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Abstract. We prove easy recursion-theoretic results which have as corollaries generalizations of 
existing diagonalization theorems on complexity classes: roughly speaking, almost no ‘reasonable’ 
(time, space or even abstract) complexity class can be expressed as the (non-trivial) union of two 
recursively presentable classes which are closed. under finite variations (e.g. unless NP= P, 
NP # P u { NP-complete languages}) ; and, consequently, the non-trivial complement of one com- 
plexity class in another (e.g. (NP\P), provided NP# P) is almost never recursively presentable. 

1. Introduction 

In [8], [3] and [ 121, a number of closely related results appeared: first, Theorem 
23 of Landweber et al. [8]. 

Theorem 1.1. If P S NP, then neither (NP\P) nor the class of non-complete languages 
in (NP\P) is recursively presentable. 

Then Theorem 6 of Chew and Machtey [3], which may be stated as follows. 

Theorem 1.2. Let C, be a recursively presentable list of infinite r.e. languages, C2 a 
recursively presented list of recursive languages which is closed underjnite variations, 
and B a recursive language. Then 

Now, putting Cz = P (respectively C2 = Pu {complete sets in NP}) and C, = 
(NP\C,), C2 is recursively presentable and closed under finite variations, and if 
NP # P then C, is nonempty (for C, = Pu {complete sets in NP} this follows, for 
example, from Ladner’s work in [6]) and contains only infinite sets. But for any 
B E C1, {B n Cl C E P} c NP = ( Cr u C,) ; hence, by Chew and Machtey’s theorem, 
C1 cannot be recursively presentable even by r.e. indices. Thus Chew and Machtey’s 

0304-3975/85/$3.30 @ 1985, Elsevier Science Publishers B.V. (North-Holland) EJ’$,.,.::,: I&‘: “i 
Cenfrrjrr! LT,,:.* : . 5’ , i !I:“j:a 5 jofor 



144 D. Schmidt 

result implies (a sharpening of) that of Landweber et al. and a host of similar ones 
obtained by replacing NP by any other class which is closed under intersection with 
languages in P. 

Last among these related results is that of Schiining [12], which is stated as the 
existence of a certain diagonal language A r~ (C, u C,) given languages A, tZ C,, A2 ~2 
C2, but can be reformulated as follows. 

Theorem 1.3. Let C, and C2 both be recursively presentable classes of recursive 
languages which are closed under$nite variations, and let A be a recursive language. 
Then, putting 

(sA)={B(B+,A}, 

(In fact, this formulation is slightly stronger than Schiining’s; it is equivalent to 
the theorem obtained by replacing Schiining’s assertion “‘(e) if A, E P and A2 @ 
{cp, r*}, then AsgA,” by the somewhat stronger assertion “(e’) A s L A&AZ”, 
which follows from Schiining’s proof anyway. We leave the proof of this equivalence 
to the reader.) 

The last two theorems can be used to deduce easily results like: 
(1) NP # P + NP # Pu {Al A is NP-complete under SF} ; 
(2) NPZ P+ (NP\P) is not recursively presentable; 
(3) the class of infinite subsets of r* decidable in polynomial time is not recur- 

sively presentable. 
But the above theorems do not, as they stand, yield corollaries of the form 

‘C Ef (C, u C,)’ or ‘( C\C,) is not recursively presentable’ in which C is not closed 
under sk or at least under intersection with languages in P. The purpose of this 
paper is to strengthen the theorems so that they do yield such corollaries: for almost 
all ‘reasonable’ complexity classes C, and even more classes C,, C, which arise 
naturally in complexity theory, 

cat, & cat, * C5Z(C*uC*). 

In particular, C = C, u C2 =$ C = C, or C = C2 (‘most reasonable complexity classes 
cannot be the non-trivial union of two others’); and 

C n C2 # 0 3 (C\ C,) is not recursively presentable 

(‘the non-trivial complement of one complexity class in another is mostly hard to 
generate’). 

Regan’s ‘Uniform Diagonalization Theorem’ [ 1 l] has a certain resemblance with 
Theorems 3.1 and 3.2 below, but it is an adaptation of Schoning’s theorem to the 
subclass of (d A) obtained by considering only length increasing invertible reduc- 
tions, so it is a strengthening of that theorem for a special case and not a generaliz- 
ation. 

Section 2 deals with notation and definitions; we prove the main theorems in 
Section 3 ; in Section 4 we show which C fulfil the conditions of the main theorems ; 
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in Section 5 we do the same for Cr and C2; and in Section 6 we indicate how to 
apply our theorems to yield a result of Breidbart [23. 

2. Notation and definitions 

Notation 

In the following, we suppose that all languages are over some fixed alphabet F 
such that Irla 2. We use lower-case letters u, U, w to denote words (over r), 
upper-case letters A, B, C, G, X, Y to denote languages (over r), bold-face C to 
denote classes of languages and F to denote classes of functions from k4 into lV. 

Dejinitions 

P and NP denote, as usual, the classes of languages which can be recognized in 
polynomial time by some deterministic (resp. nondeterministic) Turing machine. 

AAB = (A\B) LJ (B\A) ; C is closed under finite oariations if, for each A, B such 
that ALIB is finite, A E C + B E C. 

<y, d g are the polynomial time-bounded versions of Turing and many-one 
reducibility. 

A class C of sets is recursively presentable (by recursive indices) if there is an 
effective enumeration of Turing machines M,, M2, . ,. . all of which halt on all inputs, 
such that C = { L( Mi) 1 i E IV}. C is merely recursively presentable by r-e. indices if the 
Turing machines are not required to halt on all inputs, i.e. if they merely recognize 
the sets of C rather than deciding them. A class of functions from N into N is 
recursively presentable if there is an effective enumeration of Turing machines which 
compute the functions. 

If A is any language, the intervals of A are the maximal subsets of A of the form 
{wIm~Iw(~n} (msnnE), and the gaps of A are the intervals of A. 

A is a gap language if A is the union of all its intervals, i.e. if for all u, ZJ such 
that IU ( = Iv\, u E A e v E A. Let A be a gap language, B be any language. B majorizes 
A if for all nEN, An{wllwI>n} h as an interval which is contained in B and a gap 
which is contained in B. 

A class C of languages is said to be recursive gap closed if, for every recursive 
gap language GO with infinitely many gaps and intervals, there is a language G 
which majorizes GO s.t. G, G E C. Clearly, if C E C’ and C is recursive gap closed, 
then so is C’. 

3. The main theorems 

The two theorems which follow are of a very general nature and have, on the 
face of it, nothing to do with complexity theory. But, as we shall see in Sections 4 
and 5, they are applicable to many classes which arise naturally in complexity theory. 
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Then 

cat, * cac*uc*. 

Proof. Define r2 as in the proof of Theorem 3.1 and rl by 

r,(n)=max{(~m)(3w)(n<]wl<m and Pi accepts 

w in at most m steps) 1 i < n}. 

rl is total (because, by hypothesis, each L( Pi) is infinite) and recursive (because, 
although the Pi do not in general halt on all inputs, each Pi is simulated for only 
finitely many steps in the computation of r,(n)). 

Now define r(n)=max{r,(n), r2(n)} for all ncN and G,=(wllwI=O or (3nEN) 
( r2”(0) < IWI < r2”+l (0))) as before. Again, there is a language G E C which majorizes 
G, This time, define A = G n AZ. A & C2 follows as before and A E C because C is 
closed under intersection. 

A r~ C,: if A E C,, then there is a j such that A = L( 4). Now for any n such that 
j < t2n+1(0), by the definition of rl there is a w E L( pj) = A such that 

r2n+*(0) < lwl S rl( r2n+1(0)) S r( r2n+1(0)) = r2n+2(0). 

Thus each gap of G, which is contained in {WI ) WI > j + 1) contains some w E A. But, 
since G majorizes G, one such gap is contained in G and hence G contains some 
w E A. This contradicts A = G n AZ. Cl 

This proof is basically the same as that of Chew and Machtey [3, Theorem 61 
and Theorem 3.2 can, with the help of Theorem 4.1 below, be seen to imply that 
theorem (put C = {B n CI C E P}). Note that, in Theorem 3.2, the additional assump- 
tion that C, contains only infinite sets is strong enough to counterbalance several 
weakenings of the premise (closure of C under union is no longer required; C, is 
required to be recursively presentable only by r.e. indices, may contain nonrecursive 
sets and is not required to be closed under finite variations; but C sz C,, though no 
longer explicitly assumed, now follows from the other assumptions by Corollary 
3.3 below) while still yielding the conclusion C sz C, u C2. In fact, Theorem 3.2 
immediately yields a corollary which shows how rare such C, as in Theorem 3.2 are. 

Corollary 3.3. Let C be a class of recursive languages which is recursive gap closed 
and closed under intersection. Then for any recursively presentable class C, of injinite 
r.e. sets 

{A E C I A is infinite} sz C,. 

Proof. Put C2 = {A I A is a finite language}. C2 is recursively presentable and closed 
under finite variations. C sz C2 since C is recursive gap closed and therefore certainly 
contains infinite languages. Hence, by Theorem 3.2, C SZ C1 u C2; the assertion 
follows immediately. Cl 
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This is not to say that there are no classes C, satisfying the conditions of Theorem 
3.2: examples are classes of complete languages in some class with respect to some 
reduction (e.g. EXPSPACE-complete languages; or NP-complete languages if P f 
NP) and any recursively presentable class of languages which all contain one fixed, 
infinite language (e.g. the class of all those r.e. languages which contain (0)“). If 
C, satisfies the conditions of Theorem 3.2, Theorem 3.2 is usually quicker to apply 
than Theorem 3.1, whereas if both C1 and C, contain finite languages, Theorem 3.1 
must be applied. But the applications in which Theorem 3.2 really has the edge 
over Theorem 3.1 are those in which it is shown by contraposition that some class 
is not recursively presentable. A typical example is the following. 

Corollary 3.4. Let C be a class of recursive languages which is recursive gap closed 
and closed under finite variations, union and intersection, and let C, be a recursively 
presentable class which is closed under finite variations. 

Then 

CnC2#0 * W\G) is not recursively presentable 

( and, if C2 contains allfinite languages, ( C\ C,) is not even recursively presen table by r. e. 
indices). 

Proof. If (C\ C,) were recursively presentable, then, putting C, = (C\C,), C, C, 
and C, would fulfil the conditions of Theorem 3.1 (C G C, because otherwise we 
should have (C\C,) = 0, which is not recursively presentable), yielding C P 
(C\C,) u C,, a contradiction. If C2 contains all finite languages, then merely assum- 
ing that (C\CJ is recursively presentable by r.e. indices makes Theorem 3.2 
applicable to yield the same contradiction. Cl 

We shall see in Sections 4 and 5 that this corollary implies, roughly speaking, 
that the complement of one complexity class in another is almost never recursively 
presentable. Corollary 3.5 below implies that almost no ‘reasonable’ complexity 
class can be expressed nontrivially as the union of two others. 

Corollary 3.5. Let C, C, and C2 be as in Theorem 3.1 or Theorem 3.2. Then 

C=C,uC2 * C=C, orC=& 

Proof. C = C1 u C, j C 2 C1 and C 2 C,. Moreover, by Theorem 3.1 respectively 
Theorem 3.2, 

C=CluC2 * CGC, or CCC, * C=C,or C=C,. 0 

4. Classes which are recursive gap closed 

In this section, we show that many classes which arise naturally in complexity 
theory have the properties required of C in the main theorems. 
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Theorem 4.2. DSPACE,,_li,e( 1 g ) o n is recursive gap closed ; hence, so is any complexity 
class DSPACE(F) or NSPACE(F) such that log n E O(F). 

Proof. Let Go be a recursive gap set. We define a gap set G E DSPACEon_li”e(lOg n) 
(whence also G E DSPACEon_li,e(lOg n)) which majorizes Go as follows: 

Let T be a Turing machine which decides G,,. We define an on-line logspace- 
bounded Turing machine M which on input w proceeds as follows: 

First, M reads w from left to right, keeping a binary counter of the length of the 
input on a work tape. When the whole of w has been read, the portion of the tape 
now occupied by the counter is marked off and only this portion is used in the 
following computations, thus ensuring that M is logspace-bounded. Now M pro- 
ceeds exactly like the machine M in the proof of Theorem 4.1, except that it is now 
limited not by a time bound but by the space bound. Just as in the proof of Theorem 
4.1, the language G accepted by M majorizes G,,. This is another typical application 
of Ladner’s ‘looking back’ method. Cl 

Note that the two essential ingredients of the proof of Theorem 4.2 as far as the 
space-bounding function [log n] is concerned are the facts that it is ‘uniformly tape 
constructible’ (i.e. there is a Turing machine- on-line, in this case-which uses 
precisely llog n] squares of its work tape on every input of length n) and that 
lim n-,co ]log nJ = ~0; the proof would work just as well, even for off-line machines, 
for any other space-bounding function with these two properties. The fact (Corollary 
4.7 below) that the theorem is false even for off-line space complexity classes with 
more slowly-growing space bounds implies that no space bound which grows more 
slowly than log n has both these properties (this latter fact is Theorem 4(i) of [5]). 

In fact, Theorems 4.1 and 4.2 can be merged into one. 

Theorem 4.3 

{XI there is a deterministic on-line n-time-bounded and log( n) -space-bounded 
Turing machine which decides X}, 

is recursive gap closed ; hence, so is any class of languages containing this class. 

Proof. Define a Turing machine M which on input w works just like the machine 
in the proof of Theorem 4.1 (and hence is on-line and real time) except that it is 
adapted in the following way to ensure that it is also logspace-bounded: before 
starting to compute M(( )), T(( )), . . . , M marks off zero squares of available work 
space on its work tape and, on another part of the work tape, sets up a binary 
counter with initial value zero. Only the marked-off work space may be used in 
computing M(( >), T(( >), . . . . Whenever M needs more work space for this compu- 
tation, it calls a subroutine which increases the binary counter by one repeatedly 
until the length of the counter increases; then M may extend the marked-off work 
space by one square and proceed with the computation of M(( )), T(( )), . . . . 

Clearly, M uses O(log 1 WI) squares of its work tape and is hence logspace bounded; 
and, as before, the language accepted by M majorizes Go. Cl 
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The time-and-space-limiting mechanism of M is almost identical to that used in 
Breidbart’s proof of Theorem 1 in [2]; in Section 6 we shall show how to infer 
Breidbart’s result from Theorem 4.3. 

In fact, even most abstract complexity classes are recursive gap closed. (We refer 
the reader to [ 1, Chapter 91 for an introduction to abstract complexity theory.) 

Theorem 4.4. Let %’ be an abstract complexity measure. Then there is a recursive 
function f such that, for any function g such that f( n) s g(n) almost everywhere, 9: 
is recursive gap closed. (Bz is the complexity class defined by resource bound g.) 

Proof. Use either Theorem 4.1 or Theorem 4.2 and the fact that any two abstract 
complexity measures are recursively related. 0 

Thus, Theorems 3.1 and 3.2 are applicable to most abstract complexity classes, 
provided they are closed under union and intersection. In the rest of this section 
we shall consider (Chomsky and complexity) classes to which Theorems 3.1 and 
3.2 do not apply. 

By [5, Theorem 31, any on-line space complexity class whose space bound does 
not grow as fast as log n is identical to the class of regular languages, which is not 
recursive gap closed. 

Theorem 4.5. The class of context-free languages, and hence also that of regular 
languages, is not recursive gap closed, and moreover Theorems 3.1 and 3.2 fail for 
both these classes. ( The class of context-sensitive languages is recursive gap closed.) 

Proof. The last assertion follows from Theorem 4.2, since the class of context- 
sensitive languages is just NSPACE(n). The class of context-free languages is not 
recursive gap closed because, by the ‘uvwxy’-theorem, every context-free language 
is either finite or has gaps of bounded length, whereas there are certainly infinite 
recursive gap languages with gaps of unbounded length. Moreover, Theorems 3.1 
and 3.2 fail for both the context-free languages and the regular languages because 
finiteness is decidable in (standard recursive presentations of) both these classes, 
so in both these classes both the subclass of finite sets and that of infinite sets are 
recursively presentable. ??

Unlike the on-line space complexity classes, the non-trivial off-line space com- 
plexity classes do not stop at space bound log n but go down to space bound 
log log n (see [5, Theorem 21 and [9, Theorem 11). But, as we shall see, below log n, 
even if we throw in nondeterminism, the off-line space complexity classes cease to 
be recursive gap closed. First, we need the following lemma. 

Lemma 4.6. Given s: N + IV, if A4 is any s(n) -space-bounded o&line nondeterministic 
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Turing machine with tape alphabet AM and set of states SM, then for any n such that 

log n > (log IAMI+log IhI+ lb(n), 

and, for any a E AM, 

an E L(M) * an+kn! E L(M) for each kEN. 

Proof. By a generalized state we shall mean a triple 

(contents of M’s work tape, position of M’s read/write head on work 
tape, state of M) 

-i.e. what is usually called a configuration, except that we disregard M’s input 
tape. Clearly, M can take on at most IAMB’ - s( n) . IS, ( different generalized states 
in a computation on input a”, and if 

log n> (log (A,I+log IS~l+lb(n), 

then n > IA~I~(“) - s(n) . lS,,,l so M cannot take on n different generalized states in 
any computation on input a”. 

Now define an excursion as a part of a computation on input a” in which the 
read/write head on the input tape starts and ends on a blank square and scans only 
a’s otherwise. A short excursion is one which starts and ends at the same end of 
the input and a long excursion is one whose beginning and end are at opposite ends 
of the input. Now in a long excursion the whole input is eventually traversed, say 
from left to right. So, since M takes on fewer than n different generalized states, if 
we consider the generalized states assumed by M as the read/write head on the 
input tape crosses each square of the input for the first time (in a given long 
excursion), some generalized state must occur twice in this list, say at positions i 
and j (i <j). But then, on any input an+k(i-l), there is a computation in which this 
generalized state goes on recurring at position i + Z( j - i) for each 2 d k and is then 
followed by the same sequence of generalized states as in the rest of the long 
excursion on input a”, thus yielding a long excursion on this new input which begins 
and ends with the same generalized states as before. In particular, since (j - i) I n !, 
for any long excursion on input a” there is a long excursion on input an-tkn! (k E f+J) 
which begins and ends with the same generalized states. But this is trivially true of 
short excursions anyway. Hence, since any accepting computation of M on a” may 
be regarded as a sequence of excursions, possibly followed by a computation in 
which only the a’s are scanned, it follows that for any accepting computation on 
a” there is also an accepting computation on u”+~~! for each k E IV. 0 

This proof is basically the same as that of [9, Theorem 2(l)] and similar proofs 
occur elsewhere in the literature, but we include it here in full to make it clear that 
this particular version does also apply to nondeterministic Turing machines. 
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Corollary 4.7. Ifs: N + N is such that 

lim s(n) -=O, 
n+a log n 

then NSPACEoR_line( s( n)) (and, hence, also DSPACEoB_line( s( n))) is not recursive 
gap closed. 

Proof. If M is an s(n)-space-bounded off-line nondeterministic Turing machine 
with tape alphabet AM and set of states S,, then, since lim,,, s( n)/log n = 0, there 
is an no E N such that, for all n ano, log n>(log (A,l+log(S,I+l)s(n). But then, 
by Lemma 4.6, for each n 2 no and a E AM, either a” e L(M) or, if a” E L(M), then 
L(M) contains no gap of length > n ! because an+kn! E L(M) for each k E N. Thus 
either a” & L(M) for all n a no, in which case L(M) has only finitely many intervals, 
or an E L(M) for some n 2 no, in which case all gaps in L(M) are of bounded 
length. Since there are infinite recursive gap languages with gaps of unbounded 
length, it follows that NSPACEoR_line( s( n)) cannot be recursive gap closed. Cl 

Remark. Let us consider four related properties of certain classes C of languages: 
(1) C is recursive gap closed; 
(2) there are no recursively presentable classes C,, C,, each closed under 

variations, such that 

CrC,uC, but CgCc, & CaC,; 

(3) there are no recursively presentable classes C,, C, closed under finite 
ations such that C = C, u C, and C, n C2 = 0; 

finite 

vari- 

(4) there is no recursive presentation of C in which finiteness is decidable. 
Now, for any class C which is closed under finite variations, intersection and 

union and properly contains the class of all finite languages, (1) * (2) + (3) * (4). 
(( 1) j (2) by Theorem 3.1; (2) * (3) because any recursively presentable class is 
nonempty; and (3) + (4) because, if (4) fails to hold, putting C, = class of finite 
languages and C2 = (C\C,) violates (3)). 

Now our prime examples of classes which violate (1)-the context-free languages 
and the regular languages- also violate (4) (and, hence, (2) and (3)). We do not 
know whether the classes NSPACEoE_iine( s( n)) and DSPACE,B_li,,( s( n)) which 
violate ( 1) satisfy (2), (3) and (4) or not. Indeed, we do not know whether some 
or all of (l)-(4) are equivalent for classes C with the above properties, maybe 
supplemented by one or two further natural closure properties. The question whether 
(1) and (4) are equivalent was raised by W. Menzel. 

5. Recursively presentable classes 

Since many classes are shown in [ 121 to be recursively presentable and the proofs 
of the generalizations here are similar to the proofs there, we shall just give a 
summary. 
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Definition 5.1. Let C be any class of languages, G any reduction relation. We use 
(C~)todenote{X1(3YEC)(Y~X)}and(~C)todenote{XI(3YEC)(X~Y)}. 

Note that if X is s-complete for C, then 

{s-complete sets for C} = C n ({X}s). 

Theorem 5.2. The following classes of languages are recursively presentable (by recur- 
sive indices) and closed under finite variations: 

(a) $34,” if % is any abstract complexity measure and F any recursively presentable 
set of unary recursive functions from N into N, provided 3,” is closed under finite 
variations [I, Th. 9.181. Particular instances of such abstract complexity classes are, 
for example, DTIME( F), NTIME( F), DSPACEoR_line( F), NSPACEoB_rine( F), 

DSPACE,,-,i,,(F), NSPACE,,-,i”,(F), h w ere F={nklkEN}, F={2k”lk~N}, F= 
(hn - n), etc, and the relativized versions of any of these classes with any recursive 
oracle A (e.g. DTIME*( F)). 

(b) co- C1, ( C, n C2) (provided C, n C, f 0) and ( C1 u CJ, whenever C, and C, 
are themselves recursively presentable and closed under finite variations. 

(c) (s C) whenever C is recursively presentable, C sz (0, r*}, F is a recursively 
presentable set of unary recursive functions and d is either the F-time-bounded or the 
F-space-bounded restriction of +, +,.,, stt or any of the restrictions of truth-table 
reducibility (see [7]), of the nondeterministic (see [7, Section 41) or strongly nondeter- 
ministic (see [8, Section 31) variant of any of these reduction relations, or of sR (see 

[lOI). 
(d) C, n ( Cz s) whenever c is as in (c), C, and C2 are recursively presentable, 

C, n (C, S) # 0 and C, is closed under finite variations and (VX E C,)(V finite 
YE T”(X P Y & x P r*\ Y)). 

Remarks. By Theorem 5.2, the following classes are recursively presentable and 
closed under finite variations: 

- DTIME(n), DTIME(n2), DTIME(n3), . . . , P, NP, co-NP, 
- all classes Z:,P, nf and A: in the polynomial hierarchy, PH, 
- EXPTIME, NEXPTIME, etc; DSPACE,,_li,,(lOg n), 
- DSPACEoR_line(lOg log n), DSPACEoR_li,,(lOg n), DSPACE( n), 
- NSPACE(n), DSPACE(n2), . . . , PSPACE, EXPSPACE, etc; 

{s-complete sets for C}, 
whenever < is as in Theorem 5.2(c) and C is recursively presentable and closed 
under finite variations and contains a language which is complete under s (for then 
either {s-complete languages for C} = C or, for any X which is d-complete for 
C, {s-complete languages for C} = C n ({X}G) fulfils the conditions of Theorem 
5.2(d). Thus, by Theorem 5.2, all ‘reasonable’ complexity classes and many more 
classes which arise naturally in complexity theory are recursively presentable and 
closed under finite variations. 



Recursion-theoretic structure of complexity classes 155 

Notable exceptions are, by Corollary 3.4, classes which can be expressed non- 
trivially as the complement of one complexity class in another. 

Remarks. In the light of Sections 4, 5, Corollary 3.4 may now be interpreted to 
imply that 

the (nontrivial) complement of one complexity class in another is almost never 
recursively presentable. 

In view of the fact that all reasonable complexity classes are themselves recursively 
presentable, it follows that the (nontrivial) complement of one complexity class in 
another is (usually) harder to generate than any whole complexity class. (To put it 
somewhat imprecisely: instances of lower complexity bounds are harder to generate 
than instances of upper complexity bounds.) Thus, while there may be algorithms 
which generate large classes of instances of a given lower complexity bound (e.g. 
the generation of EXPTIME-complete languages as instances of languages not in 
P), there is no algorithm which can generate all such instances within a given 
complexity class. 

Similarly, Corollary 3.5 may be interpreted to imply that almost no ‘reasonable’ 
complexity class is the union of two others (in a nontrivial way). For example, in 
the polynomial hierarchy, as is well known, 

zc,pzIlkp a S;uIQ’SA;. 

6. Applications 

Apart from the applications indicated in the remarks above, Theorems 3.1 and 
3.2 can often be applied to prove the existence of languages with certain properties. 
Ref. [ 131, for example, contains an application to the structure of resource-bounded 
reducibilities. Here we indicate how to infer a result of Breidbart as an application. 

Theorem 6.1 (Breidbart [2]). I’A is any inj’inite co-injinite recursive set and C = { I31 B 
can be accepted in real time and log-space by a deterministic Turing machine), then 
there is a language B E C which splits A (i.e. A n B, A n I?, An B, A n B are in$nite). 

Sketchof proof. Put C, = { BI A n B is finite}, C, = { B( A n fiis finite}, C, = { BI A n B is 
finite}, C4 = {BI An B is finite}. 

For each i, Ci is recursively presentable and closed under finite variations and 
C G Cti Hence, by Theorem 3.1 (applied three times), C G C, u C,u C, u C4, i.e. 
there is a B E C which splits A. 
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