Pu{a + # 1 a is in ;C}, S). Then grammar G is an isomorphic 
strict interpretation of grammar H if and only if grammars Z(G) and Z(H) are 
isomorphic. Cl 
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