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Abstract. An attempt is made to lay a basis for a general, unified, concise, and simple theory of 
computable and continuous functions from IF to F or N, where F = {f: N-, N}. The theory is 
formally very similar to ordinary recursion theory. It splits into a purely topological version and 
more special theory of computability. The basic definitions are given and fundamental properties 
are proved. As an example it is shown how the theory of recursively enumerable subsets of N can 
be transferred to a theory of open and a theory of computably open subsets of IF. 

1. Introduction 

Ordinary recursion theory or Type 1 recursion theory, i.e., the theory of computa- 
bility on denumerable sets, is well established. In this theory, first computability of 
functions on some standard set, usually N, is defined explicitly. Then via numberings 
the concepts are transferred to functions on sets different from this standard set. 
There are many good presentations of ordinary recursion theory in textbooks. One 
of the best references is still the book by Rogers [ll]. The best reference to the 
theory of numberings is Ershov’s paper [5]. 

The situation is different for Type 2 computability, i.e., computability on sets with 
cardinality not greater than that of the continuum. Typical sets of this kind are 2”, 
Xc” for a finite set Z; IF := N” := {f: N + IV}, P := {f: N --+ N} (a dashed arrow indicates 
partial functions), general effective cpo’s [4], 0 := the set of countable ordinals; 
Iw := set of real numbers, O(Iw) := set of open subsets of Iw, etc. There are several 
explicit definitions of computable operators on such sets which are equivalent or 
at least dependent from each other (see, e.g., 114, 11, 121) and much is known about 
such operators but seemingly there is no generally accepted approach as in the case 
of ordinary recursion theory. This paper attempts to lay a basis for a unified and 
concise Type 2 recursion theory. We have chosen the set IF of sequences of natural 
numbers as the standard set and define computability of functions on F explicitly. 
Computability on other sets S can then be derived from this Type 2 recursion theory 
on IF via representations 8: IF + S. The theory of representations will be. developed 
in a second paper. Equivalent Type 2 theories can be obtained by starting with sets 
like 2N with Scott’s topology, (0, 1)” with Cantor’s topology or P with the usual 
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cpo-topology. The choice of IF is a compromise with regard to simplicity, generality, 
and concreteness. This paper and a forthcoming one on representations shall 
demonstrate that the formalism based on IF is simple and sufficiently general. The 
theory with 2” might be simpler in some cases [12]. But, in practice, infinite objects 
are usually defined as limits of sequences of finite objects and not by sets of finite 
objects. For this reason, IF is more adequate for representations and a concrete 
representation for computers, e.g., by EN, can be easily derived. The approach to 
computability on IF is a special case of more general concepts (e.g., Ershov’s effective 
and complete fo-spaces [6] or effectively given domains [4]). It is the spirit of this 
approach first to develop a very simple (but sufficiently general) theory of continuity 
and computability on a standard Type 2 set (namely IF ). Then, by means of representa- 
tions, the results can be used as a basis for other theories, e.g., computable analysis, 
cpo-theory [4], higher type theory [6, 7, lo]. 

Type 2 recursion theory on IF turns out to be formally similar to ordinary recursion 
theory. Remarkably, there is a slightly more general topological version of this 
theory. Since topological considerations are fundamental for Type 2 theory, we 
develop the two versions, the topological and the computational one, simultaneously. 
Since an exhaustive development’ of the theory is out of the scope of a simple 
publication like this and since many interesting questions are not yet answered, in 
this paper the basic definitions are, given, several fundamental properties are proved, 
and it is shown by examples how ordinary recursion theory can be transferred to 
two versions of Type 2 theory, a topological and a recursive one. For some of the 
proofs only an outline is given. More detailed proofs have been elaborated by Dettki 
and Schuster [3]. 

It is assumed that the reader is familikr with ordinary recursion theory. As a main 
reference, the book by Rogers [l l] is suggested. But also other books on recursion 
theory are suitable. Some notations will be used throughout this paper. By f: A --+ B 
(with dashed arrow) a partial function from A to B is denoted, where ‘partial’ 
means domCf) c A and not necessarily dam(f) = A. By 4p the standard numbering 
of PC’), the unary partial recursive functions, is denoted. As usual we write (i,, . . . , i,) 

instead of 7~(“)( i,, . . . , in) where 7~ (n)* N” -+ N is Cantor’s n-tuple bijection. If X is . 

a set, W(X) denotes the set of all words over X. The empty word is denoted by &, 
and lg( w) is the length of the word w. If w E W(X) and if w = x0x, . . . x, (where 
xi E X), then we define w(i) := Xi for any i, 0 s i d n. 

By N we denote the set of natural numbers (0, 1,2,. . .}. Define IF := N” and 
B := W(N) u IF. Thus, B is the set of all finite and infinite (w-)words over IQ. On lE# 
a (partial) order is defined by b c c:e b is a prefix of c. (Remark: (II& 5, E) is a cpo, 
see, e.g., Egli and Constable [4].) For any p E IF and i E N define pfi’ := 

p(O)...p(i-1)~ W(N). For any UE W(N) define [v]={p~lFIv~p}. A function 
y: W(N) -+ W(N) is isotone if ZJ c_ WJ y(u) c_ y(w). On the set B, a standard topology 
is defined by the basis { 0, 1 ZJ E W(N)} where 0, = {b E B) ZIG b}. On IF we consider 
the induced topology, i.e., {[v]) v E W(N)} is a basis of it. This is the well-known 
Baire’s topology. On N we consider the discrete topology. 
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*(3w)(wcpAuEMw) (by definition of M,) 

*(3w)(wcp/\ zZy(w)) (by definition of 7) 

*zZy(w) (by definition of 7). 

This implies 7 = IY ??

Suppose, y: W(N)+ W(N) is isotone, r: IF -, B is continuous, and 7 = I’. By the 
definition of 7, for any p E IF and v E W(N), if IJ is a prefix of p, then y(u) is a prefix 
of T(p), and T(p) can be approximated arbitrarily precisely by prefixes y(w) with 
w cp. By Lemma 2.1 the mapping y + 7 is a surjective mapping from { y 1 y isotone} 
to [IF + lar]. We shall modify this mapping into a representation $(I: IF+ [IF + B]. For 
this purpose, any y: W(N)+ W(N) will be represented by some p E IF, and the 
resulting partial representation will be extended into a total one. First, we define 
the computable functions from IF to IE! and characterize them by oracle Turing 
machines. 

2.2, Definition. Let UN: N-, W(N) be the bijective standard numbering of W(N) 
defined by VN( 6) = 0, vN((&,, x1, . . . , x,, n) + 1) = x0x, . . . x, (where ( ) is Cantor’s 
tupling function). A function y: W(N) + W(N) is called computable iff it is ( vN, UN)- 

computable, i.e., iff v&~~v, is total recursive. 

Lemma 2.1 immediately leads to the definition of the computable functions from 
IF to B. 

2.3. Definition. A continuous function r: IF + B is computable iff r = 7 for some 
computable function y. 

The computable functions F+ I5 can be characterized by oracle Turing machines. 
This characterization admits informal but reliable specifications and proofs for 
computable operators. 

2.4. Definition. An oracle Turing machine is a Turing machine T of the following 
type: 
- T has a one-sided infinite read-only input tape on which the values p(O), p(l), 

P(2), * - * of the input p E IF are written (in binary notation). 
- T has work tapes. 
- T has a one-sided infinite write-only output tape onto which from time to time 

the values q(O), q( 1), . . . (in this order) of the output q E B are written. 

The machine is started with p E IF on the input tape, with empty output tape and 
the read and the write heads at position 0. The machine may compute forever. The 
result fT(p) is the (finite or infinite) sequence of numbers it writes onto the output 
tape. 
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The idea of piecewise approximating the output from piecewise approximations 
of the input is another way of expressing continuity. Usually, [ 111 an oracle machine 
is defined in such a way that with (oracle) input p E IF and n E N it yields a number 
f(p, n) (or it diverges). If we consider only functions such that f(p, n) exists if n < m 
and f(p, m) exists and if we interpret f(p, n) as the nth number on the output tape, 
we obtain our concept of oracle machines as a special case. 

2.5. Lemma. A function r: IF + B is computable iflit is computed by some oracle Turing 

machine. 

Proof. Suppose, r is computable. Then there is some computable isotone y: W(N) -+ 

W(N) with r = 7. Let T be an oracle Turing machine which operates in stages 
n=0,1,2,... as follows. Let p be the input. 

Stage n: read w = p(0) . . . p(n); determine y(w); append x E W(N) to the output, 
where x is the single word with vx = y(w), u := inscription already on 
the output tape. 

Indeed, there is an oracle machine which operates this way, and, obviously, y(p) = 
sup{ y( w) ( w cp} is the output for input p. On the other hand, suppose J-’ is computed 
by some oracle Turing machine T. For w E W(N), let y(w) be the word on the output 
tape after lg( w) steps if w is written onto the first positions of the input tape. Note 
that in lg( w) steps T cannot require more input than given by the word w. Therefore, 
y is well-defined. Also, y is isotone and computable and 7 is the function computed 
by1 Cl 

Below we shall introduce a representation +: IF + [IF + B] by its universal function 
r,. r,, will be defined by an oracle Turing machine which is based on the definition 
of 7 by y. First we introduce the tupling functions. 

2.6. Definition (Tupling functions) 
(1) Define 17:lF2 +IF by n(p, q) (2i):=p(i), n(p, q) (2i+ l):= q(i). 
(2) Define nCk): Fk + IF for k 2 1 inductively by n(‘)(q) := q, 17(k+‘)( ql, . . . , qk+l) := 

17(lFk’(q,, . . . ) qk), qk+l). Usually, we write (41, . . . , qk) instead of n’k’(ql, . . . , qk). 

(3) Define flCco): IF”+ IF by 17Cco)(p0, p,, . . .)(i, j) := pi(j). 

The following lemma summarizes the most important properties of the tupling 
functions. On the sets ffk and IF” we consider the product topologies. 

2.7. Lemma (1) flCk) is a homeomorphism, and, for any i, 1 B i d k, (p,, . . . , Pk)++pi 

is computable. 
(2) lF*) is a homeomorphism, and for any i the function III”’ with 

C”‘: (PO, PI, f - .) = Pi is computable. 

Proof. Showing continuity of n(k) and A!(O”) and their inverses is a simple exercise 
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in topology. Computability of the ‘projections’ can easily be shown using oracle 
Turing machines. Cl 

Using rick),, any continuous k-ary function r: IF k --+ A4 can be uniquely represented 
by the continuous unary function r’= r(17(k))-1. Therefore, up to the tupling 
functions only unary functions have to be considered. We now define a binary 
universal function by its unary equivalent. 

2.8. Definition. Define a function r,: IF + B by an oracle Turing machine T as follows. 
T works in stages n = 0, 1,2,. . . . Let (p, q) be the input of T. 

Stage n: Let z E W(N) be the word already written on the output tape. 
If (Vi,jsn) (~‘N(i)I=~N0’)3~~~(i)E~N~O’)) 
then y:=max(v,p(i)Ii<n~ vN(i)&q} 
else y:= 2; 
write x, where x is the word determined by zx = y. 

Let +: F + [IF -+ B] be defined by 

&Aq) := e(P)(q) := UP9 4). 

It remains to show that (I/ is a well-defined surjection. The next lemma also shows 
the connection of rl, and the function y++ 7 for isotone functions y. 

2.9. Lemma. (1) +:lF+[lF+IEB] is a well-defined surjective function, 
(2) +( 2~2 yvN) = 7 for any isotone y: W(N) + W(N), 
(3) T:F+B is computable iflr’= +(p) f or some computable function p E IF. 

Proof. (l), (2) First we show that y and z exist for any stage n. If (Vi,js n)(. . .), 

then {vN(i)( i Q n A vN( i) E q} is linearly ordered by “E”. The condition (Vii, j)(. . .) 

implies that also { vNp( i) ( i s n A vN (i) r q} is linearly ordered, therefore y exists. If 
n=O, then Z=E and x=y. Otherwise, z=max{v,p(i)lien-lnv,(i)rq}cy. 
Therefore, x exists. If not (V&j 6 n)(. . .), then y = z and x = E. Therefore, ~,4 is 
well-defined. Now suppose, y is isotone. Define p := v;;’ yvN. Then vN (i) c vN(j) = 

vNp( i) c vNp(‘j) for all i, j E N, and the output after Stage n is max{ vNp( i) ( i d n A 
vN ( i) c q}. Therefore, 

This proves (2), and surjectivity follows from Lemma 2.1 (2). 
(3) Suppose p E IF is computable. Then there is an oracle machine T with fi-( q) = 

(p, q) for any q E IF. Combining T with the oracle machine for r, yields an oracle 
machine which transforms q into $(p)(q) for any q E IF. Therefore, q(p): IF + B is 
computable. On the other hand, suppose r is computable. Then r = 7 for some 
computable y. By Definition 2.2, p := v$ yv ,,, is computable and 7 = $(p) by (2). Cl 
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By Definition 2.8 and by Lemma 2.5, the universal function Tu of $ is computable. 
This corresponds to the ordinary universal Turing machine theorem which says that 
the universal function of cp is computable. Also, for the second effectiveness property 
of rp, the ‘smn-theorem’ there is a corresponding property for +. We formulate it as 
a ‘translation lemma’. 

2.10. Theorem. (1) (‘utm- theorem’): There is a computable function I’,: IF + B such 
that (VP, q E IF) UP, d = &Ad- 

(2) (‘translation lemma’): For any computable function r: IF + B there is a compu- 
table function 2: IF + B with S(F) G lT such that (VP, q E IF) +zCP)( q) = r(p, q). 

Proof. (1) follows immediately from Lemma 2.5. 
(2) Suppose r: IF + El is computable. By Definition 2.3 there is some computable 

y: W(N) + W(N) with r = 7. Let p E IF be any function on N. Define y,,: W(N) + W(N) 
by yp( w) := y(p[@ w1, w), where ( il i2 . . . i,, j,j, . . . j,,) := i,j, i2 j, . . . i,,j,,. Obviously, yp 
is isotone. 

2.10.1. Proposition. (Vq E IF) yP(q) = y(p, q). 

Proof 

3/p(s)=suP~YJw)lw~q~ 

=sup{y(p[‘gw’, w>l wcq} 

ESUPiY(4 Lap, 4)) 

= Y(P, 4). 

On the other hand, suppose y E W(N) with YE y(p, q). Since y(p, q) = 
SUP{Y(Z) (ZC(P, &I, there are zl, z2 with k(d = k(z2), (G, z2Wp, s>, and Y c 

y(z,, z2). Under these conditions, 

Yk,, z2)=up{Y(P~‘gw1, w>l wcp) = jgq). 

Therefore, y E y(p, q) implies y E yp( q) for all y, hence T(p, q)E rP( q). This proves 
the proposition. El 

Define E by Z(p) := v~‘y,z++ Then E(lF) s IF and by Lemma 2.9(2), $xlPl(q) = 
yP(q) = p(p, q) = T(p, q). It remains to show that 2: IF-+ B is computable. By the 
definitions, 

Z(p)(i) = v&‘yPvN(i) = z~~y(p~‘~~~(~)‘, vN(i)) 

holds for any p E IF and i E N. Since y is computable, there is some oracle Turing 
machine which computes Z: 0 

Two other versions of the translation lemma, the uniform ‘smn-theorem’ and the 
continuous translation lemma can easily be derived. 
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2.11. Corollary. (1) There is some computable Z:IF + B with Z(IF) c IF such that 

(VP, 49 rW &(p,q)(r) = $Jq, r). 
(2) For any continuous function r: IF + IIS there is some continuous function A : IF + If% 

with A@) c IF such that (VP, q E IF) tiAtpI(q) = r(p, q). 

Proof. (1) The function 0: IF + IEI with O(p, (q, r)) = ((p, q), r) is computable and also 
r := T&J is computable (use Lemma 2.5). For r there is some computable 1 which 
satisfies the conditions of Theorem 2.10(2). Then, for all p, q, r E IF: 

rci,(P, r> = T”(P, (49 4) = T”NP9 q), r) = ~~(p,q:,(r). 

(2) Since r is continuous, r = $,. for some r. By (l), r(p, q) = &(J q) for some 
computable 2. Then the function A with A(p) := E(r, p) has the desired 
properties. Cl 

While Corollary 2.1 l( 1) is equivalent to Theorem 2.10(2) the continuous transla- 
tion lemma Corollary 2.11(2) is only a consequence of Theorem 2.10(2). Similarly 
to ordinary recursion theory, the smn- and the utm-theorems characterize $ uniquely 
up to equivalence. First we introduce topological and computable reducibility and 
equivalence for representations. 

2.12. Definition. (1) A representation of a set M is a surjective function 6: D: --• M. 
(2) On the class of all representations the following relations are defined: 

S1 6, S2 :($ (Vp E dom( 6,)) S,(p) = &T(p) for some continuous r: IF -+ B, 

S,6, S2 :e (Vp E dom( 6,)) S,(p) = &r(p) for some computable r: IF + S, 

s,=,s, :e (8 1 6, a2 and S2 s t S,), 

(3) An element m E M is called S-computable iff m = 6(p) for some computable 
PEF. 

Obviously, st and sc are transitive and identitive, and =:t and fC are equivalence 
relations. These reducibilities correspond to many-one reducibility from ordinary 
recursion theory. The significance of one-one reducibility for representations is not 
yet clear. The definition of a topological and a computable reducibility emphasize 
that we are developing a general topological theory and simultaneously a formally 
almost equivalent stronger computability theory. We can now formulate the funda- 
mental characterization theorem for +. It corresponds to Rogers’ equivalence 
theorem for effective Giidel numberings of the unary partial recursive functions. 

2.13. Theorem. Let 6 be a representation of [IF -, B]. Then (1) and (2) are equivalent: 
(1) s=,*, 



Type 2 recursion theory 25 

(2) S satisfies the utm-theorem and the (computable) translation lemma (see 
Theorem 2.10). 

The proof is easy and formally equivalent to the proof of the corresponding 
theorem for cp. Therefore, we leave it to the reader. Theorem 2.10 and Theorem 2.13 
strongly indicate that + is the (up to equivalence) unique natural and (computably) 
‘effective’ representation of the continuous functions from % to B. 

Many important theorems in ordinary recursion theory are proved by step counting 
arguments. Instead of direct step counting arguments often Kleene’s T-predicate 
[3], abstract Blum complexity measures [l], or the projection theorem [ 11, p. 661 
are used which serve the same purpose. For our Type 2 theory, we shall use the 
following lemma or the projection theorem (Theorem 4.3). 

2.14. Lemma. Let M be the machine for the universalfunction r, from Definition 2.8. 
Then the following set T, is decidable: 

{(i, j, k, m)lfor any input (p, q) such that vN(i)tp and vN(j)Lq within k 
steps the oracle machine M yields output UN(m) and reads at 
most the$rst lg( vN (i)) symbols ofp and at most thejirst lg( vN (j)) 
symbols of q}. 

Proof. Write vN( i) OntO the first even places and ‘UN(j) onto the first odd places 
of the input tape. Then try to execute k steps of computation of M and decide 
whether the given conditions are satisfied. Cl 

On the basis of Theorem 2.10 a rich theory of continuity and computability for 
$ can be developed which corresponds to ordinary recursion theory for cp (see, e.g., 
[ 111). In this paper we only want to present some focus points of the theory. 

3. The standard representations of [B + F ] and of [F + N] 

From the standard representation + of [lF+ IB] two other representations will be 
derived: a representation $ of certain partial continuous functions from IF to IF and 
a representation x of certain continuous functions from F to N. 

3.1. Definition. (1) Define a set [IF + N] of partial functions from ff to N and a 
surjective function x: IF + [E + IV] as follows: 

div if +(p)(q) = E E B, 
the first number of the sequence +(p)(q) 

otherwise, 

for all p, q E IF. 
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(2) Define a set [ff + IF] of partial functions from ff to IF and a surjective function 
4: IF + [IF -+ IF] as follows: 

&P)(q) := +W(4) if (cIW(4) E h 
div otherwise, 

for all p, q E IF. 

The definition extends well-known concepts of computable operators and func- 
tionals to a uniform topological description. The X-computable elements from [lF -+ N] 
are exactly the recursive functionals on IF defined by Rogers [ 11, Section 15.31. The 
total computable functions from [IF + 51 are exactly the restrictions of general recur- 
sive operators to IF [ 11, Section 9.81. In the Type 2 theory developed here, computabil- 
ity of operators on Dp( = {f: N --+ N}) or 2” can be derived via admissible representa- 
tions of appropriate cpo’s [14]. This is beyond the scope of this paper. 

As in the case of partial recursive functions which have the recursively enumerable 
sets as their natural domains, also the functions from [lF + N] and [IF + IF] have natural 
domains. 

3.2. Definition. (1) Let a representation w of the set of open subsets of IF be defined 
by w(p) := U{[ z+,(j)] Ij+ 1 E range(p)} for any p E IF. 

(2) Let a representation 5 of. the set of Gs-subsets of IF be defined by t(p) = 
f7i Uj b~(_dllW)+ 1 E range(d) for any Pd. 

By the following theorem, 
subsets and from [ff + IF] are 
version. 

the domains of the functions from [IF + IV] are the open 
the G8-subsets of IF. We prove a computably effective 

3.3. Theorem. ( 1) Define a 
Then 0 sew’. 

representation 0 ’ by m’(p) := dom(X(p)) for all p E IF. 

(2) Dejne a representation 6’ by f(p) := dom( J(p)) for all p E IF. Then r=cf. 

Property (1) corresponds to the characterization of the recursively enumerable 
sets as domains of the partial recursive functions on the one hand and as the ranges 
of the total recursive functions on the other hand. 

Proof. (1) “0 d&M”‘: Let M be an oracle Turing machine which, on input (p, q), 
p E IF, q E IF, works in stages as follows. 

Stage (i, k): If p( i) # 0 and vN(p( i) - 1) = qLkl, then write 0. SincefM is computable, 
by Theorem 2.10(2) there is a computable function T:ff + B with fM(p, q) = @,-cP,(q) 
for all p, q E IF. Then 

qEw(p) e (3i, k)(p(i)fOA vN(p(i)-l)=qLk’) 

e h-(Jq) # E @ q E dom(x&, 

therefore o SC w’. 
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“W’ ~,o”: Let T, be the set from Lemma 2.14 Define 2 : IF + IF by 

-QW,.L k m>:= j+l ifvlv(i)EPA(i,j,Sm)ET,~VN(172)#&, 
o otherwise, 

for all p E IF, i, j, k, m E N. Then, 2 is computable and 

4 E 4Vp)> e Wj, k 4 

for any p, q E IF. 
(2) “BACK”‘: Let A4 be an oracle Turing machine which on input (p, q) tries to 

compute Z(p, q)(i) in Stage i (i = 0, 1,2,. . .) as follows: 

x(p, q)(i):=min{(j, k)(p(k) =(i,j)+ 1 A Q&&I}, 

and if X(p, q)(i) does not exist, then Z(p, q)( i’) does not exist for all i’> i. By 
Theorem 2.10(2), .E(p, q) = t+brcPJ(q) for some computable r with T(F) c IF. Then 

q E 5(p) e (VWj)(3k)(p(k) = (i,j>+ 1 A +vo’)C s) 

C$ (Vi)Z(p, q)(i) exists 

e q E dom(&+,) = U(P) . 

for all p, q E IF. 
“&‘s~(“: Let T, be the set from Lemma 2.14. Define 2: IF+F by 

JWW, k w n):= 
(i,j)+l if(k,j, m, n)E T,A vN(k)EpAlg(vN(n))> i, 
o otherwise. 

Then 2 is computable and 

9 E 5’(p) @ (Vi)+&I)(i) exists 

e (VW_& k m, n) 

e V@(P) 

for all p, q E IF. Cl 

The following theorem characterizes F + N ([IF* IF]) and shows that ‘essentially’ 
every continuous function B --+ N (IF --* IF) is represented by x (3). 

3.4. Theorem. ( 1) [IF + N] is the set of all continuous 2 : IF -+ N such that dom( 2:) is 
open. 
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3.5. Theorem. The representations 6 and x satisfy the utm- theorem and the translation 
lemma ( Theorem 2.10), the uniform smn- theorem and the continuous translation 
lemma (Corollary 2.1 l), and the equivalence theorem (7Yheorem 2.13). 

Proof. There are functions H, and H2 such that xp( q) = H, (t,$( q)) and &,(q) = 
H2( &,( q)). Using H, and Hz, Theorem 2.10 can be transformed to the corresponding 
theorems for x and 6. The other statements are consequences. cl 

As for any representation, a function r E [IF + IF] (r E [IF + N]) is called computable, 
iff r = I+& (r = xp) for some computable p E IF. It is easy to see that T(p) is a 
computable function if r E [IF + IF] is computable and p E dam(r) is computable. 
Using Theorem 2.10 one easily shows that &,I,$ = t,&qj for some (total) computable 
2: IF + IF. The corresponding equation holds, if + is substituted by 6. There are 
several other obvious properties which we do not mention here. 

4. Open and computahly open sets 

In this section we show by examples how results from ordinary (Type 1) recursion 
theory can be transferred to Type 2 theory. Usually, there are two versions for any 
theorem, a topological (“t”) version where only continuous operators are considered 
and a computable (“c”) version where computable operators are considered. For 
example, we already have introduced topological reducibility, Q,, and computable 
reducibility, sc, and we have proved a computable translation lemma (Theorem 
2.10( 2)) and a topological translation lemma (Corollary 2.11(2)) for the representa- 
tion *. 

By Theorem 3.3, the open subsets of IF can be represented by o’, where o’(p) = 
dom(x(p)). There is a formal correspondence to the numbering W of the recursively 
enumerable subsets of N defined by Wj := dom( (si). This implies that many concepts 
and theorems for r.e. sets can be transferred to open or computably open subsets 
of IF. For example, Theorem 3.3( 1) corresponds to the fact that the r.e. sets can be 
defined as ranges of total recursive functions or as domains of partial recursive 
functions. 

4.1. Definition. Let A c IF. Then: 
- A is called t-open iff A is open. 
- A is called c-open iff A = o’(p) for some computable p E IF. 
- A is called t-clopen iff A and ff\A are open. 
- A is called c-clopen iff A and F\A are c-open. 

The c-clopen sets are also called recursive. 

The clopen sets formally correspond to the recursive sets in Type 1 recursion 
theory. Using oracle Turing machines the following lemma can easily be proved. 
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4.2. Lemma. A set A E IF is t-clopen (c-clopen) iff A = r-‘(O) for some continuous 
(computable) function r: IF + N. 

Notice that r must be a total function. Another basic theorem, which connects 
open and clopen sets, is the projection theorem. For i E N and p E IF we shall denote 
the function q=(i,p(O),p(l) ,...) by(i,p). 

4.3. Theorem. (1) There are computable total functions Lc, 2’ E [IF -+ iF] such that, for 
anypN 

w(p)={q((3iEN)(i,q)EoE(p)j and wZ’(p)=F\oZ(p). 

(2) There is some computable total function r E [IF + IF] such that, for any p E IF, 

(4 I Pi E N (44) E 4~)) = SUP). 

From (1) we conclude that any t-open (c-open) set is the projection of a t-clopen 
(c-clopen) set. From (2) we conclude that the projection of any t-open (c-open) set 
is t-open (c-open). 

Proof. (1) By the translation lemma for x there are computable total functions A, 
A’:F+F with xdCpj(i,q)=(O if p(i)#O and z+(p(i)-l)Er_q, div otherwise) and 
xd~(rj(i, q) = (div if p(i) # 0 and z+,(p( i) - 1) E q, 0 otherwise). By Theorem 3.3(l), 
o’ = &7 for some n: IF + IF. Then 2 := lIA and z?” := IIA’ have the desired properties. 

(2) Let M be an oracle Turing machine which with the input (p, q) operates in 
stages n=0,1,2 ,..., and in Stage n = (i, j) writes “0” onto the output tape if 
(p(j) # 0 and vN(p(j) - 1) c(i, q)) and writes nothing otherwise. By the translation 
lemma for x and by Theorem 3.3( 1) there is some computable total r: ff + IF such that 

qE aP) e f&P, 4)fI & 

e (3i)@j)(p(j) # 0 and dp(j) - l)g(i, 4)) 

e (Wi, qk w(P). 

Theorem 4.3 corresponds to the uniform 
recursively enumerable sets. 

In Definition 2.12 we have introduced t- 

cl 

version of the- projection theorem for 

and c-reducibility for representations. 
Any total representation 6 of (0, 1) can be considered as a characteristic function 
of 6-‘(l). Then, reducibility of characteristic functions is equivalent to reducibility 
between sets A, B G IF defined by A st B (A <,I?) iff A = T’B for some total 
(computable) r E [lF + IF]. Also, 1 -reducibility by injective functions and isomorphism 
can be defined. In contrast to Myhill’s theorem for subsets of N, l-equivalence and 
isomorphism do not seem to be equivalent. However, the cylinder theorem which 
shows the connection between reducibility and I-reducibility is formally the same 
as for subsets of RJ, where A is t-cylinder, iff A =t, (B, IF} for some B c IF (similar for 
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c-cylinders). The proof can be almost copied from the corresponding proof in 
ordinary recursion theory (see, e.g., [ 111). 

In Type 2 recursion theory the halting problem can be defined and turns out to 
be equivalent to the self applicability problem. It is c-complete in the class of t-open 
subsets of IF, its complement is c-productive w.r.t. the representation o. 

4.4. Definition. (1) Kx := {p E IF [p E dom xp> (self applicability problem). 
(2) K”, := {(p, q) E Flp E dom x4} (halting problem). 
(3) A s IF is t-complete (c-complete) in X G 2F, iff A E X and B 6, A (23 <,A) for 

any BEX. 
(4) A c IF is t-productive (c-productive) w.r.t. o iff there is some total (computable) 

function T~[ff+lF] such that w(q)sA+T(q)EA\o(q) for any qEF. 

Some properties of Kx are summarized in the following theorem. 

4.5. Theorem 
(1) K,=&. 
(2) Kx is c-open. 
(3) Rx is not t-open. 
(4) K, is c-complete in the class of t-open sets. 
(5) I?* is productive w.r. t. o. 

The proofs are very easy and formally equivalent to the corresponding proofs 
from ordinary recursion theory (see, e.g., [ 111). Several questions are still open. Is 
m-completeness equivalent to l-completeness? Is creativity equivalent to complete- 
ness? Is productivity of A E IF equivalent to xx 8 A? Is productivity via partial 
functions equivalent to Definition 4.4(4)? 

The concept of effective inseparability can easily be transferred to IF. 

4.6. Definition. A, B c IF are called t- (c-)effectively inseparable iff there is some 
total (computable) function r E [IF + IF] such that 

(Ar w’(p) A Br: o’(q) A o’(p) n m’(q) = 0) * Up, 4) E ~\W(p) u dql) 

for all p, q E IF. 

The following theorem corresponds to a similar theorem in ordinary recursion 
theory. 

4.7. Theorem. (1) (p lx,(p) = 0} and {p Ix,(p) = 1) are c-e_ffectiveZy inseparable. 
(2) If A0 and A, are t- (c-)eflectiveZy inseparable and A0 z B0 and A, E B,, then 

B,, ands Bfare t- (c-)e_tTectiveZy inseparable. 
(3) If T:lF+ IF is continuous (computable) and A0 and A, are t- (c-)eflectively 

inseparable, then r( A,) and r( A, ) are t- (c-) eflectively inseparable. 
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We only indicate the proof of (1). 

Proof. By the computable translation lemma there is a computable function r: IF + IF 
such that 

r 1 ifr~domx,~r~domx,, 

XIYp,q)( r) = 
0 ifredomx,ArEdomx,, 
E (0, 1) if r E dom xP A r E dom xq, 
div otherwise. 

Then r has the desired properties. Cl 

Theorem 4.7 is useful for the study of precomplete representations, i.e., representa- 
tions which satisfy the recursion theorem (cf. [5]. Especially the representations $, 
x, 6, o and 6 are precomplete. Representations will be investigated from a general 
point of view on pp. 35-53 of this issue by Kreitz and Weihrauch [15]. 

5. Conclusion 

We have introduced three function classes together with standard representations 
$: IF + [IF + IBJ, 1,6: IF + [IF + IF], and x: IF + [F + N]. These representations admit a theory 
which is formally very similar to ordinary recursion theory based on the standard 
numbering q of the partial recursive functions. An essential feature of this theory 
is that it splits into two versions, a purely topological version and a more special 
recursion theoretical version. Thus, it demonstrates very clearly that topology is 
fundamental for computability theory. The definitions coincide as far as possible 
with standard definitions of computable operators and functionals given earlier. 
The purpose of this paper is to lay a basis for a concise, general, and simple theory 
of continuity and computability on IF, for a general theory of representations and 
for constructive and computable analysis and mathematics. Representations will be 
investigated in [ 151. 
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