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Blake Jr., David J., PhD, Summer 2007 Biochemistry/Microbiology

The role of the macrophage in asbestos induced autoantibody production

Chairperson: Michael F. Minnick

Environmental exposure to silicate compounds such as silica and asbestos has been
associated with increased autoimmune responses and the development of autoimmune
disease in humans. Residents of Libby, MT have experienced significant asbestos
exposure due to an asbestos contaminated vermiculite mine near the community over
several decades. Residents have developed numerous asbestos-related diseases as well as
increased autoimmune responses. However, the exact mechanism by which Libby
amphibole asbestos generates autoimmune responses is unclear. To elucidate a possible
mechanism for asbestos induced autoimmunity, the cellular effects of Libby amphibole
asbestos were characterized in vitro using a phagocytic murine macrophage cell line,
which are characteristic of alveolar macrophages. Our results indicate that Libby
amphibole asbestos generates oxidative stress in murine macrophages similar to
crocidolite asbestos. However, Libby asbestos induces distinct cellular effects compared
to crocidolite asbestos. Therefore, the cellular effects of amphibole asbestos may be a
combined consequence of its chemical composition as well as the activation of distinct
cellular pathways during exposure. Libby amphibole asbestos also induces apoptosis in
murine macrophages resulting in the translocation of SSA/Ro52 to cell surface blebs of
apoptotic cells. These apoptotic cell surface blebs are recognized by autoantibodies from
mice exposed to amphibole asbestos, suggesting that these cell surface structures may be
antigenic when presented in a pro-inflammatory context. These results suggest that the
induction of apoptosis may play a key role in environmentally induced autoimmunity.
Interestingly, autoantibodies found in the sera of the Libby cohort also recognize the
SSA/Ro52 autoantigen, indicating that humans and mice exposed to amphibole asbestos
generate similar AA profiles and that the alterations of the immune response by
amphibole asbestos may be comparable. We hypothesize that asbestos-induced
autoimmunity is generated through a two hit mechanism. First, autoantigens become
visible to the immune system during apoptosis, which results in the accumulation of
autoantigens on the cell surface. The subsequent uptake and processing of apoptotic cells
by antigen-presenting cells in a pro-inflammatory context will activate self-reactive T
cells, inducing the loss of tolerance and generate the autoimmune responses.
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Chapter 1 

Introduction

Asbestos exposure in humans is associated with the development of malignant 

and nonmalignant diseases including lung cancer, pulmonary fibrosis (asbestosis) and an 

increased frequency of autoantibody production (112, 141, 167, 189). Although the 

commercial use of asbestos has decreased in the United States since the 1970s, asbestos 

exposure remains a major environmental health concern. More than 30 million tons of 

asbestos have been mined in the U.S. alone (120) and more than 27 million people have 

been exposed to asbestos between 1940 and 1979 (126). As late as 1989, the use of 

asbestos products in the U.S. exceeded 55,000 tons per year (1). Developed countries 

have restricted the use of asbestos because of its harmful public health effects. However, 

asbestos is now a major concern in developing countries due to increased marketing and 

commercial use (85, 91). Additionally, in 2002 the vermiculite mine and community of 

Libby, MT have been designated as EPA Superfund sites due to the amphibole asbestos 

contamination of vermiculite, which led to exposure throughout the mine site and 

surrounding area. Significant health issues have become evident in Libby and many other 

sites where the vermiculite was shipped for processing. Hence, asbestos exposure 

remains an immediate environmental health concern not only in Libby, MT but 

throughout the United States and in developing countries. 
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Physical characteristics and utility of asbestos 

Asbestos is a general term for hydrated silicate fibers that are strong and heat-

resistant. Because of its high tensile strength and ability to absorb heat, asbestos has been 

used extensively as a building material in roofing, siding, fire protection material, heating 

and electrical wire insulation, appliance components, sheet flooring, ceiling and floor 

tiles, and drywall.  

Asbestos fibers are categorized into two 

separate families based on morphology. Amphibole 

fibers are straight rod-like fibers that include fibers 

such as amosite, tremolite, crocidolite and Libby 

amphibole asbestos (Fig. 1.1). In contrast, 

serpentine fibers are curved pliable fibers. The 

serpentine fiber family includes a single fiber 

type, chrysotile, which accounts for 95% of the 

world’s asbestos consumption (95). Chrysotile 

asbestos fibers are not as biopersistent in the lung 

and break down into fibrils, which are subsequently destroyed by alveolar macrophages 

(7). Therefore, exposure to chrysotile asbestos is not associated with lung cancer (198). 

Amphibole asbestos fibers do not dissolve or breakdown over time. Moreover, amphibole 

asbestos fibers can remain airborne in contaminated areas and eventually settle into soil, 

sediment and tree bark (185). Therefore, the toxic potential of asbestos fibers remains 

constant in contaminated areas once they are introduced into the environment.  

 

Figure 1.1: Transmission electron
micrograph of a Libby amphibole
asbestos fiber in a vacuole of a
murine macrophage cell.
Magnification = 40,000X
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Amphibole asbestos contamination in Libby, MT 

From 1924 to 1990, Zonolite Mountain in Libby, Montana was the site of a 

vermiculite mining operation. In 1963, W.R. Grace bought the Zonolite mining 

operations, which subsequently provided approximately 80% of the world’s supply of 

vermiculite (159). Unfortunately the vermiculite extracted from the Libby mine was 

contaminated with naturally-occurring asbestos fibers. The mine closed in 1990 after 

almost 70 years of operation. The first emergency response team from the Environmental 

Protection Agency (EPA) was sent to Libby, MT in November 1999. The EPA began 

collecting air, soil and insulation samples over the next few months. In October of 2002 

the vermiculite mine and surrounding community of Libby, Montana were designated as 

EPA Superfund sites due to the asbestos contamination of vermiculite. The various 

mining, transportation, and processing activities as well as the personal and commercial 

use of vermiculite in the community led to widespread environmental exposures in the 

Libby area (43), which resulted in significant asbestos-related diseases even in residents 

with short exposure times of less than a year (190). 

The asbestos contamination of Libby vermiculite has been characterized as both 

regulated asbestos fibers (e.g., tremolite and other amphibole forms) and unregulated 

fibers (e.g., winchite and richterite) (113). The mixture of amphibole fibers in the Libby 

amphibole sample differs in terms of fiber length and metallic cations expressed on the 

fiber surface. Moreover, these amphibole fibers are thought to be more pathogenic than 

serpentine asbestos fibers because the longer amphibole fibers cannot be readily cleared 

from the lung (6).  
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The extensive asbestos exposure has led to considerable health problems in the 

community including reduced pulmonary function, enhanced autoimmune responses and 

increased mortality from lung cancer, malignant mesothelioma and fibrosis (112, 141, 

189). Significant health issues have become evident in Libby and many other sites where 

the vermiculite was shipped for processing (3, 112). The asbestos-related disease (ARD) 

observed in patients from Libby include interstitial fibrosis, pleural plaques, and 

mesothelioma, with rapid progression in a subset of patients (189). Although the exact 

mechanism leading to the progression of ARD has not been fully characterized, recent 

evidence indicates that these diseases may be immunologically mediated (2, 16, 71).  

Occupational asbestos exposure results in a higher prevalence of positive

autoantibodies that recognize host derived intracellular antigens (96, 127, 200).

Moreover, a positive correlation exists between the development of autoantibodies and

the onset of pulmonary fibrosis, which suggests that autoantibodies play a role in asbestos

induced lung disease (169). A recent study from our laboratory supported these

conclusions and established that a significantly higher proportion of asbestos exposed

individuals from Libby, MT exhibit positive autoantibody tests compared to an

unexposed control group (141). A murine model of asbestos induced autoimmunity was

subsequently generated (140). Asbestos exposed mice developed an increased prevalence

of autoantibodies, which preceded symptoms of systemic autoimmunity, such as

glomerulonephritis. Autoantibody production in asbestos exposed individuals is known to

precede ARD and is correlated with more severe ARD (141, 169). Taken together, these

data indicate that autoantibody production may precede and even exacerbate the

progression of asbestos-related lung disease (ARD). However, a comprehensive study
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focusing on a possible mechanism of asbestos induced autoantibodies has not been

performed.

Environmental exposure is associated with systemic autoimmune disease (SAID)  

 Systemic autoimmune diseases are complex, multisystem diseases that can be life 

threatening. They are characterized by humoral and cellular immunity to self-antigens 

and include diseases such as systemic lupus erythematosus (SLE), scleroderma (SSc), 

Sjogren’s syndrome (SS) and rheumatoid arthritis (RA). Although the etiologies of 

systemic autoimmune diseases remain unknown it is clear that many factors are important 

in the induction of these diseases including genetic, dietary, hormonal, racial and 

environmental differences (39, 40). 

 The importance of hormonal and racial differences in SAID is highlighted by the 

fact that more than 85% of SLE patients are females and that the incidence of SLE is 

approximately three times higher among African-Americans than Caucasians (82). 

Dietary differences are thought to be an important component of SAID because although 

autoimmune diseases occur predominately in the Western world, immigrants develop the 

same incidence of SAID as the indigenous population over time (39). A number of 

environmental factors also activate the immune system and contribute to the development 

and immunopathology of these diseases. 

For example, exposure to silica in “dusty” occupations such as mining, stone 

cutting or sand blasting can cause chronic pulmonary diseases such as SLE and SSc (36, 

136, 150). The mechanism by which silica causes SAID remains unknown, however, 

evidence suggest that silica particles are phagocytized by alveolar macrophage, which 



6

then interact with immune cells in an inflammatory environment, possibly generating the 

pathological features observed in silica induced autoimmunity (16, 40). 

 Mercury is another well recognized environmental factor that generates systemic 

autoimmunity in humans as well as in mice (32, 64, 143). Occupational exposure to 

mercury occurs through the mining and processing of raw oil. Environmental exposure is 

mainly through the ingestion of contaminated fish.  Finally, UV radiation is associated 

with exacerbations in patients with SLE. UV radiation is known to aggravate skin lesions 

in patients with SLE and exacerbate disease activity (199). Interestingly, patients with 

autoantibodies to SSA/Ro52 are even more sensitive to UV radiation than typical SLE 

patient (62).  

 Taken together, these studies provide a clear link between exposures to certain 

environmental factors with the exacerbation of a known SAID or the initiation of a 

disease that resembles traditional SAID. The mechanism and pathological effects of 

different environmental factors may induce separate SAID, however, all these factors 

seem to share a common nonspecific adjuvant effect on the immune system, which may 

be responsible for the development of autoimmunity. Asbestos may function as an 

environmental adjuvant in the lung initiating a pro-inflammatory condition leading to the 

loss of tolerance. 

 

Systemic autoimmune disease and autoantibody specificity 

Autoantibody production is a key feature of systemic autoimmune disease (SAID) 

(105). The etiology of SAID is complex and thought to involve multiple pathways, such 

as increased oxidative stress, elevated levels of apoptosis, disregulated clearance of 
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apoptotic debris and the redistribution of targeted autoantigens (2, 16, 26, 29, 153, 154). 

However, all patients diagnosed with SAID share a common clinical manifestation, 

which is the aberrant production of antibodies against well conserved autoantigens. 

Autoantibodies (AAs) are specific to nuclear and cytosolic antigens such as double 

stranded DNA, histones, tRNA synthetase and an E3 ubiquitin ligase.  

SAID has been clearly linked to many environmental exposures such as mercury, 

silica, iodine and possibly asbestos exposure (13, 16, 110, 141). Therefore, it has been 

proposed that xenobiotics may alter the molecular context or localization of specific 

autoantigens and lead to the aberrant processing and presentation of these autoantigens on 

the surface of cells (29). Exposure to xenobiotics, such as asbestos and silica, leads to a 

chronic inflammatory response (78). Consequently, the altered presentation of antigenic 

epitopes in the context of a chronic inflammatory response may stimulate tolerance to be 

broken and thereby generate an immune response against specific autoantigens.  

Mercury induced systemic autoimmunity provides an excellent example of how 

an environmental stimulus can modify cellular autoantigens that generates a specific 

immune response to the antigenic autoantigen, which can be identified by the specificity 

of the AA produced. Anti-fibrillarin antibodies are found in SAID such as scleroderma, 

which has been associated with mercury exposure (110). Therefore, mercury was 

hypothesized to alter the presentation of fibrillarin so that the protein was recognized as 

antigenic by the immune system. Mercury was subsequently shown to interact with 

fibrillarin and lead to its altered presentation to the immune system, which ultimately 

resulted in the production of anti-fibrillarin AAs (143). In this case, the specificity of the 
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AA provided valuable information regarding a possible mechanism by which SAID is 

initiated during mercury exposure.  

Exposure to amphibole asbestos induces many clinical features of systemic

autoimmunity in C57/BL6 mice, which is a non-autoimmune prone mouse model (140).

The AAs generated in response to asbestos, target a specific intracellular antigen,

SSA/Ro52. This autoantigen has been recently reported to be a ubiquitously expressed

ubiquitin ligase (183). Moreover, this autoantigen is also targeted by AAs obtained from

asbestos exposed community members from Libby, MT (141). Therefore, the specificity

of the AA in both humans and mice indicate that this protein may be presented as

antigenic during the immune response generated by asbestos exposure.

Oxidative stress induced by asbestos exposure 

An extensive amount of evidence indicates that cells exposed to amphibole 

asbestos generate reactive oxygen species (ROS) such as the superoxide anion and the 

hydroxyl radical (73, 77, 81, 102, 103, 124, 164, 187). Asbestos induced ROS leads to 

the activation of a number of transcription factors such as AP-1 and NF-ΚB (30, 51, 53) 

as well as the release of a number of pro-inflammatory cytokines such as TNF-alpha and 

IL-1 (46, 100, 138). Therefore, ROS may contribute to the development of an 

inflammatory state and the subsequent immune response generated by asbestos (8, 124). 

Interestingly, oxidative stress induced by asbestos fibers has also been postulated to play 

a key role in the initiation of asbestos induced autoimmunity (162). 

ROS generated by asbestos originates from at least three distinct cellular sources. 

First, asbestos induced ROS functions during the induction of apoptosis in exposed cells. 

Alveolar epithelial cells exposed to amosite asbestos generate intracellular ROS as a 
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consequence of mitochondrial DNA damage (135). Amosite induced ROS initiates 

mitochondrial-regulated apoptosis by activating p53 and caspase 3 and 9 (134). Second, 

amphibole asbestos fibers, in particular crocidolite and amosite, which contain a high iron 

content, can spontaneously generate ROS in the presence of hydrogen peroxide through 

iron catalyzed reactions via the Fenton reaction (88, 188). Crocidolite asbestos triggers 

cellular toxicity via ROS in macrophages in vitro. However, in the presence of iron 

chelators, asbestos induced cell toxicity is abrogated (67). The importance of fiber 

chemistry is supported in vivo where iron chelators also provide a protective role against 

pulmonary inflammation and fibrosis (89).  

Finally, crocidolite induces ROS production through the release of ROS 

activating inflammatory cells such as macrophages and neutrophils (88, 123, 124, 178). 

Crocidolite asbestos fibers have also been shown to stimulate the release of reactive 

oxygen metabolites from peritoneal macrophages in vitro (66). Alveolar macrophages 

(AMs) that interact with asbestos fibers release ROS extracellularly, specifically the 

superoxide anion, which is reduced in response to protein kinase C (PKC) and calcium 

channel inhibitors (87, 151). These results suggest that NADPH oxidase may become 

activated in response to asbestos, generating ROS in vitro.

AMs function to reduce the lung fiber burden by migrating to the site of asbestos 

deposition and clearing asbestos fibers through phagocytosis (94, 165). Amphibole 

asbestos fibers, such as crocidolite and tremolite, are straight rod-like fibers that are 

difficult to phagocytose and clear, leading to “frustrated phagocytosis” and increased 

oxidative stress for the cell (67). This can result in either cell death or activation of AMs. 

These events appear to increase antigen presenting cell (APC) activity (70, 71). 
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Therefore, the alveolar macrophage is a pivotal cell type by which ROS and 

inflammation can be initiated. 

 

Redistribution of autoantigens involved in systemic autoimmunity   

Because antigen processing and presentation constitute the basis for all antigen-

driven autoimmune responses, the effects of xenobiotics on the degradation and 

localization of autoantigens have been characterized to elucidate possible molecular 

mechanisms of autoimmunity. Xenobiotics have been shown to promote the aberrant 

redistribution of autoantigens to discrete locations in exposed cells. First, xenobiotics 

have been shown to alter the localization of nuclear proteins to nucleoplasmic clusters, 

where they colocalize with proteasomes and are subjected to proteasomal proteolysis. 

Second, certain autoantigens redistribute themselves to apoptotic blebs at the plasma 

membrane surface in response to xenobiotics. The uptake and processing of apoptotic 

cells in a pro-inflammatory context may activate self-reactive T-cells and generate an 

autoimmune response.  

Exposure to xenobiotics such as silica nanoparticles results in the redistribution of 

the systemic sclerosis (SSc) autoantigen, DNA topoisomerase I (topo-I), to nucleoplasmic 

clusters that colocalize with the 20S proteasome (27, 29) (Fig. 1.2). The xenobiotic 

induced redistribution may have important clinical significance, because the 

colocalization of topo-I and proteasomes occur exclusively in dendritic cells from SSc 

patients who have developed AAs that specifically recognize DNA topoisomerase I. 

These data support the hypothesis that the redistribution of nuclear proteins to the 
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proteasome in vivo is correlated with autoimmune responses against specific autoantigens 

(27-29). 

Xenobiotics also redistribute autoantigens to the plasma membrane. Translocation 

of autoantigens occurs in response to environmental factors known to induce 

autoimmunity (54, 156). Systemic lupus erythematosus (SLE) is characterized by the 

production of AAs against certain proteins such as double-stranded DNA (dsDNA) or 

DNA/RNA/protein complexes. Several lupus autoantigens, which are localized 

intracellularly in resting cells, are known to translocate to the plasma membrane during 

environmental exposure (59, 63, 99). UVB radiation on keratinocytes results in the 

redistribution of Ro52, which is an autoantigen commonly recognized by patients with 

SLE, to the plasma membrane surface (21, 54, 156). Autoantigens may become ‘visible’ 

to the immune system during apoptosis, which results in the accumulation of these 

antigens at the cell surface (Fig. 2B). Although the redistribution and translocation of 

intracellular autoantigens have been observed, the manner by which the redistribution 

occurs in xenobiotically exposed cells may take place through two separate mechanisms. 

 

Figure 1.2: Two proposed mechanisms for the aberrant processing and presentation of
autoantigens targeted in SAID. In figure 2A, an environmental stimulus, such as asbestos,
may result in the redistribution of nuclear autoantigens to the proteasome. In figure 2B,
asbestos may lead to the translocation of autoantigens to the cell surface through
apoptotic or oxidative stress mechanisms. Both pathways result in the presentation of
antigenic epitope to the immune system.

A B
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Both oxidative stress and apoptosis have been shown to play a role in the 

redistribution of autoantigens. For example, the surface expression of the Ro52 

autoantigen by UVB radiation has been shown to be independent from apoptosis, which 

suggests that oxidative stress and not apoptosis induces the alteration of certain nuclear 

proteins (156). However, other studies indicate that the redistribution of nuclear 

autoantigens, such as histones, is dependent on programmed cell death and can be 

blocked with caspase inhibitors as well as with inhibitors of chromatin fragmentation 

(54). Consequently, it is not clear whether apoptosis or oxidative stress functions as the 

principle mechanism behind the redistribution of nuclear autoantigens. The possibility 

exists that different autoantigens become redistributed through separate mechanisms (21). 

Therefore, since the mechanism involved in the initiation of SAID remains unclear, the 

redistribution of nuclear autoantigens to the proteasome or to the plasma membrane may 

occur during asbestos exposure. This premise will be specifically tested in Specific Aim 2 

focusing on the intracellular antigen SSA/Ro-52. The aim of this dissertation research 

concentrates on characterizing the cellular response to asbestos exposure and predicts that 

an alteration in the host cell environment due to asbestos exposure will lead to a 

redistribution of nuclear autoantigens.  

 

Possible mechanisms for the initiation of systemic autoimmunity 

Two principle immunological events must occur in order for SAID to develop in 

humans. First, a chronic inflammatory state must be maintained within an individual. 

Second, tolerance to self-antigens must be broken in order to elicit a humoral immune 
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response. A chronic inflammatory response and broken tolerance to self-antigens are 

hypothesized to occur as a result of two main pathways; apoptosis and oxidative stress.  

Apoptotic cells generated by environmental exposure such as asbestos may lead 

to SAID through the presentation of antigenic epitopes not normally seen by the immune 

system. Apoptotic cells are rapidly removed by professional phagocytotic cells such as 

dendritic cells and lead to immunosuppresion or lack of an inflammatory response (49, 

148). In contrast, secondary necrosis due to overwhelming rates of cellular apoptosis or 

deficits in apoptotic cell clearance results in inflammation and the release of intracellular 

antigens to the immune system (191). Indeed, animal models that have abnormal 

apoptotic cell clearance have a higher prevalence of AAs (72, 119, 161). However, 

because many redundant mechanisms are involved in the clearance of apoptotic cells, a 

defect in clearance alone is not sufficient to induce autoimmunity (106).  

As previously stated, many intracellular autoantigens targeted by SAID are 

known to cluster on the surface of apoptotic cells or blebs (153). Asbestos has been 

shown to lead to apoptosis in exposed cells (70). Many autoantigens have been shown to 

undergo cleavage and processing during apoptosis. It is thought that these unique 

cleavage peptides may provide the stimulus for initiating an autoantibody response (129, 

153). In fact, some autoantigens involved in SSc are cleaved by metal-catalyzed redox 

reactions to yield specific targets for the antibodies detected in these patients (22). 

Therefore, apoptosis may induce novel self-antigens to be presented to an immune 

system that has not gone through tolerance to these cryptic epitopes (98).  

One mechanism by which apoptosis can induce the generation of new epitope is 

through the activation of granzyme B. Granzyme B is a serine protease found in the 
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cytoplasm of cytotoxic T-cells and natural killer cells. Granzyme B activation and the 

subsequent cleavage of B23, which is a nucleolar autoantigen recognized by AAs in SSc 

patients, generates novel antigens that are distinct from caspase cleaved antigens (176, 

177). Moreover, efficient cleavage by granzyme B has been observed for other systemic 

autoimmune autoantigens (153). Therefore, asbestos exposure may result in an increased 

rate of apoptosis in exposed cells, which leads to the generation of novel antigenic 

epitopes that are subsequently recognized by the humoral immune response. 

Alternatively, autoantigens clustered on the surface of apoptotic cells may be recognized 

by the immune system. The subsequent processing and presentation of these autoantigens 

may activate self-reactive T cells to generate an immune response (152). 

Oxidative stress induced by ROS has been implicated in the initiation of SAID. 

ROS are transient high energy molecules, such as the hydroxyl radical or the superoxide 

anion, with one or more unpaired electrons. ROS are normally produced by cellular 

metabolism and are detoxified through cellular reducing agents such as glutathione 

(GSH) and antioxidants such as superoxide dismutase (SOD) or vitamin E. An imbalance 

in ROS and cellular defenses leads to oxidative stress. Oxidative stress can lead to a 

myriad of cellular alterations including damage to lipids (lipid peroxidation) and DNA 

(oxidation of deoxyguanosine (8-oxo-2dG)). Interestingly, lymphocytes isolated from 

patients with rheumatoid arthritis (RA) and SLE have increased levels of 8-oxo-dG, 

suggesting that oxidative stress is involved in SAID (104). Although native dsDNA is not 

immunogenic, dsDNA modified by oxidative stress is highly immunogenic (38, 61). 

Experimental exposure to ROS-modified DNA generates anti-dsDNA antibodies that 

cross react with both native and modified DNA (4). Moreover, proteins can be modified 
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through ROS and promote protein-DNA crosslinking. Therefore, it follows that oxidative 

stress induced by asbestos exposure may modify DNA or proteins within exposed cells 

and these novel antigens could be presented to the immune system to generate specific 

AAs. 

 

Hypothesis and Specific Aims 

Asbestos exposure has been shown to generate oxidative stress in exposed cells, 

which triggers a number of cellular events, including ROS production, DNA damage and 

apoptosis (9). Therefore, our central hypothesis is that oxidative stress induced by 

exposure to Libby amphibole asbestos leads to a modified cellular environment, which 

subsequently generates the aberrant processing and presentation of autoantigens. The 

specific aims of this proposal test this hypothesis in vitro using cultured macrophages as 

the putative target for oxidative stress, ex vivo using primary macrophage from naïve 

murine lungs as well as in vivo. The goal of this research is to identify a possible 

mechanism by which asbestos induces autoantibody production. This research will add to 

our understanding of the human health effects of asbestos and has the potential to identify 

therapeutic targets in asbestos related diseases. The Specific Aims that are addressed in 

the dissertation research presented here are: 

 

Specific Aim 1: Establish whether Libby asbestos is internalized and results in the 

activation of the NADPH oxidase complex by murine macrophages. 
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Specific Aim 2: Determine whether asbestos exposure promotes the redistribution of 

autoantigens in exposed cells. 
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Chapter 2 

Internalization of Libby amphibole asbestos and induction of oxidative stress in 

murine macrophages 

David J. Blake*, Celeste M. Bolin†, David P. Cox†, Fernando Cardozo-Pelaez† and Jean C.

Pfau†

Division of Biological Sciences* and Department of Biomedical & Pharmaceutical

Sciences, Center for Environmental Health Sciences†, University of Montana, Missoula,

Montana, 59812

Abstract: The community members of Libby, Montana have experienced significant

asbestos exposure and developed numerous asbestos related diseases (ARD) including

fibrosis and lung cancer due to an asbestos contaminated vermiculite mine near the

community. The form of asbestos in the contaminated vermiculite has been characterized

in the amphibole family of fibers. However, the pathogenic effects of these fibers have

not been previously characterized. The purpose of this study is to determine the cellular

consequences of Libby amphibole exposure in macrophages compared to another well

characterized amphibole fiber; crocidolite asbestos. Our results indicate that Libby

asbestos fibers are internalized by macrophages and localize to the cytoplasm and

cytoplasmic vacuoles similar to crocidolite fibers. Libby asbestos fiber internalization

generates a significant increase in intracellular reactive oxygen species (ROS) as

determined by DCFDA and DHE fluorescence indicating that the superoxide anion is the

major contributing ROS generated by Libby asbestos. Elevated superoxide levels in

macrophages exposed to Libby asbestos coincide with a significant suppression of total
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SOD activity. Both Libby and crocidolite asbestos generate oxidative stress in exposed

macrophages by decreasing intracellular GSH levels. Interestingly crocidolite asbestos,

but not Libby asbestos, induces significant DNA damage in macrophages. This study

provides evidence that the difference in the level of DNA damage observed between

Libby and crocidolite asbestos may be a combined consequence of the distinct chemical

compositions of each fiber as well as the activation of separate cellular pathways during

asbestos exposure.

Keywords: asbestos, Libby amphibole, murine macrophage, oxidative stress, DNA

damage

Introduction 

Asbestos exposure in humans is associated with the development of asbestos-

related diseases (ARD) such as pulmonary fibrosis and lung cancer. Although the exact

mechanism leading to the progression of ARD has not been fully explained, mounting

evidence indicates that reactive oxygen species (ROS), such as the superoxide anion and

the hydroxyl radical, play a significant role (8, 90). Because airways are continuously

exposed to high levels of environmental oxidants, they must maintain the proper balance

between pro-oxidants and antioxidants to prevent oxidative stress and cellular damage.

Environmental toxicants that alter the cellular redox state in the lung promote oxidative

stress and lead to pulmonary injury. Oxidative stress is therefore associated with

numerous pulmonary diseases including asthma, chronic obstructive pulmonary disease

and pulmonary fibrosis (147).

The vermiculite mine and surrounding community of Libby, Montana were

designated as EPA Superfund sites in 2002 due to the asbestos contamination of
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vermiculite, which led to significant asbestos exposure throughout the mine site and

surrounding area (190). The extensive asbestos exposure has led to considerable health

problems in the community including reduced pulmonary function, enhanced

autoimmune responses and increased mortality from lung cancer, malignant

mesothelioma and fibrosis (112, 141, 189). The form of asbestos in Libby’s contaminated

vermiculite has been characterized in the amphibole family of fibers and consists of

several hydrated silicate fibers, including regulated fibers (tremolite) and unregulated

fibers (winchite and richterite) (114). The regulated and unregulated fibers within Libby

amphibole asbestos differ in terms of length and in the metallic cations expressed on their

surface. Because of their diverse chemical composition Libby amphibole fibers are

different from other well studied amphibole fibers, such as crocidolite and amosite, and

therefore may induce distinct cellular effects in exposed cells.

Crocidolite asbestos generates an increase in ROS, which leads to a depletion of

intracellular glutathione and oxidative damage to DNA and lipids in several cell types

(51, 58, 65, 84, 88, 92, 178, 195, 196). Moreover, ROS induced by crocidolite plays an

important role in the activation of redox sensitive transcription factors such as NF-KB

and AP-1 (51, 53). Because ROS generated by amphibole asbestos results in oxidative

stress, the mechanism by which asbestos induces ROS production has been extensively

studied. However, the exact source of ROS in response to asbestos fibers is an area of

considerable debate and may be due to the unique chemical characteristics of the asbestos

fiber (90).

Amphibole asbestos generates increased levels of ROS through at least two

independent mechanisms. Amphibole asbestos fibers, specifically crocidolite and

amosite, participate in the direct production of ROS via iron-catalyzed reactions due to
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their high iron content (90, 122). This mechanism is supported by studies demonstrating

that crocidolite asbestos cytotoxicity can be abrogated in the presence of iron chelators

(67). The importance of iron in asbestos fiber chemistry is also supported in vivo given

the fact that iron chelators protect against pulmonary inflammation and fibrosis (89). The

second proposed mechanism by which amphibole asbestos generates oxidative stress is

through the production of mitochondrial-derived ROS. Alveolar epithelial cells generate

intracellular ROS, which results in DNA damage and apoptosis in response to amosite

asbestos (134, 135).

The alveolar macrophage is the primary cell type that interacts with inhaled

particles and functions to clear particles from the lung. Therefore, our study utilizes

primary murine alveolar macrophages and a well characterized macrophage cell line. Our

data indicate that Libby amphibole asbestos induces oxidative stress in murine

macrophages through increasing ROS levels and suppressing SOD activity. The cellular

effects of Libby asbestos exposure appear to be distinct from what is observed with

crocidolite asbestos and may be a result of the activation of separate cellular mechanisms

within exposed macrophages. This is the first study to elucidate the cellular changes in

macrophages as a result of exposure to Libby amphibole asbestos.

Materials and Methods 

Cell culture conditions

Mouse macrophages, RAW264.7 cells, (ATCC-2091: American Type Culture

Collection, Manassas, VA) were cultured at 37°C in a 5% CO2 incubator (Thermo Forma,

Waltham, MA) in complete media, which contained DMEM media with 4.5 g/L glucose

and L-glutamine supplemented with 1.5 mM sodium pyruvate, 20 mM HEPES, 55 µM 2-



21

mercaptoethanol, 10% fetal bovine serum and antibiotics (100 U/ml penicillin, 100 µg/ml

streptomycin and 0.25 µg/ml amphotericin B) (Gibco BRL, Bethesda, MD). Confluent

RAW264.7 cells were scraped from T75 flasks, counted with a Z series Coulter Counter

(Beckman Coulter, Hialeah, FL) and plated into 96, 12 and 6 well plates or T75 flasks in

complete media and allowed to adhere overnight prior to exposure to asbestos fibers.

Primary alveolar macrophages were lavaged from C57BL/6 mice as previously described

(117), plated, and immediately exposed to asbestos. To elucidate the role of free radical

scavengers, cells were incubated with superoxide dismutase (SOD) coupled to

methoxypolyethylene glycol overnight at a final concentration of 19.6 Units (U) per ml

(Sigma Chemical Co., St. Louis, MO) and concomitantly exposed to asbestos fibers. All

experiments were performed using adherent cells only.

Particulate Matter

Three types of fibers were used in this study. Libby asbestos was obtained from

the US Geological Survey. The Libby amphibole fibers have been chemically and

physically characterized in detail (68, 114, 192). The Libby asbestos sample is

chemically representative of the amphibole in the mine and has a particle size distribution

that matches the air sample size distribution data (114). Libby asbestos contains six

different amphibole fiber types, therefore, the asbestos sample is labeled in this paper as

6-mix. Wollastonite, a non-cytotoxic, non-fibrogenic control fiber, was provided by

NYCO Minerals (Willsboro, NY). Crocidolite asbestos was provided by the Research

Triangle Institute (RTI, NC). All fibers were dispersed in phosphate buffered saline (pH

7.4) by cup-horn sonication (Misonix, Framingdale, NY) before culturing. Stock

concentration suspensions of fibers were prepared fresh immediately prior to their
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addition into complete RPMI cell cultures. Fiber concentrations were based on relative

mass. The size distributions of all three fiber types are presented in Table 1.1.

Table 2.1: Fiber size distribution data of Libby and crocidolite asbestos and wollastonite

fibers. Note: Data are means ± SD.

Transmission Electron Microscopy

RAW264.7 cells were exposed to Libby asbestos fibers at a concentration of 5

µg/cm2 for 24 h. Cells were washed three times in PBS, detached with a cell scraper and

fixed with 4% glutaraldehyde in PBS for 4 h at 25°C. Cells were centrifuged for 5 min at

5000 rpm, washed three times in PBS and the pellet was suspended in low melt agarose.

The pellet was post-fixed in 1% osmium tetraoxide in PBS (pH 7.4) for 1 h at 25°C, and

washed three times in PBS. The pellet was dehydrated in ethanol and embedded in resin.

Ultrathin sections (50 nm) were examined under a Hitachi H-7100 transmission electron

microscopy (Hitachi, Ibaraki, Japan) with a tungsten filament and captured with an

Advanced Microscopy Techniques digital camera (AMT, Danvers, MA). Sections were viewed at

75 kV. Images were captured with the AMT software version 540.

Cell Viability

RAW264.7 cells were exposed to fiber concentrations and duration stated in the

figures. Cells were incubated with trypsin-EDTA (Gibco BRL) for 5 min at room
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temperature. Complete media was added to stop the reaction. The cells were washed once

and centrifuged at 1000 X g for 10 min. The pellet was resuspended in 200 µl of PBS to

obtain a single cell suspension. Cells were permeabilized with 1 ml of 80% ethanol and

incubated at -20°C overnight. Cells were washed once in PBS and DNA was stained with

1 ml of PBS containing 0.5% Triton X-100 (Sigma), 50 µg/ml RNase A (Roche,

Indianapolis, IN) and 50 µg/ml propidium iodide (PI) (Invitrogen, Carlsbad, CA) then

incubated for 40 min at 37°C. Cells were transferred to filter-top polypropylene tubes

(BD Labware, Franklin Lakes, NJ) and stored on ice for analysis using the FACS Caliber

(BD Biosciences, San Jose, CA) for red fluorescence. Dead and apoptotic cells were

identified in the sub-G0/G1 peak determined by PI immunofluorescence. Cell viability

was calculated as the percent of viable cells (cells above the sub-G0/G1 phase) divided

by the total percent of cells and expressed as percent of control.

Cell viability of RAW264.7 cells after 3 h of exposure to Libby asbestos at a final

concentration of 62.5 µg/cm2 was not significantly different than controls as determined

by a one-way ANOVA. These results were confirmed by an LDH-Cytotoxicity Assay

(BioVision, Mountain View, CA) and the CellTiter-Blue Reagent assay (Promega,

Madison, WI).

Enumeration of internalized fibers

Fiber uptake was quantified as previously described with slight modifications

(14). Briefly, RAW264.7 cells were exposed to Libby asbestos for 3 h at a final

concentration of 62.5 µg/cm2. Cells were washed with PBS and detached with trypsin-

EDTA (Gibco) for 10 min with gentle rotation at RT to remove any fibers that were

adherent but not internalized. Complete media was added to stop the reaction. The cells
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were washed in PBS and then examined under phase contrast microscopy to count the

number of internalized fibers. The number of fibers per cell was quantified from 0 to 5.

Greater than 5 fibers per cell were impossible to differentiate, therefore, the upper limit of

detection was 5 fibers per cell. Cells with more than 5 internalized fibers were classified

into the upper limit (5). 50 cells were enumerated for each treatment. The experiment was

performed twice with similar results.

Quantification of ROS in response to Libby amphibole asbestos 

ROS production was measured using dichlorofluorescein diacetate (DCFDA,

Molecular Probes, Eugene, OR) and dihydroethidine (DHE, Molecular Probes). DCFDA

crosses the cell membrane and is trapped in the cell after deacetylation by intracellular

esterases to dichlorofluorescin (DCFH). DCFH is then sensitive to oxidation, forming the

fluorescent compound dichlorofluorecein (DCF) (69). DHE is more specific for

superoxide than DCFDA and is also oxidized to a fluorescent product (201). Cells were

plated in 96-well plates and incubated overnight at 37°C and 5% CO2. Cells were

incubated with 40 µM DCFDA for 1 hr or in 2 µM DHE for 30 min in a 37°C and 5%

CO2 incubator then exposed to fibers at concentrations stated in the figures. The plate was

returned to the 37°C, 5% CO2 incubator between hourly readings on the fluorescent plate

reader. Cells without dye were used to subtract background fluorescence. Readings for

fluorescence intensity were measured using a SpectraMax fluorescent plate reader set at

485 nm excitation and 530 nm emissions for DCFDA quantification and 518 nm

excitation and 605 nm emission for DHE quantification (Molecular Devices, Sunnyvale,

CA).
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Quantification of total superoxide dismutase (SOD) activity

Total SOD activity was measured as described previously (20). Briefly,

RAW264.7 cells were exposed to asbestos for 3, 7, 12 and 24 h at a final concentration of

62.5 µg/cm2. The cells were washed with PBS and homogenized in 10 mM

ethylenediaminetetraacetic acid disodium salt (EDTA) buffer (pH 8.0) by cup-horn

sonication. Samples were centrifuged at 20,000 X g at 4°C for 15 min. The supernatants

(15 µl) were incubated for 20 min in a 25°C water bath with 150 µl phosphate buffer, 15

µl of 1.5 mM xanthine, and 15 µl of 1.0 mM hydroxylamine chloride. The reaction was

initiated by the addition of 75 µl of 0.8 mg protein/ml xanthine oxidase (Sigma). An

aliquot of the reaction (100 µl) was added to a mixture of 100 µl of 19 mM sulfanilic acid

and 100 µl of 7 mM -napthylamine in a 96-well plate, incubated at room temperature for

20 min, and the absorbance was read at 539 nm using a SpectraMax plate reader

(Molecular Devices). The activity of total SOD was determined from a standard curve

using known amounts of purified SOD and quantified as Units of SOD activity per

milligram of protein. Data are expressed as the percent of total SOD activity compared to

time matched controls.

Quantification of reduced glutathione (GSH)

GSH levels were measured using the GSH recycling assay as previously 

described (160). RAW264.7 cells were exposed to asbestos at concentrations and 

durations stated in the figures. The cells were washed with PBS and lysed with 2

freeze/thaw cycles in 300 µl of 10 mM HCl. 50 µl aliquots were taken for protein

determination. Protein was precipitated by adding 70 µl of 6.5% sulfosalicylic acid,
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incubating on ice for 10 min and centrifuging at 2000 X g for 15 min. 200 µl of

supernatant was transferred to a 96-well plate for GSH quantification. Total intracellular

glutathione was measured using the GSH reductase-DTNB recycling assay, comparing

the rate of color formation at 412 nm of the unknowns to a standard curve. Total

intracellular GSH levels were determined by quantifying the intracellular GSH levels and

dividing by the protein concentration to obtain nmoles of GSH per milligram (mg)

protein. Data are expressed as the percent of total glutathione levels compared to time

matched controls.

Quantification of 8-hydroxy-2’-deoxyguanosine (8-oxo-dG)

RAW264.7 cells were exposed to asbestos for 12 and 24 h and 8-oxo-dG levels

were quantified using the method previously described (11). Briefly, DNA was isolated

through phenol-chloroform extraction and digested with nuclease P1 (Roche). 8-oxo-dG

and 2-deoxyguanosine (2dG) were resolved by HPLC with a reverse phase YMCBasic

column (YMC Inc., Wilmington, NC) and quantified using a CoulArray electrochemical

detection system (ESA Inc., Chelmsford, MA). Calibration curves were generated from

standards of 2-dG (Sigma) ranging from 100 ng to 2 µg and 8-oxo-dG (Cayman

Chemical, Ann Arbor, MI) ranging from 5 to 100 pg. The amount of 2-dG and 8-oxo-dG

in control and treated cells was calculated according to the calibration curves. The

relative levels of 8-oxo-2dG are expressed as the ratio of 8-oxo-2dG (fmoles) / 2dG

(nmoles). Data were recorded, analyzed and stored using CoulArray for Windows data

analysis software.

Determination of DNA damage
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DNA damage was determined by the comet assay according to previously

published methods with minor modifications (174). Briefly, 5ul of the cell suspension

was embedded in 75 ul of 0.5% low melt agarose (Bio-Rad) and sandwiched between a

layer of 5 ul of 0.5% normal melting agarose and a top layer of 0.5% low melting agarose

on conventional microscope slides. To lyse cellular and nuclear membranes of the

embedded cells, slides were immersed in ice-cold, freshly prepared, lysis solution (2.5 M

NaCl, 100 mM disodium EDTA, 10 mM Tris-Cl and 10% DMSO, pH 13.0) and

incubated at 4°C for 1 hour. The slides were incubated in alkaline buffer (0.1% 8-

hydroxyquinoline, 10 mM disodium EDTA, 2% DMSO and 200 mM NaOH) for 20 min

to allow DNA unwinding. Electrophoresis was performed in alkaline buffer at 300 mA

for 20 min. After electrophoresis, the slides were neutralized with 400 mM Tris-Cl, pH

7.4 twice for 20 min. DNA was stained with 100 ul per slide of Hoechst (10 ug/ml)

(Molecular Probes). All steps were conducted in darkness to prevent additional DNA

damage and samples were analyzed within 4 h.

Microscopic analysis

A laser scanning cytometer (LSC, Compucyte, Cambridge, MA) equipped with a

BX50 Olympus microscope and a 407-nm argon laser was used to scan the slides.

Hoechst fluorescence was detected with a photomultiplier tube equipped with a 460-485

nm bandpass filter. The embedded cells were focused and scanned on the central portion

of each well. The sensitivity threshold was set to contour comet heads only. A threshold

value of greater than 3000 provided a good discrimination between nuclear fluorescence

and comet tails. Fluorescence was integrated from a region of 6 pixels broader than the

threshold around the comet head as previously described (139). For each integration
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contour, the integrated fluorescence, maximum pixel and the area were collected. The

scanning was run by using a 20x dry objective. Two thousand events were scanned per

slide. A histogram of integral fluorescence was compared to that obtained by flow

cytometric cell cycle analysis through LSC software (WinCyte, Compucyte). The G1 and

G2 phase peak were confirmed by LSC imaging. Cells with damaged DNA contained

less DNA and stained with lower fluorescence intensity than the G1 phase cells and

therefore appeared in the sub-G1 area of the histogram.

Quantification of 8-oxoguanine-DNA-glycosylase 1 (Ogg1) activity

RAW264.7 cells were exposed to asbestos for 3, 7 and 12 h and Ogg1 activity

levels were quantified using the method previously described (11). Briefly, DNA -

glycosylase was extracted from the pellets of the EDTA sample buffers, as described

above, through homogenization at 4°C in extraction buffer containing 20 mM Trizma-

base (pH 8.0), 1 mM EDTA, 0.5 mM spermine, 0.5 mM spermidine, 1 mM DTT, 50%

glycerol, and protease inhibitor cocktail (Roche). Following the addition of 2.5 M

potassium chloride, the homogenate was incubated at 4°C for 30 min. Aliquots of the

supernatant were collected following centrifugation at 20,000 g for 30 min and stored at

-80°C. Ogg1 activity was determined using a synthetic probe containing 8-oxo-dG

(Trevigen, Gaithersburg, MD) labeled with -32P at the 5’-end, using T4 polynucleotide

kinase (Roche). The probe used has the nucleotide sequence 5’-

GAACTAGTGXATCCCCCGGGCTGC-3’ (X=8-oxo-dG) and was annealed to its

corresponding complimentary oligonucleotide before the nicking reaction was preformed.

The nicking reaction was initiated by incubating 2.5 µg of protein extract and the double-

stranded probe for 30 min at 37°C and stopped by placing the samples on ice. Aliquots of
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loading buffer containing 90% formamide, 10 mM NaOH and blue-orange dye (Promega,

Madison, WI) were then added to each sample. After 5 min at 95°C, samples were chilled

and loaded into a polyacrylamide gel (20%) with 7 M urea and 1X TBE and run at 400 V

for 2 h. Gels were quantified using FLA-3000 Series Fuji Film Fluorescent Image

Analyzer and analysis software. The capacity of the extract to remove 8-oxo-dG was

expressed as a percentage of the cleaved synthetic probe to the total probe used in

densitometric units.

Protein Determination

Protein concentrations were determined with the BCA protein assay kit based on

the bicinchoninic acid (BCA) method (Pierce, Rockford, IL). The assay, adapted for

microtiter plates, was used according to the manufacture’s instructions.

Statistical Analysis

Data are given as mean ± standard deviation (SD) or mean ± standard error of the

mean (SEM). Analyses were done using the software package GraphPad Prism 3.03

(GraphPad, San Diego, CA). One-way or two-way analysis of variance (ANOVA) was

used to compare groups with one independent or two independent variables, respectively.

A Bonferroni or Dunnett’s post test was used to compare different treatments. Data

comparing two group means were analyzed by independent samples t test. Significance

was noted at P < 0.05 and adjusted for the number of comparisons according to

Bonferroni’s adjustment. Non-parametric analysis of fiber uptake was conducted using

the Kruskal-Wallis test. Outliers were detected through Grubb’s test from GraphPad

Software.
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Results 

Libby asbestos fibers are internalized by murine macrophages

To determine whether Libby asbestos fibers are internalized in vitro, murine

macrophages were exposed to Libby asbestos at a concentration of 5 µg/cm2 for 24 h and

analyzed through transmission electron microscopy. After 24 h of asbestos exposure,

murine macrophages contained variable numbers of asbestos fibers, which were less than

2 microns in length. The majority of Libby asbestos fibers were observed in cytoplasmic

vacuoles or protruding from cytoplasmic vacuoles into the cytosol (Fig. 2.1A and B,

respectively), and localized primarily around the nucleus. Libby asbestos fibers were also

observed attached to the plasma membrane (Fig. 2.1C) and free within the cytoplasm

(Fig. 2.1D). These results indicate that murine macrophages phagocytize Libby asbestos

fibers and the internalized fibers localize to cytoplasmic vacuoles and to the cytosol.
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Figure 2.1: Transmission electron microscopy of intracellular Libby asbestos fibers in
murine macrophages. RAW264.7 cells were incubated with Libby asbestos (5 µg/cm2) for
24 h and sections were prepared as described in Materials and Methods. A) Libby
asbestos fiber is encompassed by a cytoplasmic vacuole near the nuclear membrane.
Magnification 40,000X. B) Libby asbestos fiber near the nuclear membrane protruding
from a cytoplasmic vacuole to the cytoplasm. Magnification 60,000X. C) Libby asbestos
fibers attached to the plasma membrane. Magnification 15,000X. D) Libby asbestos fiber
free in the cytosol of a murine macrophage. Magnification 30,000X. Double arrows
denote the nuclear membrane. Single arrows denote the plasma membrane.



32

Libby asbestos increases intracellular ROS in murine macrophages

To establish whether macrophages produce increased levels of ROS in response

to amphibole asbestos, RAW264.7 cells were incubated with 40 µM DCFDA for one

hour then exposed to increasing concentrations of Libby asbestos, ranging from 6.25 to

62.5 µg/cm2. DCFDA is a fluorescent dye used to indirectly quantify the amount of

intracellular ROS. Therefore, the relative fluorescence intensity is correlated to the

amount of intracellular ROS. Fluorescent readings were taken every hour for 3 h. The

relative fluorescence intensities in macrophages over time are shown in Figure 2.2A.

Murine macrophages increased intracellular ROS levels in response to Libby asbestos in

a dose dependent manner. The lowest concentration of Libby asbestos (6.25 µg/cm2)

significantly increased the relative fluorescence after 3 h of exposure compared to

untreated cells (P < 0.05). However, higher concentrations of Libby asbestos significantly

increased the relative fluorescence after only one hour of exposure (P < 0.05). The

highest concentration of Libby asbestos (62.5 µg/cm2) generated the greatest increase in

ROS and this concentration of asbestos did not reduce cell viability within 3 h as

determined by PI immunofluorescence (Figure 2.2B) and two additional viability assays

(see Materials and Methods). The viability of RAW264.7 cells after 3, 7, 12 and 24 h of

exposure to Libby and crocidolite asbestos is shown in Figure 2.2B. The viability of

RAW264.7 cells after 24 h of exposure to Libby and crocidolite asbestos was 92% and

62%, respectively, compared to untreated cells. Exposure to wollastonite fibers for 24 h

did not reduce the viability of RAW264.7 cells compared to untreated controls. Since the

highest concentration of asbestos induced the greatest increase in ROS without cell loss,

we utilized this fiber concentration for all subsequent experiments.
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In order to determine whether the increase in ROS was unique to Libby asbestos,

murine macrophages were exposed to equal concentrations of Libby asbestos,

wollastonite fibers, a non-fibrogenic control fiber (171), and a well characterized

cytotoxic asbestos fiber, crocidolite. As shown in Figure 2.2C, cells exposed to Libby

asbestos had a significantly higher relative fluorescence after only one hour of exposure

compared to untreated cells (P < 0.05). Exposure to wollastonite fibers did not increase

the level of fluorescence in macrophages at any time during exposure compared to

control cells. Cells exposed to crocidolite increased the level of fluorescence after 3 h of

exposure; however, the increase in ROS was lesser in magnitude compared to Libby

asbestos exposure. Similar results were obtained using primary alveolar macrophages

lavaged from C57BL/6 mice (data not shown). These results demonstrate that exposure to

Libby and crocidolite asbestos increases intracellular ROS in murine macrophages and

the increase in intracellular ROS occurs in primary alveolar macrophages as well as in

macrophage cell line cells.
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Figure 2.2: Dose-dependent response of
Libby asbestos on intracellular ROS levels
in RAW264.7 cells. ROS levels were
determined by the relative fluorescence
units (RFU) of DCFDA as described in
Material and Methods. A) Three separate
concentrations of Libby asbestos were
added to murine macrophages for 3 h.
Closed circles denote control cells. Open
diamonds denote cells treated with Libby
asbestos (6.25 µg/cm2). Closed diamonds
denote cells treated with Libby asbestos
(32.25 µg/cm2). Closed triangles denote
cells treated with Libby asbestos (62.5
µg/cm2). B) RAW264.7 cells were exposed
to Libby and crocidolite asbestos for 3, 7
12 and 24 h. Cell viability was determined
through PI fluorescence as described in
Materials and Methods. Viability was
calculated as the percentage of viable cells
(cells above the sub-G0/G1 phase) divided
by the total percent and expressed as a
percent of control. Closed circles denote
control cells. Closed triangles denote cells
treated with Libby asbestos. Closed
diamonds denote cells treated with
crocidolite. C) Separate experiment
comparing Libby asbestos with
wollastonite, a non-fibrogenic control
fiber, and crocidolite, a well-characterized
cytotoxic fiber. Closed circles denote
control cells. Closed rectangles denote
cells treated with wollastonite. Closed
triangles denote cells treated with Libby
asbestos. Closed diamonds denote cells
treated with crocidolite. Data are
represented as mean ± SD. Single asterisks
indicate a significant difference compared
to control at each time point through a
Bonferonni post-hoc test (P < 0.05; n = 3-
5) by a two-way ANOVA.
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Equivalent number of murine macrophages interact and internalize crocidolite and

Libby asbestos fibers

To determine whether the increase in ROS was dependent upon the number of cell-fiber

interactions or fiber uptake, we used light microscopy to enumerate the number of cells

interacting with asbestos fibers and the number of internalized fibers per cell. To this end,

murine macrophages were exposed to equal concentrations of Libby and crocidolite

asbestos and wollastonite fibers for 3 h as described above. Cells were washed

extensively and examined under phase contrast light microscopy. The number of cells

interacting with one or more fibers where enumerated for each treatment. One hundred

cells were counted for each treatment.

The preparation of Libby asbestos fibers contained numerous fibers of different

lengths and widths. As seen in Figure 2.3A, Libby asbestos fibers visualized through light

microscopy were generally less than 100 microns in length. Additionally, all murine

macrophages bound or internalized one or more Libby asbestos fibers after 3 h. The

preparation of crocidolite asbestos was more homogeneous in morphology and contained

longer fibers than the Libby asbestos. All murine macrophages also established multiple

interactions with crocidolite asbestos fibers after 3 h (Fig 2.3B). Wollastonite fibers

interacted with 25% of macrophages and had fewer fibers in each preparation compared

to either amphibole asbestos preparations (Fig 2.3C). These results indicate that equal

numbers of murine macrophages bind Libby and crocidolite asbestos fibers after 3 h at

the concentrations used in this study.
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The number of internalized fibers per cell was quantified as previously described

with minor modifications (14). On average, macrophages internalized 4.38 ± 1.06 Libby

asbestos fibers per cell and 3.28 ± 1.58 crocidolite asbestos fibers per cell (mean ± SD).

The difference between the numbers of Libby and crocidolite asbestos fibers internalized

Figure 2.3: Light microscopy of murine
macrophages interacting with asbestos and
non-asbestos fibers. RAW264.7 cells were
incubated with Libby asbestos, crocidolite
asbestos and wollastonite fibers at a final
concentration of 62.5 µg/cm2 for 3 h and
visualized through phase contrast light
microscopy. All RAW264.7 cells bound one
or more Libby and crocidolite asbestos
fibers (A and B, respectively) while
wollastonite fibers interacted with fewer
RAW264.7 cells (C). Scale bar = 100
microns.
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per cell was not significant. In contrast, macrophages internalized significantly fewer

wollastonite fibers per cell (0.88 ± 0.93) compared to the number of amphibole asbestos

fibers (P < 0.05). Together these data indicate that the increase in the level of ROS in

macrophages is not dependent upon the number of cellular interactions with the asbestos

fibers nor is it dependent on the number of internalized amphibole fibers.

Increased ROS levels generated by Libby asbestos is suppressed with the addition of

exogenous intracellular SOD

To determine whether ROS induced by Libby amphibole asbestos can be

inhibited by a free radical scavenger, RAW264.7 cells were incubated overnight with

SOD coupled to methoxypolyethylene glycol (PEG). SOD catalyzes the formation of

hydrogen peroxide from superoxide anion and the conjugation of PEG leads to the

enhanced uptake of exogenous SOD into cells (5). After treatment with PEG-SOD,

macrophages were washed and subsequently exposed to Libby asbestos, therefore, the

effect of PEG-SOD on asbestos induced ROS production can only be attributed to

intracellular SOD activity. As shown in Figure 2.4A, macrophages exposed to Libby

asbestos had a significantly higher level of intracellular ROS after 3 h of asbestos

exposure (P < 0.05). However, macrophages pretreated with PEG-SOD and subsequently

exposed to Libby asbestos had significantly lower levels of intracellular ROS compared

to macrophages exposed to asbestos alone (P < 0.05). Pretreatment of macrophages with

PEG-SOD did not change the levels of ROS compared to control cells, indicating that the

protective effect of PEG-SOD during asbestos exposure can be attributed to a reduction

in superoxide levels. Pretreatment of cells with PEG alone did not inhibit ROS produced

by Libby asbestos (data not shown). These data confirm that Libby asbestos induced ROS
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is predominately intracellular and can be abrogated by PEG-SOD, suggesting that the

superoxide anion is the major contributor to the increased ROS levels.

Figure 2.4: Increase in superoxide levels in asbestos exposed macrophages. A) Effect of
intracellular superoxide dismutase (SOD) on asbestos-induced ROS in RAW264.7 cells.
Cells were incubated overnight at 37°C with SOD conjugated to methoxypolyethylene
glycol (11.0 U/ml). Cells were then treated with Libby asbestos (62.5 µg/cm2). ROS
levels were determined by the RFU of DCFDA as described in Material and Methods.
Open bars denote control cells. Thatched bars denote control cells pretreated overnight
with PEG-SOD (44 U/ml). Black bars denote cells treated with Libby asbestos (62.5
µg/cm2). Checkered bars denote cells pretreated overnight with PEG-SOD then exposed
to Libby asbestos. B) Superoxide levels were determined by the RFU of DHE over 2 h as
described in Material and Methods. Open bars denote control cells. Black bars denote
cells treated with Libby asbestos (62.5 µg/cm2). Thatched bars denote cells treated with
wollastonite (62.5 µg/cm2). Data are represented as mean ± SEM. Single asterisks
indicate a significant difference through a Bonferonni post-hoc test (P < 0.05; n = 5) by a
one-way ANOVA.

Libby asbestos increases superoxide production in murine macrophages
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To provide additional support for the premise that a contributing ROS generated

by Libby amphibole asbestos is the superoxide anion, RAW264.7 cells were incubated

with 2 µM DHE for 30 min then exposed to Libby asbestos at a final concentration of

62.5 µg/cm2. DHE is a fluorescent dye used to indirectly quantify the amount of

superoxide in cells. Therefore, the relative fluorescent intensity is correlated to

intracellular superoxide levels (201). The relative DHE fluorescence intensity of murine

macrophages exposed to Libby asbestos and wollastonite fibers is shown in Figure 2.4B.

Macrophages exposed to Libby asbestos had a significantly higher relative fluorescence

after 2 h of exposure compared to untreated cells (P < 0.05). Macrophages exposed to

wollastonite fibers did not increase the level of fluorescence compared to control. These

data indicate that Libby asbestos exposure increases intracellular levels of superoxide in

murine macrophages.

Total intracellular SOD activity is suppressed by Libby amphibole asbestos

Because Libby asbestos exposure increases superoxide levels in murine

macrophages, we hypothesized that the increase in superoxide may be due to a

modification in SOD activity. Therefore, total intracellular SOD activity was quantified

in murine macrophages after 3, 7, 12 and 24 h of exposure as previously described (20).

Libby asbestos suppressed total SOD activity by 30% after 3 h of exposure and the

reduction in activity was significant compared to untreated controls (P < 0.05) (Fig 2.5).

However, total SOD activity was not significantly different compared to controls after 7,

12 and 24 h of exposure to Libby asbestos. Total SOD activity was not different in cells

exposed to wollastonite compared to time matched controls. Crocidolite asbestos

significantly increased total SOD activity by 200% after 24 h of exposure compared to
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untreated controls (P < 0.05). These results indicate that exposure to Libby asbestos

results in an initial suppression of total SOD activity and that exposure to crocidolite

asbestos increases total SOD activity after 24 h in murine macrophages.

Figure 2.5: Effect of Libby amphibole asbestos on total intracellular SOD activity in
RAW264.7 cells. RAW264.7 cells were exposed to fibers as described in Materials and
Methods for 3, 7, 12 and 24 h. Total SOD activity levels were quantified as a ratio of
Units of SOD activity per mg of protein as previously described (20) and expressed as the
percentage of total SOD activity compared to time matched controls. Open bars denote
control cells. Thatched bars denote cells treated with wollastonite (62.5 µg/cm2). Black
bars denote cells treated with Libby asbestos (62.5 µg/cm2). Checkered bars denote cells
treated with crocidolite (62.5 µg/cm2). Data are represented as mean ± SEM. Single
asterisks indicate a significant difference compared to time matched controls through an
independent t test (P < 0.05; n = 4).

Intracellular glutathione levels are reduced in response to Libby amphibole asbestos

In response to increased levels of ROS, cells utilize GSH to maintain the

intracellular redox balance within cells. Reduced levels of intracellular GSH in cells are

an indication of oxidative stress. Therefore, intracellular GSH was measured in

macrophages after exposure to amphibole asbestos and wollastonite fibers to determine

whether exposure results in a decrease in intracellular GSH levels. The intracellular GSH

levels were measured through the GSH recycling assay as previously described (160). In

response to Libby asbestos, macrophages significantly decreased intracellular GSH levels



41

compared to untreated cells at 7, 12 and 24 h (P < 0.05) (Fig. 2.6). Exposure to

crocidolite asbestos also significantly decreased intracellular GSH levels at 7, 12 and 24 h

after exposure. However, the decrease in GSH levels was more prominent in response to

crocidolite asbestos (average decrease of 55%) at all time points compared to the

decrease observed with Libby asbestos (average decrease of 76%). Wollastonite did not

decrease the intracellular GSH levels compared to time matched controls. These results

indicate that exposure to Libby and crocidolite asbestos induces oxidative stress in

murine macrophages.

Figure 2.6: Effect of amphibole asbestos on total intracellular glutathione levels in
RAW264.7 cells. RAW264.7 cells were exposed to fibers as described in Materials and
Methods. GSH levels were quantified as a ratio of GSH in nmoles per mg of protein as
previously described (160) and expressed as the percentage of total glutathione levels
compared to time matched controls. Open bars denote control cells. Thatched bars denote
cells treated with wollastonite (62.5 µg/cm2). Black bars denote cells treated with Libby
asbestos (62.5 µg/cm2). Checkered bars denote cells treated with crocidolite (62.5
µg/cm2). Data are represented as mean ± SEM. Single asterisks indicate a significant
difference compared to time matched controls through an independent t test (P < 0.05; n
= 3).

Libby amphibole does not promote the formation of 8-oxo-dG or single stranded

DNA breaks in macrophages
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RAW264.7 cells were exposed to Libby asbestos, crocidolite asbestos and

wollastonite fibers and the relative levels of 8-oxo-dG were determined as previously

described (11) in order to determine whether the increased levels of ROS generated by

Libby and crocidolite asbestos results in oxidative DNA damage. The relative level of 8-

oxo-dG is quantified as a ratio of 8-oxo-dG compared to deoxyguanosine. Only adherent

cells were included in the DNA damage assay. The levels of 8-oxo-dG in macrophages

were significantly elevated in response to crocidolite asbestos at 12 and 24 hr (P < 0.05)

(Fig. 2.7A). However, in the same cell type, Libby asbestos did not increase the relative

levels of 8-oxo-dG at either time 12 or 24 h. Wollastonite, did not increase the relative

levels of 8-oxo-dG at either 12 or 24 h. In response to Libby and crocidolite asbestos, the

extent of DNA damage, specifically strand breaks, was also quantified at 24 h through the

comet assay (Fig. 2.7B). Crocidolite asbestos generated a significantly higher level of

DNA damage as determined by the percent of cells in the sub-G1 phase (P < 0.05). Libby

amphibole did not produce a significant difference in the percentage of cells in the sub-

G1 phase. These data indicate that Libby asbestos does not induce oxidative DNA

damage in murine macrophage cells and suggests Libby asbestos induces separate

cellular responses in vitro compared to crocidolite asbestos.
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Figure 2.7: Effect of amphibole asbestos
on 8-dihydro-8-oxo-2’-deoxyguanosine
(8-oxo-dG) levels and Ogg1 activity in
RAW264.7 cells. A) RAW264.7 cells
were exposed to asbestos as described in
Materials and Methods for 12 h and 24 h.
The relative levels of 8-oxo-dG in
RAW264.7 cells were quantified as
previously described (11). The relative
level of 8-oxo-dG is calculated as a ratio
of 8-oxo-dG compared to 2-
deoxyguanosine (2dG). Open bars denote
control cells. Thatched bars denote cells
treated with wollastonite. Black bars
denote cells treated with Libby asbestos.
Checkered bars denote cells treated with
crocidolite. B) RAW264.7 cells were
exposed to amphibole asbestos for 24 h
and the percentage of cells that contained
damaged DNA, which appeared in the
sub-G1 peak, was quantified through the
comet assay as described in Materials and
Methods. Open bars denote control cells.
Black bars denote cells treated with Libby
asbestos. Checkered bars denote cells
treated with crocidolite asbestos. Single
asterisks indicate a significant difference
compared to control by Dunnett’s test (P <
0.05; n = 4). C) RAW264.7 cells were
exposed to asbestos as described in
Materials and Methods. The activity levels
of Ogg1 in cells were quantified as the
percent of cleaved oligonucleotide as
previously described (11). Closed circles
denote control cells. Closed rectangles
denote cells treated with wollastonite.
Closed triangles denote cells treated with
Libby asbestos. Closed diamonds denote
cells treated with crocidolite. Data are
represented as mean ± SEM. Single
asterisks indicate a significant difference
compared to control by Dunnett’s test (P <
0.05; n = 4).
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Effect of Libby asbestos on Ogg1 activity

Ogg1 is an important DNA glycosylase/AP lyase that catalyzes the excision of 8-

oxo-dG lesions from damaged DNA and its activity has been shown to increase during

oxidative stress (158). To determine whether the lack of DNA damage with Libby

asbestos was a result of increased DNA repair generated by asbestos-induced oxidative

stress, the activity of Ogg1 was quantified as previously described (11). Murine

macrophages were exposed to fibers for 12 and 24 h and the activity of Ogg1 was

quantified as the percent of cleaved synthetic oligonucleotide, which contains an 8-oxo-

dG residue, compared to the total amount of oligonucleotide. As seen in Figure 2.7C, the

activity of Ogg1 in macrophages exposed to Libby asbestos and wollastonite fibers was

not different at either time point compared to untreated control cells. Exposure to

crocidolite asbestos induces a significant increase in Ogg1 activity in murine

macrophages after 12 h, however, Ogg1 activity returns to control levels after 24 h. These

results indicate that exposure to Libby asbestos does not increase the activity of Ogg1 in

murine macrophages.

Discussion 

The community members of Libby, MT have experienced significant exposure to

amphibole asbestos and have developed numerous ARD due to the asbestos contaminated

vermiculite mine near the community (112, 189). The type of amphibole fiber that

residents have been exposed to is a distinct type of amphibole asbestos, which is

composed of several different fiber types (114). Because this asbestos type has not been

previously studied, we determined the cellular effects of these fibers in order to elucidate

a possible cellular mechanism for the initiation of ARD. Our study utilized a phagocytic
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cell line that is characteristic of alveolar macrophages as well as primary alveolar

macrophages that interact and clear inhaled particles in the lung (193).

Our data indicate that macrophages internalize Libby asbestos fibers and that the

fibers localize to the cytosol and to cytoplasmic vacuoles that frequently surround the

nucleus. These data are in accordance with previous results that establish crocidolite

fibers are internalized through a microtubule dependent mechanism and localize near the

nucleus (35). The majority of internalized Libby asbestos fibers are 2 microns or less in

length. Libby asbestos fibers of this size have been shown to accumulate in the bark of

trees throughout the mine site and surrounding area, indicating these size fibers are

respirable and persist in the environment (185). These short, thin fibers are also the

predominant asbestos fibers that remain in the tissue of asbestos exposed humans with

pleural plaques and malignant mesothelioma (168). Hence, these size fibers play an

important role in the development of fibrosis and lung cancer (44).

Exposure to Libby asbestos increases the level of intracellular ROS in murine

macrophages and can be significantly reduced by exogenous PEG-SOD. These results

suggest that the superoxide anion contributes to ROS generated by Libby asbestos

exposure. To support the argument that superoxide contributes to asbestos induced ROS,

Libby asbestos exposure also increases DHE fluorescence. DHE is known to

preferentially detect superoxide (201). Together these data indicate that Libby asbestos

exposure increases intracellular ROS levels in macrophages and that the major

contributing ROS is the superoxide anion.

We hypothesized that the increase in superoxide may be due to an alteration of

antioxidant concentrations within exposed cells. Therefore, intracellular SOD activity

was quantified with an assay that measures total SOD activity and cannot differentiate
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between the activity of intracellular copper-zinc SOD and mitochondrial manganese

SOD. Exposure to Libby asbestos causes a significant decrease in total SOD activity after

3 h of exposure. The decrease in total SOD activity would consequently generate the

observed increase in superoxide levels due to Libby asbestos exposure. The reduction in

SOD activity by Libby asbestos may be due to post-translational modifications of SOD as

a result of fiber internalization (108). In contrast, crocidolite asbestos increases in total

SOD activity after 24 h, which has been previously reported in mesothelial cells (19).

Chronic exposure to crocidolite asbestos has also been shown to increase SOD activity in

vivo and in vitro (84, 125). SOD is highly expressed in cells within the lung, such as

alveolar macrophages (93). The increased SOD activity observed during amphibole

exposure may be a protective antioxidant response in lieu of the increased levels of free

radicals generated by amphibole internalization.

Exposure to Libby asbestos results in an increase in ROS in conjunction with a

significant decrease in intracellular GSH. The decrease in GSH with Libby asbestos was

most notable after 7 h and remained significantly decreased after 24 h of exposure.

Crocidolite also significantly decreased GSH levels after 7 h of exposure. These data are

in accordance with previously published results that indicate crocidolite asbestos

exposure results in a significant decrease in intracellular GSH level in both mesothelial

and epithelial cells (65, 83). In the present study, crocidolite asbestos induces a greater

decrease in GSH levels than Libby asbestos, which coupled with the increased

cytotoxicity of this fiber, correlates to a higher level of oxidative stress in RAW264.7

cells (194).

Unlike previous studies that utilize only a single amphibole fiber, this study

utilizes a sample of Libby asbestos that is a mixture of several amphiboles as well as
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other fibers not classified in the amphibole family (114). Although exposure to Libby

asbestos generates increased levels of ROS, no DNA damage was observed. In contrast,

crocidolite asbestos exposure significantly increases DNA damage, which supports

previous reports (58, 92). The lack of DNA damage observed with Libby asbestos may be

a result of increased DNA repair activity in cells exposed to Libby asbestos. The main

defense against oxidative DNA damage is the base excision repair pathway, which is

initiated by Ogg1. The activity of Ogg1 significantly increases in murine macrophages in

response to crocidolite asbestos, which supports previous in vitro results in alveolar

epithelial cells (92). However, no difference in Ogg1 activity was observed after

exposure to Libby asbestos. Therefore the lack of DNA damage in macrophages in

response to Libby asbestos cannot be explained by increased DNA repair activity in these

cells.

Although crocidolite and Libby asbestos are both categorized as amphibole fibers,

they are chemically distinct. The major difference between these two fibers is that

crocidolite contains a high iron content that is greater than 20% (90). The high iron

content is known to play a role in crocidolite induced DNA damage (122, 195). On the

contrary, Libby amphibole contains less than 5% iron content by weight (114). In

addition to differences in chemical composition, this study describes separate cellular

consequences of each fiber in the same cell line. DNA damage observed with crocidolite

asbestos may be an indirect result of the increased SOD activity observed after 24 h

(Figure 2.8). Increased SOD activity produces excess hydrogen peroxide from the

dismutation of superoxide. Increased levels of hydrogen peroxide in crocidolite exposed

macrophages may interact with the iron associated with crocidolite asbestos fibers and

promote the formation of the hydroxyl radical. Indeed crocidolite fibers have been shown
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to promote the formation of the hydroxyl radical in the presence of hydrogen peroxide

(88, 90). The hydroxyl radical is the most oxidizing ROS in biological systems

and promotes the oxidation of 2-dG in DNA generating 8-oxo-dG, which is observed in

macrophages in response to crocidolite asbestos (Figure 2.7A) (17). In contrast, Libby

asbestos suppresses total SOD activity in macrophages and generates the production of

superoxide in exposed cells. The observation that Libby asbestos does not induce DNA

damage, may be due to the fact that superoxide has a considerably lower reduction

potential and does not participate in the oxidation of 2-dG. Therefore, we hypothesize

that the differences in DNA damage observed among Libby and crocidolite asbestos may

be a combined consequence of the distinct chemical compositions of each fiber as well as

the activation of separate cellular pathways during asbestos exposure (Figure 2.8).

Figure 2.8: Schematic of the proposed mechanisms for Libby and crocidolite asbestos
exposure. Internalization of Libby (labeled 6-mix) and crocidolite asbestos generate
oxidative stress in RAW264.7 cells through increasing ROS levels and decreasing
intracellular GSH levels. Libby asbestos suppresses SOD activity leading to the
formation of superoxide (O2

•-). Crocidolite asbestos increases SOD activity, which
generates hydrogen peroxide (H2O2). Hydrogen peroxide can then react with the iron (Fe
II) associated with crocidolite fibers to from the reactive hydroxyl radical (OH•), which
oxidizes 2-deoxyguanosine (2dG) to 8-hydroxy-2’-deoxyguanosine (8-oxo-dG) in murine
macrophages.
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In summary, murine macrophages phagocytize Libby amphibole asbestos fibers,

which localize to the cytoplasm and cytoplasmic vacuoles. Internalization of Libby

asbestos results in an increase in ROS levels, which can be attributed to the suppression

of total SOD activity observed subsequent to Libby asbestos exposure. These results are

in contrast to what is observed with crocidolite asbestos, which induces oxidative DNA

damage. These data support the premise that the cellular effects observed with different

asbestos fibers are mediated by their chemical compositions and the activation of separate

cellular mechanisms. Finally, this is the first study to characterize the cellular effects of

Libby amphibole asbestos, a pathogenic fiber known to cause ARD in humans.
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Chapter 3 

Libby amphibole asbestos induces apoptosis and leads to the aberrant translocation

of the SSA/Ro52 autoantigen to cell surface blebs

David J. Blake* and Jean C. Pfau†

Division of Biological Sciences* and Department of Biomedical & Pharmaceutical

Sciences, Center for Environmental Health Sciences†, University of Montana, Missoula,

Montana, 59812

Abstract: Exposure to asbestos is associated with increased autoimmune responses in

humans. For example, the residents of Libby, MT have experienced significant asbestos

exposure due to an amphibole asbestos contaminated vermiculite mine near the

community. Residents have subsequently developed increased autoimmune responses

compared to an unexposed control population. However, the exact mechanism by which

Libby amphibole asbestos generates autoimmune responses is unclear. A murine model
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of amphibole asbestos induced autoimmunity was recently established and was

characterized by the production of autoantibodies that recognized the SSA/Ro52

autoantigen. The purpose of this study was to determine how SSA/Ro52 might become

antigenic as a result of asbestos exposure. Our results indicate that Libby 6-mix induces

apoptosis in murine macrophages as determined by phosphatidylserine exposure,

cleavage of poly (ADP-ribose) polymerase and morphological changes such as nuclear

condensation. Asbestos induced apoptosis resulted in the translocation of SSA/Ro52 from

the cytosol to apoptotic cell surface blebs. These apoptotic cell surface blebs were

recognized by autoantibodies from mice exposed to amphibole asbestos suggesting that

these cell surface structures may be antigenic when presented in a pro-inflammatory

context. This study supports the premise that the induction of apoptosis may play a key

role in environmentally induced autoimmunity.

Keywords: asbestos, macrophage, apoptosis, immunotoxicology

Introduction 

Exposure to environmental xenobiotics such as silica, mercury and vinyl chloride

is associated with the production of autoantibodies (AAs) and the development of

systemic autoimmune disease (SAID) (40, 75). Increased serum immunoglobulins,

positive AA tests and immune complexes have also been reported in small cohorts of

individuals exposed to asbestos, which is a naturally occurring crystalline silicate fiber

(97, 127, 200). The premise that asbestos exposure exacerbates autoimmune responses in

humans is supported by a study from an asbestos-exposed population from Libby, MT

(141). Residents of Libby, MT have higher frequencies and titers of positive AAs

compared to an unexposed control population (141). A significant association was

observed between AA titers and both the duration of exposure and lung disease severity.
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Residents of Libby, MT also have an increased risk for SAID by more than 50% (128).

Although the exact mechanisms that lead to the induction of SAID and AA production as

a result of environmental exposure have not been established, evidence supports the role

of apoptosis as the potential initiating stimulus (23, 152, 153).

Apoptosis is a regulated and controlled process of cellular destruction that does

not elicit inflammation (33, 49). During apoptosis the cellular morphology is dramatically

altered leading to the translocation of phosphatidylserine (PS) to the outer leaflet of the

cell, nuclear condensation, as well as cellular fragmentation into membrane bound

apoptotic blebs (52). These apoptotic blebs contain numerous autoantigens that are

targeted by the immune system during autoimmune responses (23). Apoptosis also results

in the cleavage of specific autoantigens, which may create neo-epitopes that may be

recognized by the immune system as foreign (24, 153). The uptake and processing of

apoptotic cells by antigen-presenting cells in a pro-inflammatory context may activate

self-reactive T cells, inducing the loss of tolerance and an autoimmune response.

A murine model of asbestos-induced autoimmunity was recently established to

investigate the mechanisms by which asbestos triggers systemic autoimmunity (140).

Asbestos exposed mice develop positive antinuclear antibody tests and mild

glomerulonephritis suggestive of a systemic lupus erythematosus (SLE)-like disease. The

asbestos induced SLE-like disease was characterized by the production of AAs that

recognize the SSA/Ro52 autoantigen. Autoantibodies against SSA/Ro52 are commonly

found in patients with SLE (74, 76, 145, 155). SSA/Ro52 is a newly characterized RING-

finger-type E3 ubiquitin ligase (48, 183), which in unstimulated cells localizes to the

cytoplasm (132). Exposure to ultraviolet radiation, which is the main environmental

factor that exacerbates SLE, has been shown to alter the localization of SSA/Ro52 in
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different cell types. Ultraviolet-B (UVB) radiation induces the surface expression of

SSA/Ro52 in keratinocytes, which are thought to be the target cells of SLE (59, 99). The

translocation of SSA/Ro52 as a result of UVB radiation in keratinocytes has been shown

to be independent of apoptosis and mediated through oxidative stress (156).

Alternatively, SSA/Ro52 redistributes itself to apoptotic blebs in cardiac monocytes,

epithelial cells, salivary gland cells and keratinocytes after exposure to various pro-

apoptotic agents (80, 111, 118, 132). Because AAs target SSA/Ro52 during autoimmune

responses, the clustering of SSA/Ro52 to small surface blebs of apoptotic cells may be

important in the induction of autoimmunity induced by xenobiotics (23, 155).

Clues to the mechanisms connecting environmental exposure and systemic

autoimmunity have been identified by characterizing the specific autoantibodies

generated by xenobiotics. For example, exposure to mercury is associated with

scleroderma (SSc) in humans and leads to the production of AAs in genetically

susceptible mouse strains (79, 110). Anti-fibrillarin AAs are found in patients with

scleroderma (55) and are the predominant AAs generated in mercury exposed mice (79).

Mercury exposure was subsequently found to induce cell death and result in the

production of a novel cleavage fragment of fibrillarin (143, 144). Therefore, these novel

cleavage fragments of fibrillarin may serve as the antigenic determinants for self-reactive

T cells.

Alveolar macrophages are the primary cell type that interact with inhaled particles

and function to clear particles from the lung. Therefore, our study utilizes RAW264.7

cells, which is a phagocytic murine cell line that is characteristic of alveolar macrophages

(193). Previous results indicate that exposure to Libby amphibole asbestos induces

oxidative stress in these cells (9). In this study we test the hypothesis that Libby asbestos
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induces apoptosis in macrophages leading to the redistribution of SSA/Ro52 to apoptotic

blebs. Moreover, we investigate whether these apoptotic blebs are recognized by AAs

generated by asbestos exposed mice. This study helps elucidate a possible mechanism by

which environmental exposures like asbestos drive autoimmune responses.

Materials and Methods 

Cell culture conditions

Mouse macrophages, RAW264.7 cells, (ATCC-2091: American Type Culture

Collection, Manassas, VA) were cultured at 37°C in a 5% CO2 incubator (Thermo Forma,

Waltham, MA) in complete media, which contained DMEM media with 4.5 g/L glucose

and L-glutamine supplemented with 1.5 mM sodium pyruvate, 20 mM HEPES, 55 µM 2-

mercaptoethanol, 10% fetal bovine serum and antibiotics (100 U/ml penicillin, 100 µg/ml

streptomycin and 0.25 µg/ml amphotericin B) (Gibco BRL, Bethesda, MD). Confluent

RAW264.7 cells were scraped from T75 flasks, counted with a Z series Coulter Counter

(Beckman Coulter, Hialeah, FL) and plated into 12 well plates, 8-well chambered cover

glasses (Nalge Nunc International Corp., Rochester, NY) or T75 flasks in complete

media and allowed to adhere overnight prior to exposure to asbestos fibers. To induce

apoptosis, cells were incubated with 1 µM staurosporine (Sigma-Aldrich, St. Louis, MO)

for 6 hours (197).

Particulate Matter

Two types of fibers were used in this study. Libby asbestos was obtained from the

US Geological Survey. The Libby amphibole fibers have been chemically and physically

characterized in detail (68, 114, 192). Libby asbestos contains six different amphibole



55

fiber types, including winchite, richterite and tremolite. Therefore the asbestos sample is

labeled in this paper as Libby 6-mix. Wollastonite, a non-cytotoxic, non-fibrogenic

control fiber, was provided by NYCO Minerals (Willsboro, NY). Both fibers were

dispersed in phosphate buffered saline (PBS) (pH 7.4) by cup-horn sonication (Misonix,

Framingdale, NY) before culturing. Stock concentration suspensions of fibers were

prepared fresh immediately prior to their addition into complete RPMI cell cultures. Fiber

concentrations were based on relative mass.

Detection and quantification of apoptosis

RAW264.7 cells were exposed to a final fiber concentration of 62.5 µg/cm2 for up

to 72 h. Apoptosis was quantified using an Annexin V APC conjugated antibody (BD

Bioscience, San Jose, CA), as previously described (179). Briefly, cells were exposed to

fibers, rinsed with PBS, and incubated in 1X binding buffer containing 0.01 M Hepes

(pH 7.4), 0.14 M NaCl and 2.5 mM CaCl2. Staining was performed according to the

protocol provided by the manufacturer. Cells were washed then transferred to filter-top

polypropylene tubes (BD Labware, Franklin Lanes, NJ) for analysis. Data analysis was

performed using FACSDiva software (BD Biosciences) for far red fluorescence.

Apoptosis was detected through immunoblotting with an anti-Poly (ADP-ribose)

polymerase (PARP) rabbit polyclonal antibody (Biomol, Plymouth Meeting, PA) as

described below.

Immunofluorescence

Cells were plated in 8-well chambered cover glass slides and exposed to asbestos

fibers. After 48 h, cultures were washed in PBS and fixed with 2% formaldehyde and
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0.5% glutaraldehyde for 1 h at 4°C. Following washing, cells were blocked in buffer

containing 4% normal goat serum, 0.1% bovine serum albumin and 0.1% sodium azide

for 1 h at room temperature. SSA/Ro-52 was detected using a rabbit anti-SSA/Ro52

polyclonal antibody (Chemicon International, Temecula, CA) and an Alexa Fluor 488-

conjugated goat anti-rabbit antibody (Molecular Probes, Eugene, OR) in blocking buffer.

Antigens recognized by autoantibodies produced from asbestos exposed mice were

detected using an Alexa Fluor 647-conjugated goat anti-mouse IgG antibody (Molecular

Probes). The plasma membrane was visualized using Alexa Fluor 647 cholera toxin

subunit B conjugate (Molecular Probes). The nucleus was visualized with propidium

iodide (PI) after treatment with RNase A (Roche, Indianapolis, IN). Chambers were

covered with FluoroSave Reagent (EMD Biosciences, San Diego, CA) and visualized

using an inverted Nikon TE-300 microscope. Fluorescence was examined using a Bio-

Rad Radiance 2000 confocal laser scanning microscope and images were merged using

Lasersharp software (Bio-Rad, Hercules, CA).

Colocalization analysis

Confocal microscope images were analyzed for colocalization of SSA/Ro52

proteins with the purified rabbit anti-SSA/Ro52 polyclonal antibody and sera from

asbestos-instilled mice by use of ImageJ (W. S. Rasband, National Institutes of Health,

Bethesda, Md., 1997-2004, http://rsb.info.nih.gov/ij/). Acquired images were analyzed as

individual green and red channels corresponding to anti-SSA/Ro52 protein staining and

mouse sera staining, respectively. Background was corrected using the background

subtraction function on ImageJ. Regions of interest were selected based on patching

patterns in both red and green channels. Areas that contained staining artifacts, as
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indicated by intense regions of fluorescence in both channels, were excluded from

analysis. Pearson’s correlation coefficient and Mander’s overlap coefficient, a measure of

overlap of the red and green signals were generated using the Intensity Correlation

analysis plug-in (107) which is included in the WCIF version of ImageJ

(http://www.uhnresearch.ca/facilities/wcif/imagej/), with regions of interest for analysis

set for the green channel. Colocalization was defined as regions of interest with Pearson’s

and Mander’s overlap coefficient • 0.650.65.

Immunoblotting

Cells were lysed in RIPA buffer (50mM Tris-HCl (pH 7.4), 150 mM NaCl, 1mM

EDTA, 1% Triton, 1% sodium deoxycholate, 0.1% SDS, complete protease-inhibitor

cocktail (Roche, Indianapolis, IN). Cell lysates were sonicated and the total protein

content was determined by the bicinchoninic acid (BCA) protein assay (Pierce, Rockford,

IL). Equal amounts of total protein (50 µg) were resolved by SDS-PAGE and then

transferred to nitrocellulose membranes (Millipore, Marlborough, MA). Non-specific

binding sites were blocked by incubation for 1 h at room temperature with PBS

containing 0.05% Tween-20 (PBST) and 5% non-fat dry milk. Membranes were exposed

to either a rabbit anti-SSA/Ro52 polyclonal antibody (Chemicon), a mouse anti-actin

monoclonal antibody (Abcam, Cambridge, MA), a rabbit anti-PARP polyclonal antibody

(Biomol) or whole mouse sera in PBST-0.5% milk overnight at 4°C followed by

incubation with horseradish peroxidase-conjugated secondary antibodies.

Immunoreactivity was visualized by chemiluminescence substrate according to the

manufacturer's instructions (Pierce) and was quantified by densitometry using a

FugiReader LAS-3000 (Fugifilm, Stamford, CT).
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Mice

Eight week old C57Bl/6 (Jackson Laboratories, Bar Harbor, ME) were housed

under specific pathogen-free conditions with a 12-hour light and 12-hour dark cycle,

constant temperature, and free access to food and water. Euthanasia was performed by ip

injection of a lethal dose of sodium pentobarbital, consistent with the recommendations

of the Panel on Euthanasia of the American Veterinary Medical Association. All

protocols for the use of animals were approved by the University of Montana Institutional

Animal Care and Use Committee (IACUC).

Asbestos instillation

C57Bl/6 mice were instilled intra-tracheally with saline, wollastonite (NYCO) or

Korean tremolite (NIST) with a total of two doses, each dose being 60 µg of the fibers

sonicated in sterile phosphate buffered saline (PBS), given one week apart in the first two

weeks of the 7 month experiment as previously described (140). Suspensions of 30 µl

were injected into the trachea via 25 gauge needles, and the incision was closed with 3M

Vetbond tissue adhesive. The animals were monitored biweekly for autoantibody

production. Blood samples were obtained through saphenous vein bleeds, and then by

cardiac puncture after euthanization at 7 months after instillation. Serum was collected

from the blood by centrifugation following clotting at room temperature. Serum samples

were stored at –20oC until analysis.

Detection of autoantibodies
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Specific autoimmune targets were identified by immunoblotting on nitrocellulose

bound with known nuclear antigens (MarDx Marblot, SLR Research, Carlsbad, CA),

according to the manufacturer’s instructions, modified to detect mouse IgG using a goat

anti-mouse IgG secondary antibody conjugated to alkaline phosphatase

(SouthernBiotech, Birmingham AL). Reactivity of murine autoantibodies against

SSA/Ro52 was confirmed by an SSA ELISA kit (INOVA Diagnostics, San Diego, CA)

modified to detect mouse IgG using goat anti-mouse secondary antibody (Jackson

ImmunoResearch, Philadelphia PA).

Statistical Analysis

Data are given as mean ± standard error of the mean (SEM). Analyses were done

using the software package GraphPad Prism 3.03 (GraphPad, San Diego, CA). One-way

analysis of variance (ANOVA) was used to compare groups with one variable, A

Bonferroni post test was used to compare different treatments. Statistical significance was 

established as a two-tailed probability of type I error occurring at less than 5%. 

Results 

Libby 6-mix induces apoptosis in murine macrophages

Previous results have shown that exposure to Libby 6-mix decreases cell viability

in RAW264.7 cells after 24 h (9). To determine whether the decrease in cell viability is a

result of apoptosis, RAW264.7 cells were exposed to Libby 6-mix at a final concentration

of 62.5 µg/cm2 for up to 48 h. Apoptosis was quantified through Annexin V staining as

previously described (179). Annexin V staining is a sensitive tool for the detection of
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apoptosis because it binds the membrane phospholipid, phosphatidylserine, on the outer

leaflet of the cell membrane during early apoptosis. After 24 h of exposure to Libby 6-

mix, approximately 10 percent of murine macrophages were positive for Annexin V and

therefore apoptotic (Fig. 3.1). The percent of apoptotic cells increased to approximately

20 percent after 48 h of exposure. The increase in apoptosis was statistically significant

compared to untreated control cells after 24 and 48 h (P < 0.05). Exposure to 1 µM

staurosporine for 6 hours induced apoptosis in greater than 50 percent of macrophages. In

contrast, exposure to wollastonite fibers, which is a non-cytotoxic, non-fibrogenic control

fiber, did not induce apoptosis compared to untreated controls (Fig. 3.1).

Figure 3.1: Libby 6-mix induces apoptosis in murine macrophages. RAW264.7 cells
were exposed to either Libby amphibole asbestos fibers or wollastonite fibers (62.5
µg/cm2) for 24 and 48 h or 1µM staurosporine for 6 h. Apoptosis was quantified through
Annexin V staining as described in Materials and Methods. Apoptosis was quantified as
the percent of cells that were positive for Annexin V staining through flow cytometry.
Results represent mean percentages ± SEM. Asterisks indicate a significant difference
compared to control (P < 0.05, n = 3).
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A second indicator of apoptosis in cells is the cleavage of a select group of

nuclear proteins (24). Poly (ADP-ribose) polymerase (PARP) is a 116 kDa nuclear

protein that is cleaved into an 89 and 24 kDa fragment in apoptosis (47). Therefore, to

confirm that exposure to Libby 6-mix leads to apoptosis in macrophages, RAW264.7

cells were exposed to Libby 6-mix for up to 72 h. Total cell lysates were prepared and

analyzed through immunoblotting. In untreated cells, PARP exists primarily as a 116 kDa

protein. Treatment of macrophages with 1 µM staurosporine for 6 hours resulted in the

cleavage of the full length PARP protein into the 89 kDa fragment (Fig. 3.2), which is

consistent with previous results (197). Exposure to Libby 6-mix initially resulted in a

reduction of full length PARP protein compared to the total amount of protein as

quantified by densitometry (Fig. 3.2). The reduction of full length protein was correlated

with an increase in the amount of the 89 kDa fragment after 72 h. Additionally, exposure

to either Libby 6-mix or staurosporine did not result in the cleavage of SSA/Ro52 during

apoptosis (data not shown), as previously described (24). Together these data clearly

indicate that Libby 6-mix induces apoptosis in murine macrophages.

Figure 3.2: Libby 6-mix exposure results in the cleavage of PARP. RAW264.7 cells
were exposed to Libby 6-mix fibers at a final concentration of 62.5 µg/cm2 for 24, 48 and
72 h or to 1 µM staurosporine for 6 h (positive control). Cell lysates were prepared and
analyzed through immunoblotting using an anti-PARP rabbit polyclonal that detects the
full length protein (116 kDa) and the cleaved fragment (85 kDa). Values below signify
the densitometric units determined for the immunoreactive bands of full length PARP
divided by the densitometric units determined for the immunoreactive bands of the actin
loading control and reported as the fold changed compared to control.
SSA/Ro52 redistributes to apoptotic blebs as a result of exposure to Libby 6-mix
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To determine whether SSA/Ro52 localizes to cell surface blebs during asbestos-

induced apoptosis, murine macrophages were exposed to Libby 6-mix and the

localization of SSA/Ro52 was determined through fluorescence confocal microscopy.

Murine macrophages were fixed and immunochemically stained using an anti-SSA/Ro52

rabbit polyclonal antibody and an Alexa Fluor 488-conjugated secondary antibody

(Green in Figs. 3.3A, E and I). Nuclei (DNA) were visualized with propidium iodide

(Red in Figs. 3.3B, F and J). The plasma membrane was visualized by using an Alexa

Fluor 647 cholera toxin subunit B conjugate (Magenta in Figs. 3.3C, G and K).

In normal, unstimulated macrophages, SSA/Ro52 localized to the cytoplasm of

cells as shown in Figure 3.3A and 3D. However, asbestos exposure resulted in the

redistribution of SSA/Ro52 to surface blebs of apoptotic cells (Figs. 3.3H and L).

Apoptosis was defined by morphological changes evident in the nucleus as previously

described (129). Briefly, apoptosis was evident where there were distinctive nuclear

changes such as elongation, condensation or fragmentation. Distinct nuclear condensation

is seen in Figure 33.F. Apoptotic blebs enriched in the SSA/Ro52 autoantigen

translocated to the surface of the apoptotic cells and were compartmentalized within

membrane bound structures (Fig. 3.3H). Compartmentalization of SSA/Ro52 to

membrane bound structures was also confirmed through Z-stack images (data not

shown). Apoptotic cells in a more advanced stage of apoptosis also undergo apoptotic

membrane blebbing at their surface (Fig. 3.3L). Generally, larger apoptotic blebs

contained SSA/Ro52 and DNA whereas smaller apoptotic blebs contained high

concentrations of SSA/Ro52 and lacked nuclear material. Similar induction of apoptosis

was confirmed in RAW264.7 cells with 1 µM staurosporine treatment of for 6 h
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(Supplemental Fig. 3.1). These results clearly show that SSA/Ro52 does redistribute to

surface blebs of apoptotic cells after exposure to Libby amphibole asbestos.

Figure 3.3: Libby 6-mix exposure results in the redistribution of SSA/Ro52 to surface
blebs of apoptotic cells. RAW264.7 cells were untreated (Panels A-D) or exposed to
Libby asbestos for 48 h (Panels E-L). The distribution of the SSA/Ro52 autoantigen was
visualized through confocal microscopy using a rabbit polyclonal anti-SSA/Ro52 and an
Alexa Fluor 488 conjugated goat anti-rabbit IgG secondary (Green in panels A, E and I).
Nuclei were counterstained with propidium iodide (Red in panels B, F and J). Apoptotic
nuclei are indicated by an arrow. The plasma membrane was visualized with Alexa Fluor
647 cholera toxin subunit B conjugate (Magenta in panels C, G and K). Right panels (D,
H and L) show merged images.
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Apoptotic blebs containing SSA/Ro52 are recognized by autoantibodies from

asbestos exposed mice

Sera from tremolite exposed mice have been shown to be positive for anti-

SSA/Ro52 autoantibodies through ELISA (140). However, sera from PBS or wollastonite

treated animals were negative. To confirm reactivity of murine AAs in RAW264.7 cells,

whole cell lysates were prepared and analyzed through immunoblotting with mouse sera.

As seen in Figure 3.4, mouse sera from tremolite treated mice recognized SSA/Ro52.

However, little or no reactivity was observed with sera from mice treated with PBS or

wollastonite fibers, which supports our previous results.

Figure 3.4: Autoantibodies from asbestos-exposed mice specifically recognize the
SSA/Ro52 autoantigen. RAW264.7 cell lysates were prepared and reactivity of whole
mouse sera from saline, wollastonite or tremolite asbestos exposed animals was analyzed
through immunoblotting. Arrow indicates the correct size of the SSA/Ro52 autoantigen.
Symbols below indicate which sera were reactive (+) or not reactive (-) to the SSA/Ro52
autoantigen as determined by ELISA as previously reported (140).
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To determine whether AAs from asbestos-instilled mice target SSA/Ro52 on the

surface of apoptotic cells, murine macrophages were exposed to Libby asbestos as

described above, fixed and immunochemically stained using an anti-SSA/Ro52 rabbit

polyclonal antibody and an Alexa Fluor 488-conjugated secondary antibody (Green in

Fig. 3.5). Nuclei were visualized through propidium iodide (Cyan in Fig. 5).

Autoantigens targeted by mouse sera from asbestos-instilled or control mice were

visualized with an Alexa Fluor 647-conjugated secondary antibody (Red in Fig. 3.5).

Colocalization of SSA/Ro52 with autoantigens recognized by murine AAs is seen as

yellow in Figure 3.5.

AAs from asbestos-exposed mice recognized antigens in apoptotic blebs in

murine macrophages and resulted in a pattern similar to that of SSA/Ro52, indicating

colocalization of SSA/Ro52 with the target of asbestos-induced AAs (Figs. 3.5A-C). A

representative confocal microscopy image is shown in Figure 5A with AA staining from

a mouse exposed to tremolite asbestos. Figures 3.5B and C include representative

confocal microscopy images with AA staining from a different mouse exposed to

tremolite asbestos. Colocalization of cell surface blebs with SSA/Ro52 and murine AA

staining were visualized on the same plane of focus as apoptotic nuclei (Figs. 3.5A and

B) and above the plane of focus of apoptotic nuclei, indicating these blebs are cell surface

structures (Fig. 3.5C). Colocalization within regions of interest (ROI) was confirmed by

ImageJ using the Intensity Correlation analysis plug-in (see Materials and Methods). Sera

from mice exposed to PBS or wollastonite did not recognize apoptotic blebs on the

surface of exposed cells (Fig. 3.5D).
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Figure 3.5: Autoantibodies from asbestos-exposed mice recognize apoptotic blebs
enriched with the SSA/Ro52 autoantigen. RAW264.7 cells were exposed to Libby
asbestos for 48 h (Panels A-D). The SSA/Ro52 autoantigen was visualized through
confocal microscopy using a rabbit polyclonal anti-SSA/Ro52 antibody and an Alexa
Fluor 488 conjugated goat anti-rabbit IgG secondary (Green in panels A-D). Nuclei were
counterstained with propidium iodide (Cyan). Apoptotic nuclei are indicated by an arrow.
Binding of mouse autoantibodies were visualized with an Alexa Fluor 647 conjugated
goat anti-mouse IgG secondary (Red). Panel A includes AA staining from a mouse
exposed to tremolite asbestos. Panels B and C include AA staining from a different
mouse exposed to tremolite asbestos. Panel D includes AA staining from a control
mouse. Colocalization of SSA/Ro52 and autoantigens recognized by asbestos-induced
mouse AAs is visualized in yellow. Colocalization was confirmed through Image J
analysis.

Discussion 

Environmental exposure to crystalline silicates, such as silica and asbestos,

generate the production of AAs and induce autoimmune phenotypes in humans and in

mice. Exposure to silica exacerbates autoimmune responses in individuals in ‘dusty’

trades as well as autoimmune prone mice (15, 136). Likewise, humans exposed to Libby

amphibole asbestos have a significantly higher prevalence of AAs (141). AA titers from

this cohort correlate with longer exposure times and more severe ARD. Additionally,

intra-tracheal amphibole asbestos exposure in mice results in an increase in AA

production (140). Together these results provide support for the hypothesis that, like

silica, exposure to amphibole asbestos exacerbates autoimmune responses and may lead

to the development of autoimmunity. A role for apoptosis in AA responses to silica has
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been previously hypothesized (16). However, possible mechanisms for asbestos induced

autoimmunity have not been elucidated.

Exposure to Libby amphibole asbestos has been shown to generate in an increase

in reactive oxygen species and a decrease in intracellular glutathione levels resulting in

oxidative stress in murine macrophages (9). Libby amphibole asbestos also directly

affects human alveolar macrophages leading to an increase in lymphocyte derived

cytokine production, which suggests that amphibole asbestos fibers can modify immune

function by altering antigen presenting cell (APC) activity (71). Increased APC activity

due to asbestos exposure may up-regulate the normal lymphocyte response to antigens in

the lung leading to a loss of tolerance. We hypothesize that asbestos-induced

autoimmunity is generated through a two hit mechanism. First, autoantigens become

visible to the immune system during apoptosis, which results in the accumulation of

autoantigens on the cell surface. The subsequent uptake and processing of apoptotic cells

by antigen-presenting cells in a pro-inflammatory context will activate self-reactive T

cells, inducing the loss of tolerance and generate the autoimmune responses observed in

humans and mice.

Apoptosis is thought to play a critical role in the development of autoimmunity.

Deficiencies in apoptotic cell clearance are associated in humans with the development of

autoimmunity (184). Moreover, mice genetically deficient in apoptotic cell recognition

molecules have a reduced phagocytic capacity for apoptotic cells and eventually develop

autoimmune phenotypes such as immune-complex deposition and the production of AAs

(34, 72, 119). However, a defect in apoptotic cell clearance alone is not sufficient to

develop an autoimmune phenotype, suggesting that apoptotic cells can persist in the

absence of pro-inflammatory consequences (42). Several in vitro studies have
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demonstrated that the intracellular signals generated by both early and late apoptotic cells

are distinct from those generated by necrotic cells. Cellular signals from apoptotic cells

are dominant over those of necrotic cells and are not pro-inflammatory even after the loss

of membrane integrity (137, 149). Therefore, apoptotic cells alone do not stimulate

inflammation to promote autoimmunity.

Cellular antigens targeted by AAs in SAID are expressed intracellularly and are

diverse in terms of their localization, structure and function. However, one common

factor among autoantigens that are targeted by the immune system is that they are

enriched in cell surface blebs of apoptotic cells (23). The present study indicates that

Libby amphibole asbestos induces apoptosis in macrophages as determined by several

methods including extracellular PS exposure (Fig. 3.1), cleavage of PARP (Fig. 3.2) as

well as morphological changes such as nuclear condensation and cell surface blebbing.

The cell surface blebs, generated by asbestos induced apoptosis, are enriched in the

SSA/Ro52 autoantigen (Fig. 3.3). These cell surface blebs may be the potential stimuli

for the initiation of an autoimmune response. Indeed, murine AAs from asbestos exposed

mice recognize SSA/Ro52 on the surface of apoptotic macrophages indicating the

antigenicity of SSA/Ro52 (Fig. 3.5). The binding of AAs to apoptotic cells has been

previously shown to inhibit the clearance of apoptotic cells leading to their accumulation,

which promotes inflammation and tissue damage (31, 60, 157). Therefore, AAs induced

by asbestos may exacerbate tissue damage in the lung and thereby promote fibrosis in the

lung.

Because apoptosis alone does not elicit autoimmunity, a second pro-inflammatory

signal such as an adjuvant must be provided in order to generate an immune response (12,

115, 175). Asbestos induces a highly inflammatory state in the lung (50, 89, 170).
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Exposure to amphibole asbestos in alveolar macrophages has been previously shown to

increase the release of pro-inflammatory cytokines such as TNF- and Iland Il-1 (46). In this

environment an increase in apoptosis may lead to excess presentation of autoantigens

thereby exacerbating an autoimmune response.

In summary, exposure to Libby amphibole asbestos induces apoptosis in murine

macrophages. Apoptosis induces the translocation of SSA/Ro52 from the cytosol to cell

surface blebs. These apoptotic blebs containing SSA/Ro52 are recognized by AAs from

asbestos exposed mice. This study provides evidence for the role of apoptosis in asbestos

induced autoimmune responses and also supports the mechanism of apoptosis in the

induction of xenobiotic autoimmunity.
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Supplemental Figure 3.1: Staurosporine treatment results in the redistribution of
SSA/Ro52 to surface blebs of apoptotic cells. RAW264.7 cells were treated with 1 µM
staurosporine for 6 h. The distribution of the SSA/Ro52 autoantigen was visualized
through confocal microscopy using a rabbit polyclonal anti-Ro52 and an Alexa Fluor 488
conjugated goat anti-rabbit IgG secondary (Green). Nuclei were counterstained with
propidium iodide. Apoptotic nuclei are indicated by an arrow (Red). The plasma
membrane was visualized with Alexa Fluor 647 cholera toxin subunit B conjugate
(Magenta).
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Abstract: Residents of Libby, MT have experienced significant exposure to amphibole

asbestos due to the mining of asbestos contaminated vermiculite near the community over

several decades. Serum samples from these residents have higher frequencies of positive

anti-nuclear antibody (ANA) tests compared to those from an unexposed control

population. Higher ANA titers correlated with longer exposure times as well as more

severe lung disease, suggesting that autoimmune responses may play a role in the

progression of ARD. The purpose of this study was to further characterize the serological

targets of these autoantibodies (AAs) and determine whether the presence of AAs

correlate with particular clinical manifestations. Our results indicate that AAs from

amphibole asbestos exposed individuals primarily recognize chromatin, histone and

SSA/Ro52, which is similar to patients with systemic lupus erythematosus (SLE). Anti-

dsDNA and anti-SSA/Ro52 AAs are also generated in a murine model of asbestos

induced autoimmunity, which suggests that similar immunological changes occur in both

humans and in mice. Although no correlation was observed between AAs that recognized

a specific set of autoantigens and the extent of exposure, this study indicates that human

exposed to Libby amphibole asbestos are serologically similar to patients with SLE.

These results may aid in the clinical screening, diagnosis and treatment of this asbestos

exposed population.

Keywords: asbestos, autoantibodies, environmental autoimmunity, immunotoxicology
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Introduction 

Environmental asbestos exposure is associated with increased autoimmune 

responses including increased serum immunoglobulin levels, positive autoantibody 

(AAs) tests and immune complex deposition, all of which are consistent with the 

development of autoimmunity (127, 141, 200). The premise that asbestos exposure 

exacerbates autoimmune responses in humans is supported by two recent studies from an 

asbestos exposed population in Libby, MT. Residents of Libby, MT have experienced 

significant exposure to amphibole asbestos due to the mining of asbestos contaminated 

vermiculite near the community over several decades. Exposure to Libby amphibole 

asbestos increases the risk for systemic autoimmune disease (SAID) by more than 50% 

(128). Moreover, residents of Libby, MT have higher frequencies of positive anti-nuclear 

antibody (ANA) tests compared to those from an unexposed control population (3). 

Higher ANA titers correlated with longer exposure times as well as more severe lung 

disease, suggesting that autoimmune responses may play a role in the progression of 

ARD.  

The aberrant production of AAs is a key feature of SAID. Patients with a 

particular SAID generate AA profiles that recognize specific intracellular components. 

Therefore, AAs can be used to establish a diagnosis as well as determine the clinical 

progression of a patient. The prevalence of certain AAs in a particular disease is an 

important parameter that influences their diagnostic sensitivity and specificity (155). 

Patients with systemic lupus erythematosus (SLE) generate a number of autoantibodies 

that react with dsDNA, histones, SSA/Ro52, SSB/La, Sm and ribonucleoprotein (RNP) 
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(155). Although these AAs can be found in other SAIDs, anti-dsDNA and anti-RNP 

antibodies are disease markers specific to SLE (37). AAs are also highly correlated with 

certain clinical disease manifestations. For example, autoantibodies against dsDNA and 

SSA/Ro correlate to separate clinical disease activities in idiopathic and neonatal lupus 

patients (146, 172, 173). In contrast, antibodies against histones are correlated to 

manifestations of drug induced lupus (57).  

Exposure to another silicate compound, crystalline silica, is associated with 

autoimmune diseases such as SLE, scleroderma (SSc) and rheumatoid arthritis (RA) 

(133, 136). However, it is not known whether a discrete clinical or sub-clinical entity is 

associated with amphibole asbestos exposure, despite an increased frequency of 

autoantibody tests in asbestos exposed cohorts (141). Amphibole asbestos exposure 

increases the risk for SLE, SSc and RA, similar to silica exposure (128). In addition, 

asbestos exposure leads to clinical manifestations similar to SLE in asbestos exposed 

mice (140). Therefore, we hypothesize that certain autoimmune diseases may be 

associated with asbestos exposure in humans. An analysis of the specific targets of AAs 

from residents in Libby, MT can provide insight and help determine the clinical 

diagnoses in this exposed population. The spectrum of AAs related to amphibole asbestos 

exposure may have implications in elucidating the immunologic response to asbestos and 

provide a biomarker for clinical screening. The objective of this study was to characterize 

the specific autoantibodies found in serum samples from the Libby cohort and to 

determine if the presence of autoantibodies correlated with a particular clinical pattern. 
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Materials and Methods 

Human serum samples 

All srum samples were acquired according to approved University of Montana

institutional review board (IRB) protocols, protecting the well-being and confidentiality

of all subjects. Appropriate informed consent was obtained from all subjects, and a

questionnaire was administered regarding overall health, smoking status, asbestos

exposure, age, and sex. Samples were drawn at the Center for Asbestos Related Diseases

Clinic in Libby, MT as previously described (141).

Sample and data collection 

The blood samples were collected, and serum samples were obtained and frozen

by standardized clinical methods to prevent differences due to handling. The samples

were blinded with only sex and age noted, and stored at −80°C until assayed. Coded

information regarding disease status and exposure was obtained from a questionnaire and

screening data from the Agency for Toxic Substances and Disease Registry (ATSDR),

which performed a screening in Libby during 2000-2001 (141).

ARD and asbestos exposure rankings 

ARD status, based on data recorded in the database primarily as a result of the

ATSDR screenings, was ranked on a scale of 0–3, as previously described (141).

Exposure status was ranked on a scale of 0–4, also as previously described (141). The

rankings of the Libby subjects were performed independently by two of the researchers.

Detection of serum autoantibodies
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A clinical test for autoantibodies to nuclear antigens (ANA assay) was performed

at a screening dilution of the sera. All serum samples were diluted 1:40 in phosphate-

buffered saline (PBS, pH 7.4) and tested by indirect immunofluorescence (IIF) on a

single lot of commercially prepared and fixed HEp-2 cells (ImmunoConcepts Inc.,

Sacramento, CA), according to manufacturer’s instructions. The staining pattern and

relative fluorescence intensity were compared with known positive and negative controls

using a Zeiss fluorescence microscope with 400× magnification and recorded as positive

(1+ to 4+) or negative (0). The staining pattern was also noted and recorded. The same

microscope and settings were used for all samples, and the slides were read by two

independent readers.

Addressable Laser Bead Immunosorbent Assay (ALBIA)

Analyses of antibodies to eight extractable nuclear antigens (ENAs) and

chromatin commonly seen in SAID (Sm, RNP, SS-A 52, SS-A 60, SS-B, Scl-70, Jo-1,

Ribosomal P and Chromatin) were performed using an ALBIA kit (QUANTA Plex™

SLE Profile 8; INOVA Diagnostics) according to the manufacturer’s instructions, on a

Luminex multiplex system (MiraiBio, Alameda, CA). The values were compared by

using Starstation 2.0 software (Applied Cytometry Systems, Sacramento, CA) to negative

and graduated positive control reagents provided with the kit, and determined to be low

or high positive, or negative.

Quantification of IgM rheumatoid factor (RF)

IgM RF in the serum samples was measured with an ELISA kit according to the

manufacturer’s protocol (INOVA Diagnostics). The plate was read on the SpectraMax
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plate reader (Molecular Devices, Sunnyvale, CA) at 450 nm. Optical density (OD) values

were compared with known controls provided with the kit and rated as negative or

positive.

Histone ELISA

Histone antibodies in the subjects’ sera were measured with a QUANTA Lite™

Histone according to the manufacture’s protocol (INOVA Diagnostics). Antibodies to

H1, H2, H3 and H4 are detected with this assay. The plates were read on the SpectraMax

plate reader at 450 nm. Optical density (OD) values were compared with known controls

provided with the kit and rated as negative, low positive, high positive.

Statistical Analysis

Serum samples that recognized one of the nine autoantigens as described in

Material and Methods were classified as positive and treated as ordinal data.

Alternatively, serum samples that were unreactive to the autoantigens were classified as

negative. Extent of exposure was classified as ordinal data as 5 point levels. Data were

analyzed non-parametrically through two approaches. Data were analyzed using

contingency tables using subject scores through the chi-square test. Data was also

analyzed using Mann-Whitney analysis using subject scores. Statistical significance was

established as a two-tailed probability of type I error occurring at less than 5%. Analysis

and graphics were performed on Prism 4.0 software (GraphPad, San Diego, CA).
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Results 

Frequency of antinuclear antibodies

The 70 randomly chosen serum samples from Libby, MT were tested by IIF for

ANA and were determined to be positive or negative based on known controls. 50 of the

70 serum samples (70%) were ANA positive, which is consistent with previously

published results (141). The intensity and the staining patterns visible on the ANA tests

were also recorded (Table 4.1). The staining patterns that were the most prevalent were

homogeneous (indicative of antibodies to chromatin), nucleolar and speckled staining

patterns.
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Patient Age Sex Disease Exposure ANA score SLE 9 Profile RF IgM

and pattern
1 72 M 3 4 0 0 0
2 59 F 3 3 2, spkl 0 0
3 65 F 3 3 3, hom/spkl SSB 0
4 48 M 3 1 0 0 0
5 54 M 2 4 1 spkl SSA-52 0
7 47 F 0 3 3 nuc Chromatin, Histone 0
8 48 F 1 3 0 RNP 0
9 65 M 2 4 3 hom 0 1
11 48 M 3 4 3 hom Scl-70 0
14 48 M 2 2 0 0 1
17 43 M 2 2 3 spkl 0 0
18 36 M 2 4 1 nuc 0 0
19 62 F 2 3 2 nuc 0 0
36 57 M 3 3 2 nuc 0 1
38 61 M 3 3 hom Chromatin 1
39 69 F 3 3 2 nuc Chromatin, Histone 1
40 78 M 3 4 2 nuc 0 1
41 43 M 3 4 2 cent 0 0
44 51 M 2 1 0 0 0
47 66 M 3 3 4 hom 0 0
49 49 F 1 3 0 0 0
50 63 F 2 3 3 hom SSA-60 1
53 58 F 1 3 2 nuc/cyto 0 1
58 60 M 3 1 0 RNP 1
60 53 M 1 4 4 hom Chromatin, Histone 1
65 73 F 3 3 2 hom 0 0
66 52 F 1 1 0 0 0
68 45 F 1 1 0 0 0
70 69 F 2 4 3 hom, cyt Chromatin 1
73 41 M 1 3 4 hom 0 0
74 44 M 0 3 1 nuc Scl-70 0
77 55 F 2 3 3 hom/nuc 0 0
79 42 F 0 3 1 spkl 0 0
81 51 F 2 3 4 cent 0 1
83 32 F 1 1 0 0 0
86 59 M 2 3 1 spkl 0 0
89 56 M 2 3 2 hom/spkl 0 0
92 66 M 3 3 3 atyp 0 0
98 52 M 0 0 0
99 71 M 3 4 2 hom 0 0
100 66 M 2 3 1 hom 0 0
102 64 M 2 3 1 spkl 0 0
118 79 F 2 3 4 hom 0 0
119 70 F 3 3 3 hom/nuc 0 1
120 79 M 3 2 2 hom 0 1
121 69 F 0 3 4 nuc Chromatin, Histone 0
122 39 F 0 1 0 0 0
123 36 M 2 2 1 nuc 0 0
126 75 F 2 3 1 hom 0 1
127 60 F 2 spkl 0 0
129 50 M 0 4 3 spkl 0 0
135 62 M 3 3 3 nuc 0 0
136 44 F 1 4 spkl 0 1
142 62 M 2 0 0 0 1
164 39 F 1 3 3 spkl 0 1
167 33 M 3 4 0 0 1
176 99 F 2 3 0 SSA-52 0
177 79 F 0 1 2spkl 0 1
180 62 F 3 3 2 spkl 0 0
185 49 F 0 4 1 spkl 0 0
190 44 F 3 0 0 1
196 66 M 1 4 0 0 0
198 35 M 1 3 0 0 0
207 69 M 3 3 0 0 0
224 49 F 0 1 2 spkl 0 0
225 41 M 0 1 2 hom 0 1

05-143 1 hom/nuc 0 1
05-145 2 hom/nuc Chromatin, Histone 1
05-148 71 F 3 1 1 hom 0 0
05-153 53 M 2 4 2 hom/nuc SSA-52 0

Figure Legend on page 81. 



79

Table 4.1: Complete serological data of all seventy Libby serum samples. 
Notes: homo denotes homozygous staining, nuc denotes nuclear staining, spkl denotes 
speckled staining, cyto denotes cytosolic staining, cent denotes centriolar staining, atyp 
denotes atypical staining. For SLE 9 and RF IgM classifications 0 denotes a negative test 
and 1 denotes a positive test. 
 

Autoantibody characterization

An addressable laser bead immunoassay, which detects reactivity to nine

autoantigens commonly targeted in SAID, was used to characterize the specific target

antigens of the autoantibodies found in the Libby cohort. Sixteen of the seventy total

Libby serum samples (23%) had positive autoantigen tests and were all reactive to a

single target antigen. The most common autoantibodies detected in the Libby serum

samples were autoantibodies to chromatin (44% of the positive samples) and

autoantibodies to SSA/52 (19% of the positive samples). Serum samples that were

positive against chromatin were further analyzed through a histone ELISA. Of the seven

samples that were positive against chromatin, 5 samples tested positive against histones

(71%). No serum samples reacted with Jo-1, Sm or Ribo P. Figure 4.1 shows the

distribution of positive tests against the target antigens.
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Figure 4.1: Autoantibodies from Libby serum samples recognize multiple autoantigens 
similar to patients with systemic lupus erythematosus (SLE). 70 Libby serum samples 
were testedThe specific targets recognized by AAs from Libby serum samples were 
characterized with an addressable laser bead immunoassay as described in Materials and 
Methods. Serum samples that tested positive for chromatin were further analyzed for 
reactivity against histones. 
 

IgM RF frequency

RF is an autoantibody directed at the Fc region of IgG and is usually of IgM

isotype. RF is associated with a number of inflammatory diseases and not specific to

rheumatoid arthritis (RA) (116). The presence of these AAs may contribute to disease by

the formation of immune complexes in tissues. The samples were evaluated for IgM RF

by ELISA. 24 of the seventy total Libby serum samples (34%) were positive for RF IgM

which is consistent with previously published results (141).

Correlation of assay results with extent of exposure and ARD

In order to improve the power of our statistical analysis, the presence or absence

of AAs to one of the nine ENAs was classified as ordinal data and classified as positive

or negative, respectively. To determine whether an association exists between the
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presence of AAs and the extent of exposure, data were analyzed through a chi-square test.

Alternatively, to determine whether the presence of AAs represented a distinct population

among the extent of exposure, data were also analyzed through a non-parametric Mann-

Whitney U-test. No significant association was observed between the presence of AAs to

ENAs and the extent of exposure. Residents with positive ENA tests had a slightly higher

exposure status, but this difference was not statistically significant (Fig. 4.2) (P =

0.1312). These results indicate that the presence of AAs to specific ENAs do not correlate

to asbestos exposure in this small asbestos exposed cohort.

Figure 4.2: Libby serum samples that were ENA positive had a higher exposure status
than ENA negative samples. 70 Libby serum samples were determined to be either ENA
positive or negative by an addressable laser bead immunoassay as described in Materials
and Methods. The exposure score of each serum sample was determined as described in
Material and Methods and is indicated in Table 4.1. Serum samples that were positive for
the presence of autoantibodies had slightly higher asbestos exposure scores.

Discussion 

Environmental exposure to crystalline silicates such as silica and asbestos is

associated with the production of AAs and the development of SAID in humans (16, 127,

200). More specifically, exposure to amphibole asbestos in the population of Libby, MT

has been shown to increase autoimmune responses (141). The present study looks to
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extend these observations by characterizing the specific AA targets in this cohort in order

to aid in the screening, diagnosis and treatment of asbestos exposed subjects.

The most useful technique for the detection of AAs is indirect immunofluorescence for

ANAs using HEp-2 cells. This screening test offers the appropriate level of sensitivity

(182), however, it is not sufficiently specific to establish a diagnosis in patients with

SAID. AA tests against ENAs is a more specific and sensitive confirmatory test for the

detection and semiquantification of ENA antibodies in human sera (109). With the

exception of antibodies to cytoplasmic antigens, such as Jo-1 and SSA/Ro52, it is rare to

have a positive anti-ENA antibody test in the absence of a positive ANA test. In order to

correctly screen a patient for the presence of AAs, it has been suggested that a two stage

testing be performed that includes an initial ANA screening test followed by a

confirmatory anti-ENA test (142).

Residents of Libby, MT have higher frequencies and titers of positive ANA tests,

which correlated to the extent of exposure and the severity of disease (141). AAs

characterized from the Libby cohort were initially described as recognizing more than

one ENA (141). The reactivity of serum samples to more than one target antigen makes a

serological diagnosis for a specific SAID difficult. In addition, the present

characterization indicates that in all cases AAs from the asbestos exposed cohort

recognize a single antigen. Reactivity to more than one antigen in the earlier study may

have been due to non-specific binding of the serum samples to the beads in the

immunoassay. Indeed, some serum samples appear to have high background binding

without demonstrating specific binding to any of the cognate antigens (56). Therefore, the

present study provides necessary data to enable a more specific assessment of the AAs.
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The most common AAs from the Libby cohort were reactive to chromatin, histones and

SSA/Ro52. This AA profile is similar to those found in patients with SLE (155). Anti-

dsDNA antibodies are found in approximately 70% of patients with SLE and are an

important disease marker (37). However, anti-dsDNA antibodies are also found in a small

percentage of patients with mixed connective tissue disease (MCTD) disease and RA

(37). Anti-histone antibodies are also found in approximately 40% of patients with SLE,

but are associated with clinical symptoms of drug-induced lupus (37). Antibodies against

certain components of histone, such as H2A-H2B dimer, are thought to be characteristic

of drug-induced lupus while reactivity to the H1 and H2B subunits of histones is common

in idiopathic SLE (18, 40). Since the assay used to determine anti-histone reactivity was

not specific to a certain component of histone, the anti-histone antibodies observed in this

study could be directed against the H1, H2, H3 or H4 subunits of histone. Therefore,

further characterization is needed to determine the specific epitopes targeted for histones.

Finally, anti-SSA/Ro52 AAs have also been identified in patients with idiopathic SLE

(74, 145). Although clinical observations are needed to diagnosis a specific autoimmune

disease, the serological data presented here heavily supports a SLE-like syndrome in the

asbestos exposed cohort from Libby, MT.

A murine model of asbestos-induced autoimmunity was recently established to

investigate the mechanisms by which asbestos triggers systemic autoimmunity (140).

Asbestos exposed mice develop positive ANA tests and mild glomerulonephritis

suggestive of a SLE-like disease. Interestingly, the murine SLE-like disease was

characterized by the production of AAs that recognize dsDNA and SSA/Ro52 (140).

Anti-chromatin and anti-SSA/Ro52 AA are the predominant AAs characterized in the

asbestos exposed cohort. These data support the premise that amphibole asbestos
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generates a serological SLE-like disease in both humans and in mice. Moreover, because

humans and mice exposed to amphibole asbestos generate similar AA profiles, the

alterations of the immune response by amphibole asbestos may be comparable.

Therefore, the murine model of asbestos induced autoimmunity is both relevant and

useful to study the immunological effects of amphibole asbestos.

Although no correlation was observed between the presence of AAs against a

specific set of autoantigens and extent of exposure, our data clearly indicate an

autoimmune phenotype in this cohort. The lack of correlation may be a result of the lack

of statistical power due to the small numbers of positive samples. Therefore, further

characterization studies can enhance this study by analyzing a larger number of serum

samples from the Libby cohort. Correlations between autoantibody specificities and

exposure or the severity of disease may be elucidated with a larger cohort. Indeed, certain

AA profiles have been identified in SLE patients and are associated with specific clinical

symptoms such as arthritis (76). Finally, collaboration with medical doctors that treat

and advise patients from Libby, MT would provide necessary clinical diagnosis data for

this study. Joining clinical observations and the serological characterization presented

here has an excellent chance to help accurately characterize clinical autoimmune

manifestations of asbestos exposure, and therefore to screen, diagnose and treat asbestos

exposed individuals.
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Chapter 5 

Conclusions and Future Directions

Exposure to Libby amphibole asbestos increases autoimmune responses in

humans and in mice (140, 141). The immunological responses induced by asbestos may

be a result of the internalization of asbestos fibers by macrophages, which results in

oxidative stress and apoptosis in these cells (9, 10). Previous results have shown that the

target antigens for autoantibodies elicited by asbestos exposure in C57BL/6 mice are

indeed clustered on the surface of apoptotic cell blebs (10). The uptake and processing of

apoptotic cells by antigen-presenting cells in a pro-inflammatory context may activate

self-reactive T cells, inducing the loss of tolerance and an autoimmune response. In order

to more rigorously test this hypothesis three main questions must be answered.

First, are respirable amphibole fibers, which are approximately 1 micron in

diameter, more toxic in vivo and in vitro than other fibers? Second, do apoptotic cells in

the presence of amphibole asbestos drive autoimmune responses? Finally, what is the role

of antigen presenting cells in the lung in asbestos induced autoantibody production? By

addressing these three questions, the mechanisms by which asbestos exposure alters

immunological responses in humans will be elucidated. More importantly, understanding

the molecular mechanisms by which an environmental exposure generates autoimmune

responses may identify important therapeutic targets for environmentally induced

autoimmunity in human.

The asbestos used in the studies described previously was provided by the US

Geological Survey and is a combination of asbestos samples from 6 separate collection

areas. Therefore, the asbestos contamination of Libby vermiculite is chemically and
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physically complex. Libby amphibole asbestos has been characterized as both regulated

asbestos fibers (e.g., tremolite and other amphibole forms) and unregulated fibers (e.g.,

winchite and richterite) (113). The mixture of amphibole fibers in the Libby amphibole

sample differ in terms of fiber length and metallic cations expressed on the fiber surface.

Approximately 5% of the Libby amphibole is non-fibrous material (personal

communication - Anna Marie Ristich, DataChem Laboratories). In order to more

correctly mimic real life asbestos exposure, respirable fibers can be fractionated from the

Libby amphibole stock, which can then be used in future asbestos studies.

Fiber dimension is the most important determinant of fiber pathogenicity in terms

of cancer development (130). Early work suggested that fibers longer than 8 microns

were more potent inducers of mesothelioma (166). The increased pathogenicity of longer

fibers compared to shorter ones has been confirmed in vivo (123). Longer fibers also

generate enhanced tumor necrosis factor production and an increased level of oxidative

stress (45, 66). However, more recent evidence supports the premise that asbestos fibers

of all lengths, not simply long fibers, induce pathological responses (44, 168). Indeed,

different fiber lengths are thought to induce separate pathological outcomes such as

asbestosis, mesothelioma and lung cancer (101).

Inhaled large fibers have sufficient inertia to be deposited in the upper respiratory

tract, where they are cleared by the mucociliary escalator and therefore do not contribute

to pulmonary diseases caused by asbestos (163). Alternatively, fibers that are small

enough to bypass the upper respiratory tract and penetrate deeply into the lungs are

termed respirable. These respirable fibers are the ones that produce the pathologies

associated with asbestos exposure.
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The most important factor of a fiber’s

respirability is fiber diameter. Fibers that are

larger than 5 microns are deposited in the upper

respiratory tract and tracheobronchial area

(163). The largest alveolar deposition of fibers

in the lung occurs when fiber diameters are

between 1 and 2 microns (41). Fibers of this size

are cleared by alveolar macrophages in the lung

(121, 131). Since Libby amphibole asbestos is

composed of a diversity of fiber sizes and types,

the isolation and utilization of respirable fibers

is an important step in mimicking real life

asbestos exposure. To this end, the isolation and

characterization of respirable Libby amphibole

fibers has begun.

Figure 5.1: A functioning elutriator.
Water is drawn from one container and
pumped upwards through the funnel,
which contains Libby amphibole
asbestos fibers. Respirable fibers are
eluted out of the top of the funnel,
collected in a second container,
lyophilized and physically and
chemically characterized.



88

With the help of Jim Webber from the Wadsworth Institute in New York, Libby

amphibole asbestos fibers have been fractionated according to fiber diameter by

subjecting fibers to an elutriation flow, which can separate fibers by aerodynamic

diameter. The elutriator (Fig. 5.1) can recover

respirable fibers while discarding larger fibers.

Taking into account the dimensions of the

elutriator, the diameter of respirable fibers (1.5

microns) and the particle density of amphiboles

(3.0 grams/cm2), an elutriation flow rate of 0.6

ml/min will fractionate respirable fibers from the

Libby amphibole stock (186). As seen in Figure

5.2, initial fractionations have correctly isolated

fibers that are small in diameter and homogenous

in morphology. Eluted fibers will be physically

and chemically characterized to ensure the

correct fiber sizes are recovered during elutriation. A stock of these fibers will then be

created and used in all in vitro and in vivo studies in the Center for Environmental Health

Sciences. Moreover, since in vivo and in vitro exposures are prepared on a per mass basis,

fractionation may enhance the amount of biologically active fibers in each exposure.

Another important question that needs to be addressed with respect to asbestos

induced autoimmunity is whether apoptotic cells in the presence of amphibole asbestos

drive autoimmune responses. Although Libby

amphibole induces apoptosis in macrophages,

the presence of apoptotic cells alone is not

Figure 5.2: Light microscopy picture
of two representative fiber fractions.
A) Libby amphibole fibers taken from
the funnel after elutriation. B)
Elutriated (respirable) fibers. Scale bar
equals 50 microns.
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enough to generate an autoimmune response. Previous studies have shown that

intravenous (IV) injections of apoptotic cells (ACs) stimulate the production of

autoantibodies only transiently (115). However, ACs coupled with an adjuvant, such as

primed dendritic cells or incomplete Freund’s adjuvant, generates strong, long-lasting

autoimmune responses (12, 175). Therefore, apoptotic cells induced by asbestos, in the

presence of amphibole asbestos may stimulate an autoimmune response due to asbestos’

ability to serve as an adjuvant, similar to silica (136). To test this hypothesis, bone

marrow derived macrophages from C57/BL6 mice can be generated as previously

described (25), exposed to Libby amphibole asbestos and subsequently injected IP to

produce an immune response. The

schedule of IP injections can be similar to

a vaccination schedule (Fig. 5.3). The

production of antibodies against dsDNA

or SSA/Ro52 will be assessed through ELISA. Results from this experiment will indicate

whether amphibole asbestos acts as an environmental adjuvant to activate the immune

response to target autoantigens usually clustered on the surface of apoptotic cells.

Finally, does the uptake and processing of apoptotic alveolar macrophages by

APCs drive asbestos induced autoimmune responses? APC cells, such as dendritic cells

(DCs), are necessary in the induction of immune responses. Airway DCs form a network

in the bronchial epithelium, capture antigen and migrate to the mediastinal lymph nodes

(LNs) where antigen is presented to CD4+

and CD8+ cells (181). Therefore, during
Figure 5.3: Schematic depiction of 
immunization protocol. 
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asbestos induced autoimmune responses, airway DCs may play a key role in the uptake

of apoptotic alveolar macrophages and the subsequent processing and presentation of

antigenic material.

To examine the need for DCs in the induction of autoimmune responses due to

asbestos exposure, airway DCs can be conditionally removed from the lung of mice using

transgenic mice in which the CD11c promoter element drives the expression of diphtheria

toxin receptor (86). Murine cells are normally insensitive to diphtheria toxin because they

lack the correct receptor. However, in these transgenic mice, diphtheria toxin can be

administered locally to the lungs leading to the ablation of lung CD11c+ cells prior to

asbestos exposure. If autoimmune responses in transgenic mice are reduced compared to

control mice then airways DCs do play a role in autoimmune responses. To define

whether the apoptosis of alveolar macrophages provides antigenic material to elicit

autoimmune responses, alveolar macrophages can be depleted from the lung of control

and transgenic mice with the use of chlodronate, as previously described (180), then

exposed to diphtheria toxin and asbestos as described above. Together these results will

provide evidence to either support or challenge the hypothesis that the uptake and

processing of apoptotic cells by airway DCs will activate self-reactive T cells, inducing

the loss of tolerance and an autoimmune response.

Taking into account the variability of asbestos exposure, the immunological

mechanisms at work as well as issues not addressed in this dissertation such as genetic or

hormonal predispositions, it is safe to say that the etiology of asbestos induced

autoimmunity is extraordinary complicated. Chapter four illustrates that this complexity

manifests as an array of autoantibodies that points to, but does not clearly define a

clinical autoimmune entity in asbestos exposed individuals. Autoantibodies not only
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indicate immune dysfunction, but can also help define both chemical and mechanistic

phenomena. Therefore, further characterization of asbestos induced autoimmunity, in

collaboration with clinical rheumatologists, is essential. The murine model of asbestos

induced autoimmunity also provides an excellent tool to explore the basis of these

responses.

The goals of this dissertation were simply 1) to characterize the cellular response

by macrophages to Libby amphibole asbestos and 2) to identify a possible molecular

mechanism by which autoantigens become immunogenic. This dissertation provides

support for the premise that apoptosis may provide the necessary stimulus for

environmentally induced autoantibody production.
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