
Theoretical Computer Science 38 (1985) 323-341
North-Holland

323

TESTING FOR GRAMMATICAL COVERINGS

D.J. ROSENKRANTZ*t and H.B. HUNT, III**
Computer Science Department, State University of New York at Albany, Albany, NY 12222, U.S.A.

Communicated by M.A. Harrison
Received May 1983
Revised September 1984

Abstract. For any given binary relation p defined on the context-free grammars, there is the
associated computational problem of determining, for a pair of grammars (G, H), if G p Z-Z. We
study the complexity of this problem for a number of grammatical similarity relations whose
definitions involve mappings between the symbols of related grammars. The relations considered
include Reynolds covering, weak Reynolds covering, onto grammar homomorphism, grammar
isomorphism, interpretation of grammar forms, and weak interpretation of grammar forms.

A single general theorem is used to show that the computational problem associated with each
of these grammatical relations, except grammar isomorphism, is NP-complete. In contrast, deter-
ministic polynomial time algorithms are presented for testing if Gp H, when H is structurally
unambiguous and the relation p is Reynolds covering, onto grammar homomorphism, or grammar
isomorphism. These results provide a rare example of. a nontrivial natural algebraic and/or
combinatorial structure, namely the unambiguous context-free grammars, with polynomial time
algorithms for homomorphism, onto homomorphism, and isomorphism.

We also show that the grammar isomorphism problem is polynomially equivalent to the graph
isomorphism problem. +

1. Introduction

A variety of binary relations on context-free grammars have been defined in the
literature. These relations model some concept of similarity between two grammars.
Besides their intrinsic mathematical interest, concepts of grammatical similarity are
relevant to compiler construction. Often one grammar is used as a reference grammar
to which semantic specifications are added. But a second grammar is used for
parsing. These two grammars are called the semantic grammar and the parsing
grammar respectively. The reason for using two grammars is as follows. The semantic
grammar is a more natural basis to which semantic specifications can be added. But
it may not belong to a given class of grammars having an efficient parsing method.

* The first author’s research was supported in part by the National Science Foundation under Grants
MCS 78-03157 and MCS 82-03237.

t Present affiliation: Phoenix Data Systems, Albany, NY, U.S.A.
** The second author’s research was supported in part by the National Science Foundation under

Grant MCS 80-03353.

0304-3975/85/$3.30 @ 1985, Elsevier Science Publishers B.V. (North-Holland)

324 D.J. Rosenkrantz, H. B. Hunt, III

A survey of grammatical similarity relations appears in [22]. The most extensively
studied ways of precisely defining a similarity relationship between the semantic
and parsing grammars involve mappings between productions or between nonter-
minals. Relationships defined in terms of a map between productions are called
coverings [11,171. In this paper we study covering-type relationships that are based
on maps between grammatical symbols. Such relationships include Reynolds cover-
ing, weak Reynolds covering, onto grammar homomorphism, grammar isomorphism,
interpretation of grammar forms, and strict interpretation of grammar forms.

For any grammatical similarity relation p, there is the associated computational
problem of determining, for a given pair of grammars (G, H), if G p If. In applica-
tions to compilers, this is the problem of determining if a semantic grammar and a
possible parsing grammar are appropriately related. In this paper we study the
complexity of such problems.

In Section 2 we give definitions and notation.
In Section 3 we show that, for a number of grammar relations, the set of pairs

of related grammars is NP-complete. These problems are NP-complete even when
the grammars are regular grammars. The relations considered include Reynolds
covering, weak Reynolds covering, onto grammar homomorphism, skeletal
grammars, interpretation, and strict interpretation. A single theorem and proof
apply to many different relations. Consequently, our results are insensitive to many
possible variations in the definitions of particular similarity relations. This is desir-
able since it is often not obvious just what the formal definition corresponding to
an intuitive concept of ‘grammars with closely related structure’ should be. We also
present results relevant to grammar forms and their associated grammatical families
[5]. In contrast to the NP-completeness results in Section 3, testing a pair of grammars
for left covering or right covering [ll] is undecidable for context-free grammars
and is PsPAcE-complete for regular grammars [141.

In Section 4 we present deterministic polynomial time algorithms for testing for
Reynolds covering, onto grammar homomorphism, and grammar isomorphism when
the parsing grammar, i.e., H, is structurally unambiguous. Thus, since the class of
structurally unambiguous context-free grammars contains the class of unambiguous
context-free grammars, there is a deterministic polynomial time algorithm for testing
for Reynolds covering, onto grammar homomorphism, and grammar isomorphism
when the proposed parsing grammar is a member of most of the grammar
classes corresponding to parsing methods used in compilers [1, 161. Thus, although
testing for Reynolds covering and for onto grammar homomorphism are likely
to be hard in general, there are efficient algorithms for the cases of practical
interest.

In Section 5 we show that testing for grammar isomorphism and for several related
problems are polynomially equivalent to the graph isomorphism problem.

A preliminary version of some of the results in Sections 3 and 5 has appeared in
[121, and a preliminary version of some of the results in Section 4 has appeared in
D31.

Testing for grammatical coverings 325

2. Definitions and notation

In this section, a number of definitions needed to read this paper are presented.
We begin with definitions concerning binary relations.

Definition 2.1. Let A be a nonempty set. Let CF and p be binary relations on A. We
say that relation CT includes relation p if and only if, for all x, y in A, x py implies
xay.

Definition 2.2. Let A be a nonempty set. Let p, o, and T be binary relations on A.
We say that relation u is between relations p and r if and only if u includes p and
T includes (T.

We assume that the reader is familiar with the basic definitions and results
concerning context-free grammars and parsing; otherwise, see [11.

We denote the empty word by A.

Definition 2.3. A context-free grammar G = (N, 2, P, S) is a four-tuple, where N
and 2 are disjoint finite sets of nonterminals and terminals respectively, the start
symbol S is an element of N, and P, the set of productions, is a finite subset of
Nx(NuX)*.

Productions are written in the form A + (Y rather than (A, a). In the remainder
of this paper, we will use ‘grammar’ as an abbreviation for ‘context-free grammar’.

Definition 2.4. A regular grammar G = (N, 2, P, S) is a grammar such that if A -+ (Y
is a production in P, then (Y is in 2 u 2 ??N.

Henceforth, we assume that all grammars are reduced, i.e., that each nonterminal
occurs in some derivation of a terminal string, since this simplifies some of the
algorithms. The reader should note that there are efficient polynomial time algorithms
for reducing grammar [1,161.

Definition 2.5. A structure is a derivation tree with all nonterminal labels deleted.
Two derivation trees are structurally equivalent if they have the same structure. A
grammar is structurally unambiguous if no two derivation trees generated by the
grammar are structurally equivalent.

Definition 2.6. Two productions of a grammar

A+cY,cQ.. . ark and B-,pl&. . . Pm,

where each Lyi and pj is a single grammatical symbol, are compatible if k = m and,
for all i, 1 d id k, ai and pi are identical terminal symbol or ai and pi are both
nonterminal symbols. Two productions are incompatible if they are not compatible.

326 D.J. Rosenkrantz, H.B. Hunt, III

Next, we give the definitions of several grammatical similarity relations involving
mappings from nonterminals to nonterminals, but for which terminals are
unchanged. These relations include onto grammar homomorphism [ll], grammar
isomorphism [111, Reynolds cover [18,111, weak Reynolds cover [18,111, and skeletal
grammars [7]. Note that Reynolds cover corresponds to a grammar homomorphism
that need not be onto. This concept was called a homomorphism in [9]. A skeletal
grammar string homomorphism [7] is similar to an onto homomorphism, except
that if there is a production of the form A + I3 in the semantic grammar, where A
and B both map into the same nonterminal of the parsing grammar, then the parsing
grammar does not contain the corresponding production (whose left and right side
would be identical). We note that Schnorr [20] defined a concept called grammar
homomorphism that is more general than the concept of grammar homomorphism
considered here.

Definition 2.7. Let G = (M, 2, P, S) and H = (IV, 2, Q, T) be grammars. Let f be a
homomorphism from (M u Z)* into (N u Z)* such that f(M) c N and f is the
identity on 2:. Let f(P) = {f(A) +f(y) 1 A + y is in P}.

(1) We say that f is a (grammar) homomorphism from G onto H if f(S) = T and
f(P) = Q. If in addition f is one-to-one, we say that f is a (grummar) isomorphism
from G onto H. We say that G and H are (grammar) isomorphic if there is a
(grammar) isomorphism from G onto H.

(2) We say that G is Reynolds covered by H (or H Reynolds covers G) if there
exists a homomorphism from (A4 u ,C)* into (N u Z)* as above such that f(S) = T
and f(P) c Q.

(3) We say that G is weak Reynolds covered by H (or H weak Reynolds covers
G) if there exists a homomorphism f from (A4 u Z)* into (N u Z)* as above, such
that f(S) = T and, for all productions A + y in P,

J-(A) $-(~1.

(4) We say that H is a skeletal grammar for G if there exists a homomorphism
f from (Mu Z)* into (N u Z)* as above, such that f(S) =f(T), and letting S(P)
be f(P) with all productions of the form C + C deleted, f(P) = Q.

Next, we give the definitions of several grammatical similarity relations involving
more general maps which can involve both nonterminals and terminals. These
relations include strict interpretations [6,10,15-J, some special cases of strict interpre-
tations [5], and some generalizations that are useful in expressing the general results
in Section 3. Note that a variant definition of strict interpretation appears in [2].
The concept of strict interpretation is applicable to compilers where the semantic
grammar is a strict interpretation of the parsing grammar, and several terminal
symbols of the semantic grammar are represented by the same terminal symbol of
the parsing grammar. These terminal symbols can then be represented as a lexical
token with the same class part, but different value parts [16].

Testing for grammatical coverings 327

Definition 2.8. Let G = (M, 2, P, S) and H = (N, A, Q, T) be grammars. Let CL be a
substitution on (N u A)*, such that ~(a) is a finite subset of Z* for each a in A,
and p(A) is a subset of M for each A in N. In addition, let p have the properties
that p(A) n p(B) =$!I for each A and B in N with A# B, and that S is in p(T).

(1) G is an interpretution of H if for each production A + y of P there is a
production B + ,$ in Q such that A is in p(B) and y is in I_L (5).

(2) G is a strict interpretation of H if G is an interpretation of H, ~(a) is a subset
of tl for each a in A, and ~(a) n p(b) =0 for each a and b in A with a # 6.

(3) G is an onto strict interpretation of H if G is a strict interpretation of H and,
for each production B + 6 in Q, there is a production A + y in P such that A is in
p(B) and y is in p(t).

(4) G is an isomorphic strict interpretation of H if G is an onto strict interpretation
of H and p is one-to-one.

(5) G is a generalized strict interpretation of H if ~(a) is a subset of E for each
ainA;~(a)n~(b)=~foreachaandbinAwitha#b;andforeachproduction
A+ y of P there is a B in N and 5 in (N u A)* such that A is in p(B), y is in
p(5), and B&.

(6) G is a %enk interpretation of H if either G is an interpretation of H or G is
a generalized strict interpretation of H.

An equivalent definition of strict interpretation is that there is a homomorphism
Sfrom(MuZ)*into(NuA)*suchthatf(M)c N;f(X)cA,f(S)=T,andf(P)c
Q. Thus, Reynolds covered by, onto homomorphism from, and isomorphism from
are special cases of strict interpretation of, onto strict interpretation of, and isomor-
phic strict interpretation of, respectively, where each terminal maps into itself.

3. Hard covering relations

In this section we study the complexity of determining if a pair of grammars are
related by an onto homomorphism, a Reynolds cover, a weak Reynolds cover, an
interpretation of grammar forms, a strict interpretation of grammar forms, an onto
strict interpretation of grammar forms, or the skeletal grammar relation. A single
theorem and proof are presented that imply, for each of these relations, that the
problem of determining if a pair of grammars are related by the relation is NP-hard.
We also generalize the concept of ‘a family of grammars represented by a grammar
form’ [5,6] and give simple sufficient conditions for the decidability of the problem
of determining if two ‘generalized’ grammar forms represent the same family of
grammars.

Theorem 3.1. Let HOM-ONTO and WEAK-INTERP be the binary relations on the set
of grammars defined by-for all grammars G and H,

328 D.J. Rosenkrantz, H.B. Hunt, III

(1) G HOM-ONTO H if and only if there is a grammar
H, and

homomorphism from G onto

(2) G WEAK-INTERP H if and only if G is a weak interpretation of H.
Let cr be any binary relation on the set of grammars between the relations HOM-ONTO

and WEAK-INTERP. 7hen each ofthe sets

R,={(G, H)jGandH are regular grammars, and G CT H)
and

C, = {(G, H) 1 G and Hare grammars, and G a H)

is NP- hard.

Proof. The proof consists in showing that there is a deterministic polynomially
time-bounded reduction of the language

CLIQUE = {(J, k) 1 J is an undirected graph with n 2 1 nodes, k is the
unary numeral for a nonnegative integer k s n, and J has a
clique of size k}

to the sets R, and C,, for each such binary relation u on the set of grammars. The
set CLIQUE is known to be NP-hard [S].

Let J be an undirected graph with n 2 1 nodes. Let the set of nodes of J be
{ Ni 11 s i s n}. Let k be a nonnegative integer such that 1 G k s n. Consider the
mapping from (J, i) to the pair of regular grammars G and H given as follows:

G=({S}u{Ai(l~i~k}u{Ni~l~i~n},{a, b,c}, P,S),where

P=P,uP*uP,,

PI={S+aA~~l~i~k}u{S+aN~~l~iin},

P2={Ai+bA~Ii#j,l~i,j~k}u{Ni+bNj)the graph J contains an
edge connecting

PJ={Ai+c)l ~i6k}u{Ni+cllai~n};

H=({T}U{NiIl s is n}, (a, b, c}, Q, T), where

Q=Q+JQP-JQ~,
Q1={T+aNiI1~i~n},

Q2 = { Ni + b Nj I the graph J contains an edge
connecting

nodes Ni and Nj }, and

nodes Ni and yj}, and

Clearly, the regular grammars G and H can be constructed’ from (J, fi) in
deterministic polynomial time. We claim further that

(1) if J has a clique of size k, then G HOM-ONTO H, and

Testing for grammatical couerings 329

(2) if J does not have a clique of size k, then -(G WEAK-INTERP H).
Claims (1) and (2) imply that J has a clique of size k if and only if (G, H) is in

R,, and thus, imply that the language CLIQUE is deterministic polynomially time-
bounded reducible to R,.

We now prove claims (1) and (2).
Proof of claim (1). Suppose J has a clique of size k. Let one such clique be

{NV,, NY.,. . . , NVk}. Let f be the function from the alphabet of G to the alphabet
of H defined by

(i) f(S) = T,
(ii) f(Ai)= Nyi for lsisk,

(iii) f(Ni)=Ni for lsisn, and
(iv) f(a)=a,f(b)=b,f(c)=c.
Then f is an onto homomorphism from G to H. Thus, G HOM-ONTO H, and,

thus, G (T H.
Proof of claim (2). Suppose J does not have a clique of size k, but G is a weak

interpretation of H under substitution p. For each i such that 1 c i d k, Ai is the
image of only one nonterminal of H under p. If Ai were in p(T), then corresponding
to the production S + a Ai in P1 , Q would have the production T+ aT. Thus, Ai is
in p(N,,i) for some vi. Corresponding to the production Ai + b Aj in P2, Q2 must
have the production Nyi + 6 N,,j. If Vi = vj, then Q2 would have the production
N,,, + b Nyi. Since Q2 does not contain such a production, i #j, and thus, vi # vj.
Thus NV,, N9,. . . , Nyk are k distinct nonterminals corresponding to a clique of
size k in the graph J, a contradiction.

Finally, we note that the NP-hardness of the language R, directly implies the
NP-hardness of the language C,. Cl

Theorem 3.2. The following sets are NP-complete:
(1) {(G, H) 1 G and H are grammars [or G and H are regular grammars] and there

is a homomorphism from G onto H);

(2) UG, H)I G and H are grammars [or G and H are regular grammars] and G
is Reynolds covered by H};

(3) {(G, H) 1 G and H are grammars [or G and H are regular grammars] and G
is weak Reynolds covered by H);

(4) {(G, H) 1 G and H are grammars [or G and H are regular grammars] and G
is an interpretation of H);

(5) ((G, H)] G and H are grammars [or G and H are regular grammars] and G
is a strict interpretation of H);

. (6) {(G, H)I G and H are grammars [or G and H are regular grammars] and G
is an onto strict interpretation of H);

(7) UG, H) 1 G and H are grammars [or G and H are regular grammars] and G
is a generalized strict interpretation of H); and

(8) {(G, H) 1 G and H are grammars [or G and H are regular grammars] and H
is a skeletal grammar for G).

330 D.J. Rosenkrantz, H.B. Hunt, III

Proof. From Theorem 3.1, each of sets (l)-(7) is NP-hard. Since a skeletal grammar
for a regular grammar is the image of an onto homomorphism, the sets of (8) are
also NP-hard. Finally, it can easily be seen that each of the sets (l)-(8) is in NP. Cl

Next, we generalize the concept of ‘a grammar form representing a family of
grammars’ [5,6,10,15-J by using an arbitrary grammatical similarity relation to define
the set of interpretations of a given grammar.

Definition 3.3. Let p be a binary relation on the set of grammars. Let G be a
grammar. The family of grammars of G induced by the relation p, denoted by rp(G),
is the set

{K 1 K is a grammar and G p K}.

Two grammars G and H are strongly equivalent grammar forms under p if
r,(G) = r,,(H).

Theorem 3.4. Let p be any reflexive and transitive binary relation on the set of grammars.
Then, for all grammars G and H, G p H if and only if I’,(G) c rP(H).

Proof. Suppose r,(G) 3 I’,(H). ,Since p is reflexive, H p H, and so H is in rp(H).
But then H is in I’,(G), so Gp H.

Now suppose G p H. Suppose K is in r,(H). Then H p K. Since p is transitive,
GpK, so K is in I’,(G). Thus, I’,(G)II’,,(K). 0

Each of the grammatical relations of Theorem 3.2 is both reflexive and transitive
(provided the skeletal grammar relationship is restricted to grammars that do not
have productions of the form A+ A). Thus the result in [5] that it is decidable if
the families of grammars associated with two grammar forms are equal can be
generalized as follows.

Theorem 3.5. The set

{(G, H)IG and H are strongly equivalent grammar forms under p)

is in NP when p is any of the relations: onto homomorphism, Reynolds covers, weak
Reynolds cover, interpretation, strict interpretation, on to strict interpretation, general-
ized strict interpretation, and skeletal grammar (for grammars without productions of
the form A + A).

Proof. The proof immediately follows from Theorems 3.2 and 3.4. Cl

Theorem 3.6. The set

{(G, H) 1 G and H are strongly equivalent grammar forms under p}

Testing for grammatical couerings 331

is NP-complete when p is any of the relations: Reynolds covers, weak Reynolds covers,
interpretation, strict interpretation, and generalized strict interpretation.

Proof. Membership in NP follows from Theorem 3.5. NP-hardness follows from
noting that, in the proof of Theorem 3.1, the constructed grammars G and H are
always related in one direction by each of the specified relations. Cl

The three relations included in Theorem 3.5, but not in Theorem 3.6, are onto
homomorphism, onto strict interpretation, and skeletal grammar (for grammars
without productions of the form A+ A). It follows directly from the definitions of
these relations that two grammars are strongly equivalent grammar forms under the
first or the third of these reiations if and only if they are isomorphic grammars; and
two grammars are strongly equivalent grammar forms under the second of these
relations if and only if the grammars are related by isomorphic strict interpretation.
In Section 5 we show that testing for grammar isomorphism or for isomorphic strict
interpretation is polynomially equivalent to testing for graph isomorphism. Thus,
these three grammar form equivalence problems are polynomially equivalent to
graph isomorphism.

4. Covering by structurally unambiguous grammars .

In this section we present deterministic polynomial time algorithms for testing,
for a grammar G and a structurally unambiguous grammar H, if G is Reynolds
covered by H, if there is an onto homomorphism from G to H, or if there is an
isomorphism from G to H. Moreover, if such a Reynolds cover, onto homomorphism,
or isomorphism exists, the algorithms output appropriate functions from the nonter-
minals of G to the nonterminals of H. Since the class of structurally unambiguous
grammars properly contains the class of unambiguous grammars, deterministic
polynomial time algorithms exist when H is in r, for any class r, of unambiguous
grammars. Thus, deterministic polynomial time algorithms exist when H is a member
of most of the grammar classes corresponding to parsing methods used in compilers.

Theorem 4.1. There is a polynomial time algorithm for testing, for grammar G and
structurally unambiguous grammar H, if H Reynolds covers G. Moreover, if H Reynolds
covers G, then this algorithm outputs an appropriate function from the nonterminals
of G to the nonterminals of H.

Proof. Let G = (M, 2, P, S), and H = (IV, 2, Q, T). The basis of the algorithm is
finding, for each A in M, a derivation tree generated by G containing A and a
structurally equivalent derivation tree 7 generated by H. Since H is structurally
unambiguous, if there is a Reynolds cover, then A must map into the label of the

332 D.J. Rosenkrantz, H.B. Hunt, III

corresponding node of r. However, these derivation trees are not explicitly construc-
ted since they may be exponential in the sizes of G and H. Rather, each tree is
compactly represented without producing it in entirety.

The algorithm consists of four steps.
[l] Step 1 of the algorithm consists of computing, for each A in M, a set MATCH(A)
defined in terms of a specific tree, called TREE(A), that A generates.

MATCH(A) = {B 1 B is in N, and B generates a tree that is structurally
equivalent to TREE(A)}.

The sets MATCH(A), for A in M, are computed in a manner related to the test for
aliveness in [161. The trees TREE(A), for A in M, are not explicitly computed. The
computation of the MATCH sets is done as follows:

If MATCH(A) has not already been computed and there is a production

A+a,a, . . . ak

in P such that each cri is either a terminal or a nonterminal for which MATCH(CX~)
has already been computed, then choose one such production and let MATCH(A) =
{B 1 B is in N; and there is a compatible production

in 0 for which if pi is a nonterminal, it is in MATCH(cYi)}.
As an example consider the grammars G and H of Fig. l(a). From productions

2,7, and 10, MPTCH(A) = (0, E}. From productions 4,8, 11, and 15, MATCH(B) =
(0, E, G}. From productions 1, 6, and 16, MATCH(S) = {T, G}. From productions
5, 14, and 17, MATCH(C) = {F, H}. Although they are not explicitly constructed,
the TREE of each nonterminal is shown in Fig. l(b).
[2] Step 2 consists of computing, for each A in A.4, an incomplete reachability tree
for A, called REACH(A). An incomplete reachability tree is a derivation tree produced
by G having S as its root and frontier nodes that are elements of 2 u M. REACH(A)
is an incomplete reachability tree in which A is one of the frontier nodes. A
reachability tree for each nonterminal of G can be found in polynomial time in a
manner analogous to the reachability test in [16]. The number of productions used
in each reachability tree is bounded by IMI. The computation of these trees is done
as follows:

REACH(S) consists of a single node labeled S. If REACH(B) has not yet been
computed, and there is a production A+ y where B is a symbol in y, and
REACH(A) has been computed, then choose one such production and let
REACH(B) be REACH(A) with the symbols of y appended as descendants of
some occurrence of A on the frontier of REACH(A). As an example, REACH
trees for grammar G of Fig. l(a) are shown in Fig. l(c).

[3] Step 3 consists of computing, for each A in M, a set CANDIDATE(A) of members
of N that A can map into under a Reynolds cover.

Testing for grammatical coverings 333

For each A in M, define DERIV(A) to be the complete derivation tree obtained
by appending to each nonterminal B on the frontier of REACH(A), the subtree
TREE(B). (More accurately, the root of TREE(B) is merged with the occurrence of
B on the frontier of REACH(A).) Suppose that we distinguish some particular node
that is labelled with A and occurs on the frontier of REACH(A). This node then
becomes a distinguished node labelled A in the tree DERIV(A). Any derivation tree
H that is structurally equivalent to DERIV(A) contains a node corresponding to this
distinguished node. This corresponding node becomes a distinguished node of H.
Define

CANDIDATE(A) = {B 1 B is in N; and B labels the distinguished node of
a derivation tree of H that is structurally equivalent
to DERIV(A)}.

Since, in DERIV(A), the subtree headed by the distinguished node is identical to
TREE(A), CANDIDATE(A) is a subset of MATCH(A). The set CANDIDATE(A) can
be computed without constructing DERIV(A). The computation uses REACH(A) and
the MATCH sets, as follows:

For each B in MATCH(A), associate a subset of N with each nonterminal node
of REACH(A) as follows. Associate {B} with one occurrence of A on the frontier
of REACH(A). With every other nonterminal (Y on the frontier, associate MATCH((Y).
The sets associated with the interior nodes of REACH(A) are computed in the
following bottom-up manner. With each interior node associate the set of nonter-
minals C in N for which

(i) there is a production C + & p2 . . . & in Q, and
(ii) the interior node has k immediate descendants such that, for 1 =S i d k, if the

ith immediate descendant is a terminal, then pi is the same terminal and if the ith
immediate descendant is a nonterminal, then pi is one of the nonterminals associated
with the descendant.
If T is one of the nonterminals associated with the root of REACH(A), then B is
included in CANDIDATE(A).

As an example, Fig. l(d) shows the computation of the CANDIDATE sets for the
grammars of Fig. l(a). The result of the computation is that CANDIDATE(S) = {T},
CANDIDATE(A) = {D}, CANDIDATE(B) = {D}, and CANDIDATE(C) = {F}.

To see that the computation correctly determines if B is in CANDIDATE(A), note
that each node of REACH(A) corresponds to a node of the complete tree DERIV(A),
and also corresponds to the subtree of DERIV(A) headed by that node. From the
definition of MATCH, each member of N that the computation associates with a
frontier node of REACH(A) generates the image of the corresponding subtree of
DERIV(A). Each member of N that the computation associates with an interior
node of REACH(A) generates the image of the corresponding subtree of DERIV(A)
because the member of N has a context-free production whose right-hand side
symbols are associated with the immediate descendants of the interior node and
generate the corresponding subtrees. Thus, CANDIDATE(A) is correctly computed.

334 D.J. Rosenkrantz, H.B. Hunt, III

1. S-A B

2. A-a

3. A-b B C

4. B&A

5. Cd a

Grammar G

6. T-D’D

7. D-a

8. D+bD

9. D+bDf

10. Eea

11. E+b D

12. E-b D H

13. F+c

14. F WT a

15. G+b E

16. G-tE E

17, H +Ta

B

b A 1 a

Grammar H TREE (A) TREE (B) TREE (S)

(4

s

A A B

(b)

S

A A B

TREE(C)

S

A B

b R B C

REACH (S) REACH (A) REACH (B) REACH (C)

Cc)

Fig. 1. (a) Grammars G and H. (b) The trees TREE(X) for X a nonterminal of G. (c) The REACH trees.

Because H is structurally unambiguous, H generates at most one derivation tree

that is structurally equivalent to DERIV(A). Thus, for each A in M, the set CANDI-

DATE(A) has at most one member.
(41 Step 4 consists of testing whether the map corresponding to the CANDIDATE sets

represents a Reynolds cover.

Testing for grammatical coverings 335

S T G
. . .

S

A A B

S

Computation of CANDIDATE(S)

T G

D A D, E,G E A D, E,G

Computation of CANDIDATE (A)

T

h D,E D

G

h D,E E

Computation of CANDIDATE (B)

Computation of CANDIDATE (C)

(4

Fig. 1. (d) Computation of CANDIDATE sets.

If the set CANDIDATE(A) is empty for some A in M, then the algorithm halts
with output “NO”. Otherwise, CANDIDATE represents a map from M to N. Let
f be the homomorphism from (M u 2)* to (N u X)* that corresponds to
CANDIDATE on M and is the identity on 2. Then test whether f satisfies the
definition of a Reynolds cover (Definition 2.7). If f is a Reynolds cover, the
algorithm halts with output “YES” and the map from M to N. If not, the
algorithm halts with output “NO”.

In the example of Fig. 1, the computed CANDIDATE map does indeed represent a
Reynolds cover.

Corollary 4.2. (a) There is a polynomial time algorithm that determines if there
exists an onto homomorphism from a given grammar G to a given structurally unam-
biguous grammar H, and outputs an appropriate nonterminal map if it exists.

(b) There is a polynomial time algorithm to determine if there exists an isomorphism
from a given grammar G to a given structurally unambiguous grammar H, and outputs
an appropriate nonterminal map if it exists.

336 D.J. Rosenkrantz, H.B. Hunt, III

Proof. Onto homomorphism and isomorphisms are special cases of Reynolds covers.
As shown in the proof of Theorem 4.1, since H is structurally unambiguous, there
is at most one Reynolds cover of G by H. Cl

Next, we note that in using the algorithms of Theorem 4.1 and Corollary 4.2,
there is no problem in checking that grammar H is structurally unambiguous. A
structural ambiguity test is implicit in [21]. A deterministic polynomial time structural
ambiguity test for regular grammars is given in [3]. A deterministic polynomial time
structural ambiguity test for arbitrary context-free grammars is given in [191. Hence,
Theorem 4.1 and Corollary 4.2 give the following.

Corollary 4.3. The sets
(1) W, WI G is a grammar, H is a structurally unambiguous grammar, and G is

Reynolds covered by H},

(2) {(G, H) I G is a grammar, H is a structurally unambiguous grammar, and there
is an onto homomorphism from G to H), and

(3) {(G, H) I G is a grammar, H is a structurally unambiguous grammar, and there
is an isomorphism from G to H)

are each recognizable in deterministic polynomial time.

5. Isomorphism problems

In this section we show that the problems of determining if a pair of grammars
are related by isomorphism, or by isomorphic strict interpretation, are polynomially
equivalent to the graph isomorphism problem. The main point of this result is that
the grammar problems are no harder than the graph problem, even though the
right-hand side of a grammatical production can contain several nonterminal
symbols.

Booth [4] showed that the graph isomorphism problem and the problem of testing
pairs of deterministic finite automata for isomorphic strict interpretation are poly-
nomially equivalent. (The relation between finite automata was called ‘isomorphism’
in [4], but corresponds to isomorphic strict interpretation because a terminal need
not be mapped into itself.) Note that the well-known polynomial time decidability
of the state equivalence problem for deterministic finite automata [1,161 implies
that the isomorphism problem (in the sense used in this paper) is decidable deter-
ministically in polynomial time for deterministic finite automata.

Theorem 5.1. The following sets are polynomially equivalent:

(1) {(G, H)I G and H are isomorphic grammars) ;
(2) W, WI G and H are isomorphic regular grammars) ;

(3) {(J, K) I J and K are isomorphic graphs} ;

Testing for grammatical coverings 337

(4) { (G, H) 1 G and H are regular grammars, and G is an isomorphic strict interpreta-
tion of H); and

(5) {(G, H) 1 G and H are grammars and G is an isomorphic strict interpretation

of HI.

Proof. (a) A polynomial time reduction of problem (1) to problem (2).
Let G = (M, 2, P, S) be a grammar. Let A + y be a member of I-? We define the

template of A+ y to be the string obtained from Ay by replacing each occurrence
of a nonterminal with an Nj, where if nonterminal B is the ith distinct nonterminal
occurring in Ay, each occurrence of B is replaced by Ni. For example, the templates
of S+ aBcSSdCB and A+ aDcAAdBD are identical and equal to
N,aN,cN, N,dN, N2. Suppose G has t distinct templates. Let the templates of
G be numbered in lexicographic order so that i <j implies that template i
lexicographically precedes template j. For each template i, let there be pi productions
of G with template i and let there be ni distinct Nj’s appearing in template i. For
instance, ni = 3 for the template given above.

Let ZUk be the kth distinct nonterminal appearing in the jth production with
template i. For instance, if the template given above is template 5, and its second
production is A + aDcAAdBD, then Z,,, is A, Z,,, is D, and Z,,, is B. (Note that
each Zijk is in M.)

Let R(G) = (M’, Z’, P’, S) be the regular grammar defined by
(1) M’=Mu{A,Il~i~ t, lSj<pi},
(2) ~‘={a}U{bi~~ 1 ~i~t,l<k<n,}, and
(3) P’ = P, u P2 u P3, where

P,={S+aAUll d is t, lSjSpi},

P,={A,jbi~Z~~I14i~t,l~j~pi,l~k~ni},and
P3={X+aIX is in M}.

We claim that two grammars G = (M, 2, P, S) and H = (N, A, (I, T) are isomor-
phic if and only if they have the same sets of templates and the regular grammars
R(G) = (M’, Z’, P’, S) and R(H) = (N’, A’, Q’, T) above are isomorphic. Here we
sketch the proof of the ‘if’ part of the claim. Thus, assume that G and H have the
same sets of templates and that R(G) and R(H) are isomorphic.

Since we are assuming that all grammars are reduced, the assumption that G and
H have the same set of templates implies that 2 equals A.

Let t and t’ be the numbers of templates of G and of H respectively. By assumption,
G and H have the same set of templates. Moreover, this set was lexicographically
ordered during the constructions of R(G) and of R(H). Thus,

(1) t= t’ and, for 1 s id t, template i of G equals template i of H.
Thus, for 1 S i s t, letting ni and n: equal the numbers of distinct nonterminals
appearing in template i of G and in template i of H,

(2) ?Ii=?ti.

Thus Z’= A’.

338 D.J. Rosenkrantz, H.B. Hunt, ZZZ

Let 4 be an isomorphism from R(G) to R(H). By assumption, such an isomorph-
ism exists. We show that 4 induces an isomorphism 6 from G to H. Since 4 is a
Reynolds cover, inspection of the productions of R(G) and R(H) shows that
46) = T di(X) is in N for X in M, and +(A,) = Ai, for some m. For 1 d i s t, let
pi and p: be the number of productions of G and H with template i. Since C#I is an
isomorphism, pi = pi.

Let 4 be the mapping from Mu 2 defined as follows:

icu)=(i(a)
for all (Y in 2
forall a! in &.

Then, 4 is a one-to-one map from M to N.
For 1 d i s t and 1 s j s pi, corresponding to production j for template i in P,

grammar R(G) has productions A, + bi, Ziil, A, + bi22$2, . . . , A, + biniAq”, . Suppose
+(A,) = Ai,. Then R(H) has productions Ai, + bi,+(Zv,), Ai, + bi2~(Zij2),

-**, Ai, + 6i”,+(Zuni). Thus, production j for template i in P maps into production
m for template i in Q. Thus, 4 is an isomorphism from G to H.

(b) A polynomial time reduction of problem (2) to problem (3).
Let G = (N, -C, P, S) be a regular grammar. A graph GRAPH(G), can be constructed

from G as described below. An example of the construction is shown in Fig. 2,
Let the members of 2 be {a,, a2, . . . , a,,,}. Then GRAPH(G) = (N’, E) where the

setofnodesN’=N,uN2uN,uN,,andthesetofedgesE=E,uE2uE,uE,u
E5 u E6 u E,, as described below:

N,={[A,i]IAisinNandl~i~4},

N2={[A+akB,i]IA+akB is in P and lsiGk+l},

N3={[A-+ak, i]lA+ak is in P and lsisk},

N4 = {START},

E,={([A,i],[A,j])lA is in N, i#j, lsii4, lsj64},

E2={([A+akB, i],[A+akB, i+l])IA-+a,B is in P, l<is k},

E3={([A+ak, i],[A+ak, i+l])(A+a, is in P, laisk},

E., = {([A, il, CA +akB,l])(A+akB is in P, lsii2},

E5={([A+akB, k+l],[B,4])(A+a,B is in P},

E6 = W4 il, [A +uk, l])IA+akB is in P, lsis2}, and

E, = {(START, [S, 41)).

GRAPH(G) encodes grammar G as follows. The nodes of N, form a disjoint set
of Q-cliques, where each 4-clique corresponds to a nonterminal of G. The other

Testing for grammatical coverings 339

S -a2 A

i-a, A

A -a
2

(4

IS-a, A31

I

(b)

Fig. 2. (a) Grammar G. (b) The corresponding GRAPH(G).

nodes of the graph do not participate in 4-cliques. The 4-clique for the starting
nonterminal is distinguished by ET. Each production is encoded by a chain in the
graph, where the length of the chain encodes the terminal occurring in the production.
A production A + uk B is encoded as a chain with k+ 1 nodes, where the chain
connects two nodes of the clique for A with one node of the clique for B. Having
at least two nodes in each such chain ensures that these nodes are uninvolved in a
4-clique. A production A + ak is encoded as a chain of k nodes, with the chain
connected to two nodes of the clique for A.

Assume that two regular grammars G and H have the same terminal alphabet,
and the symbols in this alphabet are enumerated in the same order. We claim that,
under this assumption, the two grammars are isomorphic if and only if the two
graphs GRAPH(G) and GFCAPH(H) are isomorphic. The details of the proof are left
to the reader.

340 D.J. Rosenkrantz, H.B. Hunt, III

(c) The polynomial time reducibility of problem (3) to problem (4) follows from
the reduction of graph isomorphism to deterministic finite state automata isomorph-
ism in [4].

(d) The polynomial time reducibility of problem (4) to problem (5) is trivial,
since problem (4) is a special case of problem (5).

(e) Polynomial time reduction of problem (5) to problem (1).
Let G = (IV, 2, P, S) be a grammar. Let # be a special symbol. Let Z(G) be the

grammar (NuZ; #, Pu{a + # 1 a is in ;C}, S). Then grammar G is an isomorphic
strict interpretation of grammar H if and only if grammars Z(G) and Z(H) are
isomorphic. Cl

References

HI

[21
[31

[41

151

[aI

r71

PI

193

1101

Ull

[121

r.131

P41

A.V. Aho and J.D. Ullman, The Theory of Parsing, Translation, and Compiling, Vols. 1 and 2
(Prentice-Hall, Englewood Cliffs, NJ, 1972 and 1973).
E. Bertsch, An observation on relative parsing time, J. Assoc. Computing Mach. 22 (1975) 493-498.
R. Book, S. Even, S. Greibach and G. Ott, Ambiguity in graphs and expressions, Proc. 3rd Ann.
Princeton Con. on Information Science and Systems (1969) 345-349.
K.S. Booth, Isomorphism testing for graphs, semigroups, and finite automata are polynomially
equivalent problems, SIAM J. Computing 7 (1978) 273-279.
A.B. Cremers and S. Ginsburg, Context-free grammar forms, J. Computer and System Sciences 11
(1975) 86-l 17.
A.B. Cremers, S. Ginsburg and E.H. Spanier, The structure of context-free grammatical families,
J. Computer and System Sciences 15 (1977) 262-279.
A.J. Demers, Skeletal LR parsing, hoc. IEEE 25th Annual Symp. on Switching and Automata Theory,
New Orleans, LA (1974) 185-198.
M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Complete-
ness (Freeman, San Francisco, CA, 1979).
S. Ginsburg and M.A. Harrison, Bracketed context-free languages, J. Computer and System Sciences
1 (1967) l-23.
S. Ginsburg, B. Leong, 0. Mayer and D. Wotschke, On strict interpretations of grammar forms,
Math. Systems Theory 12 (1979) 233-252.
J.N. Gray and M.A. Harrison, On the covering and reduction problems for context-free grammars,
J. Assoc. Computing Mach. 19 (1972) 675-698.
H.B. Hunt, III and D.J. Rosenkrantz, Complexity of grammatical similarity relationships, Pre-
liminary report, Proc. Conf: on Theoretical Computer Science, Waterloo, Canada (1977) 139-145.
H.B. Hunt, III and D.J. Rosenkrantz, Efficient algorithms for structural similarity of grammars,
Proc. 7th Ann. ACM Symp. on Principles of Programming Languages, Las Vegas, NV (1980) 213-219.
H.B. Hunt, III, D.J. Rosenkrantz and T.G. Szymanski, On the equivalence, containment and covering
problems for the regular and context-free languages, J. Computer and Systems Sciences 12 (1976)
222-268.
B. Leong and D. Wotschke, The influence of productions on derivations and parsing, Conf Rec.
3rd ACM Symp. On Principles of Programming Languages, Atlanta, GA (1976) l-l 1.
P.M. Lewis, II, D.J. Rosenkrantz and R.E. Steams, Compiler Design Theory (Addison-Wesley,
Reading, MA, 1976).
A. Nijholt, Context-free grammars: Covers, normal forms, and parsing, Lecture Notes in Computer
Science 93 (Springer, Berlin, 1980).
J.C. Reynolds and R. Haskell, Grammatical coverings, Unpublished manuscript, 1970.
D-J. Rosenkrantz and H.B. Hunt, III, Efficient algorithms for automatic construction and com-
pactification of parsing grammars, Submitted for publication.

Testing for grammatical coverings 341

[20] C.P. Schnorr, Transformational classes of grammars, Information and Control 14 (1969) 252-277.
[21] J.W. Thatcher, Tree automata: An informal survey, in: A-V. Aho, ed., Currents in the Theory of

Computing (Prentice-Hall, Englewood Cliffs, NJ, 1973) 143- 172.
[22] D. Wood, Grammar and L forms: An introduction, Lecture Notes in Computer Science 91 (Springer,

Berlin, 1980).

