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Abstract. An approach for a simple, general, and unified theory of effectivity on sets with
cardinality not greater than that of the continuum is presented. A standard theory of effectivity
on F ={f:N-N} has been developed in a previous paper. By representations §:F--> M this theory
is extended to other sets M. Topological and recursion theoretical properties of representations
are studied, where the final topology of a representation plays an essential role. It is shown that
for any separable T-space an (up to equivalence) unique admissible representation can be defined
which reflects the topological properties correctly.

1. Introduction

Definitions of Type 2 computability, i.e., computability on sets with cardinality
not greater than that of the continuum, have been given in several ways (see, e.g.,
[4, 11, 10]). Most of these definitions are equivalent or at least dependent from each
other but there is no generally accepted approach as in the case of computability
on denumerable sets.

This paper presents the concept of representations as a foundation for a unified
Type 2 computability theory. Its basic idea is that real world computers cannot
operate on abstract elements of a set M but only on names. We have chosen the
set F of sequences of natural numbers as a standard set of names and have defined
computability on F explicitly (see [12]). Computability on other sets M can then
be derived from computability on F by means of representations, i.e., (partial)
mappings from F onto M. The same computability theory could be obtained by
using sets like P, as standard sets but considering the applications of our theory F
seems to be the better one. For example, infinite objects are often defined by
sequences of finite objects (e.g., Cauchy sequences, chains etc.) and not by sets of
finite objects. Furthermore, the computation model for functions on F is easy to
understand and allows studying computational complexity.

Computable functions turn out to be continuous in general, and in most cases
functions which are not computable are not even continuous. Hence, topological
considerations are fundamental for Type 2 theory, and continuity w.r.t. representa-
tions will also be studied. Therefore, two versions of Type 2 theory are developed
simultaneously, a topological (t-) and a computable (c-) one.
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It is assumed that the reader is familiar with ordinary recursion theory and some
basic concepts of recursion theory on F. Our terminology and notation will follow
Rogers [10] and Weihrauch [12].

By N we denote the set of all natural numbers and by W(N) the set of all finite
words over N. ¢ is the empty word and Ig(w) is the length of the word w. If we W(N)
and w = XX, ... x, (Where x; eN), then we define w(i):=x, for0<i<n Byf:A->B
(with dashed arrow) we denote a partial function from A to B, where ‘partial’ means
dom f < A. As usual, we write (i, . . ., i,) instead of 7" (i,, ..., i,) where =‘":N" >
N is Cantor’s bijection. ¢ denotes the standard numbering of the unary partial
recursive functions.

Define F:={p:N->N} and B:= W(N)UF. For a, be B define a= b:& a is a prefix
of b. For peFandieNlet p'1:=p(0)... p(i—1) e W(N) and conversely for v e W(N)
let [v]:={peF|v=p}. On B we consider the topology defined by the basis {O,|ve
W(N)} where O,:={beB|v=b}. The induced topology on F is the well-known
Baire’s topology. On N we consider the discrete topology. [F - F] ([F »N]) denotes
the set of all partial continuous functions from F to F (respectively N) with Gj;-sets
(respectively open sets) as domain. (A Gs-set is a countable intersection of open
sets.) J(x) is a standard representation of [F - F] ([F »N]) satisfying a utm- and an
smn-theorem.

Some more details can be found in the authors’ technical report [8] and
Weihrauch’s paper [12].

2. Representations: Continuity, computability, and reducibility

Let M be a set with cardinality not greater than that of the continuum. A
representation of M is a (partial) surjective function 6:F-->M. We say pelF is a
name for xe M if 6(p)=x. Clearly, every x € M must have a name but it is possible
for x to have more than one name. Note that a sequence p € F may not be any name.

The following examples for representations will be used throughout this paper.

2.1. Example. ForpeFletM, :={ieN|i+1erange p}. ThenM:F - P, withM(p) =
M, is the enumeration representation of P,,

2.2. Example. The representation 8. of P, by characteristic functions is defined by
dom 6= {peF|range p< {0, 1}} and 6.( p):= p '{0} whenever p € dom &,

2.3. Example. Weihrauch [12] introduced the following standard representations:
:F>[F->B], where[F->B]:={I":F->B|I continuous},
y:F>[F>F], and y:F-[F->N],
w:F-> O(F), where O(F)={X cF|X is open},
£:F-> Gs(F), where G5(F):={X cF|X is a Gs-set}.
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2.4. Example. Homeomorphisms IT":F" >F and II*”:F¥>F can be defined by
n'"(p)=p,
) a™(p,,....p, if x =2
H( H’(Pl,---,Pnﬂ)(x)::{ (Pl P )(y) 1 X Y,
Pnsa( ) if x=2y+1,
and 11X po, py, pa, - - )iy J) = pi(J).
We shall use

(Prs- s Py =" (py,...,p,) and {(p);:=I(py, p,...)

,=(1"™)™" and II.:= (IT*”)"" are the standard representations of F* and F",

2.5. Example. ForieN, peF let (i, p)(0):= i, (i, p)(n+1):= p(n). Then the function
II:NxF->F defined by II(i, p) = (i, p) is a homeomorphism. IT"! is the standard
representation of N X,

For formulating effectivity properties of theorems, functions, predicates, etc., we
introduce the concept of correspondences (or multivalued functions).

A correspondence is a triple f =(M, M', P) where Pc M xM’.

Define |

dom f={xe M|(3ye M) (x,y) € P},
range f'={ye M'|(3xe M) (x,y) e P}.

2.6. Definition. Let 8, 5’ be representations of M respectively M’ and let f=
(M, M', P) be a correspondence. Then f is called weakly (8, §')-t- (c-) effective iff
there is some (computable) I" € [F - F] such that

(8q,8'Tq)e P forall ge 8§~ dom f.
The correspondence f is called (8, 8')-t (c-) effective iff, in addition,
I'(q) is undefined for all ge 6 '(M\dom f).

A correspondence f= (M, M', P) with ((x,y')e PA(x,z')e P)=>y'=z"is called
a partial function and is denoted by f : M-->M'. Therefore, Definition 2.6 is applicable
to partial functions.

A function f: M--> M' is weakly (8, §')-effective if the following diagram com-
mutes for some I €[F->F]:
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For (strong) (8, 8')-effectively, I' must also respect dom f. Therefore (8, 8')-effective
correspondences have natural domains.

(6, v)-effectivity of a correspondence f = (M, S, P) where v is a numbering of a
set S is defined accordingly using [F - N] instead of [F > F]. It is easy to see that our
definition of effective correspondences generalizes Ershov’s [5] definition of com-
putability on numbered sets. For convenience we shall say ‘continuous’ instead of
‘t-effective’ and ‘computable’ instead of ‘c-effective’.

In recursion theory, the r.e. sets are the domains of computable functions and
the recursive sets are defined by computable characteristic functions. The corre-
sponding definitions in Type 2 theory are as follows.

2.7. Definition. Let & be a representation of M. For any A< M define
dA = (M9 Ns A XN)9
ca=(M,N,{(x,0)|xe A} U{(y,1)|y € M\A}).

(1) Ais 8- (c-) open iff d, is (8, idy)-t- (c-) effective.
(2) Ais 8- (c-) clopen iff c, is (8, idy)-t- (c-) effective.

Usually we shall say ‘provable’ instead of ‘c-open’ and ‘decidable’ instead of
‘c-clopen’. Note that a set A< M is 8-open (clopen) iff 87 'A is open (clopen) in
dom 6.

Representation-effective functions are closed under composition.

2.8. Lemma. Let the 8;’s be representations of M; (i=1,2,3). Let f: M,-->M, be
(8,, 8;)-computable and g: M,-->» M5 be (8,, 8;)-computable.
Then gof: M,--> M; is (8,, 8;)-computable.

The proof immediately follows by composition of the operators computing f and
g. A corresponding version can be proved for ‘continuous’, ‘weakly-computable’,
and ‘weakly-continuous’ instead of ‘computable’. Note that, for g strongly (8., v)-
effective, a similar lemma does not hold.

From given representations certain new representations can be constructed. We
shall introduce some of these.

2.9. Definition. Let §; be representations of M; (ieN) and let » be a numbering
of S.
(1) The representation [§;]; of the set of sequences My, x M, X - - - is defined by

(pi)iedom[é;]; :& (Vi)p;edom g,

[8:1:p:)i = (8o( Po), 6:(p1), - - ).

If (Vi) 6; =8, we write 7 instead of [§;].
(2) The representation [§,, ..., §,] of the finite product M, X - - - X M,, (respec-
tively 8":F-->» X[_,; M,) can be defined accordingly.
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(3) The representation [z, 8] of S X M is defined by
(i, pye dom([v, 8] :& iedom » and p e dom §,
[v, 8Xi, p)= (v(i), 8(p)).

If M={x} and (VpeF) 8(p)=x, we write 8, instead of [v, 8] since SXM is
isomorphic with S.

(4) The representation [8, » 8,] of all the (8,, §,)-continuous functions is defined
by

pedom[d,— 6,]
t[fp(dom 8,) = dom 6, and
{(Vq, q' dom 8,)(8,q = 8,4'=>8,4,,(4) = 8:41,(q)),
[6,-8:])(p)x)= 82c,17p(q) for some arbitrary g€ 8; '{x}.
(5) The representation w; of all the 6-open subsets of M is defined by
pedomw; :& (Vq,q'edom 8) (89 =38q9'=x,(q) = x,(q')),
ws(p)=58(dom x,) whenever pedom w,.

(6) A representation ¢; of all the 8-clopen subsets of M can be defined similarly.

The following examples show that different representations of a set may imply
different kinds of continuity and computability.

(1) The function Union: (P,)V~ P, with Union(A,, A,,...) =1, 4, is (M*, M)-
computable but not even weakly (85, 8.)-continuous.

(2) The function Complement: P, » P, with Complement(A) =N\ A is (8, d.¢)-
computable but not even weakly (M, M)-continuous.

The proof is easy; in case of negative results one can never decide in finitely
many steps whether a natural number n is not in Union(8.{ p,), 8.(p1),...) or
whether n will not appear in the range of a function peF.

A representation may be changed in a certain way without changing the kind of
effectivity defined by it.

2.10. Definition (Reducibility and equivalence of representations). For any two
representations 8, 8’ of M (respectively M') we define

8=<,8" :© Mc M’ and idpais (6, 8')-t-effective,

6=,6" & 6=<,6' and 6&'=,4.

c-reducibility (=.) and c-equivalence (=) is defined accordingly.

2.11. Lemma. Let 8, 8' be representations of M. Then the following properties are
equivalent:

(1) 6,6
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(2) For any representation 8,:F-->M, and any f : M,--> M : fis (weakly) (8,, 8)-t-
effective = f is (weakly) (6,, 8")-t-effective.

(3) For any representation 8,:F-->» M, and any g: M --> M,: g is (weakly) (&', 8,)-t-
effective = g is (weakly) (8, 8,)-t-effective.

The proof immediately follows from Lemma 2.8.

Since Lemma 2.11 also holds for the computable (c-) case it is easy to see that
two representations are t- (c-) equivalent if and only if they induce the same
continuity (computability) theory. Especially t- (c-) equivalent representations define
the same continuous (computable) functions and the same (c-) open and (c-) clopen
sets. Furthermore, equivalence can be transferred to the derived representations (in
the sense of Definition 2.9).

2.12. Lemma. Let §; (6)) be representations of M; (M}) (ieN) and let v (V') be a
numbering of S (S').

(1) (Visn) §;<.8; = [6,...,8,]=<.[80p,...,8,],
(2) (Vi) 6; =<, 6] = [8:]i=.[61],

(3) (8, <. 81av=<V) = [y, ][V, 8]

(@) (B1=,8,A8,<,8}) = [8,~8,]<.[8,~ &3],

(5) iSO AM=M| = (w5<,05 and &5, < &).

The properties (1), (3), (4), and (5) hold correspondingly for the computable case
but a computable version of (2) would require reducibility uniform in i. Therefore,
we can only formulate the simple version,

(2 =81 = <. 8"

Proof. (1)-(3) Let I';e[F~>F] such that §,(p)=6.I';(p) whenever p<dom §; and
let f be partial recursive with »(i) = »'f(i) for i e dom ».

Define, for (1), I'{po, ..., pn)={(Io(Po), - - -, Ta(pn)), for (2), I'{py);:=(Li(p;)
and, for (3), I'(i, p)=(f(i), I'i( p)).

(4) Suppose 8;=8,I" and 6, = 6}4. By the utm- and smn-theorem there is some
total X € [F > F] with

t/;z(,,)(q) = AJ:,,F(q) for every p, g eF.
Hence, for every p e dom[8§, - 8], xe M,,
[8:1=8,1(p)(x) =[8} - 8513 (p)(x).
(5) Suppose 8, = 8,TI". There is some total I e [F - F] with

Xz»(q)=x,I'(q) for every p, gedom I
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It follows that ws;(p) = 8, """ dom x, = w5 Z(p) for pe dom w5 and &;(q) = &,3(q)
whenever ge dom &5, [

The class of representations with the relation <, (<) is a preorder and therefore
for any set Y of representations the following sets are well-defined:
Sup, Y:={8|8 is a least upper bound of Y w.rt.<},

Inf, Y:={5|6 is a greatest lower bound of Y w.r.t. <},

and accordingly Sup. Y and Inf, Y.
Clearly Sup Y and Inf Y are either empty or consist exactly of a single equivalence
class.

2.13. Theorem. Let 8, and 8, be representations. Define 8 and & by

dom 8 :={{p,, p»)|pic dom &, (i=1,2) and 8,p, = 8,p,},
8(p1, p2) = 8:(p;) whenever (p,, p;)€ dom §,
and
819 ifp=2qandqecdom é,,

8(p)=<8,q ifp=2q+1andqedomé,,
div otherwise

(where (2q)(n)=2-q(n), etc.). Then

(1) _8 € Infc{519 82} < Inft{als 82}9
(2) 8eSupds,, 8,} < Sup{s,, 8.}

The proof is immediate, and therefore omitted.

Let M, and M, be the sets represented by 8§, and §,. Then § is a representation
of M,AnM, and § represents M,u M,. Therefore, we shall use the notations
5,n6,=9 and 6,uU 8,:= 6.

The following example explains the relation between the representations M and
o of P,

2.14. Example. Let M be the enumeration representation of P, and &, be the
representation of P, by characteristic functions. Then &€ Inf{M, M} (where
Me(p) =N\M,).

The proof is similar to the proof of “A set is recursive iff it is r.e. and its
complement is r.e.”.
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3. Recursion-theoretical properties of representations

In this section, precompleteness (see [5]) is studied for representations. Most of
the interesting representations are precomplete. The recursion theorem and Rice’s
theorem are consequences of precompleteness. Any representation § of a set M
induces a canonical numbering v; of the computable elements of M. The relation
between & and v; is studied.

We shall start with precompleteness and give some examples.

3.1. Definition. A representation 8:F--» M is called t- (c-) precomplete ift for every
(computable) I" €[F > F] there is some (computable) total 4 €[F - F] such that

6I'(p)=464(p) whenever pe dom I

3.2. Examples. (1) The enumeration representation M :F > P,, is c-precomplete.
(2) The representations y, Y and x are c-precomplete.

Proof. (1) Let I':F--»F be computable and let I" be an oracle-Turing-machine
computing I" (see [12]). For every input p € F let I'( p)(i) e N U {£} be the information
written onto the output tape by I at step i

Define I':F>F by

0 if [(p)(i)=¢,

A(p)(i) :z{f(p)(i) otherwise.

Then 4 is computable and M, ,, =M (,,) holds for every p € dom I'. Note that M, ,,,
is finite if pZ dom I
(2) See[4]. O

Note that if 8:F--»M is precomplete and 6'= Hod for some H: M-->»M’, then
also 8:F-->»M' is precomplete. Therefore, any representation 6 = HeM where
H:P,--»M is precomplete. Also, [6 - 8], ws, and &5 are precomplete for arbitrary
representations 8 and é'.

3.3. Definition. Let 6:F--> M be a representation.
& satisfies the t- (c-) recursion theorem iff there is some total (computable)
N e[ F->F] such that 802(p) = 8«[/,,.()(p) holds for every p eF with J/',, total.

The precomplete representations are exactly those which satisfy the recursion
theorem.

3.4. Theorem. A representation is t- (c-) precomplete iff it satisfies the t- (c-) recursion
theorem.

Proof. (=):Let 6:F--»M be c-precomplete. Since I':F-->F with I'(p):= J;p(p) is
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computable, there is some computable A :F—~F such that
84(p)= 6:5,,( p) whenever pe dom :,5,,.

By the translation lemma there is some computable total 2:F—>F such that (Vp)
¢z<p) = tp,,oA Define (2:= A3, Then {2 is computable and, for every p € F with c,//p
total,

8, 2(p) = 81,AZ () = 85 () X (p) = 842 (p) = 52(p)-

(&) :Let 8:F--> M satisfy the c-recursion theorem by some computable 2:F > F.
Let I':F-->F be computable. Then there is some computable 2:F - F such that (Vp, q)
({72( »(q)=TI"(p). Furthermore, {5, is total whenever pe dom I' and therefore

8023 (p) = 85, 2Z(p) = 8'(p).

Hence A := Qo X:F->F has the desired property. [l

As in the case of numberings for precomplete representations the equivalence
classes of names are inseparable.

3.5. Theorem. Let 5:F-->M be a t- (c-) precomplete representation and let x, y € M,
X# Y.
Then 6 '{x} and 6 '{y} are t- (c-) effectively inseparable.

Proof. Let g 6 '{x}, q¢'c 6 '{y}. There is some c’omputable I' :F-->F such that

q if Xp( p)=0,
I'(p)=4q" ifpedomy, and x,(p)#0,
div otherwise.
From [12] we know that A,:={p|x,(p)=0}and A,={p pr(p) = 1} are c-effectively
inseparable. Clearly, I'(Ay) < 6 '{x} and I'(A,) < 6~ '{y}. Since & is t-precomplete,
there is some continuous total 4:F - F such that 84(p) = 6I'(p), whenever p e dom I

Hence, A(A,) < 8 '{x} and 4(A,)< 6 '{y} and therefore [12, Theorem 4.7] 6 '{x}
and 87 '{ y} are t-effectively inseparable. [J

Rice’s theorem is a consequence. We only formulate the topological version since
it is stronger than the computable one.

3.6. Corollary (Rice’s theorem). Let §:F--> M be t-precomplete and let ) # A< M.
Then A is not 5-clopen.

Proof. Assume A is §-clopen. Then there is some total 4 €[F - F] such that
8 '(A)=4""{0}ndom s and & '(M\A)=A"'(N\{0})~dom &.

Since A7'{0} and A7'(N\{0}) are open and therefore not effectively inseparable,
there is a contradiction (cf. [12, Theorem 4.7]). O
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3.7. Theorem. Let 6:F-->M be a t- (c-) precomplete representation and let A< M.
Then 6§ '(A) ¢, 87'(A).

Proof. Assume 6 '(A)=<, 8 '(A), i.e., there is some total continuous I":F-->F such
that (Vp) 8(p)e A 6I'(p) £ A.

Let I'= Jrq. Since 9§ satisfies the t-recursion theorem, there is some total continuous
2:F->F with

80(q) = 84,02(q) = 8I'2(g).
Since 802(q)e A 8I'(2(q) £ A, there is a contradiction. [

Elements with computable names play a fundamental role for computability
theory. For any representation & there is a canonical numbering v of the computable
elements.

3.8. Definition. Let 6 be a representation of M and let xe M.
x is called 8-computable if x = §( p) for some recursive p. The induced numbering
vs of M.=={xe M|x is 8-computable} is defined by v;(i) = 8¢.

3.9. Examples. (1) Let M, §. be the representations of P, as defined above. Then,
for XN,

X is M-computable <& X isr.e.,

X is 8-computable & X is recursive.

Furthermore, », is recursively isomorphic to the standard numbering W with
W, =dom ¢, of the r.e. sets (see [10]).
(2) Let 8p:F-->P:={f:N--»N} be defined by

dom 8p:={p eF|(3f € P) M, =graph(f) = {(i, |j = f(D}},
8p(p) = graph™ 'M, if pedom &p.

Then feP is dp-computable iff f is computable and v, is recursively isomorphic
to .

(3) Let 8, 8’ be arbitrary representations of M (respectively M’). Let f: M -->M'’
and let A< M. Then

fis[6 > 8']-computable & f is (8, 8')-computable,
A is ws-computable & A is é-provable,

A is £s-computable & A is 8-decidable.

Computability w.r.t. representations forces computability w.r.t. the induced num-
bering of the computable elements.
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3.10. Lemma. Let 6, 8’ be representations of M (respectively M'), let A< M and let
fM->M'.

(1) f(8, 8")-computable=> the restriction of f to M. is (vs, vs')-computable.

(2) A 8-provable (decidable)=> A~ M. is vs-provable (decidable).

Proof. (1) Using oracle-Turing-machines as computability model for computable
operators I :F-->F, it is easy to show that for every computable I":F-->F there is
some recursive g such that I'g; = ¢, for every i. Therefore, if f6 =4I, then
fvs=f8¢ =06'T'p=v;g.

(2) Similar to (1). O

The converse of Lemma 3.10 does not hold in general but it follows from the
Myhill-Shepherdson theorem [9] that for certain representations (e.g., M:F— P,,
8p:F—>P) and total functions computability w.r.t. the induced numberings of the
computable elements forces representation computability.

An immediate consequence of Lemma 3.10 is that ‘6 <_8'=v; <, vs;” holds for
arbitrary representations. Furthermore, v; is precomplete for every representation
8 because ¢ is precomplete. Since precomplete m-equivalent numberings are recur-
sively isomorphic (see [5]) we get the following.

3.11. Corollary. 6=_8"=> v, and vy are recursively isomorphic.

4. Representations of topological spaces

Let 6:F-->M be a representation. Since (F, 7), where 7 is the set of all open
subsets of [, is a topological space, 8 induces a topology 75 on M by

Xers :© 8'X=Andomé forsome Acr.

75 1s called the final topology of 8. It is easy to see that 75 is the set of all §-open
subsets of M.

If on M a topology 7 is already defined, then 7= 1; should hold for any
‘reasonable’ representation & of M.

We give some examples of final topologies.

4.1. Example. Let M be the enumeration representation of P,.. Then the set {O,|e <N,
e finite}, where O,'={X cN|e< X} is a basis of my. Furthermore, M is an open
mapping w.r.t. Ty.

Proof. Obviously, {O,|e<N, e finite} is a basis of a topology r on P,. For ecN
finite we have MO, =(_{[w]|(Vie e) (3j) w(j)=i+1}is open in F.

On the other hand, for we W(N), M([w])= O, with e={i|(3j) w(j)=i+1}.
Therefore, M is continuous and open w.r.t. 7. [
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4.2. Example. The final topology of é,:F--> P, can be characterized by the basis
{O4.|d, e =N, finite} where O,, ={X cN|d < X =N\e}.

4.3. Example. The final topologies II,:F~>F" and II,:F-F" are the product
topologies of F. IT, and IT,, are homeomorphisms. The same holds for IT~":F >N XF.

For convenience we shall use the following notations: If (M, 7;) are topological
spaces and M is an arbitrary set, then

e 7 lp={X N M|Xer} is the topology on M induced by 7,,

e inf(7,, 7,) is the topology on M, n M, with basis {X,n X,| X, e 7, (i=1,2)},
e sup(m, ) ={XcMuUM,|X~Mer (i=1,2)},

. ®,- 7; is the product topology on X ; M,

The next lemma describes the behaviour of final topologies w.r.t. reduction and
product.

4.4. Lemma. Let the 5;’s be representations of M; with final topologies 7. Then
(1) 0,<,6, > TZIM]E T, especially 6,=,6, = 1,= 1,
(2) sup(7y, 7,) = T(5,082) inf(r,, 7,) < T(8,63)s

(3) "n® - - P78, ..., 08, ®i7'i§ 75,3

Proof. (1) Let A;:=dom &, and let 8!:= §;| - Suppose 8, <, §,. Then there is some
continuous 3: A, > A, with 8] = 832. Therefore, for every X = M,:

Xer, = (65)7'X is open = I 7'(85)7' X =(8;) (X n M,) is open
= X n M, e 7, holds for every X c M,.

(2) Suppose X esup(r, 7,). Then there are V,c W(N) with §; (X M,)=
Uiwllwe Vi} (i=1,2).

Let V:=2w|we V,}u{2w+1|we V,}. Then (8,U8,) ' X = J{[w]|we V} and
hence X € 75,s,)-

Conversely, for X e 7,5, follows XnM;er, (i=1,2) by (1), ie, Xe
sup(7,, 72).

Now let X = X, X, where X; e 7. Then, by (1), {X,nM,, Xon M} S 75,05,)
hence X =X, n M, X500 M, € 75,15,

(3) Suppose O;€ 7; (ieN). Then[§;1;(0p X O, X * - ) = 785 0y x 8710, X - - )
is open in dom[§;];. Therefore, Oy X O, X - -+ € 715,

The proof for [6,,..., 8,] is similar. O

It should be noted that there are representations 8 and 8" with 75 = 75 but not

8=,68". Examples are the decimal representation and the standard representation
of the real numbers.
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In the examples above we characterized the final topologies for given representa-
tions. Now we shall define ‘natural’ representations for given topologies. The spaces
we consider are separable Ty-spaces.

(A topological space is separable iff it has a countable basis. It is a T,-space iff
any two points can be distinguished by open sets.)

4.5. Definition. Let (M, 7) be a separable Ty-space and let U be a numbering of a
basis of 7. For xe M let €,(x)={ieN|xe U,}. A standard representation 6,:F--> M
of (M, r) is defined by dom §,:=M'¢,(M) and §,(p)=e;'M, whenever pe
dom §,,.

Since 7 is a Ty-space, €,: M > P, is injective and therefore 8,( p) is well-defined.
A standard representation of a separable T,-space has remarkable properties.

4.6. Theorem. Let (M, 1), U, and 8, be as above. Then

(1) 8, is continuous and open, éspecially T=Ts,.

(2) For any topological space (M', 7') and any H: M-->M', HS, continuous=>H
continuous.

(3) {=<,8, for any continuous (:F-->M. (Note that { is a representation of
range { < M.)

Proof. (1) It is easy to see that ,: M > P, is continuous and open. Since the same
holds for the representation M:F - P, also 8, is open and continuous.

(2) Immediate from (1).

(3) Let {:F--» M be continuous. Then

(Vn) (Vpe dom ¢) (¢(p)e U, < (3k) {[p™]< Un).
There is some continuous 4:F~F such that

My, ={n|(3k) {[p*N< U,}.
Therefore, (Vpedom ¢) {(p)=46.,4(p). O

An immediate consequence of Theorem 4.6 is that all the standard representations
of a separable Ty-space are topologically equivalent. Therefore, the equivalence
class {8|8 =, 8,} is independent of the numbering U.

Since t-equivalent representations induce the same kind of continuity theory, the
following definition is reasonable.

4.7. Definition. Let 5 be a representation of a separable Ty-space (M, 7). 8 is
t-effective (admissible) w.r.t. 7 iff 6 =, 8, for some standard representation §,.

Clearly, the admissible representations of (M, ) form exactly the equivalence
class {8|6 =, 8,} for arbitrary U.
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4.8. Corollary. Let & represent a separable T,-space (M, 7).
8 is admissible
& 8 is continuous and { <, & for any continuous {:F-->M
& & is continuous and 8,<, 8 for some numbering U of a basis of .

Examples for admissible representations are the following:

(1) The enumeration representation M of P,.

(2) The representations II,,:F >F", I1.:F>F", and IT~':F >N XF.

(3) The representations of effective cpo’s defined by Weihrauch and Schifer [13].

Proof of Corollary 4.8. (1) By U,:={A<N|D, =N} a numbering U of a basis of
v can be defined. We prove 6,=<.M.
By definition, 8,(p)=¢;'M, =\ {D;|ieM,} if pe dom §,. Let

k+1 ifp(j)=i+1and ke D,

0 otherwise.

I'(p)i, j, k)= {

Then I':F>F is computable and MI'( p) = 8,(p) for every pe dom é,.

(2) Since II, is a homeomorphism for any continuous (:F-->F", {(p)=
IL(IT'™¢)(p) if pedom ¢, and therefore { <, IT,. The proofs for II,, and IT"' are
similar. [J

Note that a representation can be admissible only w.r.t. its final topology. Clearly,
there are representations of separable Ty-spaces which are not admissible. The
decimal representation of real numbers is an example.

Topological continuity and continuity w.r.t. admissible representations are closely
related.

4.9. Theorem. Let (M, 1;) be separable T,-spaces and let §;:F--> M, be admissible
representations (i=1,2). Let F= M,-->M,.

(1) Fis (7,, 75)-continuous < F is weakly (8,, 8,)-continuous.

(2) Fis (7, 7,)-continuous and dom F € Gs(7,)= F is (8,, 8,)-continuous.

Proof. W.l.o.g. we may assume &, and §, to be standard representations.

(1) Let F: M,-->M, be (7, 7,)-continuous and let 8':= Fo§,. Then 6": F-->M is
continuous and, by Theorem 4.6(3), 8’ <, 8,. Le., F8,(p) = 6,I'( p) forall p e dom F3,
with some continuous I. Conversely, let F be weakly (8,, §,)-continuous, i.e.,
F8,=6,I" for some continuous I". Since §, is continuous, the same holds for F§,
and by Theorem 4.6(2) also F is continuous.

(2) Let F be continuous and dom F € G;5(7,), i.e., dom F =(");.y O, where O, e 7,
for ieN. Since 8, is continuous, there are sets O; open in F such that dom Fé, =
87 dom F =();en O ndom §,.
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By (1) there is some I' €[F >F] with F8,(p)=6,I"(p) for all pedom F§,. Now
let I'; be the restriction of I" to the Gs-set [ )O,. Then, dom I'y =dom I'~{ O, is a
Gs-set and hence I', €[F > F], and, for every pedom §,,

pedom F8, = 8,I'/(p)= Fd,(p)
and
pZ€dom F§, = p#dom I',.

This means that F is strongly (8,, §,)-continuous. [

For some special representations, the converse of (2) also holds. We shall introduce
such a representation of the real numbers in a following paper.

For (strongly) (8, 8')-continuous functions also an effective version of (7, 7')-
continuity can be shown. Let U (U') be a numbering of some basis of 7 (7’) with
(Vi,j) (3k) U;n U; = Uy and let o, (p) = HU; lieM,} be the ‘natural’ representa-
tion of 7. A function F: (M, 7)-->(M’, 7') is called effectively (7, 7’)-continuous iff
F7':7 > 7| 4om r is (0, @,|dom F)-continuous.

4.10. Lemma. Let & be an admissible representation of (M, 7) and let U be a numbering
of a basis of T with (¥i,j) (3k) U;n U;= Uy. Then w,=, w,.

Proof. W.l.0.g. assume 8 = 8,. Then since 8 is continuous and open,
8(p)ewu(q) & (FieM,) (3k) 8[¢"1c U]

holds whenever pe dom 6, g€F. Using the smn-theorem one can easily construct
some total ¥ € [F—F] such that dom x5, ={p|8(p) € w,(q)}, i-e., w,(q) = wsZ(q)
for all g  F. Conversely, for p € dom w;, ws( p) =\ }{8[w]|[w]< dom Xp} holds. Since
for we W(N) there is some jeN with §[w]= U, there is some I' €[F~F] with
Mr, ={j|(3[wlcdom x,) 8[w]=U;} and hence ws;(p)=w,I'(p) whenever pe
dom ws;. [

An immediate consequence is that the notion of effective (7, 7’)-continuity is
independent of the numbering U.

4.11. Theorem. Let &6 (8') be admissible representations of (M, ) (respectively
(M', 7).
A function F: M--> M’ is (8, 8")-continuous iff it is effectively (, 7')-continuous.

Proof. Assume & = §, (8= 8,). Then there are A, A’ € [F > F] with w(p) = ws4'( p),
w5(q) = w,4(q) whenever peF, gedom w,. Let F be (8, 8')-continuous by I'e
[F > F]. Then, by the smn-theorem there is some total X €[F > F] with ys, n=Xxp14’
and hence '

Fl'o.(p)=F 'wsA'(p)=ws2(p)ndom F=w,A3(p) ndom F

whenever pe dom w,,, i.e., F' is (w,, ,|dom F)-continuous.
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Conversely, let F~' be (w,, w,|/dom F)-continuous by 2 and let reF with
M, ., =1{i}. Then,

I'_“—1 Ui = F_lwu(¢r(i)) = U{ L]} I.’ € Mﬂ‘Pr(i)}

and therefore F&(p)e Ui (3jeMyg, ) 8(p)e U,
Choose I’ €[F - F] such that

Mrep={i|(FjeM,) jeMq,,},  (VieN) (VpeF) I'(p)(i)#0.
Then, for pe dom 6,

pedom F6 = 8§'A(p)= F8(p)
and

pedom F§ = M,,,=0 = A(p)=div.

Hence F is (8, ')-continuous. [

Also Theorem 4.11 shows that our approach is very consistent.

Separable complete metric spaces are important in analysis and functional analy-
sis. The following example gives a direct construction of an admissible representation
of a separable complete metric space for which a numbering of a dense subset is given.

4.12. Example (Separable complete metric space). Let (M, d) be a metric space and
let B be a numbering of a dense subset C = M. Then all the elements of M can be
represented by Cauchy-sequences on C. This idea induces a representation &, of M by

dom 8.={p|(Bp(i))icn is a Cauchy-sequence}
and

S.(p)=1lim Bp(i) for all pedom é..

But & is not admissible because the final topology of 8. is trivial (i.e., 75 = {0, M}).
A second condition on the domain of the representations forcing the speed of convergence
gives a satisfactory result:

Define én¢:F--> M by

dom Sne={p| (Vi) d(Bp(i+1), Bp(i)) <27}

and
dnc(p)=08.p) forpedom dnc.
Then 6y is admissible w.r.t. the topology 7, induced on M by d.
Proof. (1) Suppose X #¢ is 6.-open, i.e., there is some A< W(N) with 6§.'X =

(U{[w]lwe A} ndom &.. Choose an arbitrary y € M. Then for every ve A there is
some p€[v] with 6.(p)=y. Hence, ye X, i.e., X = M.
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(2) Let B ,={xe M|d(x, B;) <27}. Then the set {B;|(i,j)€N} is a basis of
7s and the corresponding standard representation 8 satisfies

dom 8z ={p|(Fxe M) M, ={(i, j)|d(x, B:) <27},
{8B(p)}=m{B(i,j>|<i,j>€Mp}~

We show 65 =, nc-
Since

dne(p)e B jy © (3k) d(Bpky, Bi) <277 -27%

it is easy to construct some continuous I':F>F with M, = {(i, j)| dnc(p) € B}
and hence 8nc(p) =8I (p) whenever p € dom dnc.

Conversely, there is some computable A :F-->F such that, forpeF,jeN, A(p)(j) =
wil(i, j+1)eM,]. Suppose p € dom 85 Then pe dom A and

d(nBA(P)(j)a ﬁA(p)(j+l))$2—j for every jeN.
Therefore, 85(p) =6ncd(p). O

The following theorem gives closure properties of admissible representations.

4.13. Theorem. Let the §;’s be admissible representations of (M, 7;) (i€N).
(1) [8,,...,8,] is an admissible representation of (M, X - - XM, 1,® - -®,).
(2) [8:]; is an admissible representation of (X, M, X, 7).
(3) Any 8 €Inf(8,, 8,) is admissible w.r.t. (M, M,, inf(7,, 7,)).

Proof. W.l.o.g. let the §;’s be standard representations.

(1) Similar to (2), see below.

(2) By Lemma 4.4, 1'[5,.],_2®,- 7, 1.e., [6;]; is continuous. Let (:F--> X, M, be
continuous, let {; = pr,{ :F--> M, Then, for any ieN, ¢{; is continuous and therefore
{; = 6,1 for some continuous [;:F-->F. Let I'(p)=(I';(p)). Then I' is continuous
and satisfies {(p)=[8,1I(p). Hence, {=<,[6;]; and, by Corollary 4.8, [§,]; is
admissible.

(3) Choose 8 = 8,n 8,. Then, by Lemma 4.4, § is continuous. Then ¢(p) = 8,1;(p)
for some continuous I;:F-->F. Let I'(p):=(I'\(p), I,(p)). Then, {(p)=6I(p) for

all pedom ¢, i.e., {<,6. Hence, 6 is admissible and the same holds for é¢
Inf(5,,5,). O

Note that, by Lemma 4.4, sup(7,, 7,) is the final topology of 8, U 8, but generally
8,U 8, is not admissible. For counter-examples, see [8] or the following paper.

We now give a final example: We have already proved that M :F > P,, is admissible
and that the sets O, = {X =N|e < X} where e =N finite form a basis of . Similarly
it can be shown that M° is admissible with basis sets U, :={X = N|X =N\e}.

Hence, the representation 6 of P, is also admissible and its final topology is
generated by O,,. ={X cN|d = X cN\e}.
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5. Conclusion

This paper presents basic definitions and properties of the theory of representations
as a tool for further research. In Section 2, the effectivity of subsets and functions
relative to given representations is studied. It is shown that a representation is
defined uniquely up to t- (c-) equivalence by the topological (computational) proper-
ties induced by it. Several standard constructions of new representations from given
ones are introduced and it is shown that these constructions respect reducibility.
Finally, it is shown that for any two representations the supremum and infimum
exist. In Section 3, some recursion-theoretical properties are investigated. The
recursion theorem for precomplete representations is proved and different versions
of Rice’s theorem are derived. It is shown that the concepts of computability
introduced so far are consistent, and finally the numbering derived from a representa-
tion is considered. In Section 4, topological properties are investigated. Every
representation induces a topology on the represented set, the final topology. For
any separable Ty-space there is a distinguished uniquely defined (up to t-equivalence)
representation which is called admissible. Admissible representations have very
satisfactory properties some of which are investigated.

Especially it is shown that continuity and continuity w.r.t. admissible representa-
tions are reasonably related. There is no doubt that the admissible representations
are the most reasonable ones for separable T,-spaces. In the case of the real numbers
R with standard topology, several representations such as the decimal representation
are not admissible. The concept of admissibility leads to standard representations
of the LP-spaces [14] and other separable T,-spaces from functional analysis.
Therefore, the theory of constructive functional analysis is well-defined. Representa-
tions are also useful in constructive analysis since without using intuitionistic logic
it can be studied whether mathematical objects (sets, functions, predicates etc.) are
constructive or not. A unified approach to constructive (and recursive) analysis may
serve as intermediary between traditional ‘idealistic’ mathematics (not concerning
with constructivity) and intuitionistic mathematics [1, 2], which does not accept
nonconstructive objects and proofs. This area will be investigated in a forthcoming
paper.

The study of computational complexity [6, 7] is a further application of representa-
tions. Even a canonical approach to constructive measure theory (on R) is possible
by using an appropriate separable metric space. It should be mentioned that
computability properties of the (t-) admissible representation 8, depend on the
numbering U, which should be chosen as ‘c-effective’ as possible. A general rule
does not seem to exist.
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