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Hargreaves, Melissa, Ph.D., Spring 2013          Integrative Microbiology/Biochemistry 
 
Novel ribosome biogenesis in the Lyme disease spirochete Borrelia burgdorferi 
 
Chairperson: D. Scott Samuels 
 
Here we demonstrate the first characterization of an RNase III enzyme from a spirochete 
and its role in processing rRNA transcripts from the unusual rRNA gene operons of 
Borrelia burgdorferi. In most bacteria, the three rRNA transcripts (16S, 23S, and 5S 
rRNAs) that form the ribosome are produced as a single transcript from an operon with 
minimal spacing between genes. In the B. burgdorferi genome, however, a single 16S 
rRNA gene is encoded more than 3 kb from the bicistronic 23S-5S rRNA operons. The 
23S-5S operons are tandemly duplicated, yielding an uneven number of rRNA genes, a 
feature unique to Lyme disease Borrelia. Additionally, the 16S and tandem 23S-5S 
operons appear to be synthesized as two separate transcripts. Our data show that B. 
burgdorferi RNase III processes the 3′ end of the 16S, 23S, but not the 5S, rRNA 
transcripts, as in other bacteria. However, 16S rRNA 5′ end processing proceeds by an as 
yet unidentified mechanism, which is an unprecedented finding. We hypothesize that this 
deviation from the canonical 16S rRNA processing pathway is likely an adaptation of B. 
burgdorferi to rRNA gene rearrangement during genome reduction and transition to a 
host-restricted lifestyle. In agreement with this finding, the 16S rRNA gene is transcribed 
as part of a larger operon containing unrelated genes, suggesting alternative regulation of 
the rRNA transcripts. Additionally, we show that the 23S rRNA is transcribed from 
identical promoters present in front of both tandem 23S rRNA genes and that this creates 
our observed 2.5 to 3-fold excess of 23S rRNA compared to 16S rRNA. Finally, single 
deletion mutants in each of the 23S rRNA genes were constructed. Surprisingly, deletion 
of the first 23S rRNA gene produces a severe growth phenotype and increased 
erythromycin susceptibility in vitro and a strain that is non-infectious in vivo. A mutant 
with a deletion in the second 23S rRNA gene shows no phenotype. The 23S rRNA genes 
have begun to acquire single nucleotide polymorphisms. However, their pattern currently 
indicates that they are the products of genetic drift. We conclude that the mechanism of 
rRNA transcription is unique in B. burgdorferi. 
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Chapter 1 

Introduction 

 

Borrelia burgdorferi and the enzootic cycle 

 

Borrelia burgdorferi is the causative agent of Lyme disease (9, 10, 11). Lyme 

disease accounts for more than 90% of reported vector-borne disease in the United States 

(12, 13). B. burgdorferi belongs to the genetically distinct Spirochaetae phylum, which 

includes other notable genera associated with disease such as Leptospira (leptospirosis), 

Treponema (syphilis, Yaws), and Brachyspira (intestinal spirochetosis) (14, 15, 16, 17, 

18, 19, 20, 21). The Spirochaetae are widely distributed throughout the world and exhibit 

diverse lifestyles, from free-living saprophytes residing in stagnant water to a parasitic 

enzootic life cycle dependent on an arthropod vector and mammalian host. Members of 

this phylum are characteristically defined by the unusual periplasmic location of their 

flagella, which contributes to their unique bacterial shape and motility (22, 23, 24).  

The Borrelia genus itself is divided into two major phyletic groups generally 

based on their capability of causing human disease; B. burgdorferi, B. afzelii, B. garinii, 

B. bissettii, B. valaisiana, B. lusitaniae, and B. spielmanii have been isolated as agents of 

Lyme disease (or LD-like disease), whereas B. duttoni, B. recurrentis, and B. hermsii are 

the primary species associated with borrelial relapsing fever. B. andersonii and B. 

japonica are closely related to the LD Borrelia but have not yet been associated with 

disease (13, 25). As all of these organisms (except B. recurrentis) depend on a tick vector 

during their natural life cycle, incidence of disease is linked to the distribution of each 
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vector, which is related to the availability of suitable habitat (25, 26). The tick vectors for 

Lyme disease Borrelia species are the hard-bodied ticks of the Ixodes genus, which are 

distributed throughout the Northern Hemisphere in regions containing temperate forests 

with high humidity (13, 25, 26, 27).  

  B. burgdorferi is maintained in nature through an enzootic cycle involving its tick 

vector and small vertebrate hosts (13, 25). The two-year tick life cycle is central to the 

seasonal pattern of B. burgdorferi transmission into a warm-blooded host (26, 27). Lyme 

disease in humans initially manifests with the development of a bull’s-eye rash known as 

erythema migrans at the site of the tick bite and can be accompanied by flu-like 

symptoms (12). If detected early, Lyme disease can be readily treated with antibiotics 

such as doxycycline (28). However, if left untreated, further complications such as 

arthritis, carditis, and neurological sequelae can develop (12).  

The genome of B. burgdorferi lacks discernible genes for production and 

secretion of toxins, so the symptoms of Lyme disease are considered to be the 

consequence of immunological responses to spirochete infection (12, 13, 29, 30). For 

acute Lyme disease, the erythema migrans results from activation of local dermal 

macrophages and dendritic cells along with the recruitment of other circulating immune 

cells (12, 31). The accompanying flu-like illness is thought to be the result of cytokine 

production in response to hematogenous dissemination of B. burgdorferi (12). In 

untreated patients, the arthritis, carditis, and neuropathies are likely the outcome of 

localized immune activation, and, in the case of long-term arthritis, the development of 

autoimmunity to uncleared spirochete remnants in the joints (12, 30). 
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During transmission from the salivary glands of the tick vector to a mammalian 

host, B. burgdorferi utilizes the multitude of anti-immune factors in tick saliva to initially 

evade the immune response (13, 32, 33, 34, 35). In addition, B. burgdorferi outer surface 

lipoprotein C (OspC) can bind the tick protein SALP15, which allows the bacterium to 

evade antibody attachment (13, 34, 35, 36). Other surface lipoproteins (BbCRASPs; 

complement regulator-acquiring surface proteins) bind factor H, inhibiting the 

complement cascade (12, 13, 36, 37). 

After initial dermal penetration, B. burgdorferi rapidly replicates and eventually 

moves toward the interface between the posterior dermis and the circulatory system, 

entering the bloodstream (12, 13, 37, 38). Rather than produce tissue-digesting enzymes, 

B. burgdorferi binds plasminogen and its activation molecule (to create plasmin), as well 

as induces matrix metalloproteinases, which are produced by a variety of cells and are 

involved in normal tissue remodeling (13, 30, 37, 39, 40). Activated plasmin is a protease 

that allows B. burgdorferi to penetrate the cells lining the dermal capillaries and promotes 

hematogenous spread of the organism (37). OspC has recently been shown to bind 

plasminogen (41).  

B. burgdorferi eventually exits the circulatory system and takes up residence in 

tissue (37, 38). The spirochete possesses the ability to bind collagen and seems to find 

potential ‘protective niches’ within the mammalian host where it can persist (37, 42, 43). 

At this point, OspC is downregulated and other B. burgdorferi surface molecules are 

switched as needed in an effort to avoid the host immune response (37, 44). Similar to 

relapsing fever Borrelia species, B. burgdorferi has the capacity to recombine the gene 
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for a plasmid-expressed outer membrane lipoprotein (vlsE) in order to confer antigenic 

surface variation in response to undefined mammalian signals (37, 45, 46). 

The enzootic cycle begins when a female Ixodes tick lays eggs on the ground 

amongst leaf litter. Uninfected larval ticks hatch during late summer or early autumn and 

immediately seek out a blood meal, usually from small rodents or birds. If this reservoir 

animal has been previously infected with B. burgdorferi, the larval tick can acquire the 

spirochete during the blood meal (13, 25, 26). B. burgdorferi in its reservoir host likely 

sense chemoattractants from the feeding tick and migrate towards the bite location (13). 

In order to colonize the tick, however, B. burgdorferi must alter its gene expression to 

switch from survival in the mammal to persisting in the tick (47, 48), including 

upregulating metabolic pathways to utilize alternative carbon sources (13, 49, 50). One of 

the predominant proteins responsible for enabling this transition is outer surface 

lipoprotein A (OspA), which allows B. burgdorferi to bind to tick midgut epithelium and 

probably provides shielding from anti-Borrelia antibodies that may be present in the host 

blood meal, thus permitting successful colonization of the tick vector (51, 52, 53, 54).  

As the larval tick molts into a nymph, B. burgdorferi is maintained in the tick’s 

midgut. Persistence requires B. burgdorferi to survive in a nutrient-limiting environment 

within the flat, unfed nymph over the winter months (13, 35). However, the spirochete is 

not dormant during this phase as certain genes are specifically upregulated to cope with 

this environment. B. burgdorferi utilizes glycerol, which is present in the tick midgut and 

serves as a natural antifreeze, as a carbon source (13, 49, 50). There is a poorly 

understood stringent response in B. burgdorferi that might also contribute to spirochete 

survival under these harsher conditions (13, 55, 56, 57, 58). 
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 Once the molt is complete and winter has transitioned to spring, the nymphal tick 

must feed again, usually on another rodent or bird, but occasionally on humans or other 

animals (13, 25). Nymphs climb low-level vegetative matter and quest for their next meal 

by protruding their legs until they catch on the fur or skin of a suitable host (25). After 

attachment the tick begins to feed and the B. burgdorferi residing in its midgut alter their 

gene expression to prepare for transmission (47, 48). Most conspicuously, OspA is 

downregulated and OspC is upregulated (59, 60, 61, 62, 63, 64, 65, 66). A complex 

cascade involving the alternative sigma factors RpoN and RpoS regulates this switch 

(67). After approximately 48 hours of feeding, the spirochete moves from the tick midgut 

to the salivary glands and is successfully transmitted into its host to begin the process of 

infection (13, 68). Following its second blood meal, the nymphal tick molts once again 

into the adult form. At this stage, only the female tick will feed again, generally on large 

mammals such as deer, mate, lay their eggs, and die (13, 25). B. burgdorferi is not 

vertically transmitted in ticks and must be acquired anew by larvae from an infected 

warm-blooded host (69). 

Both reservoir host species along with the tick vectors contribute to the continued 

maintenance of B. burgdorferi and other Lyme disease Borrelia species in nature (13, 25, 

26, 27). The white-footed mouse, Peromyscus leucopus, is the primary North American 

B. burgdorferi reservoir species and seems to asymptomatically maintain the spirochete 

over its lifetime after the initial infection (70, 71, 72). Additionally, in Europe, migratory 

birds that become infected with the spirochete B. garinii contribute to the spread of 

Borrelia isolates to new regions (13, 25, 26). However, not all hosts are capable of 

promoting maintenance of B. burgdorferi within the enzootic cycle. Humans and dogs are 
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thought to be dead-end hosts, as they are not part of the normal ecological niche of the 

enzootic cycle and clinical treatment will eliminate the spirochete before another tick can 

feed (13). Some lizard species in the Southwestern United States are capable of initial 

infection with B. burgdorferi but possess anti-Borrelia immune factors that rapidly lead 

to spirochete death, removing these spirochetes from the transmission pool (73).  

  

The complex genome of Borrelia burgdorferi 

  

In order to survive in and transition between the two disparate environments of 

the tick vector and mammalian host, the genome of B. burgdorferi must encode a diverse 

array of genes (13, 36, 48). In fact, B. burgdorferi possesses what is considered the most 

complex prokaryotic genome (29, 74, 75, 76). However, as B. burgdorferi has adapted to 

a parasitic lifestyle within its vector and host, natural genetic reduction has taken place, 

resulting in a core chromosome with very few intergenic spaces and only a few rRNA 

genes (29, 77, 78). Consequently, B. burgdorferi has become metabolically restricted and 

is fastidious to grow in laboratory cultures (79, 80). Unlike most bacteria, which harbor a 

single, circular chromosome molecule, the genome of B. burgdorferi consists of a 

relatively small (~900 kb), linear chromosome harboring the majority of housekeeping 

and metabolic genes as well as ~12 linear and ~9 circular plasmids (ranging from 5 to 20 

kb) (29, 74, 75, 77). At least one of the circular plasmids is a prophage (75, 77, 81, 82). 

This genomic arrangement is unique and many of the linear plasmid genes have no 

homologs outside of Borrelia species (29, 74, 77). However, the gene content of the 

chromosome is relatively consistent among Borrelia species (77).  
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The linear chromosome of B. burgdorferi strain B31 carries 846 protein-coding 

genes, 31 tRNA genes, and 5 rRNA genes (discussed in detail below) (1, 29, 77, 83). It 

has a low GC-content (28.6%) and protein-coding genes account for 93% of the coding 

sequence, which is a common trend for a genome that has been severely reduced (77, 84, 

85). The metabolic capacity of B. burgdorferi is limited; it must scavenge all amino 

acids, nucleotides, vitamin cofactors and fatty acids (80). It also lacks the enzymes of the 

citric acid cycle. Consequently, the genome contains many types of transporters for 

nutrient uptake, including metabolic intermediates (29, 77, 80). Glycolysis is carried out 

through fermentation of sugars via the Embden-Meyerhof pathway (80). There is a lack 

of genes involved in iron scavenging and metabolism, and B. burgdorferi does not 

require iron for growth (80, 86). Intriguingly, the linear chromosome and linear plasmids 

possess covalently closed telomeres, which are generated by a plasmid-encoded resolvase 

(ResT) (76, 77, 87). In addition to the chromosome, lp54, cp26, and cp32 (plasmid 

nomenclature includes lp for linear plasmids or cp for circular plasmids along with the 

size in kb in strain B31) are present in all strains, and are thought to potentially serve as a 

‘mini chromosome‘ (74, 75, 77). 

The genetic content of the plasmids is more variable than the chromosome and 

these contain paralogous sequences, pseudogenes, and a few essential genes (29, 75, 77). 

Most of the genes encoding the plethora of outer surface lipoproteins (36) are also carried 

on the plasmids. Some of the plasmids are required for mammalian infectivity (lp25 and 

lp28-1) (45, 88, 89), whereas others are vital to survival within the tick environment 

(lp25 and lp28-4) (77, 90). The circular plasmids have fewer pseudogenes than the linear 

plasmids, and genes are closely packed on these plasmids (29, 74, 77). B. burgdorferi 
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encodes multiple copies of cp32 and single copies of both cp9 and the essential cp26 (74, 

77). The cp32 plasmids appear to be prophages that are similar to the λ-phages, including 

a contractile tail and a late operon (81, 82, 91, 92). Isolated phages contain cp32 DNA 

and are capable of transducing this DNA between Borrelia strains (82). The cp32 

plasmids carry genes for surface-exposed proteins, including the one responsible for 

binding to complement factor H (36, 74, 77). 

 

The novel rRNA gene organization of Borrelia burgdorferi 

 

The unusual Borrelia ribosomal RNA gene organization is, considering the 

parasitic lifestyle, perhaps not surprising. As bacteria adapt to a host-restricted life, their 

genomes undergo a natural reduction that can lead to the development of unusual rRNA 

arrangements through a variety of mechanisms ((93) and below). The rRNA genes are 

located in the central portion of the chromosome, which is more GC-rich than the 

remainder of the chromosome, and are present in the canonical order (16S-23S-5S), but 

are arranged in a considerably different organization than in other bacterial species, 

which could affect metabolism (1, 83, 94, 95). Figure 1, below, depicts the ribosomal 

RNA region of B. burgdorferi. The 16S rRNA gene is separated from the 23S-5S rRNA 

operon by more than 3 kb (5 kb in the other Lyme disease species B. garinii and B. 

afzelii) (1, 83, 94, 95). Two tRNA genes (tRNAAla and tRNAIle) are located downstream 

of the 16S rRNA gene and Bugrysheva et al. (5) determined that the 16S rRNA and 

tRNAAla are produced as a single transcript, while tRNAIle is generated as its own 

transcript. Notably, in addition to the tRNAs, four predicted protein-coding genes are 
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Figure 1: Chromosomal arrangement of B. burgdorferi ribosomal RNAs 

 

The rRNAs of B. burgdorferi are located near the center of the linear chromosome. The 16S gene is followed by two 
tRNA genes and there appears to be a truncated ORF between them. The remaining genes in the spacer region include 
bb0422 (a DNA-3-methyladenine glycosylase) and bb0421 (a haloacid dehalogenase-like hydrolase). The tandem 23S-5S 
operon, a phenomenon restricted to Lyme disease Borrelia species, are 3 kb downstream from the 16S gene. 

''()**,

The rRNAs of B. burgdorferi are located near the center of the linear chromosome. 
The 16S gene is followed by two tRNA genes and there appears to be 2 truncated 
ORFs between them. The remaining genes in the spacer region include bb0422 (a 
DNA-3-methyladenine glycosylase) and bb0421 (a haloacid dehalogenase-like 
hydrolase). The tandem 23S-5S operon, a phenomenon restricted to Lyme disease 
Borrelia species, is 3 kb downstream from the 16S gene. 

present in this spacer region: two that appear to be truncated ORFs (located between the 

tRNA genes), a DNA-3-methyladenine glycosylase (bb0422), and a haloacid 

dehalogenase-like hydrolase (bb0421). The latter enzyme may hydrolyze phosphorylated 

metabolic intermediates, including acetyl phosphate (96), which plays a role in regulating 

gene expression during transmission (97). The first 5S rRNA gene (rrfB) follows the 23S 

rRNA gene (rrlB) with a short spacer between the two. However, there is an additional 

23S-5S operon (rrlA-rrfA) downstream with a short 179-bp spacer, a feature that has not 

been observed for any other bacterial species sequenced to date (1, 95). The tandem 23S-

5S rRNA operon region is transcribed as a single precursor RNA (5), but the mechanism 

separating the two rRNAs has not yet been characterized.  

 

Figure 1: Chromosomal arrangement of B. burgdorferi ribosomal RNAs 

  

 

 

 

 

 

 

 

In general, this unusual rRNA arrangement appears to be conserved across Lyme 

disease species (1, 94, 95, 98, 99). Recent sequences of other Lyme disease Borrelia 

species (B. valaisiana, B. bissettii, and B. spielmanii) show that they also exhibit this 
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unique operon structure (100). However, one isolate of B. afzelii (ACA-1) appears to 

encode two 16S genes that are 398 nucleotides (nt) apart followed by a 2.8 kb spacer. A 

single 23S-5S pair is located after this spacer (101). Only one complete B. burgdorferi 

genome (strain 156a) encodes a single 23S-5S rRNA operon following the 16S and 

spacer region, although this has not been experimentally confirmed by restriction 

mapping (99). The related relapsing fever Borrelia species (B. hermsii, B. turicatae, and 

B. anserina) encode only a single 23S-5S rRNA operon and the spacer between the 16S 

rRNA gene and 23S-5S rRNA operon is 1 kb (1, 94). In addition, Lyme disease species 

B. japonica and B. andersonii have undergone recent mutational events to their rRNA 

genes (102). Marconi et al. (102) discovered several interesting rRNA gene variations in 

isolates of these species: absence of one of the tandem 23S-5S rRNA operons, 

intervening sequences in the 23S rRNA genes that are subsequently spliced out to 

produce the mature 23S rRNA, and missing 5S rRNA genes. 

A null mutation in one of the 23S rRNA genes of B. burgdorferi does not affect 

growth rate, suggesting that the spirochete is able to compensate for loss of one gene, 

perhaps by regulating transcription of the remaining 23S rRNA gene (103). Growth phase 

rather than growth rate controls rRNA levels in B. burgdorferi (5). A major remaining 

question is how B. burgdorferi compensates for possessing an uneven number of 16S, 

23S, and 5S rRNA genes to enable a 1:1:1 stoichiometric ratio in the final ribosomes 

without wasting resources by overproducing the 23S-5S rRNA transcripts.  
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Unusual rRNA gene arrangements in other bacteria 

 

Non-canonical rRNA arrangements in bacteria are not without precedence and 

seem to be a property of bacteria with specific characteristics: host- or environment-

restricted organisms, low GC-content, slow growth, and small genome size (93). B. 

burgdorferi exhibits all of these characteristics along with very few pseudogenes, and the 

few it does contain are restricted to its numerous plasmids (29, 74, 77). The slow growth 

exhibited by these organisms is thought to be the result of the limited number of rRNA 

genes (78). Indeed, a slow-growth phenotype was observed for the model organisms 

Escherichia coli and Bacillus subtilis, when rRNA operons were deleted so that each 

mutant possessed only a single rRNA operon (from seven in E. coli and ten in B. subtilis) 

(104, 105, 106). Additionally, rRNA operon placement within the bacterial chromosome 

can also affect growth rate. Nanamiya et al. demonstrated that a lower cellular ribosome 

concentration is observed in B. subtilis when the coding distance between the origin of 

replication and a single rRNA operon is increased (106). 

In many host-restricted genera such as Mycoplasma, Rickettsia, and Buchnera, 

evolution has driven a reduction in genome size, preventing them from surviving outside 

of their specific host environments but allowing them to thrive in an environment of 

limited nutrients. As a consequence of genome reduction, rRNA operons are often 

rearranged, driven by homologous recombination (93). The rRNA operon region is a hot 

spot for recombination as tRNA genes can serve as recognition sites for mobile genetic 

elements leading to rRNA gene rearrangement (93, 107, 108). Gene duplications in this 

region also support recombination (93, 109). A recent survey of 16S rRNA genes from 



 12 

over 1100 sequenced bacterial genomes of diverse phyla showed that a variety of 

evolutionary processes have rearranged and altered this conserved gene. Specific 

examples include tandem duplication of the 16S rRNA gene followed by homologous 

recombination, inversion of an rRNA operon, transposon insertion, gene deletions and 

substitutions, degeneration of the anti-SD sequence, and transfer of a 16S rRNA gene to 

the chromosome from a plasmid (110). The evolutionary forces that shaped the unusual 

rRNA gene arrangement in B. burgdorferi are currently undefined, but it is likely that the 

rearrangement occurred during genome reduction and host adaptation.  

 A smaller genome means the organism can survive with a paucity of rRNA 

genes, although at least one of each must, of course, remain. These evolutionary 

pressures favor the development of bizarre rRNA arrangements in organisms undergoing 

active genome reduction (93). There are multiple examples of unique genome 

rearrangements that have resulted from genome reduction and rRNA recombination. 

Some of the more notable cases include Thermoplasma acidophilum, where all three 

rRNA genes are separated on the chromosome, Rickettsia prowazekii, Anaplasma 

marginale and Mycoplasma gallisepticum, where the 16S rRNA gene is separated from 

the 23S-5S rRNA operon, similar to Borrelia, Mycoplasma fermentans, which possesses 

two copies of the rRNA genes and where the 16S-23S rRNA operons are separated from 

the 5S genes and the 16S-23S rRNA operons are in an usual tail-to-tail arrangement on 

the chromosome, and Mycoplasma hyopneumoniae, where the 5S rRNA gene is 

separated from the 16S-23S rRNA operon (111, 112, 113, 114, 115, 116). Among the 

other genera of the Spirochaetae phylum, all three rRNA genes are separated from one 

another and gene copy number varies between Leptospira serovars (117, 118, 119). 
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However, none possess the conserved tandem duplication of the 23S-5S rRNA operon as 

observed in Lyme disease Borrelia species (1). Intriguingly, separation of the 16S rRNA 

gene and 23S-5S rRNA operon is conserved among Rickettsia species, suggesting that 

this genomic architecture, which is also observed among most Borrelia species, might be 

advantageous for host-restricted bacteria (120).  

 

Heterogeneity of bacterial rRNA operons 

 

Expansion of bacterial rRNA genes into multiple operons over time has led to 

sequence heterogeneity among rRNA operons in E. coli and B. subtilis (106, 121, 122). 

Single rRNA operon deletion mutants in both genera do not exhibit a discernible growth 

phenotype (123, 124). In fact, neither increasing nor decreasing the ribosomal RNA 

operon copy number by three in E. coli caused a change in the amount of rRNA required 

for maximum growth rate (125, 126). In the case of the gene depletion study, the 

remaining rRNA operons were transcribed with increased frequency to keep up with the 

demands of the cell (126). This finding has led to the hypothesis that multiple copies of 

rRNA operons might be beneficial to the bacterial cell by providing the ability to cope 

with a variety of environmental stresses, including changing nutritional conditions (127, 

128). In accordance with this hypothesis, the structure of the rrn operon 5′ regulatory 

regions and transcription factor binding efficiencies differ between the rrn operons in E. 

coli (129). In addition, rrn promoters are used differently between nutrient abundant and 

limiting conditions (130). Furthermore, B. subtilis rrn operon promoters respond 

differentially to a variety of physiological conditions; specifically, only some of the 
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operons are downregulated in response to starvation conditions (131). Finally, B. subtilis 

single rRNA operon mutants show differences in sporulation, which also suggests a 

functional significance to the heterogeneous character of the rRNA genes (106). We 

hypothesize that regulation of the tandem 23S rRNA genes in B. burgdorferi contributes 

to some form of environmental response system, particularly considering the dual-host 

lifestyle of the spirochete; this would provide a compelling rationale for the strong 

conservation of the 23S-5S rRNA tandem operon duplication observed in Lyme disease 

Borrelia species. 

 

Bacterial rRNA transcription regulation 

 

 Functional ribosomes are, not surprisingly, essential to cell viability and growth. 

However, the bacterial cell also faces a variety of favorable or unfavorable environmental 

conditions during growth, and must be able to properly modulate the amount of 

ribosomes that are produced. rRNAs (as well as tRNAs) account for more than 95% of 

total cellular RNA and their syntheses consume a majority of the cell’s resources (132). 

As a bacterial cell reaches stationary phase, and nutrients become limited, fewer 

ribosomes can be advantageous, as the amount of translation needs to be reduced to 

account for the decrease in free metabolites for biosynthesis. Additionally, the 

nucleotides of rRNA and amino acids of ribosomal proteins (r-proteins) from unneeded 

ribosomes can be recycled in order to continue essential, yet low-level, transcription and 

translation (133).  
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A recent study with E. coli by Piir et al. examined the normal course of ribosome 

degradation during bacterial exponential growth and stationary phase (134). Using a 

turbidostat to enable a constant rate of growth for E. coli, the ribosomes were found to be 

most stable during exponential growth in an abundance of nutrients. However, as E. coli 

enters stationary phase, more than 50% of the ribosomes produced during exponential 

growth are degraded, but those that remain are stable for several hours (134). The growth 

rate of cells was shown using mathematical models to be limited by translational capacity 

(135). More specifically, the synthesis and amount of free rRNA available for r-protein 

binding limits r-protein synthesis and growth rate (136, 137, 138, 139). Therefore, for an 

efficient translation system, during both favorable and unfavorable growth conditions, 

rRNA transcription must be carefully regulated. 

There have been multiple studies on rRNA transcriptional regulation in both E. 

coli and B. subtilis that have shown differences in the mechanisms used between the two 

genera, suggesting that the regulation of the rRNA genes in bacteria differs depending on 

the needs of the respective organism. However, two small molecule regulators have been 

described in bacteria that regulate transcription of the rRNA genes: induction is regulated 

by the concentration of an initiating nucleotide triphosphate (iNTP) and repression by 

guanosine pentaphosphate or guanosine tetraphosphate (known as (p)ppGpp) (133, 140). 

Transcription initiation, in general, depends on the presence of an initiating 

nucleotide triphosphate (iNTP). The cellular concentration required to stimulate 

transcription between promoters varies, but appears to be quite high for the rRNA genes 

(133, 140, 141). This nucleotide varies between bacterial genera, with ATP or GTP 

serving as the iNTP in E. coli rrn promoters (130, 142) and GTP serving as the sole iNTP 
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in B. subtilis (143). Presence of high concentrations of the iNTP in both E. coli and B. 

subtilis signify to the promoter that the required phosphate-rich NTPs are available in the 

cell to power the energy requirements of translation (140, 143). Therefore, transcription 

will be upregulated. 

In addition to iNTP concentration in cells, rRNA promoters are sensitive to 

another small regulatory molecule, guanosine pentaphosphate or guanosine 

tetraphosphate (known as (p)ppGpp). This GTP/GDP derivative serves as an alarmone in 

the cell and downregulates rRNA gene transcription during times of nutrient limitation in 

a system known as the “stringent response” (144, 145, 146, 147). The enzymes 

responsible for generating and hydrolyzing (p)ppGpp are known as RelA and SpoT, 

though these can exist as a chimeric single enzyme known as the RelA-SpoT Homolog 

(RSH), the latter of which is observed in Firmicutes and B. burgdorferi (57, 145, 147, 

148, 149, 150).  

E. coli rRNA gene transcription from two promoters (P1 and P2) at each rrn 

operon is tightly regulated. P1 is utilized during exponential growth and is downregulated 

during stationary phase; P2, on the other hand, is a weaker promoter that displays clear 

responses to amino acid availability (stringent control), rRNA gene dose (feedback 

control), and changes in growth rate (growth rate-dependent control) (140, 151). This 

bimodal system allows E. coli to fine-tune rRNA transcription during each phase of 

growth. In addition to the typical σ70 core promoter region (with -35/-10 hexamer 

sequences) in the E. coli rRNA promoters, a “discriminator” sequence is present in a GC-

rich region downstream from the -10 element (140, 152). Several upstream elements are 

also present and include the UP element, an AT-rich sequence that binds the C-terminal 
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domain (CTD) of the RNA polymerase (RNA pol) α subunit and is located near the -35 

hexamer. Further upstream are 3 to 5 copies of the Fis (factor for inversion stimulation) 

transcription factor binding sites. Dimers of the Fis protein also interact with the CTD of 

the RNA pol α-subunit. Finally, the spacing between the -35/-10 elements is 16 

nucleotides instead of the typical 17 nucleotides.  

All of these promoter elements provide an approximate 300-fold increase in 

transcription of the rRNA genes in E. coli and help regulate the levels of rRNA through 

differential expression during growth phase or nutrient availability (i.e., Fis protein 

expression is increased during high nutrient availability) (reviewed in 133, 140). In E. 

coli, rRNA transcription during the stringent response is directly inhibited by (p)ppGpp. 

Formation of the RNA pol transcription open complex is blocked when (p)ppGpp binds 

to the transcription cofactor, DksA, which interacts with RNA pol and the 

“discriminator” sequence to destabilize transcription at rRNA promoters (145, 146, 152, 

153). 

While the E. coli rRNA promoter region contains many elements for 

transcriptional regulation, the B. subtilis rRNA promoter regions appear to lack some of 

these key features, including an UP element and Fis-binding sites (143). The mechanism 

for B. subtilis rRNA transcription regulation seems to instead revolve solely around the 

concentration of GTP/GDP in the cell. As previously discussed, GTP is the iNTP for B. 

subtilis rRNA transcription initiation and synthesis of (p)ppGpp will decrease the 

available pool of GTP/GDP for both translation and rRNA gene transcription, 

downregulating rRNA levels. Additionally, direct downregulation of rRNA transcription 

seems to occur via a binding of (p)ppGpp to RNA pol without the aid of a cofactor (143). 
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(p)ppGpp also binds to several GTP-binding ribosome associated proteins such as 

initiation factor 2 (IF2) or Obg, which would also stall translation (148, 154, 155).  

In B. burgdorferi, the relationship between rRNA transcription and the stringent 

response is not entirely clear. The 16S rRNA and tandem 23S-5S rRNA operons are 

transcribed as two separate transcripts (5). B. burgdorferi lacks a “discriminator” 

sequence at the proposed 16S rRNA promoter indicating that rRNA transcription may be 

more similar to B. subtilis than E. coli (5, 29, 148). While (p)ppGpp and a RelA-SpoT 

homolog (RSH, also referred to as RelBbu) are present in B. burgdorferi, the stringent 

response is different in the spirochete (5, 55, 56, 57, 156); low levels of glucose and 

amino acids do not seem to stimulate (p)ppGpp synthesis (56, 156). RSH is sufficient to 

regulate (p)ppGpp levels in B. burgdorferi and enables the organism to successfully 

transition from exponential growth to stationary phase (57). Levels of 16S and 23S rRNA 

are also reduced upon entry into stationary phase, as expected (5).  

 

Co-transcriptional rRNA processing and ribosome assembly in bacteria 

 

 In most bacterial species, the three rRNA genes are encoded in a single operon in 

the following order: 16S-23S-5S with minimal intergenic sequences. There are usually 

several tRNA genes encoded between rRNA genes, but their number and location varies 

among operons. Once rRNA transcription has been initiated, a single long transcript 

containing the 16S-23S-5S precursor rRNA is produced and subsequently processed by 

ribonucleases to separate each rRNA subunit. The endoribonuclease, ribonuclease III 

(RNase III) is responsible for initial processing of the 16S and 23S rRNA transcripts prior 



 19 

to ribosome assembly (7, 157, 158). Endonucleolytic processing occurs co-

transcriptionally, first separating the pre-16S transcript from the pre-23S-5S transcript 

and then separating the pre-23S transcript from the pre-5S as the entire polycistronic 

RNA is transcribed (159). As the ribosomal RNAs are generated, a stem joining the 

complementary 5′ and 3′ ends of each rRNA forms, creating double-stranded substrates 

for RNase III (160). RNase III processes both strands simultaneously, releasing each 

rRNA. Exonucleases (and a few endonucleases) then further process the remaining stem 

to create the mature rRNAs (reviewed in 161). Unlike pre-16S and pre-23S rRNAs, pre-

5S rRNA is initially processed by other endonucleases (RNase E in E. coli and RNase 

M5 in B. subtilis; B. burgdorferi possesses a homolog of the latter enzyme) (162, 163). 

This enzymatic processing has been well characterized in both E. coli and B. subtilis, 

which have similar mechanisms but require different enzymes for post-RNase III 

processing (reviewed in 161). After the initial endonucleolytic processing, each rRNA 

continues to fold into its native conformation, aided by the ribosomal proteins that 

assemble on the nascent RNA. Exonucleases have better access to their substrates in this 

partially folded environment, allowing rRNA processing to transpire in an ordered 

manner (164, 165).  

 There are a variety of covalent chemical modifications made to both the rRNA 

and r-proteins as the ribosome assembles (reviewed in 166). Ribosome assembly is 

sequential, with distinct sets of proteins binding to each subunit in a specific temporal 

manner. The 16S rRNA sequentially binds 21 ribosomal proteins (the “S” proteins) 

during maturation and assembles into the 30S ribosomal subunit. The 23S rRNA and 5S 

rRNA assemble into the 50S subunit. Thirty-three ribosomal proteins (the “L” proteins) 
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associate with the 50S subunit in a progressive manner similar to the 30S rRNA subunit. 

Following maturation of each ribosome component, the 50S and 30S ribosomal subunits 

assemble into the 70S ribosome, which is part of translational initiation and requires a 

variety of initiation factors, the initiator tRNAmet and the mRNA (reviewed in 166).  

 

Ribonucleolytic processing of the rRNAs 

 

16S rRNA 

 RNase III processing in E. coli initially leaves extra nucleotides on both the 5′ 

(115 nt) and 3′ (33 nt) ends of the pre-16S rRNA transcript; single-stranded 

endoribonucleases E and G are responsible for the subsequent trimming of the 16S rRNA 

5′ end (167, 168). RNase G rapidly processes the 16S rRNA 5′ end after RNase E 

removes the first 66 nucleotides (167). In B. subtilis, the processing pathway is slightly 

different, as no homologs of RNases E or G exist in this organism (169, 170). Instead, 

RNase J1, an essential enzyme with broad activities within B. subtilis (mRNA processing 

and turnover), fulfills the role of the absent RNases E and G (171, 172, 173, 174). RNase 

J1 is an endoribonuclease that also exhibits 5′-to-3′ exonuclease activity, though it is 

currently the subject of debate whether the primary activity in processing the 16S rRNA 

is exonucleolytic or endonucleolytic (172). RNase J1 processes the 16S rRNA transcript 

following its assembly with proteins into the 30S subunit (171). Both RNase E and 

RNase J process the 5′ end of all three rRNA transcripts in Mycobacterium smegmatis 

(175). 
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Maturation of the 16S rRNA 3′ end in bacteria has only recently been 

characterized and appears to be the same in both E. coli and B. subtilis. A novel but 

highly conserved single-stranded endoribonuclease, YbeY, is required for 16S rRNA 3′ 

end maturation (176, 177). Translation is impaired in the absence of YbeY due to the 

production of defective 30S ribosomal subunits (178). Following RNase III processing of 

the 16S rRNA transcript, YbeY cleaves near the mature 3′ end of the rRNA while it is in 

the context of the assembled 30S subunit (176). This specificity has been predicted to be 

guided by a small subunit ribosomal protein or the GTPase Era, which may expose the 3′ 

end (176, 179). Additionally, the exonucleases RNase R and PNPase, along with YbeY, 

are likely candidates for the final 16S rRNA 3′ end processing (176, 177). YbeY has a 

role in 70S subunit quality control by initiating degradation of the ribosomal RNA after 

inducing multiple nicks in the single-stranded rRNA that are then unwound by the RNase 

R helicase domain (176). YbeY also aids in transcription antitermination of the rRNA 

precursor substrate (180). In Pseudomonas syringae, a single ribonuclease, RNase R, is 

capable of the complete 3′ end processing of 16S rRNA (181).  

 

23S rRNA 

After separation of the individual pre-23S and pre-5S rRNAs from the larger 

transcript, each rRNA is further processed by nucleases before associating with one 

another and thirty-three large subunit ribosome proteins to form the 50S ribosomal 

subunit. RNase III cleavage of the 23S rRNA leaves 3 to 7 nt on the 5′ end and 7 nt on 

the 3′ end in E. coli and 64 nt on the 5′ end and 32 nt on the 3′ end in B. subtilis that must 

be further trimmed by exo- and endonucleases (182, 183). In E. coli, RNase G finishes 
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the 5′ end and RNase T and RNase PH generate the mature 3′ terminus (165, 184, 185). 

Exonuclease processing proceeds in an ordered manner, with maturation of the 3′ end of 

the 23S rRNA preceding maturation of the 5′ end in E. coli (186). B. subtilis utilizes a 

single enzyme, Mini-III, which is an endonuclease composed of an RNase III-like 

catalytic domain, to process both the 5′ and 3′ ends. In spite of the similarity of this 

enzyme to RNase III, no overlap in cleavage sites is observed as Mini-III binds different 

RNA sequences (183). As with the secondary processing enzymes of the 16S rRNA 

transcript, Mini-III initiates 23S rRNA cleavage more efficiently in the context of the 

assembled 50S subunit (187). Post-RNase III processing of the pre-23S rRNA still 

transpires in the absence of Mini-III. The combined activities of RNases J1 (5′-to-3′ 

exoribonuclease activity), RNase PH (3′-to-5′ exoribonuclease activity), and YhaM (3′-

to-5′ exoribonuclease activity) are capable of generating a mature 23S rRNA in the 

absence of Mini-III in B. subtilis (188).  

 

5S rRNA 

Pre-5S rRNA is initially separated from the primary transcript by RNase III 

cleavage of the 23S rRNA 3′ end (189). Following this cleavage event and initial 

assembly of the 5S rRNA into the 50S subunit, RNase E in E. coli and RNase M5 in B. 

subtilis cleave both the 5′ and 3′ ends near the base of the conserved 5S rRNA double-

stranded stem structure (189, 190, 191). E. coli also requires RNase T cleavage of the 5S 

rRNA 3′ end to remove three remaining nucleotides from the mature transcript (164). The 

activity of RNase M5 is similar to that of Mini-III (183). B. burgdorferi possesses an 

unannotated RNase M5 homolog and no detectable RNase E/G homologs, so this 
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organism likely follows a more Bacillus-like pathway for rRNA processing. A more 

thorough discussion of the ribonucleases of B. burgdorferi and a potential model for 

ribonucleolytic processing in B. burgdorferi are discussed in a later section.  

 

Effect of unprocessed 16S, 23S, and 5S rRNA ends on ribosome assembly 

 

As discussed above, RNase G (encoded by the rng gene) is important in 

generation of the mature 5′ end of the 16S and 23S rRNA transcripts (167, 168, 184). In a 

∆rng background, 66 nt remain on the 5′ end of the pre-16S rRNA. However, this does 

not affect ribosome assembly (192, 193). Gutgsell and Jain (193) postulate that an RNase 

G-independent mechanism enables generation of a mature 5′ end in some of the 16S 

rRNA transcripts, allowing normal ribosome formation for a subset of the population, 

thus diluting the effect of the rng mutation. However, translational fidelity is lost in an E. 

coli rng mutant (192). The effect of the 5′ end of the 23S rRNA on ribosome assembly 

was not examined in this study. While the absence of RNase G can leave 77 nt on the 5′ 

end on the 23S rRNA, RNase III can compensate for this defect by cleaving all but 3 or 7 

nt on the 5′ end (182, 184). As discussed above, YbeY processing of the 16S rRNA 3′ 

end is essential in bacteria, so mutants cannot be generated and no precursor sequences 

can be studied (176, 177).  

In both RNase PH and RNase II mutants, ribosome assembly was much slower 

than in wild-type E. coli, while the RNase T mutant showed a much more minor growth 

phenotype (193). From these data, Gutgsell and Jain (193) conclude that ribosome 

assembly is most affected by defects in early processing events, that a 2 nt or less 
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precursor extension on the 23S rRNA is tolerated by the ribosome, and that these 

precursor sequences might serve as a mechanism of quality control by slowing ribosome 

assembly in strains with defective 23S rRNA processing. Gutgsell and Jain (193) further 

propose a model for the delayed ribosome assembly in mutants with 2 nt or longer 

extensions on the 23S rRNA 3′ end. As the 3′ end of the 23S rRNA protrudes outside of 

the ribosome, they postulated that this extension does not affect activity of the ribosome. 

However, as ribosome assembly is a sequential and ordered process, they hypothesize 

that a 23S rRNA 3′ end extension might cause a steric clash that slows down or inhibits 

assembly of the mature ribosome. Therefore, in addition to ribonucleolytic processing, 

rRNA precursor sequences might also promote ordered ribosome assembly as well as 

quality control. In contrast to this finding, extra nucleotides on the 5′ and 3′ end of the 5S 

rRNA transcript in both E. coli and B. subtilis appear to have no effect on the assembly of 

ribosomes, as fully functional ribosomes are made in the absence of RNase T and RNase 

M5 (164, 191). This suggests that the processing of the 16S and 23S rRNAs is more 

important for the generation of functional ribosomes than the processing of 5S rRNA. 

 

Endoribonuclease III – enzyme activity and characteristics  

 

While B. burgdorferi possesses a paucity of genes for endoribonucleases 

compared to other bacteria (see below), it does possess a homolog of RNase III from both 

B. subtilis (44% identity) and E. coli (35% identity). RNase III, encoded by the rnc gene, 

specifically recognizes and cleaves double-stranded RNA (194). Homologs exist in even 

the smallest bacterial genomes, including Mycoplasma species (195). RNase III is 
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conserved across all bacterial phyla and the homologs Dicer and Drosha, present in 

eukaryotic cells, are responsible for miRNA processing (196, 197, 198, 199). The 

enzyme operates as a homodimer of ~25-kDa subunits that primarily interact through 

hydrophobic regions (200). In general, RNase III contains an N-terminal catalytic domain 

with endonuclease activity (defined by a conserved signature motif EGLEFLGDS/A) and 

a C-terminal domain with four RNA-binding motifs (195, 199, 200, 201). Two of these 

motifs recognize sequences specific for their cognate RNAs (RNA-binding motifs 3 and 

4; RBM3 and RBM4), whereas the other two bind RNA less specifically by recognizing 

RNA structural features (RBM1 and RBM2) (201, 202, 203). The endonuclease domain 

rotates upon binding to double-stranded RNA via a linker region that joins it to the RNA-

binding domains. Amino acid substitutions of prolines in the linker region still allow 

binding of double-stranded RNA, but cleavage activity is abolished, likely due to the lack 

of the proper conformational change (204).  

Substrate recognition relies on the absence of anti-determinant nucleotide pairs 

(specific bases that cause improper alignment of the active site and inhibit cleavage) in 

the double-stranded stem near the cleavage site (termed the ‘proximal’ and ‘distal’ boxes) 

as well as the presence of appropriate bases at the scissile site (205, 206, 207, 208, 209). 

These features are present in the B. burgdorferi 23S rRNA stem. Crystallographic studies 

suggest that seven hydrogen bonds per subunit contact the 2′-hydroxyl groups of the 

substrate, with two loops inserted into the minor grooves. RBM1 and RBM4 interact with 

the proximal and distal boxes, respectively (201, 205). RBM3 interacts with nucleotides 

at the cleavage site and may stabilize recognition/binding  (201). Gan et al. (201) 

proposed the following model for formation of the enzyme-substrate complex based on 
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their crystallographic data: the non-specific RBMs bind a double-stranded RNA 

molecule, which is brought into the endonuclease domains where it contacts the specific 

RBMs and is precisely situated for cleavage. Catalysis is Mg2+-dependent, involving 

coordination of two Mg2+ ions per catalytic site with specific acidic residues and water 

molecules. This arrangement instigates a phosphoryl transfer mechanism that ends in 

hydrolysis of one phosphodiester bond from each strand of RNA (201, 208, 210, 211). 

This requires both monomers for double-stranded processing, with two residues from 

RBM3 of one subunit (selecting the scissile bond) coordinating with two aspartic acid 

and two glutamic acid residues from the second subunit (performing the cleavage 

reaction) (201, 210). Cleavage of phosphodiester bonds creates a two-nucleotide 

overhang from one-full turn of RNA double helix, an 11 bp nucleic acid stretch that fits 

into the catalytic valley (212). 

Remarkably, while RNase III performs an essential function in the bacterial cell, 

it is not always required for growth as alternative RNA processing pathways are available 

in some bacteria. In E. coli and Staphylococcus aureus, but not B. subtilis, rnc mutants 

are able to grow at a reduced rate. The rnc growth defect is thought to be the result of 

aberrant ribosomes (7, 157, 213, 214, 215, 216). In many cases, the 23S-5S rRNAs are 

not properly separated in these null mutants, leading to the appearance of an unprocessed 

30S rRNA species (157, 195, 213, 214, 215). RNase III is highly conserved and 

homologs from different organisms can often, but not always, functionally substitute for 

each other and genetically complement rnc mutants (217). For example, RNase III 

homologs from Rhodobacter capsulatus and B. subtilis are capable of cleaving RNA 

substrates from E. coli at the expected site. However, E. coli RNase III cannot process 
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substrates from R. capsulatus and B. subtilis, indicating that species-specific factors play 

a role in proper RNA processing (218, 219, 220). RNase III is autoregulated by 

processing a hairpin stem-loop structure on the 5′ end of the rnc mRNA, which reduces 

levels of the transcript in both E. coli and S. coelicolor (221, 222, 223). In rnc point 

mutants, more RNase III is produced, as this control mechanism is absent and the hairpin 

stem-loop stabilizes the transcript (221, 222, 223).  

 

The constellation of bacterial ribonucleases 

  

The standard complement of endo- and exoribonucleases from B. subtilis and E. 

coli were subjected to a BLAST screen against the B. burgdorferi genome sequence. 

Tables 1 and 2 show the standard complement of ribonucleases in each model organism, 

their function, and whether an annotated or unannotated homolog exists in B. 

burgdorferi. 

 

Table 1. Endoribonucleases 

*Indicates a B. burgdorferi endoribonuclease homolog identified in this work 
Ribonuclease Present in B. 

burgdorferi 
Annotated 

in B. 
burgdorferi 

Model 
organism 

Primary 
Processing 

Role 

References 

RNase III Yes Yes E. coli 
B. subtilis 

Initial 16S and 
23S rRNA 
processing and 
global mRNA 
processing 

(161, 173, 
196, 206) 

RNase P Yes Yes E. coli 
B. subtilis 

5′ pre-tRNA 
processing 

(224) 

RNase Z Yes Yes E. coli 
B. subtilis 

3′ end pre-tRNA 
processing 

(224) 

YbeY Yes Yes E. coli 
B. subtilis 
 

3′ end 16S rRNA 
processing; 
ribosome quality 
control; rRNA 

(176, 177, 
180) 
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transcript 
antitermination 

RNase Y Yes No* B. subtilis riboswitch 
processing and 
global mRNA 
processing 

(225)  

RNase M5 Yes No* B. subtilis 5S rRNA 
double-stranded 
processing 

(161) 

Ribonuclease Present in B. 
burgdorferi 

Annotated 
in B. 

burgdorferi 

Model 
organism 

Primary 
Processing 

Role 

References 

RNase J1/J2 No N/A B. subtilis 5′ end 16S rRNA 
processing and 
global mRNA 
processing and 
decay 

(225) 

RNase E/G 
 
 
RNase E/G 

No 
 
 
No 

N/A 
 
 
N/A 

E. coli 
 
 
E. coli 

16S, 23S, and 5S 
rRNA and tRNA 
processing; 
mRNA and non-
coding RNA 
processing and 
decay  

(196, 226, 
227) 

MazF/EndoA  No N/A E. coli 
B. subtilis 

Decay of mRNA 
during stress; 
toxin with RNase 
activity 

(228) 

ChpBK No N/A E. coli Decay of mRNA 
during stress; 
toxin with RNase 
activity 

(170) 

YoeB No N/A E. coli Decay of mRNA 
during stress; 
toxin with RNase 
activity 

(170) 

RNase I No N/A E. coli Nonspecific 
activity; 
Periplasmic 
RNase; role in 
scavenging? 

(206) 

RNase M No N/A E. coli Altered form of 
RNase I 

(229) 

RNase LS No N/A E. coli Cleavage of T4 
bacteriophage 
mRNA; E. coli 
mRNA decay  

(230, 231) 

RNase HI No N/A E. coli Processing of 
RNA in RNA-
DNA duplexes 

(206, 232) 

RNase HII Yes Yes E. coli 
B. subtilis 

Processing of 
RNA in RNA-
DNA duplexes 

(232) 

RNase HIII No N/A B. subtilis Processing of 
RNA in RNA-

(232) 
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DNA duplexes 
RNase Bsn No N/A B. subtilis Extracellular 

secreted enzyme 
(233) 

YhcR No N/A B. subtilis Sugar-
nonspecific 
nuclease; located 
in the cell wall; 
Ca2+ activated 

(234) 

 

Table 2. Exoribonucleases 

*Indicates a B. burgdorferi exoribonuclease homolog identified in this work 
Ribonuclease Present in B. 

burgdorferi 
Annotated 

in B. 
burgdorferi 

Model 
organism 

Primary 
Processing 

Role 

References 

PNPase Yes Yes E. coli 
B. subtilis 

decay of single-
stranded RNA; 3′ 
to 5′ activity 

(196, 235) 

RNase PH No∆ N/A E. coli 
B. subtilis 

3′ end of tRNA 
processing 

(196) 

RNase R No N/A E. coli 
B. subtilis 

rRNA and 
mRNA decay; 3′ 
to 5′ activity 

(196, 235) 

RNase II No N/A E. coli decay of RNAs 
(unstructured); 3′ 
tRNA 
processing; 
3′ to 5′ activity 

(196, 235)  

RNase T No N/A E. coli 23S and 5S 3′ 
end processing; 
tRNA 
processing; 3′ to 
5′ activity 

(161, 206) 

RNase D No N/A E. coli tRNA 3′ end 
processing; 3′ to 
5′ activity  

(206) 

OligoRNase No N/A E. coli Terminal steps of 
mRNA decay 

(236) 

YhaM No N/A B. subtilis Role unclear; 3′ 
to 5′ activity 

(237) 

RNase J1/J2 No N/A B. subtilis decay of RNAs; 
5′ to 3′ activity 

(225) 

∆BLAST search shows high homology of this enzyme to PNPase from B. burgdorferi 
 

Complement of ribonucleases in B. burgdorferi  

 

 In comparison with the endo- and exoribonuclease complement of model 

organisms E. coli and B. subtilis, the number of ribonucleases in B. burgdorferi is limited 
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(see Tables 1 and 2 above). While B. burgdorferi possesses homologs to the highly 

conserved and essential endoribonucleases RNases III, P, Z, HII, and YbeY from E. coli 

and B. subtilis, as well as RNases Y and M5 from B. subtilis, it lacks homologs to 

RNases E or G and J1 or J2. The lack of RNases E and G is not surprising; RNase Y has 

been determined to serve the same purpose in B. subtilis as RNase E in E. coli and both 

enzymes are membrane-bound and form degradosome complexes with a variety of other 

enzymes (238). However, RNases J1/J2 perform central roles in B. subtilis (225). The 

lack of a B. burgdorferi homolog to RNases J1/J2 or similar enzymes in E. coli is 

puzzling. 

 In terms of exoribonuclease homologs in B. burgdorferi, the suite is even more 

limited. PNPase is the only enzyme that is a clearly discernible exoribonuclease in B. 

burgdorferi. However, performing a BLAST alignment with B. subtilis RNase PH 

identified B. burgdorferi PNPase with a 24% identity, so perhaps this enzyme performs a 

dual role in B. burgdorferi. The two enzymes are derived from the same family and have 

similar functions; additionally, PNPase contains an RNase PH domain (235). The only 

other exoribonuclease conserved between E. coli and B. subtilis is RNase R, which is an 

exonuclease that is efficient in cleaving structured RNAs (235). Perhaps B. burgdorferi 

PNPase performs the role of this exonuclease as well, since both exhibit 3′ to 5′ activity.  

We propose that B. burgdorferi either possesses novel exoribonucleases that have 

yet to be identified or the suite of ribonucleases in B. burgdorferi serve more than the 

standard roles. From the discernible set of ribonucleases in B. burgdorferi, we predict that 

RNase III, YbeY, RNase M5, and PNPase are all involved in rRNA processing. The 

many roles of RNase Y are still in the process of being defined, but it has so far been 
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linked to riboswitch degradation and global mRNA turnover (239, 240, 241, 242, 243, 

244, 245, 246). It is possible that this enzyme is also involved in rRNA processing in B. 

burgdorferi, performing a role similar to that observed for RNase E (161). Perhaps 

PNPase association in a degradosome-like complex with RNase Y and other enzymes 

(238) might allow for greater substrate tropism in B. burgdorferi. 

 

Hypothesis and significance  

 
RNase III is a crucial enzyme in most bacterial cells. B. burgdorferi encodes an 

obvious homolog of this enzyme with extensive homology to model organisms leading us 

to predict that it would have similar important functions in rRNA processing and selected 

mRNA processing. Our data support this hypothesis, as the B. burgdorferi rnc gene is 

capable of heterologously complementing a B. subtilis rncS mutant. We generated an rnc 

null mutant in order to take a genetic approach toward defining RNase III function in B. 

burgdorferi, specifically initial endonucleolytic processing of the pre-16S and pre-23S 

rRNA transcripts. We hypothesized that B. burgdorferi RNase III processes the pre-16S 

and pre-23S rRNA transcripts in a canonical fashion in spite of the unusual rRNA gene 

arrangement. While our results suggest that RNase III is responsible for processing the 

pre-23S rRNA transcript as in other bacteria, it is only essential for processing the 3′ end 

of the 16S rRNA in B. burgdorferi; the 5′ transcript end appears to be generated through 

a novel, undefined mechanism. We expect this finding reflects the unusual arrangement 

of the orphaned 16S rRNA gene as part of a larger operon. RNase III does not process the 

pre-5S rRNA transcript in B. burgdorferi, as expected. 
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As noted above, there are only a few sequenced bacterial genomes that contain 

unusual rRNA arrangements. The Lyme disease Borrelia species (B. burgdorferi, B. 

afzelii, B. garinii, and others) appear to be the only bacteria with a tandem chromosomal 

duplication of their 23S-5S rRNA operon. The tandem duplication of the 23S-5S rRNA 

operons creates a potential imbalance in the ratio of rRNAs if transcription is not 

coordinated with the unlinked 16S rRNA gene. We hypothesized that transcription of the 

16S and 23S genes was differentially regulated in B. burgdorferi to maintain a 1:1:1 ratio 

of the three rRNAs in the cell. To explore rRNA transcription from the tandem 23S 

rRNA genes in B. burgdorferi, we created null mutants for each of the 23S-5S genes, 

leaving one complete copy of the three rRNA genes in each strain. Surprisingly, our data 

demonstrate that transcripts from both 23S rRNA gene copies are transcribed and 

incorporated into ribosomes. Additionally, a single mutation in the first 23S rRNA gene 

exhibits definite growth and viability phenotypes both in vitro and in vivo. Finally, the 

ratio of 16S:23S:5S rRNAs is not equimolar in B. burgdorferi, which is unexpected. 

However, each 23S-5S operon is predicted to have a strong, identical RpoD promoter 

(σ70 promoter), providing a model for this unbalanced transcription. 

In this dissertation, we present the first characterization of an RNase III enzyme 

from a spirochete. We also expand upon the limited knowledge of rRNA gene regulation 

in B. burgdorferi, including insight into tandem 23S-5S gene duplication, a biological 

feature unique to Lyme disease Borrelia species. Dissecting the mechanism by which 

ribosomes are generated and the role of ribonuclease III in B. burgdorferi is important 

because the spirochete displays unique biological solutions for other molecular processes 

and the data presented in this work may offer further insight into ribosome generation in 
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other parasitic bacteria that have undergone genome reduction and rRNA gene 

rearrangement.  
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Chapter 2 

Materials and Methods 

 

Bacterial strains and culture conditions. Low-passage B. burgdorferi strains B31-A3 

(247), B31-5A4 (89) and 297 (BbAH130) (67), the rnc mutants, and the rrlA and rrlB 

mutants were cultivated at 34°C in Barbour-Stoenner-Kelly II (BSK II) liquid medium 

containing 6% rabbit serum (RS) (79) without gelatin (248). Cell density was assayed as 

previously described by enumeration using a Petroff-Hausser counting chamber (2, 3). 

Purified ribosomes were harvested from a high passage, noninfectious B. burgdorferi 

clone, B31-A (249). 

 B. subtilis strain BE589 and the rncS mutant BE600 (7), a generous gift from Dr. 

David Bechhofer (Mount Sinai School of Medicine), were grown at 30°C or 37°C in 

lysogeny broth (LB) (250) or Spizizen's minimal medium (SpC and SpII) (251, 252). 

 Escherichia coli RosettaTM (DE3) from EMD4Biosciences was grown at 37°C in 

LB medium containing 50 µg ml-1 ampicillin and 68 µg ml-1 chloramphenicol and used to 

overexpress recombinant B. burgdorferi RNase III. E. coli TOP10F′ and DH5α were 

grown at 37°C in LB medium containing 50 µg ml-1 kanamycin and used for cloning. 

 

Table 3: Oligonucleotides used in this study 
 

Name Sequence (5′-3′) 
BB705 U1260F TTTAAAGGTTGAAAATGAAG 
BB705 92R+AatII+AgeI ACCGGTCAAGACGTCTAAAGTCAATGCTCAAA

TT 
BB705 617F+AatII GACGTCTTTTTTGTGTGGAACTTTAT 
BB705 D1945R+AgeI ACCGGTATGAATCTAGGGAAAAACA 
rnc 1F+NdeI CATAGAAAAAAAAATCTTCTGA 
rnc 738R TTAAAGGTTAATGTTTTCCA 
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pflgB5′+AgeI ACCGGTACCCGAGCTTCAAGGAA 
rrs 107R TTACTCACCCGTTCGCCACTGAATGTA 
rrl 76R GCTTTTCGCAGCTTACCACGACCTTC 
rrl 198R TTAGATGGTTCACTTCCCCTGGTATCGC 
rrf 88R CGAACTCGCAGTACCATCAGCGAATAAG 
rrf 49R TGTGTTCGGAATGATAACAGGTGTTTCCTC 
rrf 51R TCTGTGTTCGGAATGATAACAGGTGTTTCC 
rrf 112R CCCTGGCAATAACCTACTCTCCCGC 
rrs 1365F TGAATACGTTCTCGGGCCTTGTACACA 
rrl 2770F ACGTTCGGAAAGGATAACCGCTGAAAG 
rrf 60F CTTATTCGCTGATGGTACTGCGAGTTCG 
rrf 8f GGTTAAAGAAAAGAGGAAAC 
rrl 76R GCTTTTCGCAGCTTACCACGACCTTC  
bb702 351F ATTTTTACCAAGTAGTGCAG 
bb703 48F GCGGAGTATAAATATGAGAA 
bb703 145R ATCCACATTTTAAACAAATC 
bb704 46F GAGCAACTTGATAAAAAAGA 
bb704 177R CTCTGGAATCTTATCATCAA 
rnc 143R AACTCATTAGAATACGACGA 
rnc 1F+ClaI ATCGATGAAAAAAAAATCTTCTGA 
rnc 738R+XbaI TCTAGATTAAAGGTTAATGTTTTCCA 
rnc 1F+NdeI CATATGAAAAAAAAATCTTCTGA 
rnc 735R+SapI GCTCTTCCGCAAAGGTTAATGTTTTCCATAG 
T7 prom TAATACGACTCACTATAG 
23S stem+T7 AGGAAGACAAAAATATGGCCAAAGTTGCCTTT

GACCATATTTTTATCTTCCATCCTATAGTGAGT
CGTATTA 

rrlB U884F TTAAAAATATAAGGAGCCAA 
rrlB U29R+AatII+AgeI ACCGGTTATGACGTCAATTTGTTTATGCAACAT

A 
rrl 3043F+AatII GACGTCGAGAGTAGGTTATTGCCAG  
rrlB D391R+AgeI ACCGGTCAGCACTTCTATGCTTTAAT 
rrlA U882F ACTCTGTAAGTGTAAAGGCA  
rrlA U19R+AatII+AgeI ACCGGTTTCGACGTCTATTTTGCCAATTTATTT 
rrlA D3975R+AgeI ACCGGTTCCCTGTGAATTAATAAAA  
bb0427 687F AGAATATCAAATTGGCAAAC 
bb0426 90R CAAGAAATTTCAAAACCTCA 
bb0426 437F TGTGGATTAAGTTTAAAGGA 
bb0425 29R CTTAACTCTTCCCTTCTCTC 
bb0425 10F GAGAGAAGGGAAGAGTTAAG 
rrs 146R AATAGTTATCCCCATCTCAT  
rrl U30F TGGCAAAATAGAGATGGAAG 
rrl 654F TGCGAGTTATCATGTCTAGC 
rrl 1299F AAGTTTGATGGAGGTATCAG 
rrl 958R CCCTAGCTCAATTAGTGCTC 
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rrl 1606R CACTCATCATCACATCTTAGC 
rrl 2234R AACAAGGGTGGTATTTCAAG  
rrl 2676F ATTTGAGAGGAGCTATCTTT 
rrl 2814F CCTCAAGATGAGATATCCTT 
rrf 60F CTTATTCGCTGATGGTACTGCGAGTTCG 
rrf 70R AGCGAATAAGAGCTTAACTT 
rrfB D276R TCTATTTTGCCAATTTATTT 
rrfA D196R TCCCTTATTAAAAACAACAG 
rrl 1983F GCGAAATTCCTTGTCGGGTAA  
rrl 2047R TGAGACAGCGTCCAAATCGTT  
rrs 1066F TGCTGTGAGGTGTTGGGTTAAG  
rrs 1139R CCCCACCATTACATGCTGGTA 
16S rRNA probe CCCGCAACGAGCGCAACCC 
23S rRNA probe TTCCGACCCGCACGAATGGTG 
rrl 1071R TGTTGGTCTGGGTTGTTT 
rrl 2903R TTAGTCAGCTTAATATATTGCT 
flaB 278F TGGCAGTTCAATCAGGTAACG 
flaB 551R+T7 TAATACGACTCACTATAGGCTTCATCTTGGTTT

GCTCC 
flaB 423F TTCTCAAAATGTAAGAACAGCTGAAGA 
flaB 542R TGGTTTGTCCAACATGAACTC 
BBA60-5’ (lp54) ATGAGCAAAAAAGTAATTTTAATAT 
BBA60-3’ (lp54) CACTAATTCTTTTTGAATTACTAAT 
BBB03-5’ (cp26) ATGCCTCCAAAAGTGAAGATAAAAA 
BBB03-3’ (cp26) TAGCTTATAATTAAAAATTATTGAT 
BBC10-5’ (cp9) ATGCAAAAAATAAACATAGCTAAAT 
BBC10-3’ (cp9) ATCTTCTTCAAGATATTTTATTATA 
BBD11-5’ (lp17) GTGTATACTGACCCAAGGTCAATTA 
BBD11-3’ (lp17) CAATAATGTGATATTTTTAAGAAAT 
BBE16-5’ (lp25) TTGCTGCCATTTCTCACTTGGTAA 
BBE16-3’ (lp25) ATAAAAGCGACAGGTTATCGTGCAG 
BBG13-5’ (lp28-2) ATGGCGCTGATTACATTAATTGTCG 
BBG13-3’ (lp28-2) AATCTTGAAGAACCTTGCATCTTTA 
BBH18-5’ (lp28-3) CTGAAAATGAAGGAGAAGCGGGTGG 
BBH18-3’ (lp28-3) TAGGCTAATACCAATTCGTACAAAT 
BBI28-5’ (lp28-4) ATGAAATGCCATATAATTGCAACTA 
BBI28-3’ (lp28-4) AATCCGACAGATCTGGTTTGTCCAG 
BBK12-5’ (lp36) TTCTTATCCCTGACTTTCACTTTTGAGG 
BBK12-3’ (lp36) TCCTTTACTTCTATGTTTTTACTTTCCTTGGT 
BBT03-5’ (lp5) ATGAATGGAATAATTAACGATACAC 
BBT03-3’ (lp5) AATATTAGGATGAAGATTATAAATT 
BBU06-5’ (lp21) TGTGGTTGCTAAAACCCAAGCGT 
BBU06-3’ (lp21) TTGTTTCTAATTGCTCTGAATTGCATCC 
Bb PC flaB-5’ GATTATCAATCATAATACATCAGC 
Bb PC flaB-3’ TCTAAGCAATGACAAACATATTGG 
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297-PC-vlsE (+1)(lp28-1) GGAGCAATATTTGTTTTTGTTAATTG 
297-PC-vlsE (-1)(lp28-1) CTAATTTCTGCTATAGCACCTTGTAC 
297-PC-p21-5' (cp18-2) TGAGCAAAGTAGTGGTGAGAT 
297-PC-p21-3' (cp18-2) CTTCTGCTTTTCCTGTTGATAC 
297-mlp7orfCspec(cp32-1) GGCCCATCCAATTTTATGTAAATTTG 
297-“R”orf3specRC(cp32-1) GCTCCCTTCTAATACTTTTCTATAA 
297-PC-elpA2-5’(cp18-1) ATGCTACAGTATTAAAACCCGAG 
297-PC-elpA2-3’(cp18-1) GCCTGGTCTTGGAGAATAATG 
297-PC-2.10-5' (cp32-4) TGCAAGAATTATGCAAGTGGTGAAG 
297-PC-2.10-3' (cp32-4) AAACACCTTGAGCCACTTGCTC 
297-"P"-orf3specR+C 
(cp32-5) 

AGATTTCAAGCGCTCCTTCAACAAA 

297-"P"-mlp5 orfC spec 
(cp32-5) 

GCCTTATAAGGAACATAGGTTAAAGG 

297-orfC-mlp2 GGTGCTTTAGACACAAGAGATGTG 
297-mlp2orf3spec R+C GAACAAATTTCAGATTTAACATTTATCG 
297-mlp10orfCspec(cp32-2) CAAGCGAGTTTATTCCCCTTAAA 
297-“L”orf3specRC(cp32-2) ATTCTAATATTGTCCACTTTATGAAAT 
297-PC-ospF-5’(cp32-3) CAGAACAAAATGTAAAAAAAACAGAGCAAG 
297-PC-ospF-3’(cp32-3) CCCAAACTATTAGCACACTGCCAAG 
297-orfC-mlp4spec GTCAAATTTAAGCTGTTTTAGCAGTG 
297mlporf3specR+C TATTTACTAATGTATTTTTCAATTTTTCA 

 

 

Heterologous complementation of a B. subtilis rnc mutant. A B. subtilis rncS null 

mutant carrying pBSR40, a temperature-sensitive plasmid that replicates at 30°C (7), was 

trans-complemented with the B. burgdorferi rnc gene. We transformed pBK36-Bbrnc, 

the B. burgdorferi rnc gene fused to the isopropyl-β-D-thiogalactoside (IPTG)-inducible 

spac promoter on the shuttle vector pBK36, into B. subtilis as previously described (252). 

Briefly, competent B. subtilis cells were obtained by growth in SpC minimal medium to 

stationary phase at 37°C with vigorous agitation. The cells were inoculated into pre-

warmed SpII minimal medium containing 0.1M CaCl2 and incubated at 37°C for an 

additional 90 min. Following incubation, cells were centrifuged and the supernatant 

(containing competency factors) was removed and saved. The pellet was resuspended in a 
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smaller volume of the saved supernatant and mixed with 10% glycerol. Competent cells 

were rapidly frozen in liquid nitrogen and stored at -80°C for up to 3 months.  

To transform competent B. subtilis, cells were quickly thawed in a 37°C water 

bath. Once thawed, one volume of SpII + EGTA (without CaCl2) minimal medium was 

added and gently mixed. Approximately 16 µg of pBK36-Bbrnc was added to the tube. 

Cells were incubated for 20 min at 37°C in a shaking incubator. Following incubation, 

cells were diluted 10-3 and 10-4 and plated on LB media with or without 5 µg ml-1 

neomycin. All clones tested contained both the B. subtilis rncS plasmid (pBSR40) and the 

B. burgdorferi rnc plasmid (pBK36-Bbrnc). To cure the pBSR40 plasmid, transformants 

were shifted to the non-permissive temperature of 45°C (7, 252) and incubated for 8 h. 

Successful B. subtilis transformants that retained the pBK36-Bbrnc plasmid and lost the 

pBSR40 plasmid were confirmed by PCR and antibiotic susceptibility (growth on 5 µg 

ml-1 neomycin and absence of growth on 5 µg ml-1 erythromycin).  

Growth was assayed for the following B. subtilis strains: an rncS merodiploid 

(wild type carrying the rncS in trans: BE589 with pBSR40), the rncS null mutant 

carrying the rncS in trans (BE600 with pBSR40), wild type carrying the B. burgdorferi 

rnc gene in trans (BE589 with pBK36-Bbrnc); the rncS null mutant carrying both rncS in 

trans and the B. burgdorferi rnc gene in trans (BE600 with pBSR40 and pBK36-Bbrnc); 

and the rncS null mutant carrying the B. burgdorferi rnc gene in trans (BE600 with 

pBK36-Bbrnc). Overnight lawns of each strain that had been incubated at 37°C were 

used as inocula for the growth assay. For each strain, 30-ml cultures were prepared in LB 

containing 5 µg ml-1 neomycin and inoculated at an OD600 of approximately 0.2. A 

SpectraMax M2e spectrophotometer (Molecular Devices) was used to measure OD600 
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from 1-ml samples that were collected every 30 min or (for the BE600 with pBK36-

Bbrnc) 1 h. A log-scale graph of the data utilizing the mean and standard deviation was 

plotted using KaleidaGraph (version 4.01) software.  

 

Generation of rnc, rrlA, and rrlB null mutants in B. burgdorferi. We employed a 

standard technique that utilizes homologous recombination between target sequences 

upstream and downstream of a gene of interest to replace the target gene with an 

antibiotic resistance cassette, generating a null mutant for the gene of interest (248, 253, 

254). The rnc gene (bb0705), rrlA gene, and rrlB gene were individually disrupted by 

replacement with flgBp-aacC1, which confers gentamicin resistance (247) as previously 

described (255, 256). Briefly, genomic regions encompassing 0.9 to 1.3 kb upstream and 

downstream of each target gene were amplified by PCR using Taq polymerase (Sigma-

Aldrich), cloned into pCR2.1-TOPO, and ligated together using T4 DNA ligase (New 

England Biolabs). The gentamicin resistance cassette was ligated into a synthetic AatII 

site between the two flanking sequences. The plasmid was linearized with SapI and 

electroporated into B. burgdorferi as previously described (248).  

Transformants were cloned in liquid BSK II medium in 96-well plates (51) 

containing 40 µg ml-1 gentamicin at 34°C in a 1.5% CO2 atmosphere and screened by 

PCR for successful homologous recombination. Clones for each rnc mutant appeared in 

approximately 90 d at 34°C, which is considerably longer than the 10 to 14 d typically 

required for positive cultures to grow. Clones for the rrlA and rrlB mutants were present 

within the expected 10 to 14 d. Positive clones were confirmed by RT-PCR of total RNA 

using a RETROscriptTM kit (Ambion) and assayed for the presence of genomic plasmids 
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by PCR (88, 89). Two independent rnc null mutants from B. burgdorferi strains B31-A3 

and 297 were isolated. The rrlA and rrlB mutants were isolated from B. burgdorferi strain 

297. 

 

B. burgdorferi growth assay To compare the growth rates of the rnc, rrlA, and rrlB null 

mutants with wild-type B. burgdorferi, a growth curve of each strain was charted at 34°C 

as previously described (3#192). Briefly, both strains were inoculated into BSK II liquid 

medium and incubated at 34°C until each had reached a cell density of ~5.0 × 107 cells 

ml-1. Each culture was then diluted and inoculated into three replicates containing BSK II 

at a cell density of approximately 1.0 × 104 cells ml-1. Cultures were grown at 34°C and 

each culture was counted every 24 h. B. burgdorferi were enumerated by diluting each 

culture in Dulbecco’s phosphate-buffered saline (138 mM NaCl, 2.7 mM KCl, 8.1 mM 

Na2HPO4, and 1.5 mM KH2PO4; dPBS) and counting on a Petroff-Hausser counting slide 

(Hausser Scientific) at 400× magnification under dark-field on an Olympus CX31 

microscope as previously described (2, 3). Cell counts were multiplied by 5 × 105 to 

obtain cells ml-1. The mean and standard deviation of the three replicates for each strain 

was calculated and a growth curve of the data plotted using KaleidaGraph (version 4.01) 

software.  

 

Microscopy. B. burgdorferi cells were stained using a wheat germ agglutinin (WGA)-

Alexa Fluor® 594 conjugate (Invitrogen) (46). Briefly, a small volume of late-log or early 

stationary phase B. burgdorferi cells were washed once in pre-warmed dPBS + 5 mM 

MgCl2 and resuspended in dPBS containing WGA-Alexa Fluor® 594 lectin conjugate at 
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1:200 dilution. The cells were incubated for 5 min at 37°C before pelleting by 

centrifugation. Following centrifugation, the supernatant was removed and discarded. 

Cells were resuspended in a small volume of pre-warmed dPBS and placed on pre-

cleaned slides with coverslips. Images were captured using an Olympus BX51 

microscope through a 100 × objective equipped with a DP72 digital camera, controlled 

by DP2-BSW software. Images were processed and cell length measured using ImageJ 

(National Institutes of Health; http://rsbweb.nih.gov/ij/). Figures were prepared using 

Pixelmator (Pixelmator Team, Ltd.). For each strain (wild type and rnc null), the length 

of fifty spirochetes was measured using the microscope standard of 94 pixels = 10 µm 

and the data were analyzed using KaleidaGraph software (version 4.01). 

 

Identification of 5′ and 3′ ends of rRNAs. The 5′ and 3′ ends of each of the rRNAs 

(16S, 23S, and 5S) were determined by 5′ and 3′ Rapid Amplification of cDNA Ends 

(RACE). B. burgdorferi cells (wild type and the rnc null mutant) were grown to mid-log 

cell density and lysed with TRIzol® (Ambion); total RNA was extracted with 

chloroform, isopropanol, and 70% ethanol before being resuspended in RNase-free water. 

Prior to 3′ RACE, total RNA was polyadenylated with a Poly(A) Tailing Kit (Ambion). 

For the RACE protocol, nested primers and reverse transcriptase from the BD SMARTTM 

RACE cDNA Amplification kit were utilized to generate cDNA from the total RNA. The 

cDNA was amplified by PCR using a universal primer set included in the kit and gene-

specific primers (designed with the Primer3 function in the MacVector version 12.7; 

Table 3) specific for a sequence either downstream of the 5′ end or upstream from the 3′ 

end of each rRNA gene. PCR products were resolved on a 2% agarose gel, visualized 
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with an LAS-3000 digital camera (Fujifilm), purified with a QIAquick gel extraction kit 

(Qiagen), and cloned into pCR2.1-TOPO. Clones were sequenced at the Murdock DNA 

Sequencing Facility (The University of Montana) with an Applied Biosystems Genetic 

Analyzer (GeneScan) and sequence data were analyzed using MacVector (version 12.7). 

 

Junctional RT-PCR of the tandem 23S-5S rRNA operon and rnc gene regions. Total 

B. burgdorferi RNA was collected as described above. Following resuspension in water, 

the RNA was treated with TurboTM DNase (Invitrogen) and isolated by phenol-

chloroform extraction and ethanol precipitation. A SuperScript® III Reverse 

Transcriptase (RT) kit (Invitrogen) was used to generate cDNA from total RNA. “No 

RT” controls were also prepared for each sample to ensure complete DNase treatment. 

PCR amplification using primer sets (Table 3) covering the region upstream of the 16S 

rRNA gene, the intergenic spacer between the first 5S gene (rrfB) and the second 23S 

gene (rrlA), as well as the region upstream of rnc yielded products that were resolved on 

2% agarose gels, stained with ethidium bromide, and detected using an LAS-3000 

(Fujifilm). 

 

Generation of an artificial 23S rRNA substrate. An artificial 23S stem-loop that serves 

as an RNase III substrate was generated as previously described (8). Oligonucleotides 

with a T7 promoter (Table 3) were used to generate a template for transcribing a 32P-

labeled RNA molecule. The sequence was composed of the 23S 5′ and 3′ complementary 

ends that form the stem portion of the rRNA transcript with a loop of four unmatched 

nucleotides. Oligonucleotides were annealed in water by heating for 5 min at 65°C and 
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then quick-cooled on ice. A MEGAscript® in vitro transcription reaction (Ambion) with 

32P-α-UTP (Perkin-Elmer) was incubated overnight at 37°C. Following subsequent 

DNase treatment (Turbo DNase; Invitrogen), the substrate was extracted from a 15% 

TBE-urea polyacrylamide gel overnight using gel elution buffer (0.5 M ammonium 

acetate, 1 mM EDTA, and 0.2% sodium dodecyl sulfate) and ethanol precipitated. 

Detection of the substrate in the gel prior to extraction was performed using a 

phosphorimager (FLA-3000; Fujifilm). Following precipitation, RNA was resuspended in 

TE buffer (10 mM Tris-HCl, pH 8.0, and 1 mM EDTA). 

 

Purification of recombinant RNase III protein. Recombinant RNase III protein was 

purified using the IMPACTTM (Intein Mediated Purification with an Affinity Chitin-

binding Tag) kit (New England Biolabs). This system utilizes a self-cleaving intein tag 

linking a chitin-binding domain to the C-terminus of a recombinant protein (B. 

burgdorferi RNase III). Briefly, cultures of E. coli carrying pTXB1 with the B. 

burgdorferi rnc were induced with 0.4 mM IPTG for 4 h at 37°C and lysed by sonication. 

The lysate was loaded on chitin beads and washed with column buffer (20 mM Tris-HCl, 

pH 8.5, 500 mM NaCl, and 1 mM EDTA), leaving recombinant protein bound to the 

resin. DTT was added to the column to initiate self-cleavage of the intein tag, which 

separated the tag and protein. The unbound recombinant protein was then washed off the 

column using column buffer, leaving the intein and chitin-binding domain attached to the 

resin. 
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RNase III cleavage assay. An RNase III cleavage assay was performed as previously 

described (8). The artificial 23S rRNA substrate was briefly heated (30 s) at 100°C and 

rapidly cooled on ice to fold into a stem-loop structure. Substrate RNA (300 nM) and 

various amounts of recombinant RNase III (0 nM, 0.5 nM, 1nM, 5 nM, 10 nM, 20 nM, 

and 25 nM) were combined in cleavage buffer (30 mM Tris-HCl, pH 8, 160 mM NaCl, 

0.1 mM EDTA, 0.1 mM DTT, and 0.1 mM tRNA) and incubated for 5 min at 37°C to 

bind enzyme and RNA. Addition of 10 mM MgCl2 initiated the cleavage reaction. 

Reactions were stopped after 5 min by adding gel loading buffer containing EDTA. 

Samples were resolved on a 15% (w/v) polyacrylamide gel containing 7 M urea and 

visualized on a phosphorimager (FLA-3000; Fujifilm). 

 

Sequencing of the tandem 23S-5S rRNA operons from B. burgdorferi strain 297. 

Primers (Table 3) covering overlapping regions both flanking and within the tandem 23S-

5S operons of B. burgdorferi strain 297 were amplified by PCR. PCR products were 

resolved on a 1% agarose gel, purified with a QIAquick gel extraction kit (Qiagen), and 

cloned into pCR2.1-TOPO. Clones were sequenced at the Murdock DNA Sequencing 

Facility (The University of Montana) with an Applied Biosystems Genetic Analyzer 

(GeneScan) and sequence data were analyzed using MacVector (version 12.7). A master 

sequence for the tandem 23S-5S rRNA operons was assembled using MacVector (version 

12.7). This sequence was submitted to GenBank (http://www.ncbi.nlm.nih.gov/genbank/) 

and has been assigned accession number JX564636. 
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Tandem 23S-5S rRNA operon single-nucleotide polymorphism (SNP) analysis. 

Complete 23S-5S rRNA operon sequences for all sequenced B. burgdorferi strains (B31, 

JD1, N40, and ZS7) were downloaded from GenBank 

(http://www.ncbi.nlm.nih.gov/genbank/) and analyzed, along with the tandem 297 23S-

5S rRNA operon sequence determined in this work, using ClustalW alignment software 

included in MacVector (version 12.7). 

 

Determination of the ratio of 16S to 23S rRNA transcripts. Total B. burgdorferi RNA 

was collected, DNase treated, and used to synthesize cDNA as described above for three 

wild-type B. burgdorferi strains (297, B31-A3, B31-5A4) and the rrlA and rrlB null 

mutant strains (297). Prior to cDNA synthesis, RNA was analyzed for DNA 

contamination with B. burgdorferi flagellin gene-specific primers (Table 3). Primers and 

TAM-FAMRA-labeled probes for 16S and 23S rRNA (Table 3) were designed using 

PRIMER EXPRESS 3.0 version (Applied Biosystems). Genomic DNA and cloned 16S 

and 23S rRNA genes were used as controls to establish standard curves. Each 

quantitative real-time PCR (qRT-PCR) contained 13 µl TaqMan® Gene Expression 

Master Mix (Invitrogen), 10 µM forward and reverse primers, 2.5 µM probe, 1 ng of 

genomic or cDNA template or 10 ng, 1 ng, or 0.1 ng cloned 16S or 23S rRNA gene 

controls in a total volume of 25 µl. Samples were run in triplicate. TaqMan qRT-PCR 

was performed in a 96-well plate and run with standard cycle parameters using an 

Applied Biosystems 7300 Real-Time PCR System. Data collected by the instrument 

software was processed and exported into Microsoft® Excel where the ratio of 16S to 23S 

rRNA was calculated for each strain.  
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Analysis of 23S rRNA SNPs. Purified B. burgdorferi strain B31-A ribosomes, 

generously given to us by Paula Schlax (Bates College), were phenol/chloroform 

extracted before ethanol precipitation and resuspension in water to isolate purified rRNA. 

Additionally, total RNA was collected from B. burgdorferi strain B31-5A4 as described 

above. A primer (Table 3) was designed to be complementary to a region less than 25 

nucleotides away from a sequenced single nucleotide polymorphism (SNP) in the B. 

burgdorferi strain so that we could differentiate between transcript products from each 

23S rRNA gene. All RNA samples were diluted to a concentration of 0.5 µM before use 

in the experiment.  

A primer extension assay was conducted according to a standard protocol based 

on Sigmund et al. (257) by Emily Hedrick of the Hill laboratory (The University of 

Montana, Missoula). Briefly, reactions containing AMV-RT (Promega) and 10 x 

extension buffer (1.3 M Tris-HCl, pH 8.5, 0.1 M MgCl2, and 0.1 M DTT in water) were 

assembled for each of the RNA samples containing 2 µl of the appropriate 5′-32P-labeled 

DNA oligonucleotide (Table 3). Samples were extended for 30 min at 42°C. Sequencing 

lanes containing each of the four dNTPs (1 mM) were also run for comparison. SNPs 

were detected by adding excess (10 mM) of a single ddNTP complementary to the first 

expected chain termination site (ddGTP and ddATP for strain 297 SNPs; ddGTP for 

strain B31 SNPs) for each primer. After extension, samples were electrophoresed on an 

8% (w/v) polyacrylamide sequencing gel containing urea for 1 hr and 45 min (55 watts) 

and detected on a Fuji FLA-3000G phosphorimager with Image Gauge software (Fuji 

Biomedical). 
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In vitro competition assay. An in vitro competition assay was performed with B. 

burgdorferi wild-type strain 297, rrlA null mutant, and rrlB null mutant based on the 

protocol described in Criswell et al. (258). Each culture was grown at 34°C in 10 ml 

BSK-II to a cell density of 108 cells ml-1 and passaged at a density of 105 cells ml-1 into a 

fresh 10 ml culture for continued growth at 34°C. No gentamicin selection was used 

during this part of the assay so that no selective advantage would be conferred during 

strain competition. Once the passaged cultures reached a density of 108 cells ml-1, cells 

were enumerated using a Petroff-Hausser counting chamber as described above and 

inoculated at a density of 105 cells ml-1 into 10 ml of fresh BSK-II in the following 

combinations: wild-type 297 alone, rrlB null mutant alone, rrlA null mutant alone, wild-

type 297 and rrlB null mutant, wild-type 297 and rrlA null mutant. Competition between 

the rrlA and rrlB mutants was not performed due to the growth defect observed in the 

rrlB mutant. All cultures were inoculated at the same cell density. Duplicate cultures 

were inoculated for each treatment. 

 Competition cultures were grown at 34°C until they reached a density of 108 cells 

ml-1, then passaged into a fresh 10 ml culture at a density of 105 cells ml-1 for continued 

growth at 34°C, usually a period of 72 h to 96 h. This process was repeated for a total of 

twelve passages, which correlates to approximately 120 generations. At 6 and 12 

passages (60 and 120 generations, respectively), cells were enumerated, diluted, and 

plated in semisolid media with and without 40 µg ml-1 gentamicin selection. Briefly, 

plating BSK (containing a BSK II base, rabbit serum, 5% sodium bicarbonate, and 1.7% 

agarose) was aseptically prepared, heated to 55°C, and 15 ml was aliquoted into each 

sterile plate in the presence or absence of 40 µg ml-1 gentamicin (248). The remaining 
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plating BSK was cooled to 42°C for plating a top layer. B. burgdorferi cells from each 

culture were enumerated and diluted so that plating 100 µl would correspond to 10-4 and 

10-3 dilutions in the semisolid media. A volume of 20 ml plating BSK (with and without 

40 µg ml-1 gentamicin) and 100 µl of each B. burgdorferi dilution were briefly mixed and 

plated onto the solidified bottom layer of media in each plate.  

After the top layer solidified, plates were incubated at 34°C in 1.5% CO2 for two 

weeks before manual counting of colonies. The wild-type 297 was plated with no 

selection, each rrl mutant was plated with 40 µg ml-1 gentamicin, and each competition 

mixture was plated without selection and with 40 µg ml-1 gentamicin. A ratio of each rrl 

mutant as compared to wild-type 297 for each competition culture was calculated by 

taking the number of colonies on the gentamicin plate and dividing it by the number of 

colonies in the plate with no selection. 

 

Murine infectivity assay. Three B. burgdorferi strains were needle-inoculated into C3H-

HeJ female mice to examine infectivity of the rrlA and rrlB null mutant strains as 

compared to the parental wild-type 297 strain. All three strains assayed were screened for 

the presence of all plasmids prior to needle inoculation, including the essential infectivity 

plasmids (lp54, lp25, and lp28-1) (88, 89). Cultures were initially grown at 23°C in BSK 

II (pH 7.6), passaged once at this temperature, then passaged again into BSK II (pH 7.6) 

at 34°C. A final passage at 34°C was carried out in BSK II (pH 6.8) to prepare strains for 

needle inoculation into mice. Once cultures reached a cell density of 5-7 × 107 cells ml-1, 

they were enumerated using a Petroff-Hausser counting chamber (described above), and 

diluted to 2 × 107 cells ml-1. Cultures were loaded into insulin syringes to a volume of 50 



 49 

µl, which is equal to 104 B. burgdorferi cells per injection. Three mice per strain were 

inoculated by intraperitoneal injection while awake. 

 Ear punches were taken three weeks post-inoculation. An isofluorane chamber 

was prepared using an isofluorane-soaked sponge underneath a metal grate in a large 

beaker. A tight lid was placed on top of this container. Each mouse was individually 

placed within the chamber and anesthetized by the isofluorane gas. Their movement was 

carefully monitored to ensure full anesthesia but not overdose. The mouse was then 

placed within a sterilized biosafety cabinet, its ear thoroughly wiped with an ethanol 

swab, and a sterile ear puncher used to take a piece of the mouse’s ear. The mouse was 

then placed back into its cage to recover. Ear biopsies were cultured in 3 ml of BSK II 

containing 50 µg ml-1 rifampicin, 20 µg ml-1 phosphomycin and 2.5 µg ml-1 amphotericin 

B . Cultures were incubated at 34°C for a minimum of one week. 

 At five weeks post inoculation, mice were humanely sacrificed using CO2 gas. 

Each mouse was then placed in a biosafety cabinet and a second ear punch was taken. 

Tibiolateral joints and bladders were also collected at this time. The dissecting tools and 

mouse skin near the point of incision were sterilized with 70% ethanol prior to organ 

collection. Each organ and ear biopsy was cultured as described above. All experiments 

performed on these mice were in compliance with and approved by The University of 

Montana Animal Care and Use Committee. 

After one week at 34°C, wet mounts were prepared for each culture and examined 

carefully for the presence of spirochetes by dark-field microscopy. Cultures that were 

positive were discarded after data collection. Cultures that were negative for spirochetes 

were incubated for additional time and checked on a weekly basis for a maximum of four 
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weeks post-collection. After the final microscopic examination, a PCR screen using B. 

burgdorferi flagellin gene-specific primers (Table 3) was performed to ensure the 

absence of genomic DNA. Positive cultures were used as a PCR control. Briefly, 1 ml of 

culture was centrifuged, resuspended in 200 µl dPBS, and 1 µl was used for PCR 

analysis. 

 

Antibiotic susceptibility assay. Susceptibility of wild-type 297 and the rrlA and rrlB 

null mutants to two antibiotics that target the large subunit of the ribosome 

(chloramphenicol and erythromycin) was assayed using a protocol similar to established 

methods (249, 259). The assay was performed in a 96-well plate, with 11 concentrations 

of each antibiotic (in a two-fold dilution series) and one well with no antibiotic as a 

positive control. Each strain was duplicated for each antibiotic and inoculated in two 

complete rows of the plate. The bottom two rows of each plate contained no B. 

burgdorferi, only media and antibiotics, to serve as a negative control. Antibiotic 

concentrations were determined based on published minimum inhibitory concentration 

(MIC) data for erythromycin (0.004 µg ml-1) (4) and chloramphenicol (1.25 µg ml-1) (6). 

These concentrations were used as midpoints for the assay yielding a range of 0.00013 µg 

ml-1 to 0.128 µg ml-1 for erythromycin and 0.08 µg ml-1 to 40 µg ml-1 for 

chloramphenicol.  

Cultures for each strain that had been growing at 34°C were diluted into BSK II at 

a concentration of 105 cells ml-1 and inoculated into the appropriate rows of the 96-well 

plate. A small volume of antibiotics that had been diluted to the proper concentration 

(and to eliminate any ethanol effect) was then added to each column of the plate. Plates 
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were incubated at 34°C in 1.5% CO2 for one week, then colorimetrically assayed for 

growth (yellowing due to acidification of the medium, which contains phenol red). As the 

rrlB null mutant strain grows at a reduced rate compared to the wild type and rrlA null 

mutant, the culture was incubated for four additional days before data collection. Images 

were captured on a light box using a 7.1 megapixel Canon PowerShot SD750 Digital 

Elph camera on 11 d and 14 d after inoculation. 
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Chapter 3 

Role of B. burgdorferi RNase III in rRNA processing 

 

Most Lyme disease bacterial agents, B. burgdorferi and related species, possess 

only a single complete set of the three rRNA genes, with the 16S and 23S-5S rRNA 

genes separated by over 3 kb, and the 23S-5S rRNA operon tandemly duplicated on the 

chromosome (1, 83). This organization likely requires alternative transcription regulatory 

mechanisms not observed for bacteria with canonical and stoichiometric rRNA gene 

arrangements. This work seeks to demonstrate how B. burgdorferi, with its unusual rRNA 

gene organization, produces functional ribosomes. To that end, our data provide an 

initial characterization of B. burgdorferi RNase III, including RNase III processing of the 

rRNA transcripts from the unlinked 16S gene and tandemly duplicated 23S-5S genes, and 

an investigation of rRNA transcription and ribosome production from the unusual rRNA 

genomic locus of B. burgdorferi.  

 

Complementation of a Bacillus subtilis rncS null mutant with B. burgdorferi rnc 

 

We trans-complemented a well-characterized RNase III mutant to test if the B. 

burgdorferi rnc encoded a functional RNase III. B. subtilis was chosen as the 

heterologous bacterium for these experiments because the B. burgdorferi RNase III is 

more similar to the enzyme from B. subtilis than to RNase III from E. coli (44% identity 

vs. 36% identity, respectively). In addition, the collection of ribonucleases carried by B. 

burgdorferi is more similar to that of B. subtilis than E. coli (Tables 1 and 2). 
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Furthermore, RNase III is essential in B. subtilis and not in other well-studied bacteria 

(e.g., E. coli and S. aureus), which allows us to utilize a defined phenotype (7, 260, 261, 

262). Herskovitz et al. (7) engineered a B. subtilis rncS merodiploid with a null allele on 

the chromosome and a wild-type rncS on a temperature-sensitive plasmid (pBSR40). The 

B. burgdorferi rnc gene was fused to the inducible B. subtilis spac promoter and cloned 

into a stable B. subtilis plasmid (pBK36-Bbrnc). The rncS plasmid (pBSR40) was cured 

by shifting to the non-permissive temperature (45°C) (7).  

Growth of the strains trans-complemented with either B. burgdorferi rnc or B. 

subtilis rncS in either a wild-type (BE589) or null rncS (BE600) background was assayed 

(Fig. 2). The two B. subtilis strains with a chromosomally encoded rncS gene (BE589) 

and the rncS mutant strain (BE600) carrying B. subtilis rncS in trans grew at similar 

rates, as did the BE589 strain with the B. burgdorferi rnc gene. The B. subtilis rncS null 

strain carrying both plasmids (pBSR40 and pBK36-Bbrnc) grew slower than the other 

three strains. These four strains started reaching stationary phase around an OD600 density 

of 2.0 at 450 min after growth initiation. The B. subtilis rncS mutant (BE600) carrying 

the B. burgdorferi rnc gene (pBK36-Bbrnc) grew considerably slower than the other 

strains tested, but was able to reach an OD600 of 2.0 after approximately 800 min. These 

data demonstrate that B. burgdorferi RNase III is capable of complementing the lethal 

rncS defect in B. subtilis and that B. burgdorferi rnc encodes a functional RNase III. 
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Fig. 2. B. burgdorferi rnc complements a lethal B. subtilis rncS null mutant.  
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Growth over time was plotted on a logarithmic scale for the following B. subtilis 
strains that were derived from strains described in Herskovitz et al. (7): an rncS 
merodiploid (wild type carrying the rncS gene in trans: wild type + rncS), wild type 
carrying the B. burgdorferi rnc gene in trans: wild type + rnc (Bb); the rncS null 
mutant carrying the rncS gene in trans: rncS null + rncS; the rncS null mutant 
carrying both the rncS gene in trans and the B. burgdorferi rnc gene in trans: rncS 
null + rncS + rnc (Bb); and the rncS null mutant carrying the B. burgdorferi rnc 
gene in trans: rncS null + rnc (Bb). Cultures were inoculated at an OD600 of 
approximately 0.2; OD600 was measured from 1-ml samples that were collected 
every 30 min (or 1 h for the rncS null + rnc (Bb) strain) until stationary phase was 
reached (OD600 of approximately 2.0).  
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Generation of an RNase III (rnc) null mutant 

 

We hypothesized that the rRNA transcripts in B. burgdorferi, which have a 

unique organization, are processed as in other bacteria, including cleavage of the 16S and 

23S rRNA transcripts by the endoribonuclease RNase III (7, 157, 158). The chromosomal 

rnc gene for this enzyme was replaced though homologous recombination with the 

gentamicin resistance cassette flgBp-aacC1. Three transformants were isolated in two B. 

burgdorferi strains (297 and B31-A3), and appeared after approximately 90 d incubation 

at 34°C, much longer than the 10 d to 14 d that are usually sufficient for transformed 

clones to appear. This initial observation suggests that, while not essential, RNase III is 

nevertheless an important enzyme in B. burgdorferi. Additionally, it is possible that the 

rnc null mutants accumulated suppressor mutations that allowed them to grow in the 

absence of the RNase III enzyme. 

The clones were screened for the presence of the flgBp-aacC1 insertion (Fig. 3B) 

by PCR using primers specific for the flanking regions of the rnc gene (Table 3; Fig. 3A). 

A second primer set specific for the flgBp-aacC1 cassette (Table 3) and flanking 

downstream rnc region was also used to verify insertion of the resistance marker into the 

chromosome (data not shown). Mutants were additionally confirmed by RT-PCR of 

cDNA demonstrating the absence of the rnc transcript (data not shown). Exhaustive 

attempts to complement the rnc null mutants were unsuccessful.  
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Fig. 3. A B. burgdorferi rnc null mutant exhibits growth and morphological 
phenotypes. 
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Examination of the rnc null mutant phenotype 

 

The rnc null mutants from both strains exhibited growth (Fig. 3C and data not 

shown) and morphological (Fig. 3D and data not shown) phenotypes. Wild-type B. 

burgdorferi cells reached mid-log cell density within 1 d and stationary phase by 4 d of 

growth. The rnc null mutant did not reach mid-log cell density until about 5 d of growth 

and the log phase was extended until about 11 d of growth. Cell density at stationary 

phase reached by the rnc null mutant was approximately half a log lower than the cell 

A. Schematic of the genetic approach taken to create the rnc null mutant in B. 
burgdorferi. An electroporated plasmid-borne gentamicin resistance cassette (flgBp-
aacC1) replaced most of the chromosomal rnc gene through homologous 
recombination and subsequent antibiotic selection. Primers (Table 3) used to obtain 
PCR products shown in Fig. 3B are indicated by the small black arrows above the rnc 
gene and flgBp-aacC1 cassette. B. Confirmation of an rnc null mutant. PCR-amplified 
chromosomal DNA from a successful B. burgdorferi transformant clone and controls 
were electrophoresed on an ethidium bromide-stained 1% agarose gel using primers 
(black arrows in 3A; Table 3) flanking the insertion region for the gentamicin 
resistance cassette. Lane 1: Gentamicin resistance cassette (flgBp-aacC1) control from 
the transformable vector (recombination substrate); Lane 2: Genomic rnc control of 
chromosomal DNA from wild type B. burgdorferi (rnc wild type); Lane 3: Successful 
rnc null mutant in strain 297 using chromosomal DNA as a template (rnc mutant). C. 
A B. burgdorferi rnc null mutant exhibits a severe growth defect in vitro. B. 
burgdorferi wild type and the rnc null mutant were inoculated in BSK II liquid 
medium at a cell density of 104 cells ml-1 and grown at 34°C until stationary phase. 
Cells were enumerated every 24 h using a Petroff-Hausser counting chamber (2, 3). 
Growth curves were plotted on a logarithmic scale over time for both strains. D. 
Microscopy images showing the mixed cell length morphology of the rnc null mutant 
(lower panel) as compared with wild-type B. burgdorferi (upper panel). Cells were 
stained with a wheat-germ agglutinin (WGA)-Alexa Fluor® 594 conjugate 
(Invitrogen) and assayed by fluorescence microscopy. The length of fifty cells for 
each strain was measured and the number of B. burgdorferi cells were plotted on a bar 
graph for each bracketed set of cell lengths (µm) to show cell length distribution of 
wild-type B. burgdorferi vs. the rnc null mutant.  
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density reached by wild type. In addition to the growth phenotype, the rnc null mutant 

cells are significantly longer than wild type (Fig. 3D), which is a phenotype previously 

found in B. burgdorferi mutants lacking the RNA chaperone Hfq (256). A subpopulation 

of mutant cells has a wild-type length, resulting in a bimodal distribution. These 

phenotypes may be the result of inefficient or defective ribosome biogenesis or failure to 

correctly process mRNAs with translation products involved in cell division. 

 

Characterization of rRNA in the rnc null mutant 

 

The ends of the three rRNAs in the rnc null mutant were determined by 5′ and 3′ 

RACE to assay the role of RNase III in rRNA processing in B. burgdorferi. Total RNA 

was isolated from both B. burgdorferi rnc null mutants as well as wild type. 

Representative data of the 5′ and 3′ RACE PCR products for each rRNA resolved by gel 

electrophoresis are shown (Fig. 4A). PCR products were cloned and at least four clones 

from each reaction were sequenced. The primary nucleotide sequence of each rRNA is 

shown with black dots above (wild-type sequences) and below (rnc null sequences) 

indicating the experimentally determined location of each rRNA end (Fig. 4B).  
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Fig. 4. B. burgdorferi RNase III processes the 5′ end of the 16S rRNA and the 23S 
rRNA but not the 5S rRNA nor, unexpectedly, the 3′ end of the 16S rRNA. 
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The data demonstrate that the 5′ end of the 16S rRNA is the same in both the wild 

type and rnc null mutant, mapping near the annotated 5′ end. The 3′ end is more variable 

(Fig. 4). Therefore, RNase III does not appear to be essential for 16S rRNA processing of 

the 5′ end, a feature that is unique to B. burgdorferi. As expected, the RACE data show 

that RNase III processes the 23S rRNA (Fig. 4). The mature 23S rRNA transcript is 

longer at both ends in an rnc null mutant. The 5′ end of the 23S rRNA in the rnc null 

mutant is 20 nucleotides downstream from the predicted promoter. Additionally, 

junctional RT-PCR between the two tandem 23S-5S rRNA gene sets reveals the presence 

of a single transcript containing both 23S-5S rRNA molecules. This large transcript is 

present in both the wild type and rnc null mutant backgrounds, but is in greater 

abundance in the mutant, highlighting the importance of RNase III in initial separation of 

these transcripts (Fig. 5). There is no difference in the 5S rRNA 5′ and 3′ transcript ends 

generated in the rnc null mutant compared to wild type, indicating that RNase III has no 

effect on processing this rRNA, as expected (Fig. 4).  

 
 

The 5′ and 3′ ends of each of the rRNAs (16S, 23S, and 5S) were examined by 5′ 
and 3′ Rapid Amplification of cDNA Ends (RACE). A. PCR products for each of 
the rRNAs generated from B. burgdorferi RACE-ready cDNA and one or two 
gene-specific primers (Table 3) were electrophoresed on an ethidium bromide-
stained 2% agarose gel for both wild type and the rnc null mutant. Two primers 
(Table 3) were used for the 23S rRNA (rrl 198R and rrl 176R) and 5S rRNA (rrf 
112R and rrf 88R) 5′ RACE reactions (Fig. 4A). B. Primary sequences for each 
rRNA 5′ and 3′ end are shown with the annotated rRNA sequence underlined. 
Individual sequencing events from multiple cloned RACE PCR products for each 
rRNA are represented by black dots above (wild type) and below (rnc null mutant) 
each sequence. 
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Fig. 5. A single long rRNA transcript is produced from the tandem 23S-5S rRNA 
genes in both the wild type and rnc null mutant. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. RT-PCR analysis was used to assay the junction between the first 5S rRNA 
gene and the second 23S rRNA gene in B. burgdorferi. The junctional primer set 
(Table 3) used is represented by gray arrows in 5B. RT-PCR products and no RT 
controls were run on an ethidium bromide-stained 1% agarose gel. B. Gene map 
depicting the tandem 23S-5S rRNA gene region (black arrows). Junctional 
primers (Table 3) are represented by gray arrows below the gene map. The 
squiggly line beneath the gene map depicts the primary rRNA transcript suggested 
by the junctional RT-PCR data. 
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Cleavage of an artificial 23S rRNA substrate 

 

We confirmed the biochemical activity of RNase III from B. burgdorferi using an 

in vitro cleavage assay. An artificial 23S rRNA stem-loop that serves as an RNase III 

substrate was generated as previously described (8). The sequence is composed of the 

double-stranded stem portion of the 23S rRNA transcript with a loop of four unmatched 

nucleotides (Fig. 6A). RNase III recognizes the double-stranded stems of this RNA and 

creates a staggered break with a 3′ two-nucleotide overhang. Exonucleases would then 

trim the 5′ and 3′ transcript ends to their proper length in vivo. The artificial 23S rRNA 

substrate was generated by in vitro transcription (MEGAscript; Ambion) and radiolabeled 

with 32P-UTP. A molar excess of the substrate was incubated with recombinant B. 

burgdorferi RNase III protein as previously described by Amarasinghe et al. (8). 

Cleavage products were produced with inceasing concentrations of RNase III (Fig. 6B), 

showing enzyme-substrate specificity.  
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Fig. 6. Recombinant RNase III selectively cleaves an artificial 23S rRNA substrate 
in vitro. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Mfold structure depicting the double-stranded secondary structure of the artificial 
23S rRNA substrate. Black arrows represent wild type substrate ends as determined 
by RACE (Fig. 4). Substrate design was based on the method described in 
Amarasinghe et al. (8). B. Phosphorimage showing the specific increase in 32P-UTP-
labeled artificial 23S rRNA substrate cleavage products produced at 37°C after 5 min 
in the presence of increasing concentrations of recombinant B. burgdorferi RNase III 
protein (0 nM to 25 nM; black triangle indicates increasing enzyme concentration). 
Cartoon structures to the right of the phosphorimage depict predicted cleavage 
products. Band density likely reflects the number of labeled 32P-UTP molecules 
present in each cleavage product. 
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Profile of rnc operon structure.  

 

rnc is encoded on the B. burgdorferi chromosome in a region dense with genes 

related to translation. Junctional RT-PCR was performed on cDNA synthesized from B. 

burgdorferi total RNA (Fig. 7A). The data suggest that the rnc gene is transcribed as part 

of a five-gene operon, which includes bb0701 (encoding a conserved hypothetical 

protein), coaD (encoding pantetheine-phosphate adenylyltransferase), rpmF (encoding 

ribosomal protein L32), and acpP (encoding acyl carrier protein) (Fig. 7B).  

 

Fig. 7. The rnc gene is transcribed as part of a larger operon. 
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Role of RNase III in B. burgdorferi ribosomal RNA processing 

 

As expected, B. burgdorferi RNase III, encoded by the rnc gene, appears to 

function in a canonical fashion. This is evidenced by our in vitro cleavage data of a 

artificial RNase III substrate (Fig. 6) and heterologous complementation of a B. subtilis 

rncS mutant (Fig. 2). An rnc null mutant exhibits growth and morphological phenotypes 

likely linked to a defect in ribosome synthesis or lack of proper processing of mRNAs 

involved in cell division (Fig. 3). Characterization of the 5′ and 3′ ends of the rRNA 

transcripts in wild-type B. burgdorferi and the rnc null mutant reveal that RNase III 

processes the 23S rRNA transcript but not the 5S transcript, as expected (Fig. 4). There is 

also less separation of the tandem 23S-5S rRNA transcripts in an rnc null background 

(Fig. 5). Unexpectedly, however, the enzyme is only essential for processing the 3′ end of 

the 16S rRNA transcript (Fig. 4). The 5′ end of this transcript appears to be processed by 

a yet-undefined mechanism independent of RNase III cleavage. This latter finding 

prompted us to investigate the structure of the 16S rRNA operon.  

A. Junctional RT-PCR analysis of the coding region 5′ to rnc in B. burgdorferi. 
RT-PCR products and no RT controls were run on an ethidium bromide-stained 
1% agarose gel. Numbers beneath the gel image and under the small black bars in 
7B refer to the following primer sets (Table 3): 1: bb702 351F and bb703 145R; 2: 
bb703 48F and bb704 177R; 3: bb704 46F and rnc 143R; 4: bb703 48F and rnc 
143R; 5: bb702 351F and rnc 143R. B. Gene map depicting the rnc chromosomal 
region. Junctional primer set (Table 3) coverage is represented by numbered black 
bars below the gene map. A squiggly line beneath the gene map depicts the 
primary rnc operon transcript suggested by the junctional RT-PCR data. 
Junctional RT-PCR reactions covering the junctions between bb0700-bb0701 and 
bb0701-coaD were also performed to confirm the 5′ end of the predicted rnc 
operon transcript; the data indicate no junction between bb0700-bb0701 and a 
junction present between bb0701-coaD (data not shown), which is illustrated by 
the squiggled line above.   
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Structure of the 16S rRNA operon 

 

 In most bacteria, all three rRNA genes (16S-23S-5S) are encoded in a single 

operon that generates a large polycistronic precursor rRNA transcript for processing. In 

B. burgdorferi, however, the 16S and first 23S gene are separated by over 3 kb. 

Bugrysheva et al. (5) previously demonstrated that the tRNAAla gene downstream of the 

16S rRNA gene forms the 3′ end of the 16S rRNA operon. Junctional RT-PCR was 

performed on B. burgdorferi cDNA to characterize the operon structure upstream of the 

16S rRNA gene (Fig. 8A). Surprisingly, the data show that the 16S rRNA transcript is co-

transcribed with two upstream genes, bb0426, an unnamed member of the nucleoside 2-

deoxyribosyltransferase superfamily, and bb0427, a predicted methyltransferase (Fig. 

8B). This operon structure is unique to Lyme disease Borrelia and may be the product of 

tRNA recombination during evolutionary genome reduction. 
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Fig. 8.  The 16S rRNA gene is encoded as part of a larger operon. 
  
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Junctional RT-PCR analysis of the coding region 5′ to the 16S rRNA (rrs) gene in 
B. burgdorferi. RT-PCR products and no RT controls were run on an ethidium 
bromide-stained 1% agarose gel. Numbers beneath the gel image and under the small 
black bars in 8B refer to the following primer sets (Table 3): 1: bb0427 687F and 
bb0426 90R; 2: bb0426 437F and bb0425 29R; 3: bb0425 10F and rrs 146R; 4: 
bb0426 437F and rrs 146R; 5: bb0427 687F and rrs 146R. B. Gene map depicting the 
16S rRNA (rrs) chromosomal region. Junctional primer sets (Table 3) are represented 
by numbered black bars below the gene map. A squiggly line beneath the gene map 
depicts the primary 16S (rrs) operon structure suggested by the junctional RT-PCR 
data and includes the 3′ junctional RT-PCR data from Bugrysheva et al. (5). 
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Chapter 4 

Characterization of the tandem 23S-5S rRNA genes of B. burgdorferi 

  

Tandem duplication of the 23S-5S rRNA operons is a highly conserved feature 

that is unique to Lyme disease Borrelia species. We hypothesized that the duplicated 

23S-5S rRNA genes were differentially regulated from the 16S rRNA operon to produce 

the correct 1:1:1 ratio of the rRNAs. To explore this possibility, we examined possible 

regulatory mechanisms through single nucleotide polymorphism (SNP) analysis of the 

the 23S rRNA genes and generation of null mutants in each 23S rRNA gene to create a 

single full complement of the rRNA genes in these B. burgdorferi strains. The data 

presented here demonstrate that tandem duplication of the 23S rRNA genes in B. 

burgdorferi has led to unique adaptations in rRNA gene regulation not observed in any 

other bacterial species described to date. 

 

Characteristics of the tandem 23S rRNA genes 

 

 Tandem duplication of the B. burgdorferi 23S-5S rRNA operons creates an 

unequal complement of rRNA genes. When a gene is duplicated in this manner, one copy 

can accumulate mutations without harming the cell. To understand why B. burgdorferi 

encodes conserved tandem copies of the 23S-5S rRNA operons, we investigated the 

presence of SNPs in all sequenced B. burgdorferi strains. No B. burgdorferi 297 strain 

sequence is presently available, so we sequenced the tandem 23S-5S rRNA operon region 

and submitted the completed sequence to GenBank. Details about this sequence and its 
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accession number can be found in Chapter 2. Additionally, null mutants for each of the 

rrl genes (rrlB and rrlA) from strain 297 were created using the same homologous 

recombination technique used for the rnc null mutant (Fig. 3A). 

 SNP analyses were conducted on the 23S rRNA genes from five B. burgdorferi 

strains: N40, 297, JD1, B31, and ZS7. Sequences were downloaded from GenBank and 

aligned using ClustalW; the results are shown in Table 4. The location column specifies 

the position of each SNP compared to the first nucleotide of the 23S rRNA gene. Each 

strain exhibits a unique set of SNPs spread throughout the 23S rRNA genes. There 

appears to be no conserved region that is modified between all five strains. Interestingly, 

each SNP seems to have arisen from a purine-purine or pyrimidine-pyrimidine transition. 

There is only a single 5S SNP; it is located at the ninth nucleotide in the 297 strain rrfA 

gene and consists of a GàC transversion (data not shown). 

 
 Table 4. B. burgdorferi 23S rRNA gene SNPs. 
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Stoichiometry of the 16S and 23S rRNA transcripts 

 

 We performed quantitative reverse transcriptase PCR (qRT-PCR) to examine the 

ratio of 16S rRNA to 23S rRNA present in B. burgdorferi. Total RNA was collected from 

three wild-type B. burgdorferi strains (B31-A3, B31-5A4, and 297-BbAH130), two rnc 

null mutant strains (B31-A3 and 297-BbAH130), and the rrlA and rrlB mutants (297-

BbAH130) at several cell growth phases (Table 5). A purified preparation of isolated B. 

burgdorferi ribosomes (B31-A; a generous gift from Paula Schlax of Bates College) were 

also analyzed. Primers and probes specific for conserved regions of the 16S and 23S 

rRNA genes (Table 3) were used for the qRT-PCR. Data from this assay are shown in 

Table 5. Surprisingly, the ratio of the two rRNAs is not equimolar; there is approximately 

2.5 to 3 times more 23S rRNA than 16S rRNA in three strains of wild-type B. 

burgdorferi during mid-logarithmic growth. This ratio is lower (1 to 2) for an rnc null 

mutant during this growth phase. As the wild-type cells approach late-logarithmic 

growth, the 16S to 23S ratio is even greater: 1 to 4. An examination of the rrlA and rrlB 

null mutants also at late-logarithmic growth reveals that there are fewer 23S rRNAs 

produced in both stains than in wild-type B. burgdorferi, though an rrlA null mutant still 

produces a ratio similar to that observed for wild-type B. burgdorferi in late-logarithmic 

growth (16S to 23S of 1 to 2.8  for rrlA). This result is not surprising; Fig. 9 shows the 

predicted structure of the tandem 23S rRNA gene promoter region: one promoter was 

removed for each of the rrl null mutants during homologous recombination. Unless 

transcription from the single remaining rrl gene is increased, 23S rRNA transcript levels 

should decrease compared to wild-type B. burgdorferi.  
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As shown in Fig. 9B, the upstream untranslated regions (UTRs) of the rrl genes 

share identical, conserved σ70 promoters, so we hypothesize that transcription could 

initiate from either promoter, synthesizing both RNAs shown in Fig. 9A. Processing of 

the proposed RNAs would then generate three 23S rRNA transcripts for every 16S rRNA 

transcript, if the mechanism of regulation for the rRNA genes is the same. Finally, as B. 

burgdorferi reaches stationary phase, the amount of total rRNA decreases, and the ratio 

of 16S to 23S rRNA decreases (1 to 1.4). Notably, in the rnc null mutant, this ratio 

remains very similar for both mid-logarithmic (1 to 2.1) and stationary phase (1 to 2.2). 

Finally, the ratio of 16S to 23S rRNA in isolated B. burgdorferi ribosomes is 1:1.4, 

supporting our data for an excess of 23S rRNA in B. burgdorferi cells during normal 

growth. 

 

Table 5. 16S rRNA to 23S rRNA ratios in B. burgdorferi 

 

 

 

 

 

 

 

 

 

 



 72 

Model of B. burgdorferi 23S-5S rRNA operon transcription. A. Tandem 23S-
5S rRNA operon region and proposed 23S-5S rRNA transcription products 
(squiggly lines). The locations of identical promoter regions detailed in 9B are 
indicated by black boxes. B. 23S rRNA promoter regions are identical for rrlA 
and rrlB. Core promoter elements (-35 elements and TATAAT boxes) are 
shown by black arrows above the rrlA and rrlB double-stranded DNA 
sequences. 
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Fig. 9. 23S rRNA gene promoter regions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer extension analysis of SNPs from RNA 

  

 The ratio of 16S to 23S rRNA transcripts observed by qRT-PCR suggested that 

both copies of the tandem 23S-5S rRNA operons were used to synthesize rRNA. 

However, the quantity of complete ribosomes in the cell is limited to the amount of 16S 

rRNA available to bind 23S and 5S rRNA in the mature ribosome. To examine whether 

the observed SNPs caused a bias in which 23S rRNA gene transcript was preferentially 
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selected for ribosome assembly, we performed a primer extension assay on B. 

burgdorferi ribosomes and total RNA (from strain B31-A) using a primer specific for a 

single SNP difference (Table 3) between the two strains. Transcripts from both 23S 

rRNA gene copies (rrlA and rrlB) are present in total RNA (indicating transcription of 

both genes) and in isolated mature 70S ribosomes (suggesting that there is no SNP-

specific bias for transcript selection) for both strains (Fig. 10). Additionally, the ratio 

shown by the differences in band densities appears to be the same in both total RNA and 

isolated ribosomes; these data indicate that the 23S rRNA transcripts are incorporated 

into ribosomes randomly, at the ratio produced. This result is not surprising, as the 

promoter regions are identical (Fig. 9) and the SNP locations do not offer a rationale for 

selection (Table 4). Finally, the differences in band densities observed by eye between 

the two transcripts likely reflect promoter usage.  
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Fig. 10. 23S rRNA transcripts from rrlA and rrlB 
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An rrlB null mutant exhibits a growth phenotype in vitro and is non-infectious in 

vivo 

 

 We examined the rrlA and rrlB null mutants for in vitro growth characteristics 

(Fig. 11), ability to compete in vitro with wild-type B. burgdorferi (Table 6), and 

capability of infecting mice after needle inoculation. During in vitro growth (Fig. 11), the 

rrlA null mutant grew indistinguishably from wild type, with both cultures reaching a cell 

density of 105 cells ml-1 after two days of growth, and stationary phase at 4 d of growth. 

The rrlB mutant, on the other hand, had not progressed past its starting density of 104 

cells ml-1 after 2 d of growth and remained several logs lower than the rrlA null mutant 

Primer extension analysis of total RNA and isolated ribosomes from B. 
burgdorferi showing that transcripts from both 23S rRNA genes are present in 
total RNA and mature ribosomes. A. Schematic depicting the SNP location 
differences and expected primer extension product sizes (terminating at the 
“X” above the sequence) between the rrlB and rrlA genes of strain B31. 32P-
ATP was used to radiolabel an oligonucleotide probe (Table 3) downstream of 
the sequenced SNP (black arrow above the nucleotide sequence). Primer 
extension analysis was performed using a single dideoxynucleotide 
complementary to the SNP (ddG) to terminate the chain at the first cytosine 
(represented by the “X” above the nucleotide sequence for each rrl gene). B. 
Phosphorimage showing radiolabeled primer extension products. G, A, C, T 
lanes: Sequencing lanes for Sanger sequencing of the rRNA template. B31 
Total RNA lane: (contains total RNA as a template); “All” contains all four 
ddNTPs and dNTPs; “ddG” contains only ddGTP and all four dNTPs. The 
same reactions were performed using purified ribosomes as a template 
(Ribosome lanes: “All” and “ddG”). Ribosome preparations from B. 
burgdorferi stain B31-A were a generous gift from Paula Schlax (Bates 
College). The primer extension experiment and gel electrophoresis were 
performed by Emily Hedrick of the Hill laboratory (The University of 
Montana, Missoula). 
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and wild type until reaching a maximal stationary phase at 7 d post-inoculation. Initial 

entry into stationary phase was delayed by 2 d as compared to the rrlA null mutant and 

wild-type B. burgdorferi (4 d versus 6 d).  

 

Fig. 11. An rrlB, but not an rrlA, null mutant exhibits a growth phenotype 

 

 

 

 

 

 

 

 

 

 

 

 

When placed into direct in vitro competition with wild-type B. burgdorferi (Table 

6), the rrlA null mutant was able to successfully compete and accounted for 

A B. burgdorferi rrlB, but not an rrlA, null mutant exhibits a growth defect in 
vitro. B. burgdorferi wild type and the rrlB and rrlA null mutants were 
inoculated in BSK II liquid medium at a cell density of 5 x 103 or 1 x 104 
cells/ml and grown in a 34°C incubator until stationary phase. Cells were 
enumerated every 24 hours using a Petroff-Hausser counting chamber (2, 3). 
Growth curves were plotted on a logarithmic scale over time for all three 
strains. 
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Duplicate independent experiments were performed with each set of 
competition strains; data collected for both experiments are presented here. 
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Duplicate independent experiments were performed with each set of 
competition strains; experimental data collected for both experiments 
for each set are presented here. 

approximately 60% to 62% of the cells in competition cultures after both 60 generations 

and 120 generations at 34°C. The rrlB null mutant failed to compete with wild-type B. 

burgdorferi as no cells were isolated from competition cultures after 60 or 120 

generations at 34°C. The slower growth of the rrlB null mutant likely contributed to this 

finding, though other factors may contribute, as the rrlB null mutant is capable of 

attaining wild-type levels of growth in a longer span of time (Fig. 11).  

 

Table 6. An rrlB null mutant cannot outcompete wild type during in vitro growth 

 

 

 

 

 

 

 

 The rrlA and rrlB null mutants were needle-inoculated into mice using a 

technique that mimics tick transmission into the mammalian host. Wild-type B. 

burgdorferi was also needle-inoculated as a control. Ear punches were taken three weeks 

post-infection and allowed to grow at 34°C for one week before examination by dark-

field microscopy. After one week, the wild type and rrlA null mutant had grown in all 

three independent ear punch cultures; no spirochetes were observed for the rrlB null 

mutant cultures. At five weeks post-inoculation, ear punches, bladders, and tibiolateral 

joints were collected and placed into culture tubes at 34°C; these cultures were also 
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3 week post-infection ear punch 
cultures 

Number of 
positive mice 

by culture 

B. burgdorferi strain Ear 

297 (BbAH130) wild type 3/3 

297 rrlA null mutant 3/3 

297 rrlB null mutant 0/3 

examined for spirochete growth after one week. As observed for the initial ear punches, 

all cultures for the wild type and rrlA null mutant were positive after one week of growth 

at 34°C; none of the rrlB null mutant cultures exhibited any spirochete growth. The week 

three rrlB null mutant ear punch cultures and five-week ear, bladder, and tibiolateral joint 

cultures were incubated for an extended period of time to ensure that the growth 

phenotype was not causing a delay in spirochete culture. After three additional weeks of 

growth for the week three ear punch cultures and two additional weeks of growth for the 

week five cultures, no spirochetes were observed during examination by dark-field 

microscopy. The absence of the rrlB null mutant in these cultures was confirmed by PCR 

using flagellin gene-specific primers (Table 3). Therefore, an rrlA mutant is capable of 

infecting mice by needle inoculation while an rrlB null mutant is non-infectious. 

 

Table 7. An rrlB null mutant is non-infectious in mice. 
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Antibiotic resistance capacity of B. burgdorferi single 23S rRNA gene mutants 

 

 We selected two antibiotics that target the large ribosomal subunit 

(chloramphenicol and erythromycin) to test the hypothesis that maintenance of the 

tandem 23S rRNA genes confer reduced antibiotic susceptibility to B. burgdorferi. The 

rrlA and rrlB null mutants were inoculated alongside wild-type B. burgdorferi into 96-

well plates containing a range of each antibiotic. After a 7-d incubation, positive control 

wells had completely changed color, indicating a culture at stationary phase. However, 

due to the reduced growth rate of the rrlB mutant (Fig. 11), plates were incubated for an 

additional 4 d before data were recorded to eliminate slow growth as a variable for the 

observed results. The same results as at 11 d were also observed at 14 d post-inoculation 

(data not shown). Fig. 12 shows that all three B. burgdorferi strains tested exhibited 

similar patterns of resistance to chloramphenicol. However, the growth end-point for the 

rrlB null mutant when challenged with erythromycin was at an antibiotic concentration 

twofold lower than that observed for the wild type or rrlA null mutant (0.00025 µg ml-1 

versus 0.0005 µg ml-1), indicating that loss of some aspect of rrlB gene regulation or the 

promoter region confers increased susceptibility of B. burgdorferi to erythromycin.  
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Fig. 12. The rrlB null mutant shows increased sensitivity to erythromycin in vitro. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The rrlB null mutant is more susceptible to erythromycin than the wild type. Three 
B. burgdorferi strains (297 wild type, rrlA null mutant, and rrlB null mutant) were 
inoculated (in duplicate rows) into 96-well plates at a concentration of 105 cells 
ml-1 per well. Two rows containing no B. burgdorferi were used as controls. 
Antibiotics (chloramphenicol or erythromycin) were added to each well at the 
appropriate concentration (µg ml-1) to create a two-fold dilution scheme (indicated 
above the plate image). The experimentally determined minimum inhibitory 
concentration (MIC) for each antibiotic was used as a mid-point for the 
experiment with twofold dilutions of the antibiotic on either side. Erythromycin: 
MIC of 0.004 µg ml-1 (4) and chloramphenicol: MIC of 1.25 µg ml-1 (6). Plates 
were incubated in 1.5% CO2 at 34°C for one week before inspection of media 
color change (pink wells indicate a lack of growth; yellow well signify a media pH 
change and are indicative of growth). As the rrlB null mutant grows slower than 
the other two strains used for the assay (Fig. 11), data were collected at 11 d post-
inoculation. Plates were checked a final time at 14 d post-inoculation and an 
identical pattern of media coloration observed to 11 d (data not shown).  
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Insights into the unusual rRNA gene operon of B. burgdorferi 

 

 Due to the physical separation of the 16S rRNA gene from the 23S-5S rRNA 

operon and the tandem duplication of the 23S-5S rRNA operon, regulation of the B. 

burgdorferi rRNA genes is expected to be different than that of most bacteria. The 16S 

rRNA gene appears to be co-transcribed as part of a larger operon independent of the 

23S-5S rRNA operons (Fig. 8). As is common with duplicated genes, the 23S rRNA 

genes of B. burgdorferi have accumulated SNPs, though, intriguingly, the location of 

these SNPs varies between sequenced strains (Table 4). In accordance with the tandem 

23S rRNA genes containing identical σ70 promoters, the ratio of 16S rRNA to 23S rRNA 

is not equimolar, suggesting a possible role for the extra 23S rRNA in the cell (Table 5). 

These ratios are lower in the rnc, rrlA, and rrlB null mutants (Table 5). In accordance 

with the hypothesis that both rrl genes are transcribed, primer extension analysis reveals 

that rRNA from both rrl genes is present in total RNA and incorporated into mature 

ribosomes (Fig. 10).  

Intriguingly, the rrlB null mutant displays growth and morphological phenotypes 

(Fig. 11 and data not shown), is unable to compete with wild type in an in vitro 

competition (Table 6), and is non-infectious in mice (Table 7). The rrlA null mutant, on 

the other hand, lacks a discernible phenotype (Fig. 11, Table 6, and Table 7). Finally, the 

rrlB null mutant exhibits a twofold increase in erythromycin susceptibility, which may be 

due to decreased 23S rRNA or 50S ribosomal subunits in the cell, loss of the rrlB 

promoter region, or polar effects from the gentamicin cassette (Fig. 12). Altogether, these 
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results suggest that the rearrangement of the rRNA genes in this organism has contributed 

to the evolution of unique mechanisms of rRNA regulation.  
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Chapter 5 

Discussion 

 

 Ribosomes are essential to all living cells, as they bridge the information stored in 

DNA to the production of proteins that carry out innumerable functions within the cell. 

Evolution has driven many bacterial genomes to streamline the process of rRNA 

transcription: most bacteria encode all three rRNA genes in single operon units on their 

chromosomes (of which there can be many copies). This allows for rRNA transcription to 

be tightly regulated for the production of equimolar ratios of the three rRNA transcripts, 

which leads to efficient ribosome assembly. However, not all organisms possess this tidy 

rRNA genome arrangement. B. burgdorferi, the Lyme disease bacterium, possesses an 

rRNA gene region with an unusual and unique organization: the 16S rRNA gene is 

encoded more than 3 kb upstream from the 23S and 5S rRNA genes; the 23S-5S rRNA 

operons are tandemly duplicated on the chromosome. This novel organization has likely 

resulted from rearrangement during genome reduction as the spirochete has adapted to a 

parasitic lifestyle that requires a tick vector and mammalian host. In this work, we have 

gained additional insight into the novel mechanism of rRNA gene transcription and 

ribosome assembly in B. burgdorferi, including the role of initial B. burgdorferi rRNA 

processing by the highly conserved RNase III.  

Our results reveal that B. burgdorferi RNase III functions in a canonical manner 

and that RNase III is likely an important enzyme to members of the Spirochaetae, as in 

other bacterial phyla. RNase III processes the 23S rRNA transcribed from the unusual 

tandem 23S-5S rRNA operons as expected. However, while the enzyme processes the 3′ 
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end of the 16S rRNA, it is not required to process the 5′ end of 16S rRNA, a novel 

finding from this work. This is likely due to the unique genomic location of the 16S 

rRNA as part of a larger operon that does not contain other rRNA genes. Further probing 

of the 23S rRNA genes reveals that they are accumulating SNPs, that B. burgdorferi 

utilizes both rrl gene copies to produce an excess of 23S rRNA as compared to 16S 

RNA, and that mutation of the first (rrlB), but not the second (rrlA), 23S rRNA gene 

causes a phenotype.  

All of these findings suggest that after the rearrangement of its rRNA genes, B. 

burgdorferi has adapted a unique mechanism of rRNA production. This dissertation 

details the exploration of rRNA transcription and ribosome biogenesis from an unusual 

rRNA operon that includes tandem 23S rRNA genes, a feature unique to Lyme disease 

Borrelia. Altogether, our results suggest that novel ribosome biogenesis regulatory 

mechanisms are at work in B. burgdorferi that have not been observed in other bacteria to 

date and are the product of the unusual rRNA operons of this organism. 

 

Characterization of B. burgdorferi RNase III 

 

This study is the first characterization of an RNase III homolog from a spirochete. 

As RNase III homologs can often, but not always, functionally substitute for each other 

(217, 218, 219, 220), we first attempted heterologous complementation of a B. subtilis 

lethal rncS mutant (BE600) (7). The B. burgdorferi rnc gene was able to complement a B. 

subtilis rncS mutant (Fig. 2), suggesting that its function is conserved. Although there are 

several examples of B. burgdorferi genes complementing E. coli mutants (57, 91, 256, 
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263, 264, 265, 266, 267, 268, 269, 270), this study is, to our knowledge, the first example 

of a B. burgdorferi gene complementing a Bacillus mutant.  

RNase III is essential in B. subtilis (7), but not in E. coli and S. aureus (260, 261, 

271). A study was recently published detailing the reason for RNase III essentiality in B. 

subtilis (173). Several prophages within the genome produce toxin/antitoxin mRNAs that 

yield protein products toxic to the B. subtilis host cell if present in high enough density. 

RNase III selectively cleaves the double-stranded toxin-antitoxin mRNA interface, 

preventing these molecules from being translated (173). Our experimental data (Fig. 2) 

clearly demonstrate that B. burgdorferi encodes an RNase III that is capable of at least 

partially protecting B. subtilis from these molecules, as well as likely fulfilling other 

characteristic roles of this enzyme in the cell such as rRNA processing.  

Notably, the cp32 plasmid of B. burgdorferi appears to encode a prophage (81, 

82, 91, 92). However, unlike the B. subtilis prophage, the known gene products of cp32 

enhance B. burgdorferi immune evasion and other host interactions (40, 46, 74, 77, 272, 

273, 274, 275, 276). RNase III may play a role in regulating mRNAs or non-coding 

RNAs (ncRNAs) from cp32 or any of the other B. burgdorferi plasmids. Given the 

conservation of some plasmids among all sequenced B. burgdorferi strains (including 

lp54, cp26, and the cp32s) and the lack of endo- and exoribonuclease homologs in B. 

burgdorferi (Tables 1 and 2), plasmid gene products requiring processing probably serve 

as RNase III substrates (74, 75, 77). 

Our B. burgdorferi rnc mutant grows slower and reaches a lower cell density at 

stationary phase than wild type (Fig. 3C). The growth phenotype is likely due to defective 

ribosomes and an excess of partially processed pre-rRNA, as shown in E. coli and B. 
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subtilis (7, 157, 213, 214, 215, 261, 262). RNase III also processes mRNA in order to 

globally regulate transcript levels (173, 221, 222, 223, 260, 277, 278, 279, 280, 281, 282, 

283, 284, 285, 286, 287). An additional role for RNase III in S. aureus was found in 

ncRNA regulation as well as mRNA regulation (283). Loss of mRNA and ncRNA 

regulation may also contribute to the growth and morphological phenotype of our B. 

burgdorferi rnc mutant (Fig. 3C, 3D).  

Dark-field microscopy of individual B. burgdorferi rnc mutant cells revealed a 

long-cell phenotype (Fig. 3C) that might be associated with delayed or improper cell 

division due to inefficient translation or production of defective cell division machinery. 

Curiously, the rnc mutant population also contained cells of a normal length (Fig. 3C), 

yielding a bimodal distribution of lengths (Fig. 3D), a phenotype also observed for a B. 

burgdorferi hfq mutant (256). Backup pathways involving alternative RNases may be at 

work in these cells, as in E. coli, but the process is slow, resulting in a subpopulation of 

normal-length cells (271). Cells could also be accumulating suppressor mutations that 

promote growth in the absence of RNase III. Indeed, given the length of time to culture a 

successful B. burgdorferi rnc null mutant (90 d), it is likely that suppressor mutations 

were gained following initial transformation of the rnc null recombinant construct that 

allowed B. burgdorferi to grow in the absence of RNase III. Suppressor mutations in an 

RNase III null mutant background are not without precedence (7, 216) and might explain 

why isolation of an rnc null mutant in B. burgdorferi is a rare event. 

The rnc gene is located on the linear chromosome molecule of B. burgdorferi as 

the final gene in a five-gene operon (Fig. 7). Upstream genes include bb0701 (encoding a 

conserved hypothetical protein), coaD (encoding pantetheine-phosphate 
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adenylyltransferase), rpmF (encoding ribosomal protein L32), and acpP (encoding acyl 

carrier protein). Two genes in this operon are involved in transcription and translation 

(coaD and rpmF, respectively). As RNase III contributes to proper maturation of the 

ribosome and global mRNA regulation, this operon structure is not surprising. 

Additionally, as RNase III autoregulates rnc transcription through a feedback loop in 

other bacteria (221, 222, 223), it is possible that the slow growth in the B. burgdorferi rnc 

null mutant can be partially attributed to dysregulation of the rnc operon following the 

loss of this control mechanism. A suppressor mutation that relieves the inhibition caused 

by improper rnc autoregulation might be present in our rnc null mutants. Taken together, 

these results suggest that while RNase III is not essential in B. burgdorferi, it is a vital 

contributor to RNA metabolism in this organism.  

 

Role of RNase III in B. burgdorferi ribosomal RNA processing 

 

The primary role for RNase III is rRNA processing of the 16S and 23S rRNAs 

prior to ribosome assembly(78), so we hypothesized that this would be conserved in B. 

burgdorferi in spite of the unusual rRNA operon architecture. We assayed processing by 

determining the 5′ and 3′ ends of the mature rRNAs in the B. burgdorferi rnc null mutant. 

Comparison of wild-type B. burgdorferi and the rnc null mutant by 5′ and 3′ RACE 

revealed that the 23S and 5S rRNA transcripts are processed in a canonical fashion, in 

spite of the tandem gene duplication (Figs. 4 and 13B). The 23S rRNA is 15 nucleotides 

longer at the 5′ end and about 18 nucleotides longer at the 3′ end in the rnc null mutant. 

These data suggest a model for 23S rRNA processing in the rnc null mutant. The 23S 
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rRNA 5′ end in the rnc null mutant almost certainly maps to the transcriptional start site 

as it is approximately 20 nucleotides downstream from the predicted promoter(s), 

suggesting that no nucleolytic processing is taking place to generate this end (Fig. 13B). 

On the other hand, the 23S rRNA 3′ end in the rnc null mutant maps to the 5′ end of the 

5S rRNA unprocessed stem (Fig. 13B), suggesting that exoribonucleases might be 

responsible for processing this end. In addition, PCR across the junction between the two 

5S-23S rRNA operons demonstrated an increase in the amount of a large precursor 

transcript in the rnc null mutant, suggesting a decrease in endonucleolytic processing 

(Fig. 5). This result is not without precedence, as a 30S unprocessed rRNA species is 

observed in both B. subtilis rncS and E. coli rnc null mutants (7, 157, 213, 214, 215). An 

addition of greater than two nucleotides to the 3′ end of the 23S rRNA can cause a 

delayed assembly of the mature ribosome subunits (193), which might contribute to the 

growth phenotype observed in our rnc null mutant (Fig. 3C). The 5S rRNA transcript, on 

the other hand, shows no difference in the 5′ and 3′ rRNA processed ends in the wild type 

and rnc null mutant. These data are also expected, as processing of the 5S rRNA is 

carried out by RNase E in E. coli and RNase M5 in B. subtilis (162, 163). B. burgdorferi 

possesses a homolog (BB0626) of RNase M5 (Table 1). 

 We generated a radiolabeled artificial B. burgdorferi 23S substrate containing the 

double-stranded stem recognized by RNase III (Fig. 6A). When incubated with 

recombinant RNase III, cleavage products were observed in increasing abundance with 

the addition of increasing concentrations of enzyme (Fig. 6B). These data show that B. 

burgdorferi RNase III specifically binds and processes the double-stranded 23S rRNA 

stem structure. This result is not surprising, as the 23S rRNA stem contains identifiable 
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proximal and distal box elements with no anti-determinant nucleotide sequences (205, 

206, 207, 208, 209). The RACE results (Fig. 4) also support these data. We conclude 

from these data that RNase III processes the 23S rRNA along a canonical pathway in B. 

burgdorferi in spite of the unusual rRNA gene arrangement. 
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Fig. 13. Model for initial 16S and 23S rRNA processing in B. burgdorferi 

 

 

 

  

 

 

 

 

 

 

 

 

A. Structural model showing the 16S rRNA 5′ and 3′ UTR predicted stem 
structure. B. Structure of the 23S and 5S double-stranded stem regions (based on 
Schwartz et. al (1) model). Experimentally determined 5′ and 3′ transcript ends for 
the three rRNAs (16S, 23S, and 5S) based on 5′ and 3′ RACE data (Fig. 4) are 
represented by black arrows (wild type) and gray arrows (rnc null mutant) on the 
structure. Clear double-stranded stem structures capable of being processed by 
RNase III are present for the 16S rRNA 3′ end (Fig. 13A) and the 23S rRNA 5′ 
and 3′ ends (Fig. 13B). In the rnc null mutant, the 5′ end of the 23S rRNA likely 
maps to the transcription start site and the 3′ end is positioned between the 23S 
and 5S rRNA double-stranded stems and might be processed by exonucleases 
following RNase M5 cleavage of the adjacent 5S rRNA double-stranded stem. 
The 5′ end of the 16S rRNA is in a region of stem-loop secondary structure, and 
does not represent an ideal RNase III substrate (Fig. 13A). The current mechanism 
required for generation of the 16S rRNA 5′ end is currently unknown, but RNase 
III does not appear to be involved. The 5′ and 3′ ends of the B. burgdorferi 5S 
rRNA are the same in both the wild type and rnc null mutant, as expected (data 
not shown). 
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The 16S rRNA gene is spatially separated from the 23S-5S rRNA operons on the 

chromosome in B. burgdorferi. A truncated ORF (bb0425) is present upstream and 

tRNAAla is downstream of the “marooned” 16S rRNA gene. Junctional RT-PCR data 

indicate that the 16S rRNA is co-transcribed with the two upstream genes (Fig. 8) and 

Bugrysheva et al. (5) showed that the tRNAAla was co-transcribed with the 16S rRNA 

gene, yielding a large polycistronic transcript. An mfold structure (288) of the 16S rRNA 

5′ and 3′ flanking regions suggests that the 5′ end of the 16S rRNA transcript lies within a 

region containing several loops that might interfere with RNase III binding (Fig. 13A). 

Data from 5′ RACE analysis (Fig. 4) indicate that the 16S rRNA 5′ end is the same in 

both the rnc null mutant and the wild type, implying that RNase III is not required for 

generating the 5′ end. This phenomenon has not previously been observed in bacteria. 

The 3′ end, on the other hand, does appear to be processed by RNase III in B. 

burgdorferi.  

The predicted structure of the 16S rRNA precursor (Fig. 13A) includes a long 

double-stranded stem region around the mature 3′ end of the 16S rRNA, which could be a 

reasonable RNase III substrate. Notably, the mature 16S rRNA 3′ end in both the wild-

type and rnc null mutant backgrounds maps to over 40 nucleotides downstream from the 

annotated end (Fig. 4). We propose the following model for generation of the observed 

16S rRNA 3′ end in the rnc null mutant. RNase P processing of the tRNAAla 5′ end 

downstream of the 16S rRNA would release a region of single-stranded RNA that could 

undergo subsequent processing by a single-stranded exonuclease (PNPase) and single-

stranded endonuclease (YbeY) up to the region of the 16S rRNA double-stranded stem, 

as observed in E. coli (176, 177, 215).  
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The mechanism of 16S rRNA 5′ end maturation is currently unknown in B. 

burgdorferi. An mfold structure containing the mature 16S rRNA 5′ end as determined by 

RACE (Fig. 13A) shows that the mature end of this rRNA likely maps to a large single-

stranded loop region. A self-processing mechanism involving a ribozyme activity of the 

nascent 16S rRNA may generate the 5′ end of the transcript in B. burgdorferi (289, 290). 

However, a more likely scenario is that an endoribonuclease such as RNase Y processes 

the AU-rich region of the loop (its preferred nucleotide substrate) (240), with or without 

prior RNase III cleavage of the stem structure formed near the 3′ end of the rRNA 

transcript, to generate the mature 16S rRNA 5′ end (Fig. 13A). This enzyme, of which B. 

burgdorferi has a clear homolog identified in this work, was originally characterized for 

its role in riboswitch degradation in B. subtilis (240), and later for its role in global 

mRNA degradation (239, 240, 241, 242, 243, 244, 245, 246). This phenomenon probably 

occurs in other Borrelia species given the conserved separation of the 16S rRNA gene 

from the 23S-5S rRNA operons throughout the genus (94). 

 

The 16S rRNA operon structure  
 
 

In addition to the novel processing mechanism that generates the 5′ end of the 16S 

rRNA (Fig. 4, 13A), the operon structure of the 16S rRNA gene of B. burgdorferi 

appears have been modified during genome reduction. No clear promoter is discernible 

near the 5′ end of the 16S rRNA gene (data not shown). This observation prompted us to 

examine this genome region through junctional RT-PCR analysis (Fig. 8A). Surprisingly, 

the 16S rRNA gene appears to be transcribed as part of a larger operon, and contains the 
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overlapping truncated gene bb0425 and the upstream genes bb0426, a member of the 

nucleoside 2-deoxyribosyltransferase protein superfamily, and bb0427, a predicted 

methyltransferase (Fig. 8B, 14). Co-transcription of the 16S rRNA gene with genes other 

than the 23S and 5S rRNA genes or intervening tRNA genes is novel to B. burgdorferi 

and suggests a unique adaptation to the conserved mechanism of rRNA gene regulation. 

An intriguing hypothesis is that the co-transcribed genes of the 16S rRNA operon are 

constitutively transcribed with the 16S rRNA gene but only translated under certain 

conditions. This would allow for B. burgdorferi to exert temporal control over the 

translation of the DNA modification enzymes produced by bb0426 and bb0427. Overall, 

this gene rearrangement likely contributed to the divergence of RNase III processing of 

the 16S rRNA 5′ end in Borrelia.  

tRNA can serve as sites of recombination for mobile genetic elements (93, 107, 

108). There are two tRNA genes (tRNAAla and tRNAIle) directly downstream from the 

16S rRNA gene (Fig. 14), which could have served as sites for recombination during the 

genome reduction of B. burgdorferi as it adapted to a parasitic lifestyle between vector 

and host. Additionally, the 16S rRNA gene overlaps a truncated ORF (bb0425) that could 

produce a very short protein of 30 amino acids (Fig. 14). A second truncated ORF that 

could produce a 97-amino acid protein (bb0423) is located directly upstream of the 

tRNAIle gene (Fig. 14). We hypothesize that tRNA recombination during genome 

reduction led to the insertion of the 16S rRNA gene into the center of a larger gene 

composed of bb0425 and bb0423, which directly led to this unusual operon structure 

where transcription of the 16S rRNA gene requires transcription of several upstream 
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genes. The tRNAIle gene and bb0424 truncated ORF may have been part of additional 

recombination events in this region (Fig. 14). 

 
Fig. 14. The tRNA genes of the 16S rRNA operon suggest a mechanism for 
recombination  
 

 

 

 

 

 

 

Insights into conservation of the tandem 23S-5S rRNA genes 

 

 The conserved tandem duplication of the 23S-5S rRNA genes is a feature that is 

unique to Lyme disease Borrelia species. While there are mechanisms that promote 

duplication of the rRNA genes in bacteria (110), the fact that this arrangement is 

conserved across a diverse array of Lyme disease Borrelia species (1, 94, 95, 98, 99) 

suggests a possible function in Borrelia biology. Intriguingly, this duplication leads to an 

imbalance in the number of complete rRNA gene sets (16S, 23S, and 5S) in B. 

burgdorferi. We originally hypothesized that the 23S-5S rRNA operons were 

The tRNA genes of the 16S rRNA operon suggest a mechanism for 
recombination. Two tRNA genes are located downstream of the 16S rRNA gene 
(tRNAAla and tRNAIle). We hypothesize that the 16S rRNA gene and tRNAAla 
were originally recombined by insertion into a larger gene composed of bb0425 
and bb0423. Additional recombination events involving insertion of the second 
tRNA, tRNAIle, and bb0424 further divided the bb0425 and bb0423 genes. bb0424 
is also likely a truncated ORF. 
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differentially regulated from the 16S rRNA gene to produce a 1:1:1 stoichiometric ratio 

of rRNA. However, qRT-PCR analysis (Table 5) suggests a different outcome of this 

tandem duplication. In wild-type B. burgdorferi, there is 2.5 to 3 times more 23S rRNA 

present during mid-logarithmic growth than 16S rRNA. In spite of this finding, the 

number of ribosomes present in B. burgdorferi is limited by the amount of 16S rRNA 

present in the cell. This led us to analyze the accumulation of single nucleotide 

polymorphisms (SNPs) in all sequenced B. burgdorferi strains, including sequencing of 

the 297 strain in this work to determine if there was a sequence-related rationale for 

producing an excess of 23S rRNA.  

 The tandem 23S rRNA genes of B. burgdorferi have several SNPs in all 

sequenced strains (Table 5). However, there exists no consensus for a SNP locus 

common to all strains, suggesting that these are the product of genetic drift. Indeed, the 

SNPs appear to be distributed throughout the 23S rRNA gene and are present in different 

densities and locations between strains. The only common feature that is clearly present 

is that these SNPs are the product of either purine-purine or pyrimidine-pyrimidine 

transitions. This form of base mutation is much more common than nucleotide 

transversion due to the similarities of ring structure within each class of nucleotide (291) 

which mutate to resemble their purine or pyrimidine counterpart after deamination (e.g.  

5-methylcytosine deaminates to thymine) and other nucleotide base modifications that 

commonly arise over time. After mutation, mispairing occurs between pyrimidine and 

purine nucleotides to create a new set of base paired nucleotides after DNA replication 

(e.g. a C-G basepair becomes a T-A basepair following deamination of the 5-

methylcytosine).  
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 There are a few structural features of the 23S rRNA that are required for its role in 

translation, particularly domain V, which catalyzes the peptidyl transferase reaction 

between incoming amino acids and the nascent peptide chain, and may be influenced by 

these SNPs. An examination of the primary sequence structure of the B. burgdorferi 23S 

rRNA shows that there is only a single SNP in strain N40 at position 2201 that is within 

this domain. As it is a C-T transition in the N40 rrlA gene (or C-U transition in the rRNA 

molecule), the structure of these two alleles is very similar, and the transition is present in 

the end of a stem structure, this change does not likely have any influence on the 

translational capacity of the ribosome. Notably, the most abundant SNPs lie in domains II 

(five SNPs), III (three SNPs), and VI (four SNPs) (data not shown). These do not appear 

to interfere with ribosomal subunit association, which relies on 23S rRNA nucleotides 

A715, A1912, or A1918 (292). Although there is a functional interaction between domain 

II and domain V in mature ribosomes (293), the SNPs are outside the range of these 

interactions as well. Overall, the 23S rRNA SNPs appear to be tolerated in locations that 

do not affect ribosome function, which suggests that rRNA transcripts from both genes 

could be used in mature ribosomes.  

There is a single transversion in the 297 rrfA sequence (data not shown). This 

nucleotide substitution might cause a mismatch in the double-stranded stem formed by 

the 5′ and 3′ ends of the mature 5S rRNA, but it is located near the internal terminus of 

the stem and is unlikely to have a major effect on the structure of the 5S rRNA. The 

accumulation of SNPs in B. burgdorferi could be the result of selective pressures in the 

vertebrate host. An example of this possibility is that the highly infectious 297 strain, 

which is a human isolate, possesses seven SNPs, while the lower infectivity B31 strain, 
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which is a tick isolate, shows only three SNPs. However, further analysis is required to 

determine if there is a selective mechanism for the diversity of SNPs observed in B. 

burgdorferi strains.  

 Our data definitively demonstrate that both tandem 23S rRNA genes in B. 

burgdorferi are transcribed and incorporated into ribosomes (Table 5, Fig. 10). qRT-PCR 

of B. burgdorferi at a variety of growth phases (Table 5) suggests that, during logarithmic 

growth, wild-type B. burgdorferi transcribes 2.5 to 3 times more 23S rRNA than 16S 

rRNA, and that this amount increases during late-logarithmic growth. However, upon 

entry into stationary phase, the amount of rRNA decreases so that there is only 1.4 times 

more 23S rRNA than 16S rRNA. This latter phenomenon is not unexpected, as total 

rRNA is reduced during stationary phase in other bacteria (134) and the nearly 1:1 ratio 

likely reflects the amount of rRNA required for cells to maintain themselves during 

stationary phase. This ratio (1:1.4 16S rRNA: 23S rRNA) is also observed for qRT-PCR 

of an isolated ribosome fraction and supports this hypothesis. 

We also analyzed the 16S to 23S rRNA ratio in several mutants (rnc null, rrlA 

null, rrlB null). Surprisingly, the rnc null mutant showed similar levels of 23S rRNA 

during both mid-logarithmic and stationary phase growth (Table 5). We postulate that 

this could be the result of failure to separate a population of the long tandemly 

transcribed (from the rrlB promoter; Fig. 9) pre-23S-5S rRNA transcript. Indeed, we 

observe an overabundance of this transcript in the rnc null mutant versus wild type (Fig. 

5). In this scenario, degradation of these aberrant transcripts upon entry into stationary 

phase may not be as efficient, so there is a greater amount of 23S rRNA in these mutants. 

The lower amount of 23S rRNA observed in the rnc mutant during logarithmic growth 
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could also reflect decreased transcription due to some undefined sensing mechanism that 

detects an abundance of unprocessed tandem 23S-5S rRNA transcript, thus reducing 

transcription until the cell can correctly process the transcripts. 

As expected, less 23S rRNA transcript is produced during logarithmic growth in 

the single 23S deletion mutants rrlA and rrlB (Table 5). This likely reflects the loss of 

one of the 23S rRNA promoters and genes in these mutants (Fig. 9). The rrlA null mutant 

produces about a third less 23S rRNA than wild type, whereas the rrlB null mutant 

generates half as many transcripts as wild type during this growth phase (Table 5). An 

rrlB null mutant also grows slower than the rrlA null mutant (Fig. 11), which suggests 

that there is a difference in the promoter regions or promoter regulation.  

 We propose the following model for 23S-5S rRNA transcription in B. 

burgdorferi: the rrlB promoter is the dominant promoter for rRNA synthesis and, in the 

rrlA null mutant, produces the amount of rRNA required for normal growth, so our rrlA 

null mutant exhibits the same growth pattern as wild type (Fig. 11). Creating a null 

mutation in some, but not all, of the rrn operons of E. coli results in similar levels of 

rRNA as produced in wild-type cells, demonstrating that it possesses more genes than it 

needs for maximal rRNA production, at least during in vitro growth (125, 126). The rrlB 

null mutant, on the other hand, eliminates the putative major 23S rRNA promoter and 

relies solely on the rrlA promoter (Fig. 9). In agreement with this hypothesis, band 

densities for each rrl transcript visualized after primer extension analysis (Fig. 10) 

suggest that there are more rrlB transcripts present in total RNA and isolated ribosomes. 

We inserted a gentamicin resistance cassette into the location of the rrlB gene in this 

strain. The slow growth of our rrlB null mutant (Fig. 11) may instead, or in addition, be 
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due to some other, as yet undefined, regulatory mechanism or polar effect of the 

gentamicin resistance cassette. 

As previously discussed, we originally hypothesized that transcription was 

regulated to ensure a stoichiometric production or assembly of the 16S, 23S, and 5S 

rRNAs. As the qRT-PCR results showed that transcription initiated from both 23S rRNA 

genes to produce an overabundance of 23S (and presumably 5S) rRNA (Table 5, Fig. 9), 

we decided to use primer extension of independent SNPs from two strains of B. 

burgdorferi in order to determine if only one of the 23S rRNA alleles was incorporated 

into ribosomes. Fig. 10 shows that both 23S rRNAs are produced in B. burgdorferi, and, 

furthermore, that transcripts from both genes appear to be incorporated into mature 

ribosomes at a ratio similar to that seen in total RNA. While these results do not suggest a 

role of the 23S rRNA SNPs in regulation of transcription, they do imply that both gene 

copies are functional and used in mature ribosomes. However, the SNPs in the rrlA gene 

(as it is dispensable for growth) could be evolving to enable B. burgdorferi ribosomes to 

differentially function under selective environmental pressures. 

 

An rrlB null mutant exhibits in vitro and in vivo phenotypes 

 

 To examine other factors that might contribute to the maintenance of two tandem 

23S rRNA gene copies in B. burgdorferi, we generated null mutants for each gene and 

examined the resulting phenotypes under several different conditions: in vitro growth at 

34°C (Fig. 11), in vitro competition with an equivalent number of wild-type cells (Table 

6), ability to infect mice (Table 7), and susceptibility to antibiotics that target the large 
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subunit (Fig. 12). In all conditions tested, the rrlA null mutant had no phenotype and was 

able to compete with the wild type. A previously described rrlA null mutant generated by 

transposon mutagenesis also did not have a growth phenotype (103). These results are 

consistent with our data, and indicate that while the rrlA gene is transcribed and the 

resulting 23S rRNA is used in ribosomes, this gene is dispensable for normal growth, 

even during infection of the vertebrate host (Table 7).  

 The rrlB null mutant, however, displayed a definitive phenotype. While the rrlB 

mutant could reach stationary phase at the same density as the rrlA null mutant and wild 

type, growth was slower and log phase was extended by 2 d (Fig. 11). Some reasons for 

this phenotype are discussed above. The rrlB mutant also failed to compete with the wild 

type during an in vitro growth competition and was completely lost from the population 

by 60 generations (Table 6). The rrlB null mutant was also unable to infect mice after 

needle inoculation (Table 7) and had a twofold increase in susceptibility to erythromycin 

as compared to wild type (Fig. 12). While there is still twice as much 23S rRNA as 16S 

rRNA in an rrlB null mutant at late-logarithmic growth, suggesting that the maximum 

number of ribosomes required for growth should be produced (Table 5), some aspect of 

23S rRNA regulation in B. burgdorferi is affected by removal of the rrlB promoter and 

rrlB-rrfB operon. Further research is required to elucidate whether this phenotype is the 

result of differential regulation of the rrl promoters in B. burgdorferi or if we are merely 

observing polar effects from the insertion of a gentamicin cassette at this genomic 

location. 
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Concluding remarks 

 

This work begins to dissect the complicated rRNA gene regulation of B. 

burgdorferi and many questions remain unanswered. What is clear is that the evolution of 

the unusual rRNA gene arrangement in B. burgdorferi has led to adaptation of this 

organism to novel mechanisms of rRNA transcriptional regulation, including 

incorporation of its single 16S rRNA gene into a larger operon containing unrelated 

genes, and dysregulated transcription that produces an overabundance of 23S and 5S 

rRNA as compared to 16S rRNA. Generating null mutants in each 23S rRNA gene shows 

that while the second copy is dispensable for growth (rrlA), a profound phenotype is 

observed when the first copy (rrlB) and its promoter are deleted. While the rrlB null 

mutant can grow at a slower rate, it is incapable of infecting mice (Table 7). This 

suggests that the tandem duplication of the 23S rRNA genes has functional significance 

in B. burgdorferi and that there is an important regulatory mechanism to maintain the 

genomic arrangement. Further study will undoubtedly reveal additional novel features of 

this gene region and transcription products that will further our understanding of 

alternative mechanisms of rRNA regulation. Additionally, the overproduction of 23S 

rRNA in B. burgdorferi may be adaptive for spirochete persistence during the dual host 

lifestyle. There may also be an alternative use of excess 50S ribosomal subunits under 

different environmental conditions (such as in the tick vector or vertebrate host). 

However, it is also possible that the genome of B. burgdorferi is still in the process of 

limited genome reduction and that the tandem duplication of the 23S rRNA genes and 
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production of excess 23S rRNA will be eliminated during further evolutionary adaptation 

of B. burgdorferi. 

Future work should seek to further explore the phenotype of the rrl null mutants, 

including understanding the role of transcription from each 23S rRNA gene in the context 

of the complete enzootic cycle. Additionally, site-directed mutagenesis or promoter 

swapping should be undertaken to examine the regulation of the unusual 16S rRNA 

operon and each of the tandem 23S-5S rRNA promoters so that a more lucid picture of B. 

burgdorferi rRNA transcription can be developed. Finally, a variety of experimental 

approaches should be undertaken to elucidate the role of the extra 23S rRNA present in 

B. burgdorferi cells, as the spirochete scavenges nutrients from its environment and 

wasting so many nutrients producing an overabundance of rRNA that will not be 

incorporated into mature ribosomes seems illogical. This suggests a functional role that 

may define a novel survival strategy unique to these bacteria. We hope that this work will 

provide the foundation that will allow the development of a deeper understanding of 

alternative mechanisms of rRNA regulation and how these contribute to the unique 

lifestyle exhibited by host-restricted parasitic organisms such as B. burgdorferi. 
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