
Theoretical Computer Science 38 (1985) 17-33
North-Holland

17

TYPE 2 RECURSION THEORY

Klaus WEIHRAUCH
Department of Computer Science, Femuniuersitiit, P.O. Box 940, 5800 Hagen, Fed. Rep. Germany

Communicated by E. Engeler
Received November 1983
Revised October 1984

Abstract. An attempt is made to lay a basis for a general, unified, concise, and simple theory of
computable and continuous functions from IF to F or N, where F = {f: N-, N}. The theory is
formally very similar to ordinary recursion theory. It splits into a purely topological version and
more special theory of computability. The basic definitions are given and fundamental properties
are proved. As an example it is shown how the theory of recursively enumerable subsets of N can
be transferred to a theory of open and a theory of computably open subsets of IF.

1. Introduction

Ordinary recursion theory or Type 1 recursion theory, i.e., the theory of computa-
bility on denumerable sets, is well established. In this theory, first computability of
functions on some standard set, usually N, is defined explicitly. Then via numberings
the concepts are transferred to functions on sets different from this standard set.
There are many good presentations of ordinary recursion theory in textbooks. One
of the best references is still the book by Rogers [ll]. The best reference to the
theory of numberings is Ershov’s paper [5].

The situation is different for Type 2 computability, i.e., computability on sets with
cardinality not greater than that of the continuum. Typical sets of this kind are 2”,
Xc” for a finite set Z; IF := N” := {f: N + IV}, P := {f: N --+ N} (a dashed arrow indicates
partial functions), general effective cpo’s [4], 0 := the set of countable ordinals;
Iw := set of real numbers, O(Iw) := set of open subsets of Iw, etc. There are several
explicit definitions of computable operators on such sets which are equivalent or
at least dependent from each other (see, e.g., 114, 11, 121) and much is known about
such operators but seemingly there is no generally accepted approach as in the case
of ordinary recursion theory. This paper attempts to lay a basis for a unified and
concise Type 2 recursion theory. We have chosen the set IF of sequences of natural
numbers as the standard set and define computability of functions on F explicitly.
Computability on other sets S can then be derived from this Type 2 recursion theory
on IF via representations 8: IF + S. The theory of representations will be. developed
in a second paper. Equivalent Type 2 theories can be obtained by starting with sets
like 2N with Scott’s topology, (0, 1)” with Cantor’s topology or P with the usual

0304-3975/85/%3.30 @ 1985, Elsevier Science Publishers B.V. (North-Holland)

18 K. Weihrauch

cpo-topology. The choice of IF is a compromise with regard to simplicity, generality,
and concreteness. This paper and a forthcoming one on representations shall
demonstrate that the formalism based on IF is simple and sufficiently general. The
theory with 2” might be simpler in some cases [12]. But, in practice, infinite objects
are usually defined as limits of sequences of finite objects and not by sets of finite
objects. For this reason, IF is more adequate for representations and a concrete
representation for computers, e.g., by EN, can be easily derived. The approach to
computability on IF is a special case of more general concepts (e.g., Ershov’s effective
and complete fo-spaces [6] or effectively given domains [4]). It is the spirit of this
approach first to develop a very simple (but sufficiently general) theory of continuity
and computability on a standard Type 2 set (namely IF). Then, by means of representa-
tions, the results can be used as a basis for other theories, e.g., computable analysis,
cpo-theory [4], higher type theory [6, 7, lo].

Type 2 recursion theory on IF turns out to be formally similar to ordinary recursion
theory. Remarkably, there is a slightly more general topological version of this
theory. Since topological considerations are fundamental for Type 2 theory, we
develop the two versions, the topological and the computational one, simultaneously.
Since an exhaustive development’ of the theory is out of the scope of a simple
publication like this and since many interesting questions are not yet answered, in
this paper the basic definitions are, given, several fundamental properties are proved,
and it is shown by examples how ordinary recursion theory can be transferred to
two versions of Type 2 theory, a topological and a recursive one. For some of the
proofs only an outline is given. More detailed proofs have been elaborated by Dettki
and Schuster [3].

It is assumed that the reader is familikr with ordinary recursion theory. As a main
reference, the book by Rogers [l l] is suggested. But also other books on recursion
theory are suitable. Some notations will be used throughout this paper. By f: A --+ B
(with dashed arrow) a partial function from A to B is denoted, where ‘partial’
means domCf) c A and not necessarily dam(f) = A. By 4p the standard numbering
of PC’), the unary partial recursive functions, is denoted. As usual we write (i,, . . . , i,)

instead of 7~(“)(i,, . . . , in) where 7~ (n)* N” -+ N is Cantor’s n-tuple bijection. If X is .

a set, W(X) denotes the set of all words over X. The empty word is denoted by &,
and lg(w) is the length of the word w. If w E W(X) and if w = x0x, . . . x, (where
xi E X), then we define w(i) := Xi for any i, 0 s i d n.

By N we denote the set of natural numbers (0, 1,2,. . .}. Define IF := N” and
B := W(N) u IF. Thus, B is the set of all finite and infinite (w-)words over IQ. On lE#
a (partial) order is defined by b c c:e b is a prefix of c. (Remark: (II& 5, E) is a cpo,
see, e.g., Egli and Constable [4].) For any p E IF and i E N define pfi’ :=

p(O)...p(i-1)~ W(N). For any UE W(N) define [v]={p~lFIv~p}. A function
y: W(N) -+ W(N) is isotone if ZJ c_ WJ y(u) c_ y(w). On the set B, a standard topology
is defined by the basis { 0, 1 ZJ E W(N)} where 0, = {b E B) ZIG b}. On IF we consider
the induced topology, i.e., {[v]) v E W(N)} is a basis of it. This is the well-known
Baire’s topology. On N we consider the discrete topology.

(“0 ~[M]JV~SM v(M)~~((~)%I)(ME)c-

(J JO h~nUpUO:, kj) (“0 S[M]J V[M]E'd)(ME)e=

“0 3 WJe=
(X JO uquyap Q) ("0 ~b”lJ”[Ml3d)(ME)e=

(x. JO uo!l!uy~P 4) ((M)kin V diM)(ME)(r

(d)& in

uay~~ -(&A 30 asoddns
‘(d)~ = (d)& s+Iduv ?U *((d)J=w(d)& W((N)A 3’nA)

:aAoJd ~p?ys a~ -4 3 d asoddns TN.IO~OS! sr /c ‘@no$tqg -(M~)x~w =: (M)X- auyaa
-sls!xa (“~)Xl?uI ‘pl# “0 u “0 J! (n’ J,rc 10 ,Li 3 A) pm ‘“m 3 3 ‘aly S! "m aXq

SIyJ ‘“0 3(,d)& axIay ‘(,d)&z(x)k~cz apnpuo3 a~ ,dzix pm {,di~ [(M)X}dns
= (,d)& UIOJ~ -[x]3,d ‘asoddng -[xl3 d pm (x)X sn qq~ (N)M 3x autos s!

arayl ‘aJ0Ja.q~ ‘{d i M 1 (M)X}dns = (d)& = b ? n sagdw! S~,L ‘“0 3 b I.@M (N)M 3 n

‘asoddns ‘“0 5 [xl& wy] yms [x] 3 d y?~ N 3 x autos SI aJayj “0 3 b ~$IM (N)M 3 n

he JOJ wg] MOMS 01]uagns s! $1 -b = (d)& I@!M gg 3 b ‘4 3 d ‘asoddns (1) ??Joord

;c = J YW’ (N)M
t (N)M :A. auo~os~ atuos sj ara2.j~ uau x4o~ymnj snonwguo2 v aq a t 4 :J la7 (z)

-snonw]uo~ sl ‘{d s M 1 (M)k}dns =: (d)& kq paujl‘ap ‘8 t -j :&
uo!ymnJ alj1 uayLL -uo~ixmj auoJosj uv aq (N)M t (N)M :x. 137 (1) 3nuuIq ‘1.2

20 K. Weihrauch

*(3w)(wcpAuEMw) (by definition of M,)

*(3w)(wcp/\ zZy(w)) (by definition of 7)

*zZy(w) (by definition of 7).

This implies 7 = IY ??

Suppose, y: W(N)+ W(N) is isotone, r: IF -, B is continuous, and 7 = I’. By the
definition of 7, for any p E IF and v E W(N), if IJ is a prefix of p, then y(u) is a prefix
of T(p), and T(p) can be approximated arbitrarily precisely by prefixes y(w) with
w cp. By Lemma 2.1 the mapping y + 7 is a surjective mapping from { y 1 y isotone}
to [IF + lar]. We shall modify this mapping into a representation $(I: IF+ [IF + B]. For
this purpose, any y: W(N)+ W(N) will be represented by some p E IF, and the
resulting partial representation will be extended into a total one. First, we define
the computable functions from IF to IE! and characterize them by oracle Turing
machines.

2.2, Definition. Let UN: N-, W(N) be the bijective standard numbering of W(N)
defined by VN(6) = 0, vN((&,, x1, . . . , x,, n) + 1) = x0x, . . . x, (where () is Cantor’s
tupling function). A function y: W(N) + W(N) is called computable iff it is (vN, UN)-

computable, i.e., iff v&~~v, is total recursive.

Lemma 2.1 immediately leads to the definition of the computable functions from
IF to B.

2.3. Definition. A continuous function r: IF + B is computable iff r = 7 for some
computable function y.

The computable functions F+ I5 can be characterized by oracle Turing machines.
This characterization admits informal but reliable specifications and proofs for
computable operators.

2.4. Definition. An oracle Turing machine is a Turing machine T of the following
type:
- T has a one-sided infinite read-only input tape on which the values p(O), p(l),

P(2), * - * of the input p E IF are written (in binary notation).
- T has work tapes.
- T has a one-sided infinite write-only output tape onto which from time to time

the values q(O), q(1), . . . (in this order) of the output q E B are written.

The machine is started with p E IF on the input tape, with empty output tape and
the read and the write heads at position 0. The machine may compute forever. The
result fT(p) is the (finite or infinite) sequence of numbers it writes onto the output
tape.

Type 2 recursion theory 21

The idea of piecewise approximating the output from piecewise approximations
of the input is another way of expressing continuity. Usually, [111 an oracle machine
is defined in such a way that with (oracle) input p E IF and n E N it yields a number
f(p, n) (or it diverges). If we consider only functions such that f(p, n) exists if n < m
and f(p, m) exists and if we interpret f(p, n) as the nth number on the output tape,
we obtain our concept of oracle machines as a special case.

2.5. Lemma. A function r: IF + B is computable iflit is computed by some oracle Turing

machine.

Proof. Suppose, r is computable. Then there is some computable isotone y: W(N) -+

W(N) with r = 7. Let T be an oracle Turing machine which operates in stages
n=0,1,2,... as follows. Let p be the input.

Stage n: read w = p(0) . . . p(n); determine y(w); append x E W(N) to the output,
where x is the single word with vx = y(w), u := inscription already on
the output tape.

Indeed, there is an oracle machine which operates this way, and, obviously, y(p) =
sup{ y(w) (w cp} is the output for input p. On the other hand, suppose J-’ is computed
by some oracle Turing machine T. For w E W(N), let y(w) be the word on the output
tape after lg(w) steps if w is written onto the first positions of the input tape. Note
that in lg(w) steps T cannot require more input than given by the word w. Therefore,
y is well-defined. Also, y is isotone and computable and 7 is the function computed
by1 Cl

Below we shall introduce a representation +: IF + [IF + B] by its universal function
r,. r,, will be defined by an oracle Turing machine which is based on the definition
of 7 by y. First we introduce the tupling functions.

2.6. Definition (Tupling functions)
(1) Define 17:lF2 +IF by n(p, q) (2i):=p(i), n(p, q) (2i+ l):= q(i).
(2) Define nCk): Fk + IF for k 2 1 inductively by n(‘)(q) := q, 17(k+‘)(ql, . . . , qk+l) :=

17(lFk’(q,, . . .) qk), qk+l). Usually, we write (41, . . . , qk) instead of n’k’(ql, . . . , qk).

(3) Define flCco): IF”+ IF by 17Cco)(p0, p,, . . .)(i, j) := pi(j).

The following lemma summarizes the most important properties of the tupling
functions. On the sets ffk and IF” we consider the product topologies.

2.7. Lemma (1) flCk) is a homeomorphism, and, for any i, 1 B i d k, (p,, . . . , Pk)++pi

is computable.
(2) lF*) is a homeomorphism, and for any i the function III”’ with

C”‘: (PO, PI, f - .) = Pi is computable.

Proof. Showing continuity of n(k) and A!(O”) and their inverses is a simple exercise

22 K. Weihrauch

in topology. Computability of the ‘projections’ can easily be shown using oracle
Turing machines. Cl

Using rick),, any continuous k-ary function r: IF k --+ A4 can be uniquely represented
by the continuous unary function r’= r(17(k))-1. Therefore, up to the tupling
functions only unary functions have to be considered. We now define a binary
universal function by its unary equivalent.

2.8. Definition. Define a function r,: IF + B by an oracle Turing machine T as follows.
T works in stages n = 0, 1,2,. . . . Let (p, q) be the input of T.

Stage n: Let z E W(N) be the word already written on the output tape.
If (Vi,jsn) (~‘N(i)I=~N0’)3~~~(i)E~N~O’))
then y:=max(v,p(i)Ii<n~ vN(i)&q}
else y:= 2;
write x, where x is the word determined by zx = y.

Let +: F + [IF -+ B] be defined by

&Aq) := e(P)(q) := UP9 4).

It remains to show that (I/ is a well-defined surjection. The next lemma also shows
the connection of rl, and the function y++ 7 for isotone functions y.

2.9. Lemma. (1) +:lF+[lF+IEB] is a well-defined surjective function,
(2) +(2~2 yvN) = 7 for any isotone y: W(N) + W(N),
(3) T:F+B is computable iflr’= +(p) f or some computable function p E IF.

Proof. (l), (2) First we show that y and z exist for any stage n. If (Vi,js n)(. . .),

then {vN(i)(i Q n A vN(i) E q} is linearly ordered by “E”. The condition (Vii, j)(. . .)

implies that also { vNp(i) (i s n A vN (i) r q} is linearly ordered, therefore y exists. If
n=O, then Z=E and x=y. Otherwise, z=max{v,p(i)lien-lnv,(i)rq}cy.
Therefore, x exists. If not (V&j 6 n)(. . .), then y = z and x = E. Therefore, ~,4 is
well-defined. Now suppose, y is isotone. Define p := v;;’ yvN. Then vN (i) c vN(j) =

vNp(i) c vNp(‘j) for all i, j E N, and the output after Stage n is max{ vNp(i) (i d n A
vN (i) c q}. Therefore,

This proves (2), and surjectivity follows from Lemma 2.1 (2).
(3) Suppose p E IF is computable. Then there is an oracle machine T with fi-(q) =

(p, q) for any q E IF. Combining T with the oracle machine for r, yields an oracle
machine which transforms q into $(p)(q) for any q E IF. Therefore, q(p): IF + B is
computable. On the other hand, suppose r is computable. Then r = 7 for some
computable y. By Definition 2.2, p := v$ yv ,,, is computable and 7 = $(p) by (2). Cl

Type 2 recursion theory 23

By Definition 2.8 and by Lemma 2.5, the universal function Tu of $ is computable.
This corresponds to the ordinary universal Turing machine theorem which says that
the universal function of cp is computable. Also, for the second effectiveness property
of rp, the ‘smn-theorem’ there is a corresponding property for +. We formulate it as
a ‘translation lemma’.

2.10. Theorem. (1) (‘utm- theorem’): There is a computable function I’,: IF + B such
that (VP, q E IF) UP, d = &Ad-

(2) (‘translation lemma’): For any computable function r: IF + B there is a compu-
table function 2: IF + B with S(F) G lT such that (VP, q E IF) +zCP)(q) = r(p, q).

Proof. (1) follows immediately from Lemma 2.5.
(2) Suppose r: IF + El is computable. By Definition 2.3 there is some computable

y: W(N) + W(N) with r = 7. Let p E IF be any function on N. Define y,,: W(N) + W(N)
by yp(w) := y(p[@ w1, w), where (il i2 . . . i,, j,j, . . . j,,) := i,j, i2 j, . . . i,,j,,. Obviously, yp
is isotone.

2.10.1. Proposition. (Vq E IF) yP(q) = y(p, q).

Proof

3/p(s)=suP~YJw)lw~q~

=sup{y(p[‘gw’, w>l wcq}

ESUPiY(4 Lap, 4))

= Y(P, 4).

On the other hand, suppose y E W(N) with YE y(p, q). Since y(p, q) =
SUP{Y(Z) (ZC(P, &I, there are zl, z2 with k(d = k(z2), (G, z2Wp, s>, and Y c

y(z,, z2). Under these conditions,

Yk,, z2)=up{Y(P~‘gw1, w>l wcp) = jgq).

Therefore, y E y(p, q) implies y E yp(q) for all y, hence T(p, q)E rP(q). This proves
the proposition. El

Define E by Z(p) := v~‘y,z++ Then E(lF) s IF and by Lemma 2.9(2), $xlPl(q) =
yP(q) = p(p, q) = T(p, q). It remains to show that 2: IF-+ B is computable. By the
definitions,

Z(p)(i) = v&‘yPvN(i) = z~~y(p~‘~~~(~)‘, vN(i))

holds for any p E IF and i E N. Since y is computable, there is some oracle Turing
machine which computes Z: 0

Two other versions of the translation lemma, the uniform ‘smn-theorem’ and the
continuous translation lemma can easily be derived.

24 K. Weihrauch

2.11. Corollary. (1) There is some computable Z:IF + B with Z(IF) c IF such that

(VP, 49 rW &(p,q)(r) = $Jq, r).
(2) For any continuous function r: IF + IIS there is some continuous function A : IF + If%

with A@) c IF such that (VP, q E IF) tiAtpI(q) = r(p, q).

Proof. (1) The function 0: IF + IEI with O(p, (q, r)) = ((p, q), r) is computable and also
r := T&J is computable (use Lemma 2.5). For r there is some computable 1 which
satisfies the conditions of Theorem 2.10(2). Then, for all p, q, r E IF:

rci,(P, r> = T”(P, (49 4) = T”NP9 q), r) = ~~(p,q:,(r).

(2) Since r is continuous, r = $,. for some r. By (l), r(p, q) = &(J q) for some
computable 2. Then the function A with A(p) := E(r, p) has the desired
properties. Cl

While Corollary 2.1 l(1) is equivalent to Theorem 2.10(2) the continuous transla-
tion lemma Corollary 2.11(2) is only a consequence of Theorem 2.10(2). Similarly
to ordinary recursion theory, the smn- and the utm-theorems characterize $ uniquely
up to equivalence. First we introduce topological and computable reducibility and
equivalence for representations.

2.12. Definition. (1) A representation of a set M is a surjective function 6: D: --• M.
(2) On the class of all representations the following relations are defined:

S1 6, S2 :($ (Vp E dom(6,)) S,(p) = &T(p) for some continuous r: IF -+ B,

S,6, S2 :e (Vp E dom(6,)) S,(p) = &r(p) for some computable r: IF + S,

s,=,s, :e (8 1 6, a2 and S2 s t S,),

(3) An element m E M is called S-computable iff m = 6(p) for some computable
PEF.

Obviously, st and sc are transitive and identitive, and =:t and fC are equivalence
relations. These reducibilities correspond to many-one reducibility from ordinary
recursion theory. The significance of one-one reducibility for representations is not
yet clear. The definition of a topological and a computable reducibility emphasize
that we are developing a general topological theory and simultaneously a formally
almost equivalent stronger computability theory. We can now formulate the funda-
mental characterization theorem for +. It corresponds to Rogers’ equivalence
theorem for effective Giidel numberings of the unary partial recursive functions.

2.13. Theorem. Let 6 be a representation of [IF -, B]. Then (1) and (2) are equivalent:
(1) s=,*,

Type 2 recursion theory 25

(2) S satisfies the utm-theorem and the (computable) translation lemma (see
Theorem 2.10).

The proof is easy and formally equivalent to the proof of the corresponding
theorem for cp. Therefore, we leave it to the reader. Theorem 2.10 and Theorem 2.13
strongly indicate that + is the (up to equivalence) unique natural and (computably)
‘effective’ representation of the continuous functions from % to B.

Many important theorems in ordinary recursion theory are proved by step counting
arguments. Instead of direct step counting arguments often Kleene’s T-predicate
[3], abstract Blum complexity measures [l], or the projection theorem [11, p. 661
are used which serve the same purpose. For our Type 2 theory, we shall use the
following lemma or the projection theorem (Theorem 4.3).

2.14. Lemma. Let M be the machine for the universalfunction r, from Definition 2.8.
Then the following set T, is decidable:

{(i, j, k, m)lfor any input (p, q) such that vN(i)tp and vN(j)Lq within k
steps the oracle machine M yields output UN(m) and reads at
most the$rst lg(vN (i)) symbols ofp and at most thejirst lg(vN (j))
symbols of q}.

Proof. Write vN(i) OntO the first even places and ‘UN(j) onto the first odd places
of the input tape. Then try to execute k steps of computation of M and decide
whether the given conditions are satisfied. Cl

On the basis of Theorem 2.10 a rich theory of continuity and computability for
$ can be developed which corresponds to ordinary recursion theory for cp (see, e.g.,
[111). In this paper we only want to present some focus points of the theory.

3. The standard representations of [B + F] and of [F + N]

From the standard representation + of [lF+ IB] two other representations will be
derived: a representation $ of certain partial continuous functions from IF to IF and
a representation x of certain continuous functions from F to N.

3.1. Definition. (1) Define a set [IF + N] of partial functions from ff to N and a
surjective function x: IF + [E + IV] as follows:

div if +(p)(q) = E E B,
the first number of the sequence +(p)(q)

otherwise,

for all p, q E IF.

26 K. Weihrauch

(2) Define a set [ff + IF] of partial functions from ff to IF and a surjective function
4: IF + [IF -+ IF] as follows:

&P)(q) := +W(4) if (cIW(4) E h
div otherwise,

for all p, q E IF.

The definition extends well-known concepts of computable operators and func-
tionals to a uniform topological description. The X-computable elements from [lF -+ N]
are exactly the recursive functionals on IF defined by Rogers [11, Section 15.31. The
total computable functions from [IF + 51 are exactly the restrictions of general recur-
sive operators to IF [11, Section 9.81. In the Type 2 theory developed here, computabil-
ity of operators on Dp(= {f: N --+ N}) or 2” can be derived via admissible representa-
tions of appropriate cpo’s [14]. This is beyond the scope of this paper.

As in the case of partial recursive functions which have the recursively enumerable
sets as their natural domains, also the functions from [lF + N] and [IF + IF] have natural
domains.

3.2. Definition. (1) Let a representation w of the set of open subsets of IF be defined
by w(p) := U{[z+,(j)] Ij+ 1 E range(p)} for any p E IF.

(2) Let a representation 5 of. the set of Gs-subsets of IF be defined by t(p) =
f7i Uj b~(_dllW)+ 1 E range(d) for any Pd.

By the following theorem,
subsets and from [ff + IF] are
version.

the domains of the functions from [IF + IV] are the open
the G8-subsets of IF. We prove a computably effective

3.3. Theorem. (1) Define a
Then 0 sew’.

representation 0 ’ by m’(p) := dom(X(p)) for all p E IF.

(2) Dejne a representation 6’ by f(p) := dom(J(p)) for all p E IF. Then r=cf.

Property (1) corresponds to the characterization of the recursively enumerable
sets as domains of the partial recursive functions on the one hand and as the ranges
of the total recursive functions on the other hand.

Proof. (1) “0 d&M”‘: Let M be an oracle Turing machine which, on input (p, q),
p E IF, q E IF, works in stages as follows.

Stage (i, k): If p(i) # 0 and vN(p(i) - 1) = qLkl, then write 0. SincefM is computable,
by Theorem 2.10(2) there is a computable function T:ff + B with fM(p, q) = @,-cP,(q)
for all p, q E IF. Then

qEw(p) e (3i, k)(p(i)fOA vN(p(i)-l)=qLk’)

e h-(Jq) # E @ q E dom(x&,

therefore o SC w’.

Type 2 recursion theory 27

“W’ ~,o”: Let T, be the set from Lemma 2.14 Define 2 : IF + IF by

-QW,.L k m>:= j+l ifvlv(i)EPA(i,j,Sm)ET,~VN(172)#&,
o otherwise,

for all p E IF, i, j, k, m E N. Then, 2 is computable and

4 E 4Vp)> e Wj, k 4

for any p, q E IF.
(2) “BACK”‘: Let A4 be an oracle Turing machine which on input (p, q) tries to

compute Z(p, q)(i) in Stage i (i = 0, 1,2,. . .) as follows:

x(p, q)(i):=min{(j, k)(p(k) =(i,j)+ 1 A Q&&I},

and if X(p, q)(i) does not exist, then Z(p, q)(i’) does not exist for all i’> i. By
Theorem 2.10(2), .E(p, q) = t+brcPJ(q) for some computable r with T(F) c IF. Then

q E 5(p) e (VWj)(3k)(p(k) = (i,j>+ 1 A +vo’)C s)

C$ (Vi)Z(p, q)(i) exists

e q E dom(&+,) = U(P) .

for all p, q E IF.
“&‘s~(“: Let T, be the set from Lemma 2.14. Define 2: IF+F by

JWW, k w n):=
(i,j)+l if(k,j, m, n)E T,A vN(k)EpAlg(vN(n))> i,
o otherwise.

Then 2 is computable and

9 E 5’(p) @ (Vi)+&I)(i) exists

e (VW_& k m, n)

e V@(P)

for all p, q E IF. Cl

The following theorem characterizes F + N ([IF* IF]) and shows that ‘essentially’
every continuous function B --+ N (IF --* IF) is represented by x (3).

3.4. Theorem. (1) [IF + N] is the set of all continuous 2 : IF -+ N such that dom(2:) is
open.

SsamanbasuoD al~~patmu! 31.~1 pus (01-z umoaq~) u.moayl
-ruin aql pm -um ayl1cJsyr?s [d t 41 t -J :ff pm [N t J] t 3 :X suo!leluasaJda~ aq~_

(M)Zk JO ((M)‘k)%I @.Ia~ JO xyad aql =: (M)Zk

‘((M)VI 3 ((MWIJ! (M)k

Icq ZX. auyaa
‘V spualxa ‘x. l=fl q3ns (N)M + (N)M :‘k

awes S! aKq, *(,@.lop 5 (v)uIop ‘ICIsnorAqg ‘(@.Iop = (p)uIop ql!M [d + g] 3 v
awes st amyl E-E u.woayc~ da *las-9f) e s! (~)wop l~yl uoyppe u! awnssv e(p)
satold sy~ .r spualxa [4 c J] 3 ,x uay,~ *(3) ,_& 01 & jo uop+~lsa.x ayl aq ,x 1a-1

-r spualxa $I f 4 :& snonuguo:,
atuos lay1 SMOGS @ea auo (z) 1-z eu~.~a? jo jooJd ayl ur sv snonuguo3 aq
4 ??-- 4 : x 131 ‘puny my10 ayl ug wop3unj snonuguo3 e jo uog3r_rlsa~ B se snonwluo:,
si x puE E’f uJ=oayLL Aq la@9 e s! (r)“op uayLL y--t 313 x 197 (p) ‘(f)

‘r SpIK3)Xa & jlZy’1 SMOyS &Ea aU0 (I) LIi SV

3s~M.Iaylo hip
‘(24) = ([M])xJF U

I
=:l”)’

Aq (N)M c (N)M A auyaa 3nonufluo3 s! N f-- 4 : x w.p aumssv (c)

‘[N + 4-j 3 /CH = r u!Wqo aM

(dig v U =(M)~)(ME) e

(uado s! (x)u~op pm snonu!luoD s! r ays)

-9S~MlIayJO A!p

‘{u} = ([M])x PUE (~)WOP F[M]JI u
I

=‘(M)X-

Ic‘l (N)M +(N)M :k =J!Jaa
wade aq (t()urop 131 pm snonu!luoD aq ,y.~ f-- -J :x ,a~

‘puey .mylo ayl uo 3nonuguo3 SF x Q t 4 :J snonuyuo3 amos ~oj JH = x amg
WlOtW~)LIO~ SI H UayLL *(aS~MD~JO A!p ‘3 # X j’ X JO IOqU.dS JS.Ilj aIJ)) =: (X)H Aq

N + 8 :H aUya(l ‘f-f U.IalOa~ kq uado S! (r)UIOp Uau ‘[N t A] 3 TJ 197 (1) ??JOOJd

‘1 SpU~lXi3 lj+l/M [fl t fl] 3, r i9lUOs s! cWl./l -J f-- -J : r S?‘lOtU4~lU03 hv -NLJ (v)

‘flso

rasqr@D v s! (r)uIop lvyf yms 4 t-- 4 :x snonuyuo3 11~1 Jo las aye st [A c -JJ] (f)
-g spua~xa y>!y~ [N c fl] 3,~ au40s sl aay~ N ??-- 4 : r snonuyuo3 Xuv AO~ (2)

Type 2 recursion theory 29

3.5. Theorem. The representations 6 and x satisfy the utm- theorem and the translation
lemma (Theorem 2.10), the uniform smn- theorem and the continuous translation
lemma (Corollary 2.1 l), and the equivalence theorem (7Yheorem 2.13).

Proof. There are functions H, and H2 such that xp(q) = H, (t,$(q)) and &,(q) =
H2(&,(q)). Using H, and Hz, Theorem 2.10 can be transformed to the corresponding
theorems for x and 6. The other statements are consequences. cl

As for any representation, a function r E [IF + IF] (r E [IF + N]) is called computable,
iff r = I+& (r = xp) for some computable p E IF. It is easy to see that T(p) is a
computable function if r E [IF + IF] is computable and p E dam(r) is computable.
Using Theorem 2.10 one easily shows that &,I,$ = t,&qj for some (total) computable
2: IF + IF. The corresponding equation holds, if + is substituted by 6. There are
several other obvious properties which we do not mention here.

4. Open and computahly open sets

In this section we show by examples how results from ordinary (Type 1) recursion
theory can be transferred to Type 2 theory. Usually, there are two versions for any
theorem, a topological (“t”) version where only continuous operators are considered
and a computable (“c”) version where computable operators are considered. For
example, we already have introduced topological reducibility, Q,, and computable
reducibility, sc, and we have proved a computable translation lemma (Theorem
2.10(2)) and a topological translation lemma (Corollary 2.11(2)) for the representa-
tion *.

By Theorem 3.3, the open subsets of IF can be represented by o’, where o’(p) =
dom(x(p)). There is a formal correspondence to the numbering W of the recursively
enumerable subsets of N defined by Wj := dom((si). This implies that many concepts
and theorems for r.e. sets can be transferred to open or computably open subsets
of IF. For example, Theorem 3.3(1) corresponds to the fact that the r.e. sets can be
defined as ranges of total recursive functions or as domains of partial recursive
functions.

4.1. Definition. Let A c IF. Then:
- A is called t-open iff A is open.
- A is called c-open iff A = o’(p) for some computable p E IF.
- A is called t-clopen iff A and ff\A are open.
- A is called c-clopen iff A and F\A are c-open.

The c-clopen sets are also called recursive.

The clopen sets formally correspond to the recursive sets in Type 1 recursion
theory. Using oracle Turing machines the following lemma can easily be proved.

30 K. Weihrauch

4.2. Lemma. A set A E IF is t-clopen (c-clopen) iff A = r-‘(O) for some continuous
(computable) function r: IF + N.

Notice that r must be a total function. Another basic theorem, which connects
open and clopen sets, is the projection theorem. For i E N and p E IF we shall denote
the function q=(i,p(O),p(l) ,...) by(i,p).

4.3. Theorem. (1) There are computable total functions Lc, 2’ E [IF -+ iF] such that, for
anypN

w(p)={q((3iEN)(i,q)EoE(p)j and wZ’(p)=F\oZ(p).

(2) There is some computable total function r E [IF + IF] such that, for any p E IF,

(4 I Pi E N (44) E 4~)) = SUP).

From (1) we conclude that any t-open (c-open) set is the projection of a t-clopen
(c-clopen) set. From (2) we conclude that the projection of any t-open (c-open) set
is t-open (c-open).

Proof. (1) By the translation lemma for x there are computable total functions A,
A’:F+F with xdCpj(i,q)=(O if p(i)#O and z+(p(i)-l)Er_q, div otherwise) and
xd~(rj(i, q) = (div if p(i) # 0 and z+,(p(i) - 1) E q, 0 otherwise). By Theorem 3.3(l),
o’ = &7 for some n: IF + IF. Then 2 := lIA and z?” := IIA’ have the desired properties.

(2) Let M be an oracle Turing machine which with the input (p, q) operates in
stages n=0,1,2 ,..., and in Stage n = (i, j) writes “0” onto the output tape if
(p(j) # 0 and vN(p(j) - 1) c(i, q)) and writes nothing otherwise. By the translation
lemma for x and by Theorem 3.3(1) there is some computable total r: ff + IF such that

qE aP) e f&P, 4)fI &

e (3i)@j)(p(j) # 0 and dp(j) - l)g(i, 4))

e (Wi, qk w(P).

Theorem 4.3 corresponds to the uniform
recursively enumerable sets.

In Definition 2.12 we have introduced t-

cl

version of the- projection theorem for

and c-reducibility for representations.
Any total representation 6 of (0, 1) can be considered as a characteristic function
of 6-‘(l). Then, reducibility of characteristic functions is equivalent to reducibility
between sets A, B G IF defined by A st B (A <,I?) iff A = T’B for some total
(computable) r E [lF + IF]. Also, 1 -reducibility by injective functions and isomorphism
can be defined. In contrast to Myhill’s theorem for subsets of N, l-equivalence and
isomorphism do not seem to be equivalent. However, the cylinder theorem which
shows the connection between reducibility and I-reducibility is formally the same
as for subsets of RJ, where A is t-cylinder, iff A =t, (B, IF} for some B c IF (similar for

Type 2 recursion theory 31

c-cylinders). The proof can be almost copied from the corresponding proof in
ordinary recursion theory (see, e.g., [111).

In Type 2 recursion theory the halting problem can be defined and turns out to
be equivalent to the self applicability problem. It is c-complete in the class of t-open
subsets of IF, its complement is c-productive w.r.t. the representation o.

4.4. Definition. (1) Kx := {p E IF [p E dom xp> (self applicability problem).
(2) K”, := {(p, q) E Flp E dom x4} (halting problem).
(3) A s IF is t-complete (c-complete) in X G 2F, iff A E X and B 6, A (23 <,A) for

any BEX.
(4) A c IF is t-productive (c-productive) w.r.t. o iff there is some total (computable)

function T~[ff+lF] such that w(q)sA+T(q)EA\o(q) for any qEF.

Some properties of Kx are summarized in the following theorem.

4.5. Theorem
(1) K,=&.
(2) Kx is c-open.
(3) Rx is not t-open.
(4) K, is c-complete in the class of t-open sets.
(5) I?* is productive w.r. t. o.

The proofs are very easy and formally equivalent to the corresponding proofs
from ordinary recursion theory (see, e.g., [111). Several questions are still open. Is
m-completeness equivalent to l-completeness? Is creativity equivalent to complete-
ness? Is productivity of A E IF equivalent to xx 8 A? Is productivity via partial
functions equivalent to Definition 4.4(4)?

The concept of effective inseparability can easily be transferred to IF.

4.6. Definition. A, B c IF are called t- (c-)effectively inseparable iff there is some
total (computable) function r E [IF + IF] such that

(Ar w’(p) A Br: o’(q) A o’(p) n m’(q) = 0) * Up, 4) E ~\W(p) u dql)

for all p, q E IF.

The following theorem corresponds to a similar theorem in ordinary recursion
theory.

4.7. Theorem. (1) (p lx,(p) = 0} and {p Ix,(p) = 1) are c-e_ffectiveZy inseparable.
(2) If A0 and A, are t- (c-)eflectiveZy inseparable and A0 z B0 and A, E B,, then

B,, ands Bfare t- (c-)e_tTectiveZy inseparable.
(3) If T:lF+ IF is continuous (computable) and A0 and A, are t- (c-)eflectively

inseparable, then r(A,) and r(A,) are t- (c-) eflectively inseparable.

32 K. Weihrauch

We only indicate the proof of (1).

Proof. By the computable translation lemma there is a computable function r: IF + IF
such that

r 1 ifr~domx,~r~domx,,

XIYp,q)(r) =
0 ifredomx,ArEdomx,,
E (0, 1) if r E dom xP A r E dom xq,
div otherwise.

Then r has the desired properties. Cl

Theorem 4.7 is useful for the study of precomplete representations, i.e., representa-
tions which satisfy the recursion theorem (cf. [5]. Especially the representations $,
x, 6, o and 6 are precomplete. Representations will be investigated from a general
point of view on pp. 35-53 of this issue by Kreitz and Weihrauch [15].

5. Conclusion

We have introduced three function classes together with standard representations
$: IF + [IF + IBJ, 1,6: IF + [IF + IF], and x: IF + [F + N]. These representations admit a theory
which is formally very similar to ordinary recursion theory based on the standard
numbering q of the partial recursive functions. An essential feature of this theory
is that it splits into two versions, a purely topological version and a more special
recursion theoretical version. Thus, it demonstrates very clearly that topology is
fundamental for computability theory. The definitions coincide as far as possible
with standard definitions of computable operators and functionals given earlier.
The purpose of this paper is to lay a basis for a concise, general, and simple theory
of continuity and computability on IF, for a general theory of representations and
for constructive and computable analysis and mathematics. Representations will be
investigated in [151.

References

r11
PI

[31

[41

r51

N. Blum, A machine independent theory of complexity of recursive functions, J. ACM 14 (1967).
H. Barendegt and G. Longo, Recursion theoretic operators and morphisms of numbered sets, Fund.
Math. CXIX (1982) 49-62.
H.-J. Dettki and H. Schuster, Rekursionstheorie auf 6, Informatik Berichte 34 (Femuniversitiit,
Hagen, 1983).
H. Egli and R. L. Constable, Computability concepts for programming language semantics, Theoret.
Comput. Sci. 2 (1976) 133-145.
Ju.L. Ershov, Theorie der Numerierungen I, 2. fib Math. Logik und Grundlagen der Mathematik
19 (1973) 289-388.

Type 2 recursion theory 33

[6] Ju.L. Ershov, Model C of partial continuous functionals, in: R. Gandy and M. Hyland, eds., Logic
Colloquium 76 (North-Holland, Amsterdam, 1977).

[7] M. Hyland, Filter spaces and the continuous functionals, Ann. Math. Logic 16 (1979) 101-143.
[8] S.C. Kleene, Introduction to Metamathematics (Van Nostrand, Princeton, NJ, 1952).
[9] K. Kuratowski, Topology (Academic Press, New York London, 1966).

[lo] G. Longo and E. Moggi, The hereditary partial effective functionals and recursion theory in higher
types, J. Symb. Logic, to appear.

[1 l] H. Rogers, Jr., Theory ofRecursioe Functions and EJectiue Computability (McGraw-Hill, New York,
1967).

[12] D. Scott, Data types as lattices, SIAM J. Comput. 5 (3) (1976) 522-587.
[13] D. Scott, Some ordered sets in computer science, in: I. Rival, ed., Proc. Nuto Advanced Study

Institute, Banff, Canada (1982).
[141 K. Weihrauch and G. Schafer, Admissible representations of effective cpo’s, Theoret. Comput. Sci.

26 (1983) 131-147.
[151 C. Kreitz and K. Weihrauch, Theory of representations, Theoret. Comput. Sci. 38 (1) (1985) 35-53

(this issue).

