Theoretical Computer Science 38 (1985) 143-156 143
North-Holland

THE RECURSION-THEORETIC STRUCTURE OF
COMPLEXITY CLASSES

Diana SCHMIDT

Institut fiir Informatik I, Universitdt Karlsruhe, Postfach 6830, D-7500 Karlsruhe 1,
Fed. Rep. Germany

Communicated by R.V. Book
Received April 1984
Revised December 1984

Abstract. We prove easy recursion-theoretic results which have as corollaries generalizations of
existing diagonalization theorems on complexity classes: roughly speaking, almost no ‘reasonable’
(time, space or even abstract) complexity class can be expressed as the (non-trivial) union of two
recursively presentable classes which are closed under finite variations (e.g. unless NP=P,
NP # Pu {NP-complete languages}); and, consequently, the non-trivial complement of one com-
plexity class in another (e.g. (NP\P), provided NP # P) is almost never recursively presentable.

1. Introduction

In [8], [3] and [12], a number of closely related results appeared: first, Theorem
23 of Landweber et al. [8].

Theorem 1.1. If P & NP, then neither (NP\P) nor the class of non-complete languages
in (NP\P) is recursively presentable.

Then Theorem 6 of Chew and Machtey [3], which may be stated as follows.

Theorem 1.2. Let C, be a recursively presentable list of infinite r.e. languages, C, a
recursively presented list of recursive languages which is closed under finite variations,
and B a recursive language. Then

BgC, = {BNC|CeP}z (C,uG,).

Now, putting C,=P (respectively C,=Pu {complete sets in NP}) and C,=
(NP\G,), G, is recursively presentable and closed under finite variations, and if
NP# P then C, is nonempty (for C,=Pu {complete sets in NP} this follows, for
example, from Ladner’s work in [6]) and contains only infinite sets. But for any
Be C,, {BN C|CeP}= NP=(C,u G,); hence, by Chew and Machtey’s theorem,
C, cannot be recursively presentable even by r.e. indices. Thus Chew and Machtey’s

0304-3975/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

Contrumvr 2)

144 D. Schmidt

result implies (a sharpening of) that of Landweber et al. and a host of similar ones
obtained by replacing NP by any other class which is closed under intersection with
languages in P. '

Last among these related results is that of Schoning [12], which is stated as the
existence of a certain diagonal language A £ (C, U G,) given languages A, £ C,, A, €
C,, but can be reformulated as follows.

Theorem 1.3. Let C, and C, both be recursively presentable classes of recursive
languages which are closed under finite variations, and let A be a recursive language.
Then, putting

(<A)={B|B=<} A}
(=sA)Z2C&(sA)2C,=>(sA)2CUG,.

(In fact, this formulation is slightly stronger than Schoning’s; it is equivalent to
the theorem obtained by replacing Schoning’s assertion “(e) if A,eP and A,¢
{@, I'*}, then A<F A,” by the somewhat stronger assertion “(e') A<h A,PA,”,
which follows from Schoéning’s proof anyway. We leave the proof of this equivalence
to the reader.)

The last two theorems can be used to deduce easily results like:

(1) NP# P=> NP#PuU{A|A is NP-complete under <5%};

(2) NP# P=> (NP\P) is not recursively presentablie;

(3) the class of infinite subsets of I'* decidable in polynomial time is not recur-
sively presentable.

But the above theorems do not, as they stand, yield corollaries of the form
‘CZ(C,u G, or ‘(C\(,) is not recursively presentable’ in which C is not closed
under <P or at least under intersection with languages in P. The purpose of this
paper is to strengthen the theorems so that they do yield such corollaries: for almost
all ‘reasonable’ complexity classes C, and even more classes C,;, C, which arise
naturally in complexity theory,

Cg C1 & CZ C2 = CE(CIUCZ).

In particular, C = C,u C,= C = C, or C = C, (‘most reasonable complexity classes
cannot be the non-trivial union of two others’); and

Cn C,#0 = (C\(,) is not recursively presentable

(‘the non-trivial complement of one complexity class in another is mostly hard to
generate’).

Regan’s ‘Uniform Diagonalization Theorem’ [11] has a certain resemblance with
Theorems 3.1 and 3.2 below, but it is an adaptation of Schoning’s theorem to the
subclass of (< A) obtained by considering only length increasing invertible reduc-
tions, so it is a strengthening of that theorem for a special case and not a generaliz-
ation.

Section 2 deals with notation and definitions; we prove the main theorems in
Section 3; in Section 4 we show which C fulfil the conditions of the main theorems;

Recursion-theoretic structure of complexity classes 145

in Section 5 we do the same for C; and C,; and in Section 6 we indicate how to
apply our theorems to yield a result of Breidbart [2].

2. Notation and definitions

Notation

In the following, we suppose that all languages are over some fixed alphabet I
such that |I'|=2. We use lower-case letters u, v, w to denote words (over I'),
upper-case letters A, B, C, G, X, Y to denote languages (over I'), bold-face C to
denote classes of languages and F to denote classes of functions from N into N.

Definitions

P and NP denote, as usual, the classes of languages which can be recognized in
polynomial time by some deterministic (resp. nondeterministic) Turing machine.

AAB=(A\B)uU(B\A); C is closed under finite variations if, for each A, B such
that AAB is finite, Ac C= Be C.

<%, =<7, are the polynomial time-bounded versions of Turing and many-one
reducibility.

A class C of sets is recursively presentable (by recursive indices) if there is an
effective enumeration of Turing machines M,, M,, . . . all of which halt on all inputs,
such that C ={L(M,)|ieN}. C is merely recursively presentable by r.e. indices if the
Turing machines are not required to halt on all inputs, i.e. if they merely recognize
the sets of C rather than deciding them. A class of functions from N into N is
recursively presentable if there is an effective enumeration of Turing machines which
compute the functions.

If A is any language, the intervals of A are the maximal subsets of A of the form
{w|m=<|w|<n} (m<neN), and the gaps of A are the intervals of A.

A is a gap language if A is the union of all its intervals, i.e. if for all u, v such
that |u|=|v|, ue A & ve A Let A beagap language, B be any language. B majorizes
A if for all neN, An{w||w|= n} has an interval which is contained in B and a gap
which is contained in B.

A class C of languages is said to be recursive gap closed if, for every recursive
gap language G, with infinitely many gaps and intervals, there is a language G
which majorizes G, s.t. G, G € C. Clearly, if C < C’ and C is recursive gap closed,
then so is C'.

3. The main theorems

The two theorems which follow are of a very general nature and have, on the
face of it, nothing to do with complexity theory. But, as we shall see in Sections 4
and 5, they are applicable to many classes which arise naturally in complexity theory.

146 D. Schmidt

Theorem 3.1. Let C be a class of recursive languages which is recursive gap closed and
closed under union and intersection, and let C,, C, be recursively presentable classes
which are closed under finite variations. Then

CzC,&CezC, = CgCuC.

Proof. Let P, P,,... and Q,, Q,, ... be effective enumerations of Turing machines
which present C, and C, respectively. Now if C g C, and C £ G, then there is an
A,e C\C, and an A,e C\C,. Define

ri(n) =max{(um > n)(3ze L(P)AA,)(|z| = m)|i<n},
r(n)=max{(um>n)(3ze L(Q))AA,)(|z]=m)|i<n} for all neN.

r,, r, are total (because A, € C,, A, ¢ G, and C,, C, are closed under finite variations)
and recursive (because A,, A, are recursive and each P, Q, halts on all inputs).
Now define r(n) =max{r,(n), r,(n)} for all neN; then r is also recursive and the
set G, defined by

G, ={w||lw|=0 or (IneN)(r*"(0) <|w|< r*"*'(0))}

is a recursive gap language with infinitely many gaps and intervals. By hypothesis,
there is a language G which majorizes G, such that G, G € C. Define A= (G A,) U
(G A,). Then, since C is closed under intersection and union, Ac C,

Ag C,: suppose A€ C,. Then there is a j such that A= L(P;). Now for any n
such that j < r*"(0), by the definition of r, there is a we L(P,)AA, = AAA, such that

" (0) <|w|< r,(r*(0)) < r(r*(0)) = r*"**(0).

Thus each interval of G, which is contained in {w||w|>j+1} contains some
we AN A,. But, since G majorizes G,, one such interval is contained in G and hence
G contains some we AAA,. This contradicts A=(GnA,)u(Gn A,).

A g C,: Analogous, using odd n and gaps instead of intervals. [

This proof is basically the same as the proof of the main theorem in Schoning’s
[12] and Theorem 3.1 can, with the help of Theorem 4.1 below, be seen to imply
that theorem (put C ={B|B <%, A} to obtain the reformulation in Section 1).

Now it turns out that if we assume that C, contains only infinite languages (which
is quite a strong assumption for a recursively presentable class; for, as we shall see
below, the class of all infinite languages in C is not recursively presentable even
by r.e. indices) then we can considerably weaken the other assumptions on C and
C, and still obtain the conclusion C g C,u C..

Theorem 3.2. Let C be a class of recursive languages which is recursive gap closed and
closed under intersection, C, be a recursively presentable class of infinite r.e. sets and
C, a recursively presentable class of recursive sets which is closed under finite variations.

Recursion-theoretic structure of complexity classes 147

Then
CzC,= CzC,uC(.,.

Proof. Define r, as in the proof of Theorem 3.1 and r, by

r,(n) = max{(pm)(3w)(n<|w|<m and P, accepts

w in at most m steps)|i <n}.

r, is total (because, by hypothesis, each L(P;) is infinite) and recursive (because,
although the P, do not in general halt on all inputs, each P; is simulated for only
finitely many steps in the computation of r,(n)).

Now define r(n) = max{r,(n), r,(n)} for all neN and G,={w||w|=0 or (IneN)
(r?"(0) <|w|< r*"*1(0))} as before. Again, there is a language G € C which majorizes
G, This time, define A= Gn A,. Ag C, follows as before and A€ C because C is
closed under intersection.

Ag C,: if Ae C,, then there is a j such that A= L(P;). Now for any n such that
j< r*"*1(0), by the definition of r, there is a we L(P;) = A such that

r2n+1(0) < 'Wl < rl(r2n+1(0)) < r(r2n+l(0)) — r2n+2(0)'

Thus each gap of G, which is contained in {w||w|> j+ 1} contains some w € A. But,
since G majorizes G,, one such gap is contained in G and hence G contains some
w € A. This contradicts A=Gn A,. 0O

This proof is basically the same as that of Chew and Machtey [3, Theorem 6]
and Theorem 3.2 can, with the help of Theorem 4.1 below, be seen to imply that
theorem (put C = {B n C|C € P}). Note that, in Theorem 3.2, the additional assump-
tion that C, contains only infinite sets is strong enough to counterbalance several
weakenings of the premise (closure of C under union is no longer required; C, is
required to be recursively presentable only by r.e. indices, may contain nonrecursive
sets and is not required to be closed under finite variations; but C ¢ C,, though no
longer explicitly assumed, now follows from the other assumptions by Corollary
3.3 below) while still yielding the conclusion C & C,u C,. In fact, Theorem 3.2
immediately yields a corollary which shows how rare such C, as in Theorem 3.2 are.

Corollary 3.3. Let C be a class of recursive languages which is recursive gap closed
and closed under intersection. Then for any recursively presentable class C, of infinite
r.e. sets

{Ae C|A is infinite} 2 C,.

Proof. Put C,={A | A is a finite language}. C, is recursively presentable and closed
under finite variations. C & C, since C is recursive gap closed and therefore certainly
contains infinite languages. Hence, by Theorem 3.2, CZ C,u C,; the assertion
follows immediately. [

148 D. Schmidt

This is not to say that there are no classes C; satisfying the conditions of Theorem
3.2: examples are classes of complete languages in some class with respect to some
reduction (e.g. EXPSPACE-complete languages; or NP-complete languages if P#
NP) and any recursively presentable class of languages which all contain one fixed,
infinite language (e.g. the class of all those r.e. languages which contain {0}*). If
C, satisfies the conditions of Theorem 3.2, Theorem 3.2 is usually quicker to apply
than Theorem 3.1, whereas if both C, and C, contain finite languages, Theorem 3.1
must be applied. But the applications in which Theorem 3.2 really has the edge
over Theorem 3.1 are those in which it is shown by contraposition that some class
is not recursively presentable. A typical example is the following.

Corollary 3.4. Let C be a class of recursive languages which is recursive gap closed
and closed under finite variations, union and intersection, and let C, be a recursively

presentable class which is closed under finite variations.
Then

Cn GC,#0 = (C\G,) is not recursively presentable

(and, if C, contains all finite languages, (C\ C,) is not even recursively presentable by r.e.
indices).

Proof. If (C\C,) were recursively presentable, then, putting C,=(C\(G,), C, G
and C, would fulfil the conditions of Theorem 3.1 (C & C, because otherwise we
should have (C\C,)=@, which is not recursively presentable), yielding C &
(C\C,) u C,, a contradiction. If C, contains all finite languages, then merely assum-
in_g that (C\C,) is recursively presentable by r.e. indices makes Theorem 3.2
applicable to yield the same contradiction. [

We shall see in Sections 4 and 5 that this corollary implies, roughly speaking,
that the complement of one complexity class in another is almost never recursively
presentable. Corollary 3.5 below implies that almost no ‘reasonable’ complexity
class can be expressed nontrivially as the union of two others.

Corollary 3.5. Let C, C, and C, be as in Theorem 3.1 or Theorem 3.2. Then
C=C1UC2 = C=C1 0rC=C2.

Proof. C=C,u C,= C2C, and C 2 C,. Moreover, by Theorem 3.1 respectively
Theorem 3.2,

C=C1UC2:C§C1 or C§C2:C=C10rC=C2. O

4. Classes which are recursive gap closed

In this section, we show that many classes which arise naturally in complexity
theory have the properties required of C in the main theorems.

Recursion-theoretic structure of complexity classes 149

We refer the reader to [12] for any unexplained notation. We shall use the following
notation for (relativized and unrelativized) Turing machine complexity classes:

DTIME”(F) ={X |there is an fe F and a deterministic f-time-bounded
Turing machine with oracle A which decides X};
NTIMEA(F) = {X |there is an f € F and a nondeterministic f-time-bounded
Turing machine with oracle A which recognizes X};
DTIME(F) = DTIME?(F); NTIME(F) = NTIME?(F);

and, for any complexity class C,

co-C={I'"\X|X e C}.
O(F)={g|(3f € F, keN)(g(n) < kf(n) for all neN)}.

The Turing machine space complexity classes DSPACE*(F), NSPACE*(F), etc.
are defined analogously, except that the suffices ‘on-line’ and ‘off-line’ are added
to indicate whether the input must be read from left to right only or not (this
distinction is only important if the space bounds in F are less than linear); we refer
the reader to [5], [9] and [14] for a comparison of the power of on-line and off-line
Turing machines.

Theorem 4.1. DTIME(n) is recursive gap closed ; hence, so is any complexity class
DTIME(F) or NTIME(F) such that ne O(F).

Proof. Let G, be a recursive gap language with infinitely many gaps and intervals.
We define a gap language G e DTIME(n) (whence also Ge DTIME(n)) which
majorizes G, as follows:

Since G, is recursive, there is some Turing machine T which decides G,. We
define a Turing machine M which on input w proceeds as follows:

M reads w from left to right. Simultaneously, on its work tapes M computes
M), T)), M(0), T(0),...,M(0”), T(0") for as long as it can (until w is
exhausted), meanwhile keeping a note of whether, in the initial segment
{(),0,...,0°} which M can supervise, L(M) contains a whole interval of L(T)
(= G,) (we call this ‘case I’) or L(M) contains a whole gap of L(T) (we call this
‘case G’) and, if so, which case occurred last. If neither case I nor case G occurred
or if case G occurred last, then M accepts w; and if case I occurred last, then M
rejects w.

Clearly, M can be designed to operate in real time. Moreover, by the construction
of M, M goes on accepting everything until it notices that it has accepted a whole
interval of Gj; after that, it goes on rejecting everything until it notices that it has
rejected a whole gap of Gj; and so on, ensuring that the language G accepted by

M majorizes G,. This is a typical application of the ‘looking-back’ method as
introduced by Ladner [6]. O

150 D. Schmidt

Theorem 4.2. DSPACEon_,ine(log n) is recursive gap closed ; hence, so is any complexity
class DSPACE(F) or NSPACE(F) such that log ne O(F).

Proof. Let G, be a recursive gap set. We define a gap set G e DSPACE,, j,.(log n)
(whence also G € DSPACE,i..(log n)) which majorizes G, as follows:

Let T be a Turing machine which decides G,. We define an on-line logspace-
bounded Turing machine M which on input w proceeds as follows:

First, M reads w from left to right, keeping a binary counter of the length of the
input on a work tape. When the whole of w has been read, the portion of the tape
now cccupied by the counter is marked off and only this portion is used in the
following computations, thus ensuring that M is logspace-bounded. Now M pro-
ceeds exactly like the machine M in the proof of Theorem 4.1, except that it is now
limited not by a time bound but by the space bound. Just as in the proof of Theorem
4.1, the language G accepted by M majorizes G,. This is another typical application
of Ladner’s ‘looking back’ method. [

Note that the two essential ingredients of the proof of Theorem 4.2 as far as the
space-bounding function |log n} is concerned are the facts that it is ‘uniformly tape
constructible’ (i.e. there is a Turing machine—on-line, in this case—which uses
precisely |log n| squares of its work tape on every input of length n) and that
lim,,,» |log n] = c0; the proof would work just as well, even for off-line machines,
for any other space-bounding function with these two properties. The fact (Corollary
4.7 below) that the theorem is false even for off-line space complexity classes with
more slowly-growing space bounds implies that no space bound which grows more
slowly than log n has both these properties (this latter fact is Theorem 4(i) of [5]).

In fact, Theorems 4.1 and 4.2 can be merged into one.

Theorem 4.3

{X| there is a deterministic on-line n-time-bounded and log(n)-space-bounded
Turing machine which decides X},

is recursive gap closed ; hence, so is any class of languages containing this class.

Proof. Define a Turing machine M which on input w works just like the machine
in the proof of Theorem 4.1 (and hence is on-line and real time) except that it is
adapted in the following way to ensure that it is also logspace-bounded: before
starting to compute M ({)), T({)), ..., M marks off zero squares of available work
space on its work tape and, on another part of the work tape, sets up a binary
counter with initial value zero. Only the marked-off work space may be used in
computing M({)), T((}),....Whenever M needs more work space for this compu-
tation, it calls a subroutine which increases the binary counter by one repeatedly
until the length of the counter increases; then M may extend the marked-off work
space by one square and proceed with the computation of M({)), T({)),....
Clearly, M uses O(log |w|) squares of its work tape and is hence logspace bounded;
and, as before, the language accepted by M majorizes G,. 0O

Recursion-theoretic structure of complexity classes 151

The time-and-space-limiting mechanism of M is almost identical to that used in
Breidbart’s proof of Theorem 1 in [2]; in Section 6 we shall show how to infer
Breidbart’s result from Theorem 4.3.

In fact, even most abstract complexity classes are recursive gap closed. (We refer
the reader to [1, Chapter 9] for an introduction to abstract complexity theory.)

Theorem 4.4. Let € be an abstract complexity measure. Then there is a recursive
function f such that, for any function g such that f(n) < g(n) almost everywhere, gif
is recursive gap closed. (R is the complexity class defined by resource bound g.)

Proof. Use either Theorem 4.1 or Theorem 4.2 and the fact that any two abstract
complexity measures are recursively related. [

Thus, Theorems 3.1 and 3.2 are applicable to most abstract complexity classes,
provided they are closed under union and intersection. In the rest of this section
we shall consider (Chomsky and complexity) classes to which Theorems 3.1 and
3.2 do not apply.

By [5, Theorem 3], any on-line space complexity class whose space bound does
not grow as fast as log n is identical to the class of regular languages, which is not
recursive gap closed.

Theorem 4.5. The class of context-free languages, and hence also that of regular
languages, is not recursive gap closed, and moreover Theorems 3.1 and 3.2 fail for
both these classes. (The class of context-sensitive languages is recursive gap closed.)

Proof. The last assertion follows from Theorem 4.2, since the class of context-
sensitive languages is just NSPACE(n). The class of context-free languages is not
recursive gap closed because, by the ‘uvwxy’-theorem, every context-free language
is either finite or has gaps of bounded length, whereas there are certainly infinite
recursive gap languages with gaps of unbounded length. Moreover, Theorems 3.1
and 3.2 fail for both the context-free languages and the regular languages because
finiteness is decidable in (standard recursive presentations of) both these classes,
so in both these classes both the subclass of finite sets and that of infinite sets are
recursively presentable. [

Unlike the on-line space complexity classes, the non-trivial off-line space com-
plexity classes do not stop at space bound log n but go down to space bound
log log n (see [5, Theorem 2] and [9, Theorem 1]). But, as we shall see, below log n,
even if we throw in nondeterminism, the off-line space complexity classes cease to
be recursive gap closed. First, we need the following lemma.

Lemma 4.6. Given s:N—>N, if M is any s(n)-space-bounded off-line nondeterministic

152 D. Schmidt

Turing machine with tape alphabet Ay, and set of states Sy, then for any n such that
log n> (log |An|+10g |Sp|+1)s(n),
and, for any ae€ Ay,

a"e L(M) = a""*'e L(M) for each keN.

Proof. By a generalized state we shall mean a triple

(contents of M’s work tape, position of M’s read/write head on work
tape, state of M)

—i.e. what is usually called a configuration, except that we disregard M’s input
tape. Clearly, M can take on at most |A,|**™ - s(n) - |Sy,| different generalized states
in a computation on input a”, and if

log n> (log |An|+10g |Sa|+1)s(n),

then n>|A, " - s(n) - |Sp| so M cannot take on n different generalized states in
any computation on input a”.

Now define an excursion as a part of a computation on input a” in which the
read/write head on the input tape starts and ends on a blank square and scans only
a’s otherwise. A short excursion is one which starts and ends at the same end of
the input and a long excursion is one whose beginning and end are at opposite ends
of the input. Now in a long excursion the whole input is eventually traversed, say
from left to right. So, since M takes on fewer than n different generalized states, if
we consider the generalized states assumed by M as the read/write head on the
input tape crosses each square of the input for the first time (in a given long
excursion), some generalized state must occur twice in this list, say at positions i
and j (i<j). But then, on any input a"**U~Y, there is a computation in which this
generalized state goes on recurring at position i+ 1(j—i) for each /< k and is then
followed by the same sequence of generalized states as in the rest of the long
excursion on input a”, thus yielding a long excursion on this new input which begins
and ends with the same generalized states as before. In particular, since (j—i)|n!,
for any long excursion on input a” there is a long excursion on input a"™*"! (k eN)
which begins and ends with the same generalized states. But this is trivially true of
short excursions anyway. Hence, since any accepting computation of M on a” may
be regarded as a sequence of excursions, possibly followed by a computation in
which only the a’s are scanned, it follows that for any accepting computation on
a” there is also an accepting computation on a”**"' for each keN. O

This proof is basically the same as that of [9, Theorem 2(1)] and similar proofs
occur elsewhere in the literature, but we include it here in full to make it clear that
this particular version does also apply to nondeterministic Turing machines.

Recursion-theoretic structure of complexity classes 153

Corollary 4.7. If s:N—>N is such that
. s(n)
Iim =
n-co log n

then NSPACE .5.1inc(s(n)) (and, hence, also DSPACE ,4.ine(5(n))) is not recursive
gap closed.

0,

Proof. If M is an s(n)-space-bounded off-line nondeterministic Turing machine
with tape alphabet A,, and set of states Sy, then, since lim,,.. s(n)/log n =0, there
is an noeN such that, for all n= n,y, log n> (log |Ap|+10g |Sa|+1)s(n). But then,
by Lemma 4.6, for each n= n, and a € A, either a" € L(M) or, if a” € L(M), then
L(M) contains no gap of length >n! because a”**"'e L(M) for each keN. Thus
either a™ ¢ L(M) for all n = n,, in which case L(M) has only finitely many intervals,
or a”"e€ L(M) for some n=n,, in which case all gaps in L(M) are of bounded
length. Since there are infinite recursive gap languages with gaps of unbounded
length, it follows that NSPACE .4 ;n.(s(n)) cannot be recursive gap closed. [l

Remark. Let us consider four related properties of certain classes C of languages:
(1) C is recursive gap closed;
(2) there are no recursively presentable classes C,, C,, each closed under finite
variations, such that

C§C1UC2 but CZC[&C@CZ;

(3) there are no recursively presentable classes C,, C, closed under finite vari-
ations such that C=C,u C, and C,n C,=0;

(4) there is no recursive presentation of C in which finiteness is decidable.

Now, for any class C which is closed under finite variations, intersection and
union and properly contains the class of all finite languages, (1) = (2) = (3) = (4).
((1)=(2) by Theorem 3.1; (2) = (3) because any recursively presentable class is
nonempty; and (3)=> (4) because, if (4) fails to hold, putting C, = class of finite
languages and C, = (C\C,) violates (3)).

Now our prime examples of classes which violate (1)—the context-free languages
and the regular languages—also violate (4) (and, hence, (2) and (3)). We do not
know whether the classes NSPACE g jine(s(n)) and DSPACE 4 in(s(n)) which
violate (1) satisfy (2), (3) and (4) or not. Indeed, we do not know whether some
or all of (1)-(4) are equivalent for classes C with the above properties, maybe
supplemented by one or two further natural closure properties. The question whether
(1) and (4) are equivalent was raised by W. Menzel.

5. Recursively presentable classes

Since many classes are shown in [12] to be recursively presentable and the proofs
of the generalizations here are similar to the proofs there, we shall just give a
summary.

154 D. Schmidt

Definition 5.1. Let C be any class of languages, < any reduction relation. We use
(C<)todenote {X|(3Y e C)(Y<X)}and (= C)todenote {X|(AY e C)(X < Y)}.
Note that if X is <-complete for C, then

{<-complete sets for C}=C n({X}=).

Theorem 5.2. The following classes of languages are recursively presentable (by recur-
sive indices) and closed under finite variations:

(a) Rf if € is any abstract complexity measure and F any recursively presentable
set of unary recursive functions from N into N, provided R§ is closed under finite
variations [1, Th. 9.18). Particular instances of such abstract complexity classes are,
for example, DTIME(F), NTIME(F), DSPACE g in.(F), NSPACE 4. inc(F),
DSPACE g jine(F), NSPACE,, jine(F), where F={n"|keN}, F={2""|keN}, F=
{An - n}, etc, and the relativized versions of any of these classes with any recursive
oracle A (e.g. DTIME"(F)).

(b) co-C,, (C,n G,) (provided C,n C,#0) and (C,u C,), whenever C, and C,
are themselves recursively presentable and closed under finite variations.

(c) (=< C) whenever C is recursively presentable, C £ {0, I'*}, F is a recursively
presentable set of unary recursive functions and < is either the F-time-bounded or the
F-space-bounded restriction of <y, <., <, or any of the restrictions of truth-table
reducibility (see [7]), of the nondeterministic (see [7, Section 4]) or strongly nondeter-
ministic (see [8, Section 3]) variant of any of these reduction relations, or of <g (see
[10]).

(d) C,n(C,<) whenever < is as in (c), C, and C, are recursively presentable,
C,n(C,<)#9 and C, is closed under finite variations and (VX € C,)(V finite
YcT*(XY & X&T*\Y)).

Remarks. By Theorem 5.2, the following classes are recursively presentable and
closed under finite variations:

- DTIME(n), DTIME(n?), DTIME(n?), ..., P, NP, co-NP,
all classes 2 f, II? and A} in the polynomial hierarchy, PH,
EXPTIME, NEXPTIME, etc; DSPACE,, ;in.(log n),
DSPACE ,g.1inc(l0g log n), DSPACE .4 jin.(log n), DSPACE(n),
NSPACE(n), DSPACE(n?), ..., PSPACE, EXPSPACE, etc;
{<-complete sets for C},
whenever < is as in Theorem 5.2(c) and C is recursively presentable and closed
under finite variations and contains a language which is complete under < (for then
either {<-complete languages for C}= C or, for any X which is <-complete for
C, {<-complete languages for C}= C n ({X}=) fulfils the conditions of Theorem
5.2(d). Thus, by Theorem 5.2, all ‘reasonable’ complexity classes and many more

classes which arise naturally in complexity theory are recursively presentable and
closed under finite variations.

i

Recursion-theoretic structure of complexity classes 155

Notable exceptions are, by Corollary 3.4, classes which can be expressed non-
trivially as the complement of one complexity class in another.

Remarks. In the light of Sections 4, 5, Corollary 3.4 may now be interpreted to
imply that

the (nontrivial) complement of one complexity class in another is almost never

recursively presentable.
In view of the fact that all reasonable complexity classes are themselves recursively
presentable, it follows that the (nontrivial) complement of one complexity class in
another is (usually) harder to generate than any whole complexity class. (To put it
somewhat imprecisely: instances of lower complexity bounds are harder to generate
than instances of upper complexity bounds.) Thus, while there may be algorithms
which generate large classes of instances of a given lower complexity bound (e.g.
the generation of EXPTIME-complete languages as instances of languages not in
P), there is no algorithm which can generate all such instances within a given
complexity class.

Similarly, Corollary 3.5 may be interpreted to imply that almost no ‘reasonable’

complexity class is the union of two others (in a nontrivial way). For example, in
the polynomial hierarchy, as is well known,

SP#IIP = SPUIES AL

6. Applications

Apart from the applications indicated in the remarks above, Theorems 3.1 and
3.2 can often be applied to prove the existence of languages with certain properties.
Ref. [13], for example, contains an application to the structure of resource-bounded
reducibilities. Here we indicate how to infer a result of Breidbart as an application.

Theorem 6.1 (Breidbart [2]). If A is any infinite co-infinite recursive set and C = {B| B
can be accepted in real time and log-space by a deterministic Turing machine}, then
there is a language B € C which splits A (i.e. An B, An B, An B, An B are infinite).

Sketch of proof. Put C, = {B|An Bisfinite}, C,={B| A~ Bisfinite}, C; = {B| A Bis
finite}, C,={B| A B is finite}.

For each i, C, is recursively presentable and closed under finite variations and
C ¢ C. Hence, by Theorem 3.1 (applied three times), C g C,u C,u C;u C,, i.e.
there is a B e C which splits A.

Acknowledgment

I wish to thank an anonymous referee for many helpful suggestions as to the
presentation of this paper, in particular for the reformulation of Schoning’s theorem

in the introduction, and for suggesting Theorem 4.3 as a possible connection with
Breidbart’s work.

156 D. Schmidt
References

[1] W.S. Brainerd and L.H. Landweber, Theory of Computation (Wiley, New York, 1974).

[2] S. Breidbart, On splitting recursive sets, J. Comput. System Sci. 17 (1978) 56-64.

[3] P. Chew and M. Machtey, A note on structure and looking back applied to the relative complexity
of computable functions, J. Comput. System Sci. 22 (1981) 53-59.

[4] AR. Freedman and R.E. Ladner, Space bounds for processing contentless inputs, J. Comput. System
Sci. 11 (1975) 118-128.

[5] J.E. Hopcroft and J.D. Ullman, Some results on tape-bounded Turing machines, J. ACM 16 (1969)
168-177.

[6] R.E. Ladner, On the structure of polynomial time reducibility, J ACM 22 (1975) 155-171.

(71 R.E. Ladner, N.A. Lynch and A.L. Selman, A comparison of polynomial time reducibilities, Theoret.
Comput. Sci. 1 (1975) 103-123.

[8] L.H. Landweber, R.J. Lipton and E.L. Robertson, On the structure of sets in NP and other complexity
classes, Theoret. Comput. Sci. 15 (1981) 181-200.

[9] P.M. Lewis II, R.E. Stearns and J. Hartmanis, Memory bounds for recognition of context free and
context sensitive languages, in: IEEE Conf. Record on Switching Circuit Theory and Logical Design
(1965) 191-202.

{10] T.J. Long, Strong nondeterministic polynomial-time reducibilities, Theoret. Comput. Sci. 21 (1982)
1-25.

[11] K. Regan, On diagonalization methods and the structure of language classes, in: Proc. FCT, Conf.
(1983) 368-380.

[12] U. Schoning, A uniform approach to obtain diagonal sets in complexity classes, Theoret. Comput.
Sci. 18 (1982) 95-103.

[13] D. Schmidt, On the complement of one complexity class in another, in: Logic and Machines, Lecture
Notes in Computer Science 171 (Springer, Berlin, 1984) 77-87.

[14] R.E. Stearns, J. Hartmanis and P.M. Lewis II, Hierarchies of memory limited computations, in:
IEEE Conf. Record on Switching Circuit Theory and Logical Design (1965) 179-190.

