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Harris, Katherine, Ph.D., Winter 2013      Chemistry 

 

Applications of autonomous pH and CO2 sensors to study carbonate system dynamics in a 

coastal upwelling system  

 

Chair:  Dr. Michael DeGrandpre 

 

Submersible Autonomous Moored Instruments for pH and pCO2 (SAMI-pH and SAMI-CO2) 

were deployed in a coastal upwelling zone on the Oregon Coast to collect unique multi-season, 

multi-year datasets of carbonate system dynamics. This is the first long-term deployment of the 

SAMI-pH paired with a SAMI-CO2. The objectives of this study included (1) improving the 

accuracy of the SAMI-pH (2) assessing the performance of using paired SAMI-pH and SAMI-

CO2 measurements to calculate other carbonate system parameters and (3) analyzing the data to 

better understand the seasonal, inter-annual, and upwelling variation in the coastal marine 

carbonate system. SAMI-pH accuracy was improved by better characterization of the pH 

indicator used in these spectrophotometric measurements. Using paired SAMI-pH and SAMI-

CO2 measurements from this study to calculate calcium carbonate saturation states (Ω) 

occasionally induced significant offsets in the results and so should be used with caution. 

However, a salinity-derived alkalinity for the region was found to calculate more accurate Ω 

when paired with either SAMI-pH or SAMI-CO2 measurements.  This unique, long-term, high 

temporal resolution dataset (collected over a period of five years) was used to characterize the 

carbonate system dynamics in this coastal upwelling zone. Large, fast changes in Ω (>3.0) 

occurred over a period of a few days and aragonite saturation state (ΩAr) decreased to 

undersaturation (ΩAr<1.0) seven times during the periods studied. Intrusion into the region by the 

Columbia River plume had a dilution effect on ΩAr during spring and summer, but biological 

productivity also played a major role in ΩAr during these seasons. In autumn and winter air-sea 

gas exchange and biological productivity were the controlling mechanisms. The return of the 

carbonate system parameters to pre-upwelling values was mainly controlled by mixing (with 

shelf and riverine freshwater) with some contribution from biological productivity. Since 

lowered ΩAr can have a negative impact on many of the region’s calcifying organisms (such as 

oysters, clams, sea urchins, and pteropods), this dataset was used to estimate pre-industrial ΩAr. 

Estimates indicate that Oregon shelf surface water ΩAr has decreased by over 0.50 since the pre-

industrial period and will decrease more in the near future. 
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Research Summary 

A summary of the dissertation content is provided here to guide the reader. This is the first study 

that uses long-term deployments of the SAMI-pH paired with a SAMI-CO2 to acquire unique 

multi-season, multi-year datasets of carbonate system dynamics in a coastal upwelling zone. 

These data are extremely useful, especially in light of marine carbonate system changes due to 

ocean acidification, as described below. There were three main objectives to this research: (1) to 

improve accuracy of the SAMI-pH, (2) to evaluate the performance of paired SAMI-pH and 

SAMI-CO2 to calculate carbonate system parameters and (3) to use these instruments to 

characterize the seasonal and inter-annual variation of the marine carbonate system in a coastal 

upwelling zone.   

Objective 1: The goals of the instrument-based studies focused on improving the accuracy of the 

SAMI-pH.  Previously we had used molar absorptivity temperature dependences for the pH 

indicator mCP determined by Seidel [2006] but changes in instrument design made it necessary 

to re-evaluate these. In addition, efficacy of switching to the pH indicator thymol blue was 

tested.  New mCP relationships between temperature and molar absorptivities were determined 

on different SAMI-pH instruments. Variations between SAMI-pHs were found to be comparable 

to variations in the mCP temperature relationships run during multiple experiments on a bench-

top UV-Vis.  Thus the averaged mCP temperature relationships for the SAMI-pH were applied 

to all SAMI-pH calculations. Solubility and impurity issues were found to make switching to 

thymol blue impractical. 

Objective 2: One goal of the field studies was to do field tests of a tris-enabled SAMI-pH to 

validate the accuracy of the data collected in situ. Further exploration of the effectiveness of 

using the SAMI-pH and SAMI-CO2 pair to calculate carbonate system parameters was also 

conducted, building off the previous work of Gray [2010]. Based on these studies, paired SAMI-

pH and SAMI-CO2 were expected to accurately calculate calcium carbonate saturation states 

(Ω). Using paired SAMI-pH and SAMI-CO2 data to calculate Ω gives us detailed time-series of 

Ω dynamics, important measures of marine ecosystem health in the face of ocean acidification. 

Extensive field testing was completed in the Oregon coastal upwelling zone to determine if 

results were comparable to those obtained by Gray et al. [2011; 2012]. Results from these 

studies found that there could be considerable offsets in Ω’s calculated with different parameters 
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and so this combination should be used with caution. My studies found that using a salinity-

derived alkalinity appropriate for the location (ATsalin) along with pH or pCO2 resulted in the 

most accurate Ω’s. 

Objective 3: Finally, the SAMI field data was analyzed to better understand the highly dynamic 

carbonate system in the upwelling zone off the coast of Oregon.  The first goal was to 

characterize the natural short-term seasonal and annual variability of the carbonate system in the 

Oregon coastal upwelling zone using SAMI-pH and SAMI-CO2 deployed together on the NH-10 

mooring.  Further goals involved analyzing these unique observations to determine the seasonal 

controlling mechanisms for ΩAr and specifically the processes controlling ΩAr during selected 

strong upwelling events.  In addition these highly-detailed carbonate system observations were 

used to estimate changes in the chemical make-up of Oregon coastal upwelling zone  waters 

since the industrial revolution as well as to predict what anthropogenic climate change may have 

in store for this highly dynamic region.   

Ω’s had never previously been continuously recorded during upwelling, but we collected a five-

year time-series of carbonate system dynamics in the Oregon coastal upwelling zone, with 

observations during spring, summer, autumn, and winter. ΩAr decreased rapidly by ~3.0 over a 

period of a few days and reached undersaturation (ΩAr<1.0) seven times during the three 

summers recorded.  These events could have potentially detrimental consequences for the 

calcifying organisms (such as oysters, clams, sea urchins, and pteropods) that live on the shelf.  

The duration of low ΩAr conditions during upwelling was controlled by varying mechanisms. 

These unique multi-season carbonate system observations were also used to estimate that current 

mean ΩAr has decreased significantly compared to estimated pre-industrial ΩAr, with current 

surface and shelf break ΩAr means decreased by 0.52 and 0.20, respectively.  
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CHAPTER 1 

Introduction 

1.1. Anthropogenic Climate Change 

Human-induced climate change has been a topic of study for scientists since the 19
th

 century 

[Weart, 2008].  John Tyndall began making qualitative predictions of the effect of changes in 

atmospheric gas concentrations and global climate in 1864 [Sherwood, 2011]. In the late 1890s, 

Nobel Laureate Svante Arrhenius proposed a quantitative relationship between carbon dioxide 

(CO2) released from coal burning and global temperature [Sherwood, 2011]. A consensus 

gradually developed amongst the scientific community that increasing CO2 emissions would 

have significant effects on the global climate and in 1988 the Intergovernmental Panel on 

Climate Change (IPCC) was formed by the United Nations to compile and review the current 

scientific research pertaining to climate change.   Current IPCC predictions estimate that the 

increase in atmospheric greenhouse gasses will lead to temperature changes of 1.8-4.0°C and a 

sea level rise of  0.18 to 0.59 m by the year 2099 (relative to global averages 1980-1999) [IPCC 

Report, 2007].  In addition, scientists predict that extreme weather events (such as drought, 

severe storms, or heat waves) will become more frequent [IPCC Report, 2007]. 

1.2. Ocean Acidification 

Scientists have known for decades that the world’s oceans have the capability to absorb 

anthropogenic CO2. In fact, initially scientists predicted that ocean uptake would negate any 

changes in atmospheric CO2 due to anthropogenic emissions.  However, more sophisticated 

measurements and longer data sets confirmed that CO2 emissions were increasing at a rate far 

outpacing the oceanic uptake of CO2 [Keeling, 1960].  As knowledge of the global carbon cycle  
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Figure 1.2.1. Trends in seawater parameters over the past 30 years from the Bermuda Atlantic 

Time Series (BATS) mooring near Bermuda in the western Atlantic Ocean. (A) Sea temperature 

(black squares) and salinity (red squares). (B) Total alkalinity (AT, μmol kg
−1

, blue squares) 

plotted with salinity normalized AT (nAT; μmol kg
−1

, light blue squares). (C) Dissolved inorganic 

carbon (DIC, μmol kg
−1

, green squares) and salinity normalized DIC (nDIC; μmol kg
−1

, light 

blue squares). (D) Seawater pCO2 (μatm; purple squares) and Revelle factor, the buffer factor for 

seawater (pink squares). (E) Seawater pH (orange squares) and [CO3
2−

 ] (μmol kg
−1

, yellow 

squares). (F) Saturation state of calcite (ΩCa) (purple squares) and aragonite (ΩAr) (pink squares). 

All measurements were recorded at the sea surface. (Figure taken from Bates et al., 2012). 

Reprinted with permission from Copernicus publications. 
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and its role in ocean chemistry grew, scientists found that increases in atmospheric CO2 were 

changing the ocean’s chemistry. This process is known as “ocean acidification” because as the 

dissolved CO2 in the ocean increases, ocean pH decreases (Figure 1.2.1).  Uptake of atmospheric 

CO2 since the beginning of the Industrial Revolution has decreased ocean pH by ~0.13 [Dore et 

al., 2009].   This decrease in pH has already led to changes in the ocean carbonate system and 

could result in dramatic changes in many oceanic ecosystems. 

1.2.1. The Marine Carbonate System 

There are four measurable parameters of the carbonate system: the negative log of the hydrogen 

ion concentration (pH), the partial pressure of CO2 (p CO2), dissolved inorganic carbon (DIC), 

and total alkalinity (AT).  If two parameters are measured, the remaining carbonate species can 

be calculated using the following reactions and equilibria [i.e.Park, 1969; Millero, 1995;  

Millero, 2007]: 

            
           (1.1) 

     
         

          (1.2) 

    
        

            (1.3) 

   
      

  

      
           (1.4) 

   
         

  

      
  

          (1.5) 

   
        

  

    
            (1.6) 
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where      
  in Equations 1.2, 1.4, and 1.5 is a hypothetical species combining         and 

     .  f(CO2) is the fugacity of gas phase CO2. DIC and AT are defined by the following 

equations: 

          
        

       
          (1.7) 

        
        

                 
            (1.8) 

   
          

  

       
          (1.9) 

       
                 (1.10) 

Shipboard measurements of these parameters provide us with useful information about the global 

carbon cycle and marine ecosystems.  It is estimated that the global oceans take up ~30% of 

anthropogenic CO2 emissions [Sabine et al., 2004; Canadell et al., 2007; Doney et al., 2009b].  

Observations of pCO2 and calculations of air-sea CO2 flux into and out of the oceans have been 

important for determining overall oceanic CO2 uptake [i.e. Takahashi et al., 1995, 2002, 2009].  

Biological productivity influences DIC and pCO2; photosynthetic uptake of carbon draws down 

DIC concentrations whereas respiration increases DIC concentrations.  As anthropogenic CO2 

continues to accumulate in the atmosphere and be taken up by the global oceans, changes result 

in the marine carbonate system.  As described above, increasing atmospheric pCO2 increases 

oceanic pCO2 and DIC while decreasing ocean pH (Figure 1.2.1). AT is generally a conservative 

property controlled by evaporation and precipitation (and the concurrent salinity changes) 

[Millero et al., 1998]. However, changes in [CO3
2-

] and [HCO3
-
] in the marine environment due 

to decreasing pH will result in a decrease in the buffering capacity of seawater and in lesser rates 

of atmospheric CO2 uptake [Egleston et al., 2010].  
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1.2.1.1. CaCO3 Saturation States 

With measurement of two carbonate system parameters, another important parameter can be 

calculated using the thermodynamic relationships discussed above: calcium carbonate saturation 

states.  The two main calcium carbonate minerals, calcite and aragonite, are biologically 

important for a variety of marine organisms including coral, bivalves, coccolithophores, and 

pteropods, [Zondervan et al., 2001; Doney et al., 2009a; Kleypas and Yates, 2009; Comeau et al., 

2012].  The saturation state (Ω) of calcite or aragonite is a measure of how likely the mineral is 

to form or dissolve. For calcite: 

    
[    ]    

   

     
           (1.11) 

And for aragonite: 

    
[    ]    

   

     
           (1.12) 

where    
  is the apparent solubility product for either calcite (Ca) or aragonite (Ar) and is 

dependent on temperature, salinity, and pressure.  When Ω>1, the solution is supersaturated and 

precipitation is thermodynamically favored; when Ω<1, dissolution is favored.  Aragonite has a 

larger    
  and so is more soluble than calcite at the same ion concentration product of      and 

   
  . Globally-averaged values for ΩCa and ΩAr are 4.58 and 2.98, respectively, in open ocean 

surface waters [Feely et al., 2009], but Ω varies by ocean basin and by region. Calcite and 

aragonite are supersaturated in surface waters because inorganic phosphate, magnesium, and 

some organics inhibit non-biogenic precipitation of calcium carbonate minerals [Pytkowicz, 

1973] and thus high concentrations of free carbonate ion (   
  ) in surface waters are sustained.  
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When Ω<1.0, dissolution is thermodynamically favorable.  Because decreasing pH results in 

decreasing    
   concentrations (Equations 1.11, 1.12), ocean acidification results in decreasing 

Ω and may have detrimental effects on the health of some marine calcifiers [Fabry et al., 2008; 

Kroeker et al., 2010; Comeau et al., 2012] (Figure 1.2.2). Even at values >1.0, lowered Ω can 

still decrease rates of calcifier growth or cause larvae mortality [Fabry et al., 2008; Kroeker et 

al., 2010; Comeau et al., 2012].  Since many marine calcifiers make up the lower trophic levels 

in the marine ecosystem, ocean acidification could have far-reaching effects on the marine 

ecosystem.  

 

Figure 1.2.2. Different levels of Limacina helicina Antarctica shell dissolution caused by 

seawater ΩAr near 1.0 in the Southern Ocean. The images were captured using a scanning 

electron microscope. (a,b) Shells with no visible signs of dissolution. (c) Slight dissolution of the 

outer layer of a juvenile Limacina helicina Antarctica shell. (d) Extensive dissolution of the 

outer shell layer. (e) Outer shell layer dissolved and inner shell layer partially dissolved. (f) 

Fragmentation of the shelf due to low ΩAr conditions.  (From Bednarsek et al., 2012). Reprinted 

with permission from Macmillan Publishers Limited. 

Saturation states naturally decrease with depth because of higher pCO2 in deep ocean waters. 

CO2 dissolves more readily in colder waters than warmer waters so as deep ocean waters form at 

the poles, they take up more CO2 as they cool. Colder water is more dense than warmer water 

and so these higher CO2 waters sink [Raven and Falkowski, 1999].  In addition to this marine 

a                b               c 

d                e               f 
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carbon system solubility pump, the biological carbon pump also contributes to higher deep water 

CO2; it exports a fraction of carbon particulates that result from surface biological production to 

interior waters where it is then respired by microbes and zooplankton [Volk and Hoffert, 1985].  

This increased CO2 at depth lowers the pH and consequently shifts the carbonate system 

equilibrium away from carbonate ions, resulting in lowered Ω at depth. Over the past 150 years, 

ocean acidification has led to changes in the “saturation horizons” for aragonite and calcite, the 

depth where Ω=1.0.  Since the pre-industrial period saturation state horizons across the North 

Pacific have shoaled between 30-100 m [Feely et al., 2002] due to anthropogenic increases in 

CO2 and the resultant ocean acidification. 

1.3. Coastal Upwelling 

Eastern Boundary Upwelling Systems (EBUS) are particularly at risk from ocean acidification. 

Located at the eastern edge of subtropical gyres (e.g. western North America and South America, 

and eastern Northern Africa), EBUS are highly productive ecosystems.  Equatorward winds 

(most common in summer) combine with the Coriolis effect to force nutrient-depleted surface 

waters toward the open ocean and nutrient-rich bottom waters upwell to take their place.  This 

upwelling-induced nutrient replenishment of the photic zone makes EBUS globally important 

fisheries [Pauly and Christensen, 1995]. However, along with bringing nutrients to the surface, 

upwelling also brings low-Ω water to the surface. This natural effect is exacerbated by the 

decreasing trend in both ΩCa and ΩAr driven by the anthropogenic increase in CO2. Decreases in 

both ΩCa and ΩAr can affect both calcite and aragonite-based calcifiers. The upwelling of low 

aragonite saturation state waters along the coast and the potential detrimental effects of low ΩAr 

on marine organisms at the base of the food chain could have severe impacts on the marine 

ecosystem. In the California Current System (CCS) along the U.S. West Coast upwelling of low 
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ΩAr water has resulted in larval production losses in coastal shellfish hatcheries [Feely et al., 

2010; Barton et al., 2012; Harris et al., 2013]. Although adult oysters are primarily composed of 

calcite, the larvae are mainly aragonite. Because low ΩAr reduces growth and often results in 

mortality in the economically-important oyster larvae, our focus will be on ΩAr dynamics instead 

of ΩCa changes. In addition, high-magnesium calcite, biologically important for other calcifiers 

such as coralline algae, sea urchins, or calcifying plankton [see Kurihara and Shirayama, 2004; 

Morse et al., 2006; Ries et al., 2009], is even more soluble than aragonite [Morse et al., 2006]. 

Aragonite is therefore often focused on in ocean acidification research because it is a “first 

offender” or a bellwether to the changes in the marine ecosystem than may be caused by ocean 

acidification. 

Future predictions of ΩAr in the CCS look bleak.  Modeling studies of ΩAr changes under the 

IPCC’s SRES A2 emissions scenario (at the higher end of, but not the most extreme, CO2 

emissions predictions) [Nakicenovic et al., 2000]  predict that by 2050 average ΩAr in the CCS 

will have decreased from a pre-industrial estimate of ΩAr=2.58±0.19 to a predicted average ΩAr 

of 2.27±0.20 in 2050, with the volume of aragonite undersaturated water in the shelf euphotic 

zone increasing from 0% in pre-industrial times to >50% by 2050 [Gruber et al., 2012] . 

Coastal upwelling zones like the CCS are likely to experience ocean acidification sooner and 

with greater severity than other areas of the global oceans.  For these reasons regions like this are 

key areas of research to assess the environmental and economic impacts of ocean acidification.  

Although significant improvements have been made over the past five years in both observations 

of periods of low aragonite saturation and predictive capabilities of future changes in ΩAr, these 

studies have largely been based on short-term “snapshots” of carbonate system variability from 

research cruises [e. g. Hales et al., 2005b; Feely et al., 2008; Bates et al., 2009; Jiang et al., 
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2010; Cao et al., 2011; Fassbender et al., 2011],  or modeling from monthly climatologies of 

ocean pH [Hauri et al., 2009; Gruber et al., 2012].  More temporally-detailed observations of the 

carbonate system are needed to characterize the natural range, better understand the controlling 

mechanisms of ΩAr in coastal upwelling zones like the CCS, and determine how future changes 

due to anthropogenic climate change (i.e. increasing upwelling intensity and duration, 

precipitation changes, anthropogenic eutrophication of coastal waters) will impact these areas. 

Autonomous instruments for measuring the carbonate system parameters make these more 

detailed observations possible.   Commercially available sensors now exist for mooring-based 

measurements of pCO2 [DeGrandpre et al., 1995; Schar et al., 2009] and pH [Seidel et al., 2008; 

Martz et al., 2010]. The SAMI-CO2 has been used extensively in the field, but at the time this 

research began, Gray et al. [2011; 2012] had conducted the only extended field studies using the 

SAMI-pH – one a short (two month) deployment off  the California coast [Gray et al., 2011] and 

three short (two month) deployments on a coral reef [Gray et al., 2012]. The SAMI-pH 

determines the pH of seawater spectrophotometrically using a colorimetric pH indicator. This 

method  provides the greater accuracy and precision needed for marine carbonate system 

measurements compared to electrode seawater pH measurements [Dickson, 1993; Martz et al., 

2003; Seidel et al., 2008] 

Together, pH and pCO2 measurements can be used to calculate the other carbonate system 

parameters and autonomous pH and pCO2 sensors allow for the more detailed characterization of 

carbonate system dynamics in a variety of oceanic ecosystems, including the highly dynamic 

CCS.  Gray et al. [2011, 2012] found that data from the Submersible Autonomous Moored 

Instruments for pH and pCO2 (SAMI-pH and SAMI-CO2) [DeGrandpre et al., 1995, 1999; 

Seidel et al., 2008] could be used in tandem or with salinity-derived alkalinity (ATsalin) to 
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accurately calculate aragonite saturation states in the field.  Since these instruments record high-

temporal resolution pH and pCO2 datasets, they can be used to collect detailed intra-seasonal and 

inter-annual carbonate system data.   

Several studies have found evidence of human-caused “acidified” water upwelling onto the 

continental shelf in the CCS.  [Feely et al., 2008] observed several low-pH upwelled waters 

during a series of hydrographic surveys along the continental shelf of the western North America 

in May of 2007.  During an upwelling event recorded on this survey off the coast of Northern 

California, Feely et al. [2008] calculated that the saturation state horizon for aragonite shoaled all 

the way to the surface near the coast, conditions not predicted to occur in the open ocean until 

2050 [Orr et al., 2005]. Evans et al. [2011] found high concentrations of CO2 in surface waters 

during the 2008 summer upwelling season. Barton et al. [2012] recorded aragonite 

undersaturated waters in an estuary-based oyster hatchery on the Oregon Coast during the 

summer of 2009.  These studies all indicate that aragonite undersaturation is occurring in the 

Oregon coastal upwelling zone, making it an ideal location to study the extent and duration of 

these undersaturation events using the high temporal resolution of the SAMI-pH and SAMI-CO2. 

1.4. Research Objectives and Major Findings 

As stated in the Research Summary at the beginning of this chapter, the objectives of my 

research focused on (1) improving the performance of the SAMI-pH, (2) evaluating methods 

of field data validation and the feasibility of using the SAMI-pH/SAMI-CO2 pair for 

calculation of the other carbonate system parameters, and (3) characterization and analysis 

of the carbonate system in the Oregon coastal upwelling zone.  
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Instrument performance was improved by re-valuating he temperature dependence of the molar 

absorptivities for the pH indicator m-Cresol Purple using both SAMI-pH instruments and the 

bench-top UV-Vis. The variation in the molar absorptivity temperature dependence between 

SAMIs was found to be within the constraints of the variation for these relationships determined 

on the bench-top UV-Vis. Thus one set of molar absorptivity temperature relationships was 

applied to all SAMI-pH instruments. Three deployments of the SAMI-pH/SAMI-CO2 pair during 

different oceanic conditions were carried out. Considerable offsets between the different 

parameter combinations used to calculate ΩAr were discovered and SAMI-pH or SAMI-CO2 

paired with a salinity-derived alkalinity was found to give more accurate calculations of ΩAr. 

These combinations were then used to calculate carbonate system dynamics for the Oregon 

coastal upwelling zone. This high temporal resolution dataset is one-of-a-kind and resulted in 

unprecedented characterization of carbonate system dynamics and examination of the 

mechanisms controlling these dynamics.   
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CHAPTER 2 

Characterization of pH Indicators 

2.1. m-Cresol Purple Characterization 

2.1.1. Introduction 

The SAMI-pH uses a pH indicator method to determine the pH of a seawater sample.  The pH 

indicator currently used is the diprotic sulfonephthalein indicator m-Cresol Purple (mCP). mCP 

is mixed with the seawater sample and equilibrium is established: 

                      (2.1)  

where HI
-
 is the protonated (acid) form and I

2-
 is the un-protonated (base) form of the diprotic  

mCP.   

 

Figure 2.1.1. mCP spectra from Aldrich-211761, batch #11517KC. Concentration for the acid 

solution (pH~4) was 5.14 x 10
-5

 M and the base solution (pH~14) concentration was 3.65 x 10
-5

 

M. Ionic strength ~0.7 mol kg-solution
-1

. The pathlength was 1 cm.  
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The acid and base forms of mCP absorb at distinct wavelengths: 434 nm (acid) and 578 nm 

(base) (Figure 2.1.1). Since the ratio of protonated to un-protonated mCP depends upon the pH, 

the ratio of the absorbances at each wavelength can be used to calculate the pH of the solution.  

By combining Beer’s law, 

                (2.2) 

where A is the absorbance, ε is the molar absorptivity, b is the pathlength, and c is the 

concentration, with the Henderson-Hasselbach equation, 

       
     

     

     
         (2.3) 

 where   
  is the temperature and salinity-dependent acid dissociation constant for mCP, and the 

equilibrium equation for mCP (Equation 2.1), pH can be determined: 

       
      

    

      
        (2.4) 

where R is the absorbance ratio (A434/A578) and e1, e2, and e3 are ratios of the molar absorptivity 

of the base (εb) and acid (εa) forms of the indicator at 434 and 578 nm: 

    
     

     
          (2.5) 

    
     

     
          (2.6) 

    
     

     
          (2.7) 

The molar absorptivities for mCP are temperature dependent [Zhang and Byrne, 1996] – a  pH 

error of 0.006 pH units results from a 10° C temperature change if the temperature dependence is 

not included [Seidel et al., 2008]. Temperatures in the Oregon coastal upwelling zone range from 
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near 8 to 18° C, depending on the season [Huyer et al, 2007] so correctly accounting for the 

mCP temperature dependence is important for maintaining the ±0.003 stated accuracy of the 

SAMI-pH for long-term deployments.  A temperature relationship for mCP had been determined 

with a SAMI-pH previously [Seidel, 2006], but no temperature dependence had been determined 

since extensive changes were made to the SAMI electronics and optical cell.   

2.1.2. Methods 

Experiments were carried out using two SAMI-pH instruments, SAMI-59 and SAMI-68, and 

using a Varian Cary 300 UV-Vis bench-top spectrophotometer.  Four test solutions were made to 

determine molar absorptivities at each of five temperatures between 5-25 °C (5, 10, 15, 20, and 

25°C).  The test solutions were comprised of saline solutions (ionic strength ~0.7 mol kg-

solution
-1

) in which either I
2-

 or HI
-
 was the predominant form of the indicator: two basic 

solutions (pH~12) – one blank and one with an mCP concentration of ~1.9 x 10
-5

 mol/kg – and 

two acid solutions (pH~5) – one blank and one with an mCP concentration of 5.6 x 10
-5

 mol/kg 

(see details mCP solutions in Seidel [2006] using mCP sodium salt (Aldrich-211761, batch 

#11517KC)).  Unpurified mCP sodium salt (Aldrich-211761, batch #11517KC) was used to 

make the solutions in these experiments. It should be noted that these experiments took place 

prior to the publication by Liu et al., [2011] who determined that the impurities in the mCP 

sodium salt solution altered the measured spectrophotometric pH. mCP was subsequently 

purified and the impure and pure mCP solutions were compared to determine a pH correction for 

pH>8.0 which could be applied to all field data obtained using that batch of mCP ( #11517KC)  

(See more details in section 3.3.3). ε‘s were calculated at each temperature from the absorbances 

of the acid and base mCP solutions using Beer’s Law (Equation 2.2). Experiments on both the 

SAMIs and the Cary 300 were run at 5, 10, 15, 20, and 25C. The temperature equilibration 
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procedure differed slightly between the two SAMI-pHs tested.  Both SAMIs were placed in a test 

tank and temperature-equilibrated using a water bath thermostated to within ±0.04°C of the goal 

temperature. SAMI-59’s electronics were allowed to equilibrate to the test tank temperature for 

one hour before measuring the ε’s every 15 minutes for 8 total measurements at each 

temperature.  This procedure was then repeated for the next temperature.  Instead of waiting for 

one hour for the electronics to equilibrate to the water bath temperature, SAMI-68 measured the 

ei’s continuously for four hours after the water bath temperature was changed.   

Bench-top UV-Vis experiments were thermostated to within ±0.22°C of the goal temperature. 

After each temperature change, the optical cell was first allowed 30 minutes to temperature 

equilibrate and each sample measured was allowed an additional 10 minutes to equilibrate to the 

experimental temperature.  ei’s were measured on the UV-Vis for the same temperatures between 

5-25°C as the two SAMI-pHs.  A total of five separate mCP temperature dependence 

experiments were completed on the bench-top UV-Vis. 

2.1.3. Results and Discussion 

The results from the two SAMI-pH experiments are shown in Figure 2.1.2 compared with the 

previously-calculated bench-top UV-VIS ei’s [Seidel, 2006].   
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Figure 2.1.2. SAMI ei temperature dependence compared to the temperature dependence 

previously determined on the bench-top UV-Vis by Seidel [2006]. Linear fit equations are found 

in Table 2.1.1. 

 e1 and e3 both increase with temperature and e2 decreases with temperature (Figure 2.1.2). This 

is due to both a slight spectral shift to longer wavelengths in the mCP base peaks and to shorter 

wavelengths for the acid peaks and changes in the absorbance maxima. The absorbances at the 

peak wavelengths for both acid (434 nm) and base (578 nm) decrease as temperature increases 

and at the same time the non-peak absorbance (578 nm for acid and 434 nm for base) increase 

from their minima. The effect of temperature on the mCP absorbance peaks can be found in 

Figure 2.1.3. The 434 nm peak in the spectra of the acidic form of mCP is wider than the 578 nm 
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peak of the basic form, resulting in smaller changes in the measured intensities of both acid and 

base at 434 nm as the spectra shift with increasing temperature.   

 

Figure 2.1.3. mCP (Aldrich-211761, batch #11517KC) spectra for acid (434 nm) and base (578 

nm) at 5°C (black and gray dashed lines) and at 25°C (blue and red lines). Ionic strength = 0.7 

mol kg-solution
-1

. 

A small difference in bandpass exists between the instruments. With the slight shift in spectra 

due to temperatures, the bandpass will cover a different section of the absorbance peaks at each 

wavelength. Because the acidic 434 nm peak is much wider than the basic 578 nm peak, this 

results in a much smaller change in absorbance at 434 nm with increasing temperature than at 

578 nm.  Thus the molar absorptivity temperature dependences for εa578 and εb578 differ more 

between the two SAMIs.   
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Figure 2.1.4. (Bottom) In situ pH calculated using the ε temperature dependences determined by 

Seidel [2006] and by K. Harris. Because the in situ temperature change during this period was 

small, a temperature range (5 to 25°C) was applied to the data (top, red). Since the difference 

between pHSeidel and pHHarris is small compared to the in situ pH changes, the difference between 

the two pH calculations is plotted at top (black line). 

The averaged SAMI-pH ε temperature relationships (Table 2.1.1) were used to calculate pH from 

a field deployment using SAMI-68 (Figure 2.1.4).  This calculated pH was compared to pH 

calculated from the same data using the previously determined mCP temperature relationships 

[Seidel, 2006].  Because the temperature range of the field data was relatively small (< 1°C) a  

temperature range of increments of 0.1°C (from 5 to 25°C) was used instead for pH calculation 

(see Figure 2.1.4).  Figure 2.1.4 shows that at low temperatures, the difference between pH 

calculated using the old [Seidel, 2006] and Harris temperature relationships is > 0.003 pH units.  

The difference between the separate temperature relationships derived for SAMI-59 and SAMI-

68 was < 0.0005 pH units at 5°C. This difference between Harris and Seidel [2006] pH 

calculations was attributed to changes in the SAMI-pH electronics. Because the two temperature 
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relationships result in a difference greater than the accuracy of the SAMI (±0.003), the Harris 

temperature relationship is now used for the SAMI-pH. 

Table 2.1.1. Slopes (m °C
-1

), intercepts (b), average (Avg.), and standard deviation (σ) for SAMI 

ei  linear temperature relationships and the relationships determine by Seidel [2006]. Ionic 

strength in all mCP solutions tested was 0.7 mol kg-solution
-1

 (See Figure 2.1.2). 

  

e1 e2 e3 

m b m b m b 

SAMI-59 0.0000384 0.00622 -0.00216 2.26 0.000516 0.120 

SAMI-68 0.0000458 0.00404 -0.00252 2.27 0.000493 0.117 

Avg. 0.0000421 0.00513 -0.00234 2.27 0.000504 0.119 

 σ 0.0000052 0.00154 0.00025 0.00 0.000016 0.002 

Seidel 0.0000626 0.00299 -0.00079 2.21 0.000852 0.103 

 

By comparing differences in the calculated molar absorptivity temperature dependencies from 

different trials on the bench-top UV-Vis to those between different SAMIs, the variation between 

SAMI molar absorptivity temperature dependencies was determined to be within the standard 

deviation of the bench-top experimental values for slope and intercept for εb434 and εb578 and 

close to the same standard deviation for εa434 and εa578.  This meant that one set of linear 

temperature dependences can be applied to all SAMI-pH’s (see Equations 2.8-2.11).  Figure 

2.1.5 shows the e-value temperature dependencies for all Cary trials compared to those for the 

two SAMIs tested.  The slopes and intercepts for the ε temperature dependences for the bench-

top UV-Vis (Cary) and SAMI trials can be found in Table 2.1.1 and Table 2.1.2. 
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Figure 2.1.5. SAMI-pH and bench-top UV-Vis ei temperature dependence for mCP (Aldrich, 

batch #11517KC). Ionic strength was 0.7 mol kg-solution
-1

. The UV-Vis number refers to the 

different experiments run on the bench-top UV-Vis (on different dates, see Table 2.1.2). The 

equations for the linear fit can be found in Table 2.1.2. These are compared to the literature value 

for ei from Clayton and Byrne [1993]. 
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Table 2.1.2. Slopes (m, kg mol
-1

 cm
-1

 °C
-1

), intercepts (b, kg mol
-1

 cm
-1

), average (Avg.), and 

standard deviation (σ) for the bench-top UV-Vis (Cary) ε linear temperature relationships for 

mCP. 

 

e1 e2 e3 

m b m b m b 

UV-Vis 1 

(7/28/09) 
0.0000561 0.00502 -0.00155 2.288 0.000654 0.115 

UV-Vis 2 

(10/19/09) 
0.0000272 0.00502 -0.00185 2.268 0.000568 0.118 

UV-Vis 3 

(11/24/09) 
0.0000892 0.00559 -0.00190 2.288 0.000587 0.117 

UV-Vis 4 

(1/12/10) 
0.0000465 0.00540 -0.00217 2.282 0.000666 0.116 

UV-Vis 5 

(1/27/10) 
0.0000203 0.00555 -0.00198 2.314 0.000589 0.122 

Avg. 0.0000479 0.00532 -0.00189 2.288 0.000613 0.118 

σ 0.0000272 0.00028 0.00023 0.017 0.000044 0.003 

 

The following ε temperature dependence equations were determined by averaging the SAMI-pH 

equations (where T is the temperature in °C): 

 εa434 = -24.45*T + 19064         (2.8) 

 εa578 = 0.6442*T + 98.13        (2.9) 

 εb434 = 6.334*T + 2263        (2.10) 

 εb578 = -98.33*T + 43175        (2.11) 

where the units for ε are mol kg
-1

 cm
-1

. This temperature dependence applies over a temperature 

range 5-25°C at ionic strength of 0.7 mol kg-solution
-1

 for Aldrich mCP batch #11517KC. These 

equations were used to calculate the ei’s (see Equations 2.5-2.7) and then pH (Equation 2.4) from 

SAMI-pH field data. 
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2.2. Thymol Blue Characterization 

2.2.1. Overview 

Thymol blue is another pH indicator that has an appropriate pKa for determining the pH of 

seawater [Zhang and Byrne, 1996].  However, thymol blue offers the advantage that, at the time 

of this study, its pKa was known over a greater temperature and salinity range than for mCP 

(Lefevre et al., 1993; Mosley et al., 2004).  In addition, literature review suggested that the 

thymol blue indicator contained fewer impurities than mCP [Yao et al., 2007]. For these reasons, 

switching from mCP to thymol blue as the indicator for the SAMI-pH was considered. 

2.2.1. Methods 

 Thymol blue studies were first done on the bench-top UV-Vis over a range of temperatures 

using the same general method discussed in section 3.1.2. Thymol blue sodium salt (Alfra Aesar, 

batch #H31WO32) solutions had the same concentration as the mCP solutions listed in section 

3.1.2 and the ionic strength of these solutions was 0.7 mol kg-solution
-1

. Because the temperature 

dependence of the spectral properties of thymol blue was only reported in terms of the e-values 

by [Zhang and Byrne, 1996] the e-value temperature dependences from the Cary trials were 

calculated from the experimentally-observed molar absorptivities (see Equations 2.5-2.7) and 

compared.   

2.2.3. Results and Discussion 

The experimentally-determined relationships between temperature and thymol blue ei’s are 

reported in Figure 2.2.1 and Table 2.2.1. The change in ei’s with temperature follow the same 

trends as those for mCP, suggesting a similar spectra shift to higher wavelength with higher 
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temperature. The different ε temperature relationships from the different bench-top UV-Vis 

experiments for thymol blue showed larger standard deviations in  

Table 2.2.1. Slopes (m, °C
-1

), intercepts (b, unitless), average (Avg.), and standard deviation (σ) 

for the bench-top UV-Vis ei linear temperature relationships for thymol blue (Alfra Aesar, batch 

#H31W032) in a solution with an ionic strength of 0.7 mol kg-solution
-1

. (See Figure 2.2.1). 

Trial e1 e2 e3 

  m b m b m b 

UV-Vis 1 

(1/20/11) 
0.0000319 0.00515 -0.00297 2.235 0.000409 0.134 

UV-Vis 2 

(1/28/11) 
0.000063 0.0038 -0.004 2.266 0.000265 0.136 

UV-Vis 3 

(2/1/11) 
0.0000238 0.00469 -0.00472 2.487 0.000245 0.151 

Avg. 0.0000396 0.00455 -0.0039 2.329 0.000306 0.14 

σ 0.0000207 0.00069 0.00088 0.137 0.00009 0.009 

 

both the slopes and intercepts than mCP. The lower solubility of thymol blue (a solubility of 41 

mg/L compared to 730 mg/L for mCP [SciFinder]) may have resulted in impartially dissolved 

solutions, resulting in different absorbances between experiments. Different thymol blue stock 

solutions were used during the different bench-top UV-Vis experiments.  

At this point, thymol blue studies were terminated.  New literature [Liu et al., 2011] referenced 

experiments that determined that thymol blue impurities were likely to be significant between 

different reagent batches and different suppliers, leading to pH errors as large as 0.01 [Liu et al., 

2011], comparable to the pH differences between different batches of mCP. Liu et al. [2011] 

suggested that the best way to deal with impurities in pH reagent batches is to use high-

performance liquid chromatography (HPLC) to purify the reagent.   
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Figure 2.2.1. Bench-top UV-Vis ei temperature dependence for thymol blue. The UV-Vis 

number refers to the different experiments run on the bench-top UV-Vis (on different dates, see 

Table 2.2.1). The equations for the linear fits can be found in Table 2.2.1. 
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CHAPTER 3 

Field Studies Using Combined pH and pCO2 Sensors 

3.1. Field Site Overview 

The waters above the Oregon continental shelf are part of the California Current System (CCS), 

an Eastern Boundary Current that runs from the southern part of British Columbia to Southern 

Baja California [Lynn et al., 1987], as described in the Introduction. This site was chosen as part 

of a collaboration with Burke Hales from Oregon State University’s College of Earth, Ocean, 

and Atmospheric Sciences (CEOAS).  Oregon State University operates a mooring west of 

Newport, Oregon, (Figure 3.1.1) as part of the Oregon Coastal Ocean Observing System 

(ORCOOS) with semi-regular shipboard access.  The mooring is in a coastal upwelling zone and 

thus the marine carbonate system was expected to be highly variable.  In addition to inorganic 

carbon variability driven by upwelling, the Columbia River plume also occasionally influences 

carbonate system parameters (see Figure 3.1.2). 
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Figure 3.1.1. Location of the Newport Hydrographic (NH) line (white line) and the NH-10 and 

Shelf break moorings. The locations of the National Data Buoy Center NDBC meteorological 

buoy 46050 and the Pacific Fisheries Environmental Laboratory (PFEL)-derived upwelling 

indices (45°N, 125°W) are also noted. The bathymetry contour lines are for every 20 m of depth, 

i.e. NH-10 is located at the 80 m bathymetry contour.  

NH Line 
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Figure 3.1.2. Evidence of the Columbia River plume on the Oregon shelf.  Daily-averaged 

Moderate Resolution Imaging Spectroradiometer (MODIS) light scattering measurements of 

particulate organic matter in the water column on July 9, 2011 (left) and July 11, 2011 (right).  

High values (red) designate high concentrations of particulate organic matter indicating the 

presence of plume waters. The small arrows are the daily averaged surface current velocities. 

The location of the Columbia River mouth is marked by the large black arrow and the 

approximate location of NH-10 is marked by a black “x”. White areas were covered by clouds 

and so no satellite measurements were taken for those areas. (Figure taken from Risien et al. 

[2012]). Reprinted with permission from Craig Risien, Oregon State University.  

3.1.1. Newport Hydrographic (NH) line 

The Newport Hydrographic (NH) sampling line runs west from the Oregon coast along latitude 

44.65°N (Figure 3.1.1).  This refers to a line of common shipboard sampling locations that 

stretch out into the Pacific Ocean west of the Oregon coast. The NH-10 mooring is located at the 

surface ~18 km (10 nautical miles) from the coast (124.304°W, 44.633°N) (see Figure 3.1.1). At 
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this location the water is ~80 m deep.  The underwater contours (the bathymetry) along the NH-

line is relatively uncomplicated - the seafloor gradually slopes away from shore to a well-defined 

shelf break and is unmarred by canyons [Kundu and Allen, 1976; Kirincich and Barth, 2009]. 

NH-10’s location at the mid-point of the shelf [Oke et al., 2002] and the uncomplicated 

underwater contouring of the NH Line make it an ideal location to study coastal upwelling 

dynamics. Submerged canyons and ridges can cause eddies as water upwells onto the shelf, 

complicating the overarching onshelf/offshelf direction of upwelling/downwelling. 

3.1.2. Shelf Break Mooring 

The shelf break mooring is also located along the NH Line where the water depth is 120 m, ~35 

km from shore (124.500°W, 44.641°N) (see Figure 3.1.1).  This is the location of the shelf break, 

which marks the edge of the continental shelf as it transitions from the gradual slope gradients of 

the continental shelf to the much steeper slope gradient of the continental slope.  The shelf break 

mooring is located on the ocean floor below the National Data Buoy Center’s meteorological 

buoy 46050 (see Figure 3.1.1).  The location at the shelf break was chosen to capture the high 

CO2, low pH California Undercurrent water as it first upwells onto the Oregon shelf. 

3.2. Methods 

3.2.1. SAMI-pH 

The SAMI-pH (as described in much more detail by Seidel [2006] and Seidel et al. [2008]), and 

shown in Figure 3.2.1 uses the spectrophotometric method described in section 2.1 to determine 

the pH of a seawater sample.  The SAMI-pH operates by first pumping in a seawater sample via 

a solenoid pump (Figure 3.2.2). After that a slug of pH indicator (~1.0x10
-3

 mol kg-solution
-1

 

mCP (Aldrich-211761, batch #11517KC) at an ionic strength of 0.7 mol kg-solution
-1

) is added 
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to the sample and mixed within a static mixer.  Before the slug arrives at the optical cell, an 

absorbance blank is measured. As the slug of indicator passes through the cell, the absorbance is 

measured at three wavelengths: 434 nm (the HI
-
 absorbance peak), 578 nm (the I

2-
 absorbance 

peak), and 780 nm (a region of the spectrum where mCP does not absorb).  Salinity and 

temperature-dependent pKa
 
is determined using temperature from the SAMI-pH, salinity from 

sensors attached to the mooring (discussed below), and the pKa
 
equation from Clayton and Byrne 

[1993]: 

   
  

       

 
                            (3.1) 

 

Figure 3.2.1. The SAMI. (A) The SAMI-CO2 and the SAMI-pH attached to the spar of the NH-

10 buoy, pre-deployment. (B) NH-10 buoy during deployment. The SAMIs are ~2 m below the 

water’s surface. 

The pH can then be determined using Equation 2. 4 and is specified on the total pH scale, which 

includes both free hydrogen ions and takes into account the hydrogen ions from the reaction: 

    
        

  .  Because addition of pH indicator to the seawater sample introduces a 

small pH perturbation, absorbance measurements are taken over a range of indicator 

A 
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concentrations.  The pH at an indicator concentration of zero can be determined by extrapolation 

from the measured pH of decreasing indicator concentrations. Two versions of the SAMI-pH 

were deployed, the SAMI-pH and the SAMI
2
-pH.  The SAMI

2
-pH has an updated housing, 

electronics and optical design. A schematic including the updated optical set-up and the inclusion 

of a second valve (explained below) can be found in Figure 3.2.3.   

 

Figure 3.2.2. SAMI-pH schematic [from Seidel, 2006]. 

Prior to deployment, all SAMI-pH instrument accuracy is verified using certified 

tris(hydroxymethyl)aminomethane (tris) buffer solutions in artificial seawater [Delvalls and 

Dickson, 1998] at 20°C.  A SAMI redesign adds an additional valve to the internal plumbing of 

the SAMI
2
-pH (Figure 3.2.3) that allows the SAMI to run the certified tris buffer at a specified 

interval during deployment for in situ data validation. 
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Figure 3.2.3. SAMI
2
-pH schematic with tris valve set-up for in situ data validation. 

3.2.2. SAMI-CO2 

Fundamentally, the SAMI-CO2 operates in a similar manner to the SAMI-pH – the pCO2 is 

measured by determining the absorbance ratios of the acid and base forms of a diprotic 

sulfonephthalein indicator (bromothymol blue, or BTB).  BTB solutions of 5.6x10
-5

 mol kg-

solution
-1

 were made from Sigma-Aldrich bromothymol blue sodium salt, # 114421-25G, in 8.48 

mol kg-solution
-1

 NaOH. Instead of mixing pH indicator with a seawater sample as in the SAMI-

pH, a solution of the indicator is pumped through a gas-permeable membrane where it is allowed 

to equilibrate with the seawater pCO2 before being pumped through the optical flow cell to 

measure absorbances.  The peaks for BTB correspond to 434 nm for the protonated (acidic) form 

and 620 nm for the un-protonated (basic) form. 
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pCO2 is determined using the ratio RCO2: 

         
    

      
          (3.2) 

where R is (A434/A620) and ei’s are: 

    
     

     
          (3.3) 

    
     

     
          (3.4) 

    
     

     
          (3.5) 

pCO2 is then calculated from RCO2 (Equation 3.2) and the SAMI-CO2 calibration coefficients 

[DeGrandpre et al., 1995]. The SAMI-CO2 is calibrated before deployment in a temperature-

controlled water bath (10°C) over a range of pCO2 values by comparing SAMI-CO2 values to 

those measured by an infrared CO2 analyzer (LI-COR LI-840).The SAMI-CO2 calibration 

coefficients are fitted from this comparison [DeGrandpre et al., 1995]. 

3.2.3. Other Measurements 

In addition to the SAMI-pH and SAMI-CO2 deployed at NH-10, the mooring itself was equipped 

with salinity (S) sensors (Sea-bird MicroCAT SBE37) at four depths (2 m, 10 m, 20 m, and 60 

m) and temperature (T) sensors (Sea-bird SBE39) at 10 depths (4 m, 6 m, 8 m, 10 m, 15 m, 25 

m, 30 m, 40 m, 50 m, 70 m). There was also a pyranometer (LI-COR LI-200) for measuring 

solar radiation. During two deployments (autumn 2009 and spring 2011) an oxygen (O2) sensor 

(Aanderaa oxygen optode 4175) was deployed at the same depth (~2 m) as the SAMIs. At the 

shelf break, a conductivity-temperature-depth (CTD) sensor was deployed at a depth of 116 m 

alongside the SAMI-CO2 and SAMI-pH to measure salinity, temperature, and pressure (P).  
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Discrete samples were collected during 2011 at a depth of ~5 m near the NH-10 mooring and 

later analyzed for pCO2 and DIC using a modification of the method developed by Bandstra et 

al. [2006] to measure pCO2 and DIC on the same sample. Discrete samples were not collected 

during other years due to logistical issues, i.e. difficulty in accessing the NH-10 and shelf break 

vicinities to take samples.   

Wind speed and wind direction data were collected from the anemometer at NDBC station 46050 

(Figure 3.1.1), shown to be representative of cross-shelf winds at NH-10 by Hales et al. [2006]. 

The 10-day running average of the north-south wind component was calculated in order to 

discern the strength and direction (i.e. upwelling or downwelling-favorable) of the winds. Six-

hourly upwelling indices (UI) were obtained from the Pacific Fisheries Environmental 

Laboratory (PFEL) as an additional measurement of upwelling or downwelling intensities. Daily 

average river discharge for the Columbia River (CR) was obtained from the Columbia River 

Fisheries (CRF) for the farthest downstream station available (Bonneville, WA).   

Satellite chlorophyll-a (chl-a) was retrieved from the European Space Agency’s GlobColour 

database (http://hermes.acri.fr).  Level-3 products were averaged [Antoine, 2004; Lee, 2006] 

from MODIS, SeaWiFS, and MERIS chl-a products. The Chl-a level-3 products used in this 

study were retrieved at a 1 km resolution for the 10 km x 10 km bin centered on NH-10 and 

averaged.  

3.2.4. Inorganic Carbon Calculations 

Inorganic carbon system calculations were made in CO2SYS [Pierrot et al., 2006] using K1 and 

K2 calculated by Mehrbach et al. [1973] refit by Dickson and Millero [1987] and KHSO4 from 

Dickson [1990] on the total pH scale. In addition to two carbonate system parameters (pH, pCO2, 

http://hermes.acri.fr/
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AT, or DIC), in situ T, S, P were the inputs to calculate the remaining carbonate system 

parameters.  ΩCa and ΩAr were also calculated in CO2SYS using K
*
spAr from Mucci [1983]. 

3.3. Data Quality Assessment 

3.3.1. Introduction 

The long-term deployment of SAMI-pH and SAMI-CO2 pairs is a novel approach to 

characterizing inorganic carbon system dynamics. Gray et al. [2011; 2012] previously 

determined that high-temporal resolution     
    and Ω could be accurately calculated using pH 

and pCO2 dataset inputs during several short-term (~2 month) deployments, as discussed 

previously.  However, further methods of in situ data validation are required to verify the 

accuracy of the long-term pH and pCO2 datasets and the inorganic carbonate parameters 

calculated from them. 

In order to further study the usefulness of using paired SAMI-pH and SAMI-CO2 measurements 

to calculate parameters of marine carbonate system, SAMI pairs were deployed together on the 

NH-10 mooring and at the shelf break (see locations in Figure 3.1.1). This data was also used to 

study carbonate system dynamics (see sections 3.4 and 3.5 below). The marine environment can 

be tough on instruments. As a result, SAMI failures were not uncommon. The hatched regions in 

Table 3.3.1 show where data was not recorded due to failure of the instrument, where biofouling 

made the collected data unusable, or when the moorings themselves were lost.  Access to 

instrumentation on the NH-10 mooring is limited to deployment cruises approximately every six 

months so if an instrument failed during deployment it remained on the mooring until the NH-10 

mooring was recovered.   
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Table 3.3.1. Timeline of NH-10 and shelf break deployments showing when data were 

successfully collected. The pCO2 measurements in 2007-2009 were collected jointly with and 

have also analyzed by Evans et al., [2011]. 

 

 

Several SAMI failures occurred during the five-year NH-10 time-line. Despite extensive battery 

testing [Cullison, 2010] battery failures occurred in two of the SAMI-pH instruments deployed.  

If the battery voltage dropped below 10 V, the SAMI was unable to pump in a seawater sample.  

Macroalgae biofouling also affected data collection, especially in instruments that were deployed 

over the highly productive summer upwelling season.  In an effort to combat biofouling, copper 

tubing was placed around the inlet tube of the SAMI-pH. However, during one deployment the 

copper corroded to the point that the pump was no longer able to draw seawater samples through 

the inlet tubing.  During another deployment, particulate matter got trapped early on in 

deployment in the SAMI-pH valve, resulting in it getting stuck in the “seawater sample” 

position. No pH reagent was added to the sample and so no accurate pH measurements were 

recorded. On another occasion, the reagent bag on a SAMI-CO2 tore open towards the end of 

deployment.  At one point during a winter storm in late 2010, the NH-10 mooring broke free of 

its anchor and ended up beached at Cape Disappointment, Washington.  The SAMI-pH on this 
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deployment was found with its housing breached and its electronics flooded; no data was 

retrieved.   

SAMI-pH and SAMI-CO2 instruments at the shelf break mooring (Figure 3.1.1) also experienced 

failures (Table 3.3.2).  Although the depth of the shelf break mooring meant that biofouling was 

not an issue as it was in surface waters, the depth had its own impact on the SAMIs.  During two 

deployments, the SAMI pump became air-locked and was unable to pump either seawater 

sample or reagent.  On another deployment, pressure built up within the SAMI-pH from gases 

released by the battery causing it to strip the screws holding the top bulkhead when it reached the 

surface during recovery.  As a result, the electronics were flooded and no data were recovered.  

On the last shelf break deployment (in 2011), the acoustic release did not release during recovery 

and so the instruments remain on the shelf floor and no data were recovered.   Nonetheless, the 

data that were collected resulted in a completely novel dataset with unprecedented temporal 

resolution spanning five years and all four seasons. 

There are a number of approaches for validating the in situ SAMI-pH and SAMI-CO2 

measurements.  We chose to analyze three methods available given the location and deployment 

timelines of the SAMIs. Discrete samples taken at the NH-10 buoy during deployments were 

analyzed and compared to SAMI data points from the same time. The SAMI-pH deployed during 

the spring and summer of 2011 was equipped with the seawater certified reference material 

(CRM) tris buffer as an in situ validation method.  Gray et al. [2011] determined that a 

conservative salinity-derived alkalinity (ATsalin) could be used together with the SAMI data to 

quantitatively compare datasets measured by SAMI-pH and SAMI-CO2. This inter-comparison 

allows us to verify the ATsalin relationship used to calculate inorganic carbonate parameters when 

both SAMI-pH and SAMI-CO2 data are not available.  
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3.3.2. Discrete Samples 

Discrete samples from the approximate location of NH-10 were collected and analyzed for pCO2 

and DIC in the Burke Hales laboratory at Oregon State University using a method modified from 

that described by Bandstra et al. [2006]. From pCO2 and DIC, the other carbonate system 

parameters could be calculated in CO2SYS.  These values from the sample could then be 

compared to pH and pCO2 data recorded by the SAMIs at NH-10 during the same time periods 

the discrete samples were collected.  If discrete samples were taken at the same time and from 

the same water mass located at NH-10, then the SAMI and discrete sample carbonate system 

parameter values should match.  

The discrete sample carbonate system parameters are reported in Table 3.3.2. SAMI-CO2 values 

were within 1-13 µatm (n = 4) from discrete sample values and SAMI-pH measurements were 

within 0.003-0.04 (n = 4) from pH values calculated in CO2SYS for the discrete sample values 

(Table 3.3.2). DIC and AT differences ranged between 5 to 142 µmol kg
-1

 and between 15 to 110 

µmol kg
-1

(Table 3.3.2), respectively. ΩCa and ΩAr calculated in CO2SYS from SAMI data 

differed by0.15 to 0.52 and 0.14 to 0.52 (n = 4), respectively, from those calculated from sample 

data (Table 3.3.2). The largest differences in DIC, AT, ΩCa, and ΩAr correspond to the sample 

with a large pH difference of 0.04 and large pCO2 difference of 13 µatm, suggesting that this 

sample was retrieved from a water mass not representative of the one being sampled by the 

SAMIs at that specific time. 
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Table 3.3.2. Discrete samples from NH-10 compared to SAMI data. Temperature (T) is in °C, 

pCO2 is in µatm, AT and DIC are in µmol kg
-1
. Salinity (S), pH, and Ω are unitless. *Indicates 

CO2SYS-calculated values. 

 

3.3.3. Tris Comparison 

During the spring and summer of 2011, a SAMI
2
-pH with a tris CRM (salinity = 35) was 

deployed at NH-10.  The SAMI measured seawater pH every three hours and a tris CRM sample 

once every five days.  The tris pH is compared to the calculated tris value (using the temperature 

and salinity-dependent equation for tris buffer found by DelValls and Dickson [1998]) in Figure 

3.3.1. In addition, a pH correction was applied to the SAMI-pH data to correct for impurities in 

Date T S pH* pCO2 AT* DIC ΩCa* ΩAr*

5/4/11 21:00 11.86 29.37 8.163 277.5 2096 1923 3.58 2.25

5/4/11 21:00 11.84 29.36 8.172 270.0 2089 1912 3.63 2.28

6/9/11 20:57 13.37 29.60 8.189 281.0 2275 2030 4.32 2.73

7/13/11 23:00 14.20 30.16 8.186 292.8 2362 2102 4.62 2.93

Date T S pH pCO2 AT* DIC* ΩCa* ΩAr*

5/4/11 21:00 10.68 29.70 8.169 270.3 2085 1886 3.48 2.19

5/4/11 21:00 10.68 29.70 8.169 270.3 2085 1886 3.48 2.19

6/9/11 21:00 13.94 28.94 8.151 293.7 2132 1920 3.79 2.39

7/13/11 23:00 16.50 28.18 8.194 295.8 2384 2118 4.96 3.21

Date T S pH pCO2 AT* DIC* ΩCa* ΩAr*

5/4/11 21:00 1.18 -0.33 -0.006 7.2 11 37 0.10 0.06

5/4/11 21:00 1.16 -0.34 0.003 -0.3 5 26 0.15 0.09

6/9/11 21:00 -0.57 0.66 0.038 -12.7 142 110 0.52 0.33

7/13/11 23:00 -2.30 1.98 -0.008 -3.0 -22 -15 -0.34 -0.28

Average -0.13 0.49 0.007 -2.2 34 39 0.11 0.05

Discrete Samples

SAMI

Difference (Discrete - SAMI)
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the SAMI-pH indicator, mCP (discussed below). 

 

Figure 3.3.1. Comparisons between SAMI tris pH and calculated tris pH during the 

spring/summer 2011 deployment. (a) Temperature of the tris measurement and sea surface 

temperature as measured by the SAMI-pH. (b) Tris pH as measured by the SAMI-pH (black 

triangles), the SAMI-pH with the mCP correction applied (red circles), and as calculated using 

temperature values (green x’s). (c) The difference between SAMI-pH measured tris (with the 

mCP correction) and calculated tris.  
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The calculated tris pH (green crosses, Figure 3.3.1) was always closer to the corrected SAMI 

measurement of tris pH (red circles, Figure 3.3.1) than the uncorrected SAMI measurements of 

tris pH (black triangles, Figure 3.3.1). The error between the corrected measured tris pH and 

calculated tris pH is small, with an average error of 0.0017 pH units; this is less than the 

commercially-stated accuracy of the instrument (±0.003). The plot of the error between 

calculated and corrected measured tris (Figure 3.3.1c) showed no identifiable drift over time.  In 

addition, the pH error showed little correlation with temperature and the previously measured pH 

(R
2
=0.15, p-value>0.01, n=28), indicating that errors between the measured tris pH and 

calculated tris pH are random.   

In their research into the impurities between different batches of mCP [Liu et al., 2011] 

determined that previous pH measurements using unpurified mCP pH indicator could be 

corrected by applying a pH offset to the data. The pH offset was determined in our lab using an 

unpurified mCP indicator solution to measure pH values of a seawater certified reference 

material (tris in synthetic seawater, [DelValls and Dickson, 1998]) on the Cary 300 and 

comparing them to the calculated value based on salinity and temperature [Delvalls and Dickson, 

1998] (Figure 3.3.2). Using this method, Emma Jaqueth (undergraduate researcher in the 

DeGrandpre Lab) determined the indicator impurity correction for mCP batch #11517KC (mCP 

sodium salt from Sigma-Aldrich) to be: 

pHcorr = pHmeas – (0.022228·pHmeas
2
 – 0.034575·pHmeas + 1.322984 )   (3.6) 

where        is the pH>8.0 corrected for mCP impurities and         is the SAMI-pH.  This 

correction was applied to all SAMI-pH field data (see Table 3.3.1).  The average difference 

between        and        for field data on the Oregon Coast was ±0.0036.  
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Figure 3.3.2. The pH difference between calculated tris pH [Delvalls and Dickson, 1998] and the 

tris pH determined by E. Jaqueth on the Cary 300 using reagent made from Sigma-Aldrich mCP 

batch #11517KC. Two bottles of standardized tris buffer were tested (prepared by Andrew 

Dickson at Scripps Institute of Oceanography). 

Figure 3.3.3 shows the pH correction for mCP impurities applied to SAMI-pH field data for 

spring and summer 2011.  Higher measured pH values required a larger correction for the 

impurities. The pH corrections at measured pH-values above 8.3 approached 0.008 (Figure 

3.3.3b), more than two times the stated accuracy of the instrument.  This large difference due to 

dye impurities at high pH indicates that pH correction for dye impurities is especially important 

for seawater measurements in locations that experience large changes in pH over time.   
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Figure 3.3.3. (a) SAMI-pH correction applied to SAMI-pH field data from 2011 measured at the 

NH-10 mooring. (b) Difference between measured pH and corrected pH (measured minus 

corrected). 

3.3.4. Paired SAMI-CO2 and SAMI-pH Calculations 

As described by Gray et al. [2011], deploying SAMI-pH and SAMI-CO2 instruments at the same 

location allows for in situ quality control.  Because any two carbonate parameters can be used to 

calculate the rest of the parameters in the carbonate system, SAMI-pH and SAMI-CO2 data can 

be used  together as inputs with T, S, and P data to calculate the other carbonate system 

parameters in CO2SYS or separately with alkalinity derived from a conservative salinity-

alkalinity relationship (ATsalin) for that location.  Millero [1995] and Gray et al. [2011] discuss 
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the accuracy errors in calculated carbonate system parameters using the six possible 

combinations of input parameters (pH-AT, pH-DIC, pH-pCO2, pCO2-DIC, pCO2-AT, and AT-

DIC).  Of these combinations, the pH-pCO2 combination gives significantly larger imprecision 

due to the proportional relationship between pH and pCO2. The pH-AT and pCO2-AT 

combinations result in smaller errors [Millero, 1995].  Although the pH-pCO2 combination 

resulted in very large DIC errors, Gray et al. [2011] found that this combination could be used to 

accurately calculate     
    and Ω. The parameters calculated by these three pairs (pH-pCO2, 

pCO2-AT, and pH-AT) can be compared to validate the SAMI datasets. First, however, the 

appropriate ATsalin relationship for the field site had to be determined.  

3.3.4.1. Salinity-Alkalinity Relationships 

The relationship between S and AT changes based on location, due to differences the extent of 

deep waters outcropping at the surface [Millero et al., 1998] and freshwater end-members in 

coastal areas . We compared three salinity-alkalinity relationships– the salinity-alkalinity 

relationship for the Pacific derived by [Millero et al., 1998]: 

                             (3.7) 

one derived from alkalinity and salinity data from the 2007 NACP West Coast Cruise (Carbon 

Dioxide Information Analysis Center (CDIAC, cdiac.ornl.gov)): 

                             (3.8) 

and one derived for California coastal waters [Gray et al., 2011]: 

 ATsalin = 543.5+ 50.8 *S        (3.9) 



44 
 

 

Figure 3.3.4. Comparison between alkalinity-salinity relationships for the North Pacific and 

discrete sample AT from NH-10 (a). Each alkalinity-salinity relationship applied to salinity field 

data from NH-10 during summer 2011 (b). Note the scale change between the two figures. 

The three relationships are shown in Figure 3.3.4.  The three relationships produce alkalinities 

within 25 µmol kg
-1

 seawater at low salinity (~27) and within 13 µmol kg
-1

 seawater at high 

salinity (34) of each other.  This corresponds to aragonite saturation state calculations within 

0.07 at low salinity and 0.01 at high salinity. The AT calculated for the discrete water samples 

from NH-10 in 2011 best matched the relationship derived by Gray et al. [2011], with the ATsalin 

calculated from this relationship differing between 3-11% from the discrete AT (the other 

relationships differed between 4-13%). In addition, when SAMI-pH and SAMI-CO2 data were 

both available, AT could be calculated in CO2SYS using pH and pCO2 as input parameters. 

These AT values were noisy due to the propagation of errors when using those two input 

parameters (see Millero [2007]; Cullison [2010]; Gray et al. [2011]), but the baseline of these 

values was closest to the Gray et al. [2011] ATsalin relationship (Equation 3.9).  The average 

ATsalin from the Gray et al. [2011] relationship was on average 20% closer to AT from pH/pCO2 

than the ATsalin from the Millero et al. [1998] relationship and 33% closer than the ATsalin from 

the NACP (2007) relationship.  Thus the Gray et al. [2011] relationship was used. 
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3.3.4.2. Data Validation Using Paired SAMI-pH and SAMI-CO2 

Out of five years of SAMI deployments at NH-10, there were three SAMI deployments during 

which both SAMI-pH and SAMI-CO2 instruments successfully recorded data, one in the spring 

of 2009, one in the autumn of 2009, and one during the spring/summer of 2011 (see Table 3.3.1).  

For each deployment when both pH and pCO2 were collected data comparisons between SAMI-

collected data and CO2SYS-calculations (i.e. pCO2 from pH-ATsalin or pH from pCO2-ATsalin) 

were made (Figures 3.3.5-3.3.7). ΩAr was also calculated in CO2SYS using three different pairs 

of carbonate parameters: pCO2-ATsalin, pH-ATsalin, and pH-CO2 for each of these three 

deployments.  

The pCO2-ATsalin and pH-ATsalin calculations follow the SAMI data remarkably well considering 

the ATsalin relationship used was determined for California coastal waters.  The differences 

between SAMI data and ATsalin-calculated data are reported in Table 3.3.3. Differences for pH 

(0.01-0.02) and pCO2 (2-11 µatm) are remarkably small, especially for the length of time the 

instruments were measuring (>2 months).  The changes in the inorganic carbonate system 

measured by each instrument track well, even during rapid (<2 days) pH changes of up to 0.2 

and pCO2 changes up to 200 µatm. 

Table 3.3.3. The differences between calculated and measured pH and pCO2 and the three 

methods of calculating ΩAr. 

Deployment n pH
b 

pCO2
c
 (µatm) ΩAr

d 
ΩAr

e 
ΩAr

f 

Spring 09
a
 1464 0.01±0.01 7±8 -0.06±0.08 -0.09±0.13 0.04±0.05 

Autumn 09
a 1151 0.01±0.03 2±18 -0.07±0.23 -0.10±0.36 0.03±0.13 

Summer 11
a
 1698 0.02±0.01 11±10 -0.10±0.09 -0.16±0.14 0.09±0.06 

a
Average difference ± standard deviation 

b
pHATsalin-pCO2 minus measured pH  

c
pCO2ATsalin-pH minus measured pCO2   

d
ΩpH-ATsalin 

minus ΩpH-pCO2 
e
ΩpCO2-ATsalin minus ΩpH-pCO2  

f
ΩpH-ATsalin minus ΩpCO2-ATsalin 



46 
 

The large differences between SAMI-pH or pCO2 data and their calculated values at the end of 

the deployments in spring of 2009 and summer of 2011 are likely due to biofouling of one or 

both of the SAMIs.  The effect of biofouling is most evident in the large diel changes in the 

SAMI-CO2 data starting in mid-June of 2011 (Figure 3.3.7) that are not matched in intensity in 

the SAMI-pH data.  For this reason, SAMI-CO2 data after June 12, 2011, was discarded.  At the 

end of autumn 2009, a battery issue in the SAMI-pH led to reagent pumping issues which caused 

an offset and drops in the pH data (see Figure 3.3.6). Due to these inaccuracies, pH data was 

discarded after November 17, 2009 for that deployment.  There is another large offset between 

the SAMI-pH and SAMI-CO2 data during September, 2009 (Figure 3.3.6).  
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Figure 3.3.5. Quality assurance for the spring 2009 NH-10 deployment. (a)SAMI-CO2 and pCO2 

from pH-ATsalin. (b) Measured pCO2 minus pCO2 from pH-ATsalin. (c) SAMI-pH and pH from 

pCO2-ATsalin. (d) Measured pH minus pH from pCO2-ATsalin. ΩAr from each calculation 

combination (pH-pCO2, pH-ATsalin, and pCO2-ATsalin). Differences between ΩAr calculations can 

be found in Figure 3.3.12. The average differences are reported in Table 3.3.4). 
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Figure 3.3.6. Quality assurance for the autumn 2009 NH-10 deployment. (a)SAMI-CO2 and 

pCO2 from pH-ATsalin. (b) Measured pCO2 minus pCO2 from pH-ATsalin. (c) SAMI-pH and pH 

from pCO2-ATsalin. (d) Measured pH minus pH from pCO2-ATsalin. ΩAr from each calculation 

combination (pH-pCO2, pH-ATsalin, and pCO2-ATsalin). Differences between ΩAr calculations can 

be found in Figure 3.3.12.  The average differences are reported in Table 3.3.4). 
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Figure 3.3.7. Quality assurance for the spring 2011 NH-10 deployment. (a)SAMI-CO2 and pCO2 

from pH-ATsalin. (b) Measured pCO2 minus pCO2 from pH-ATsalin. (c) SAMI-pH and pH from 

pCO2-ATsalin. (d) Measured pH minus pH from pCO2-ATsalin. ΩAr from each calculation 

combination (pH-pCO2, pH-ATsalin, and pCO2-ATsalin). Differences between ΩAr calculations can 

be found in Figure 3.3.12.  The average differences are reported in Table 3.3.3). 



50 
 

 

Figure 3.3.8. (a-c) Difference in SAMI and calculated pH compared to salinity for (a) spring 

2009 (see Figure 3.3.5), (b) autumn 2009 (see Figure 3.3.6), and (c) spring 2011(see Figure 

3.3.7) deployments at NH-10.  (d-f) Temperature-salinity relationships for Oregon shelf water 

during the three deployments. The circle in (e) highlights the unusually high T and S water mass.  

The cause of this is uncertain, especially since it appears to go away starting October 1, 2009.  It 

is possible that the NH-10 site was host to a water mass with a different salinity-alkalinity –

relationships, resulting in inaccurate CO2SYS calculations of both pCO2 and pH.   

Figure 3.3.8 shows the difference between observed and calculated pH for each of the three 

paired-SAMI deployments as well as the T-S relationships during each time.  The T-S 

relationship is a good proxy for the water mass since different water masses will have a different 

T-S relationship based on where they were formed [i.e. Mamayev, 1975]. The water present at 

NH-10 during September 2009 was unusually high in both T and S compared to the water 

present during spring 2009 and 2011 or later in the autumn of 2009 (see circle, Figure 3.3.8e) 
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and is open ocean North Pacific water [Venegas et al., 2008].  A different salinity-alkalinity 

relationship for this water mass would explain the mis-match between the measured and 

calculated pH and pCO2 data during this time. Replacement by a lower T, higher S water mass in 

October with a salinity-alkalinity relationship closer to that used by [Gray et al., 2011] results in 

the closer match between measured and calculated parameters during this time.  For these 

reasons, the data during September 2009 was discarded.  

 

Figure 3.3.9. pH calculated from pCO2-ATsalin vs. SAMI-pH for deployments during spring 2009 

(see Figure 3.3.5), autumn 2009 (see Figure 3.3.6), and spring 2011 (see Figure 3.3.7). The black 

line is a 1-to-1 line. 
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Figure 3.3.10. Differences (ΩAr from pH-pCO2 minus ΩAr from ATsalin) between the 

combinations of parameters used to calculate ΩAr. The average differences can be found in Table 

3.3.3. 

The average SAMI reproducibility (i.e., the differences between the SAMI-measured and 

CO2SYS-calculated parameters) was calculated for each of the three paired-SAMI deployments 

after discarding the above data.  These values can be found in Table 3.3.3.  Summer 2011 had the 

largest differences for all parameters.  Gray et al. [2011] reported that rapid changes in pH and 

pCO2 result in large spikes in the calculated parameters. These breakdowns in correlation 

between SAMI-pH and SAMI-CO2 data can result from spatial and sample timing mis-matches 

between the two instruments. Figures 3.3.5-3.3.7 show that the largest differences between the 
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measured and calculated parameters frequently occur during rapid changes in the carbonate 

system.  The paired-SAMI deployment during 2011 was the only paired-deployment that took 

place fully during the summer upwelling season when large changes in the carbonate system 

over short periods of time are expected.  This variability likely resulted in the larger differences 

for 2011 reported in Table 3.3.3. 

In order to determine whether there were systematic offsets between the SAMI-pH and the 

SAMI-CO2, measured pH was plotted against calculated pH (Figure 3.3.9), measured pCO2 was 

plotted against calculated pCO2 (figure not shown), and ΩAr from pH-pCO2 was plotted against 

ΩAr from pH-ATsalin (Figures 3.3.10 and 3.3.11). Figure 3.3.9 shows the results from comparing 

SAMI-pH to pH from pCO2-ATsalin.  Spring 2009 follows the 1 to 1 line pretty closely. During 

the autumn of 2009, there are significant differences between the SAMI data and the calculated 

pH. At lower pH values, the calculated pH is higher than the measured pH data while at higher 

values the calculated pH is significantly lower than the measured pH. SAMI-pH data was plotted 

against SAMI-CO2 data for each of the three deployments (Figure 3.3.13). The data from autumn 

2009 (Figure 3.3.9b) result in an almost linear relationship, deviating from the expected non-

linear relationship observed during spring 2009 and spring 2011, suggesting that measurements 

from one or both sensors were inaccurate.  Spring 2011 (Figure 3.3.9c) also shows significant 

deviations from the 1 to 1 line. Figure 3.3.9c shows that the SAMI-CO2 and ATsalin combination 

consistently calculates a lower pH than that measured by the SAMI-pH, again suggesting that 

one or both sensors may be inaccurate or the salinity-alkalinity relationship deviates from the one 

in Equation 3.9. It is not possible to determine which sensor was inaccurate and so the data from 

this period were not used. The relationships between calculated and measured pCO2 during the 
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three deployments are very similar to those shown for pH (Figure 3.3.9) and thus are not shown 

here.  

 

Figure 3.3.11. ΩAr calculated from each of the three deployments when both pH and pCO2 data 

were collected. Ωar from ATsalin/SAMI-CO2 vs. Ωar from SAMI-CO2/SAMI-pH for (a) spring 

2009, (c) autumn 2009, (d) spring/summer 2011. Ωar from ATsalin/SAMI-pH vs. Ωar from SAMI-

CO2/SAMI-pH for (b) spring 2009, (d) autumn 2009, and (f) spring/summer 2011. 
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As explained in the Introduction (section 1.1), ΩAr is mechanistically lower than ΩCa. For this 

reason and because of the importance of ΩAr for the larval stages of Crassostrea gigas (an 

economically-important calcifying organism on the coast) characterization of ΩAr dynamics was 

the focus of this field study. In addition, ΩAr is often the main focus in ocean acidification 

research because it is as a bellwether of the potential impacts of ocean acidification.  ΩCa was 

assumed to have similar dynamic but a higher saturation state. The two different methods of 

calculating ΩAr from ATsalin are compared to ΩAr calculated from pH-pCO2 in Figures 3.3.10 and 

3.3.11.  The SAMI-pH and SAMI-CO2 combination results in lower calculated ΩAr values than 

either of the ATsalin combinations. These greater offsets are also evident in Table 3.3.3, with the 

differences for ΩAr calculated from SAMI-pH and SAMI-CO2 relatively greater than those 

calculated using ATsalin.   

 

Figure 3.3.12. SAMI-pH vs. SAMI-CO2 for deployments during spring 2009 (red), autumn 2009 

(black) and spring 2011 (green). 
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Although Gray et al. [2011] had determined that the pH-pCO2 combination could be used to 

accurately calculate ΩAr, these datasets show that combination can result in large offsets in ΩAr. 

Thus this combination for calculating ΩAr should be used with caution. The comparisons in 

Figures 3.3.4-3.3.7 show that (with the exception of September 2009) the salinity-alkalinity 

relationship from Equation 3.9 holds for the field site and the ΩAr derived from ATsalin and either 

pH or pCO2 were always somewhat closer than ΩAr derived from SAMI-pH and SAMI-CO2 

(Table 3.3.3).  Therefore, the ΩAr values (and the other calculated-carbonate parameters) 

reported here were obtained by averaging the values at each measurement time derived from 

pCO2- ATsalin and pH-ATsalin.  Table 3.3.4 gives a detailed description of which input parameters 

were used at each time during all deployments.  

Table 3.3.4. Deployment Dates and ΩAr Calculation Methods 

Date 
SAMI data 

available 

ΩAr Calculation 

Method 

8/16/07-10/12/07 pCO2 ATsalin and pCO2 

10/19/07-11/6/07 pCO2 ATsalin and pCO2 

4/10/08-9/7/08 pCO2 ATsalin and pCO2 

3/23/09-5/25/09 pH and pCO2 Average
a
 

10/1/09-11/17/09 pH and pCO2 Average
a
 

11/18/09-4/15/10 pCO2 ATsalin and pCO2 

10/19/10-11/29/10 pCO2 ATsalin and pCO2 

4/11/11-6/21/11 pH and pCO2 Average
a
 

6/22/11-9/6/11 pH ATsalin and pH 

a
Average of ΩAr calculated from pH-ATsalin and ΩAr calculated from pCO2-ATsalin at each sample 

time. 
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3.4. Aragonite saturation state Dynamics in the Oregon Coastal Upwelling Zone  

What follows is a paper adapted from the one published by K. Harris in Geophysical Research 

Letters in 2013 [Harris et al., 2013]. 

3.4.1. Introduction  

The oceanic uptake of anthropogenic CO2 and the resultant ocean acidification have been well-

documented [Haugan and Drange, 1996; Caldeira and Wickett, 2003; Feely et al., 2008; Dore et 

al., 2009; Midorikawa et al., 2012] Moorings such as the Bermuda Atlantic Time-series (BATs) 

and the Hawaii Ocean Time-series, the Hawaii Ocean Time-series (HOT) and Station Papa in the 

North Pacific have resulted in datasets describing long-term trends in the carbonate system, but 

their low sampling frequency (~once a month) miss short-term dynamics. Coastal margins, 

especially coastal upwelling regions, are harder to study on these lower sampling frequencies due 

to their high short-term carbonate system variability.  

Coastal upwelling zones are highly productive regions [Friederich et al., 2008; Chavez and 

Messié, 2009] [Boehme et al, 1998] due to the influx of nutrients that accompanies the low-pH, 

low-Ω, and high-pCO2 of upwelled waters. To better understand how changes in the carbonate 

system due to ocean acidification will affect these regions, a better characterization of the current 

variation in the coastal upwelling carbonate system is necessary.   As stated earlier, autonomous 

sensors with higher sampling frequencies such as the SAMI-pH and SAMI-CO2 make possible 

the calculation and characterization of the daily, seasonal, and annual variation of highly 

dynamic regions like the Oregon shelf. 

The Oregon coastal upwelling zone is particularly susceptible to changes in the ocean carbonate 

system due to ocean acidification due to the influx of naturally low-ΩAr waters due to upwelling. 

Ocean acidification lowers ΩAr in upwelled waters even further, sometimes to below saturation. 
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Previous studies of the region recorded several events in which nearby surface waters reached 

aragonite undersaturation for short periods of time [Feely et al., 2008; Barton et al., 2012]. 

However, the frequency and duration of these events has not been well-characterized.   

As a follow-up to the air-sea CO2 flux time-series study by Evans et al. [2011], we present long-

term time-series of ΩAr values in the Oregon coastal upwelling zone. Additionally, we use high 

temporal resolution data to examine the processes controlling short-term changes in ΩAr and 

compare the current ΩAr range to the estimated pre-industrial ΩAr range. 

3.4.2. Calculations 

Three mechanisms were assumed to control ΩAr changes on the Oregon shelf.  Phytoplankton 

productivity in the photic zone will result in a change in ΩAr by decreasing pCO2 as the 

phytoplankton take up CO2 during photosynthesis.  Air-sea CO2 gas exchange will lead to a 

seawater pCO2 increase or decrease and result in DIC and ΩAr changes.  Mixing with the 

Columbia River (CR) plume or upwelled water will also change ΩAr in surface water. Intrusion 

into surface NH-10 water of the low S, high T, and low DIC CR plume will decrease S and DIC 

and result in a decrease in ΩAr as plume water dilutes shelf water ΩAr. Upwelled water is high in 

S and in DIC. In order to figure out the seasonal controlling mechanisms of ΩAr, relationships 

between ΩAr and DIC were determined for net community production (NCP, the total biological 

production in the system (that takes up CO2 from the water) minus the total community 

respiration (that releases CO2 into the water), air-sea gas exchange, and the CR plume. In 

addition, a relationship between ΩAr and S was determined for the CR plume.  The NH-10 and 

shelf break ΩAr were plotted against DIC and S and how closely they fell along these 

relationships was used to determine the controlling mechanisms during each season. In addition, 
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pre-industrial ΩAr was estimated to determine how the NH-10 and shelf break ΩAr range has 

changed since the industrial revolution. 

3.4.2.1. Controlling Mechanism Relationships 

The relative influence of various processes on ΩAr was evaluated by using property:property 

plots of ΩAr versus DIC and S to compare reaction pathways NCP, air-sea gas exchange, mixing 

of water masses, dilution by CR run-off, and T and S effects on K
*
spAr with the observed data. 

The effects of NCP were estimated by varying DIC over the DIC range recorded for the shelf, 

1600-2300 µmol kg
-1

, and correspondingly varying AT by the Redfield ratio 106:18 (resulting in 

AT from 2100-2220 µmol kg
-1

) at the mean T and S for the observations (T=11.1°C, S=31.96) 

and calculating ΩAr in CO2SYS based on these values.  

Contributions from the CR plume were represented by a simple two end-member mixing model 

by diluting the Oregon shelf end-member (mean NH-10 surface values of DIC=1980 µmol kg
-1

, 

AT=2180 µmol kg
-1

, T=11.1°C, S=31.96) proportionally to salinity to the CR end-member 

(average CR values of DIC ~1000 µmol kg
-1

, AT ~980 µmol kg
-1

, T ~11.0°C, S ~1.00 (USGS 

National Stream Quality Accounting Network, http://water.usgs.gov/nasqan/)).  

Changes in mixed layer DIC due to gas exchange were calculated using the Ho et al. [2011] 

relationship for gas transfer velocity and an averaged atmospheric pCO2 for the shelf (392 µatm, 

[Evans et al., 2011]) divided by the mixed layer depth. The multi-depth temperature data from 

NH-10 were used to calculate MLD using the approach of Kara et al. [2000].  The mean NH-10 

DIC was then adjusted over the range of fluxes seen during this period and those DIC values, 

along with NH-10 mean values for AT, T, and S, were the inputs for CO2SYS to calculate the 

gas exchange-ΩAr relationship. The T and S dependence of K
*
spAr were calculated in CO2SYS 

http://water.usgs.gov/nasqan/)
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using in situ T and S. However, the effects of T and S on K
*
spAr resulted in only a small effect on 

ΩAr relative to the observed changes and thus will not be considered further.  

The California Undercurrent (CU) was assumed to be the upwelling source water for the shelf 

[Thomson and Krassovski, 2010]. CU water typically has T=6.9°C, S=33.9 [MacFadyen et al., 

2008], DIC=2150-2290 µmol kg
-1

, and AT=2250-2300 µmol kg
-1

 [van Geen et al., 2000; Hales 

et al., 2005b] to give an estimated ΩAr of 0.9±0.3 at the average depth of the CU, 225 m 

[Thomson and Krassovski, 2010]. 

3.4.2.2. Pre-Industrial ΩAr 

The extent to which present day ΩAr has changed from pre-industrial times was determined using 

a modified version of the method used by [Feely et al., 2008]. DIC in surface waters was 

assumed to rise at a rate such that pCO2 in surface waters maintained a constant offset from 

atmospheric pCO2. AT was assumed to encompass the same range observed in this study, without 

any transient behavior. The difference between pre-industrial and current annual mean DIC was 

calculated in CO2SYS using mean surface AT, T, and S for each season (see Table 3.4.1) and the 

pre-industrial atmospheric CO2 estimate for the year 1800 (~280 ppm) [Sabine et al., 2004] or 

the mean CO2 values for the years 2007-2011 (~390 ppm, NOAA Earth System Research 

Laboratory, http://www.esrl.noaa.gov/gmd/ccgg/, see Conway et al.[1994]), respectively. The 

anthropogenic contribution to DIC (ΔDIC) in surface waters is estimated using this method to be 

~50, ~53, ~56, and ~56 µmol kg
-1

 in spring, summer, autumn, and winter, respectively.  

The ΔDIC was then subtracted from CO2SYS-derived DIC values for 2007-2011 and these 

adjusted DIC values were used with in situ ATsalin, T, and S to calculate the pre-industrial ΩAr. 

The pre-industrial shelf break ΩAr was estimated using the same method, calculated using 

http://www.esrl.noaa.gov/gmd/ccgg/
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average in situ pressure for the shelf break (121 dbar). Shelf break source water DIC was 

estimated to have last been at the surface (and thus in contact with atmospheric CO2) 50 years 

previously [Feely et al., 2008] so the mean atmospheric CO2 value for 1967-1971 (~325 ppm) 

was used. The estimated ΔDIC for the shelf break is ~25 µmol kg
-1

.  

As a constraint on the above calculations, ΔDIC was also calculated assuming oceanic pCO2 

undersaturation and oversaturation of 50 ppm with respect to historic atmospheric values. This 

resulted in ΔDIC between ~44 to ~67 µmol kg
-1

 for surface waters which added little uncertainty 

(±0.1) to the ΔΩAr estimates. The shift in ΩAr is thus significant regardless of this level of 

disequilibrium with atmospheric pCO2. This method for calculating pre-industrial ΩAr includes a 

number of caveats – including the assumptions that seasonal means for AT, T, and S have not 

changed since pre-industrial times and that seasonal dynamics are similar each year going back 

to pre-industrial times. Observations do not exist to allow us to quantitatively assess the 

uncertainties related to these assumptions, but we cannot think of a scenario where changes in 

ecosystem functioning are likely to correlate with and mitigate the expected influence of rising 

atmospheric CO2. 

3.4.3. Results 

3.4.3.1. NH10 Field Data 

The multi-year time-series data for carbonate parameters and physical parameters can be found 

in Figures 3.4.1-3.4.5. Discrete data points for 2011 (see Table 3.3.2) are plotted along with 

time-series data in Figure 3.4.1.  pCO2 data were collected during all four seasons (seasons as 

designated by Smith et al, 2001): spring (April-May), summer (June-August), autumn 

(September-October), and winter (November-March) across five different years (Figure 3.4.1a).   
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Figure 3.4.1. NH-10 time-series for (a) SAMI-pH, (b) SAMI-CO2, (c) salinity, (d) temperature, 

(e-i) N-S wind component for the years 2007-2011. The red triangles show the values of the 

discrete samples (see Table 3.3.2). 
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pH data were collected during spring, summer, autumn, but only during the beginning of winter 

(Figure 3.4.1b).  pCO2 ranged from near 100 µatm to over 1100 µatm and remained 

undersaturated with respect to the atmosphere for large portions of spring, autumn, and winter 

(Figure 3.4.1a). Annual mean pCO2 was 380±172 µatm.  Surface pH ranged from 7.716 to 8.443, 

with the lowest values occurring during the summer upwelling season and the highest values in 

the autumn (Figure 3.4.1b). The annual mean was 8.139±0.111, slightly higher than the ocean-

wide mean of ~8.094±0.0002 [Dore et al., 2009]. T and S had a wide range as well, with 

temperatures ranging from 7.7°C to 18.2°C and salinity ranged from 22.2 to 33.4 (Figure 3.4.1c-

d).  

Table 3.4.1. NH-10 Measured parameters (Average ± standard deviation) 

 n pCO2 
(µatm) 

pH T 
(°C) 

S MLD 
(m) 

Winds 
(m s-1) 

Spring 4088 271±80 8.181±0.090 10.3±1.2 30.4±1.8 27±24 2±4 

Summer 3788 509±283 8.127±0.130 11.3±1.8 31.6±2.1 10±11 -3±2 

Autumn 2317 381±98 8.120±0.130 11.5±1.0 32.6±0.4 11±9 5±6 

Winter 3223 358±62 8.129±0.06 10.9±1.1 32.4±0.3 51±22 8±4 

 

Wind direction exhibited a distinct seasonality as expected in this EBUS, with winter winds 

predominantly and strongly northward and summer winds predominantly and strongly southward 

(Figure 3.4.1e-i).  Wind speed was weaker and wind direction generally more variable during 

spring and autumn as winds transitioned from predominantly downwelling-favorable to 

upwelling-favorable in spring and vice versa in autumn (the spring and autumn “transitions”, see 

[Hickey et al., 2006]) (Figure 3.4.1e-i). pCO2, pH, T, and S also varied seasonally.  The seasonal 

means can be found in Table 3.4.1. Mean pCO2 was lowest during the spring and highest during 

the summer upwelling season.  Except for the summer, mean pCO2 values remained below 

atmospheric values (mean of 392 µatm for the Oregon shelf [Evans et al., 2011]). Conversely, 
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mean pH was highest during the spring, with the lowest means during summer and into autumn 

(Table 3.4.1).   

Mean surface T was lowest in the spring during the onset of upwelling and highest in the autumn 

after heating during the summer. Salinity means were lowest during spring and summer. Summer 

experienced the greatest variability in all parameters except for the N-S wind component (Table 

3.4.1).  

There was also inter-annual variability in winds, with periods of upwelling-favorable winds 

occurring as late as December (Figure 3.4.1g and Figure 3.4.1i) and brief periods of 

downwelling-favorable winds outcropping during the middle of summer (Figure 3.4.1e and 

Figure 3.4.1g). There was significant inter-annual variability in pCO2 (Figure 3.4.1a) between 

autumn 2007, 2009, and 2010, with average values ranging between 274±19 µatm in 2009 to 

462±1 µatm in 2010.  Mean T and S did not vary as significantly with a mean T of 12.2±0.8°C 

and mean S of 32.5±0.3 in autumn 2009 and means of 12.4±0.3°C and 32.4±0.1 in 2010. 

3.4.3.2. Calculated Carbonate Parameters 

ATsalin and the CO2SYS-calculated carbonate parameters are displayed in Figure 3.4.2. As with 

the measured parameters, ATsalin, DIC, and Ω varied significantly more during all seasons except 

winter. The greatest temporal variability in amplitude occurred during the summer upwelling 

season (Figure 3.4.2, June through August) as periods of strong upwelling-favorable winds 

alternated with relaxation events (Figure 3.4.1e-i).  The mean surface values can be found in 

Table 3.4.2.  Surface ΩCa ranged from 2.77 to 6.0 while surface ΩAr had a range from 0.66 to 3.9 

(Figure 3.4.2d and Figure 3.4.2e). The mean ΩCa was 3.3 ± 0.8 and ΩAr was 2.2 ± 0.5, both 



65 
 

significantly below the estimated averages for the North Pacific Ocean (ΩCa=5.0±0.9 and 

ΩAr=3.3 ± 0.7) [Feely et al., 2009] (Figure 3.42d-e).  

 

Figure 3.4.2. NH-10 Carbonate Parameters. (a) ATsalin, (b) DIC, (c) carbonate ion concentration, 

(d), ΩCa, (e) ΩAr, (f) salinity, and (g) temperature.  
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Table 3.4.2. Calculated carbonate system parameters. (Average ± standard deviation). 

 DIC 
(µmol kg-1) 

ATsalin 
(µmol kg-1) 

ΩCa ΩAr     
    

(µmol kg-1) 

Spring 1880±103 2087±91 3.6±0.5 2.3±0.4 146±22 

Summer 1980±248 2148±106 3.1±1.1 2.0±0.7 126±44 

Autumn 2017±57 2198±18 3.2±0.7 2.1±0.6 134±30 

Winter 2003±34 2187±14 3.2±0.4 2.1±0.3 134±18 

 

As stated earlier, our focus is on ΩAr. In one event, surface water ΩAr changed by ~3 over a diel 

period (mid-June 2008, Figure 3.4.3, point A). There were eight intervals of ΩAr<1 (Figure 3.4.3, 

black numerals) on the surface at NH-10 that persisted from 6 hours to 3 days, although the 

frequency and duration of upwelling events differed inter-annually. 

 

Figure 3.4.3. Summer ΩAr. “A” refers to a period of rapid and large decrease during 2008. The 

numbers refer to periods where ΩAr decreased below 1.0. 

In their study of Netarts Bay (2 m average depth) on the Oregon coast, Barton et al. [2012] found 

frequent periods of undersaturation during summer 2009, a result of the stronger influence of 

upwelling near shore, as well as contributions from nighttime net respiration in shallow 

sediments of the bay. 
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Figure 3.4.4. Mixed layer depth for (a) 2007, (c) 2008, (e) 2009, (g) 2010, and (i) 2011 plotted 

with the N-S wind component for (f) 2007, (g) 2008, (h) 2009, (h) 2010, and (j) 2011. 
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Mixed layer depth is compared to the N-S wind component in Figure 3.4.4. The MLD deepened 

during periods of stronger winds, both during strong upwelling and strong downwelling-

favorable winds.  The seasonal means for MLD and N-S wind component are found in Table 

3.4.3. Mean MLD was greatest in the winter, as was the magnitude of the mean N-S wind 

component. The mean MLD decreased significantly during the summer and autumn as surface 

heating stratified the water column in between periods of upwelling-favorable winds.  

Table 3.4.3. Average seasonal mixed layer depth and average seasonal N-S wind component 

strength (Average ± standard deviation). 

 MLD 
(m) 

Winds 
(m s-1) 

Spring 27±24 2±4 

Summer 10±11 -3±2 

Autumn 11±9 5±6 

Winter 51±22 8±4 

 

Oxygen data was only collected during parts of three years: in the late summer of 2008 (Figure 

3.4.5), in late autumn and winter of 2009 (Figure 3.4.6), and spring and early summer of 2011 

(Figure 3.4.7).  Oxygen concentrations correlated negatively with the pCO2 moderately well in 

2009 (R
2
=0.673, p<0.0005, n=2838) but less so in 2008 (R

2
=0.324 p<0.0005, n=1708) and 2011 

(R
2
=0.266, p<0.0005, n=1708).  In April 2008, concentrations were moderately high (~300 µM) 

but were depleted during high-CO2 upwelling events and by early September were down near 

250 µM, near saturation. Concentrations were high at the beginning of autumn 2009 (>350 µM) 

but declined to around 250 µM during the winter.  Oxygen concentrations were near 350 µM at 

the beginning of spring in 2011 but displayed a downward trend until the start of summer.  
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Figure 3.4.5. (a) SAMI-CO2, (b) O2, and (c) temperature and salinity data for April-September 

2008. 

 

Figure 3.4.6. (a) SAMI-CO2, (b) O2, and (c) temperature and salinity data for October 2009-

January 2010. 
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Figure 3.4.7 (a) SAMI-CO2, (b) O2, and (c) temperature and salinity data for April-June 2011. 

 

3.4.3.3. Shelf Break Mooring 

As expected, average winter shelf break bottom water was colder and saltier than surface (NH-

10) water (see Table 3.4.4 for mean shelf break parameters). Mean pCO2, DIC, and ATsalin were 

significantly higher than at the surface for the beginning of this record while average ΩCa, ΩAr, 

and     
    values in shelf break bottom boundary layer waters were lower (Tables 3.4.2 and 

3.4.4). The mean winter values for  DIC and ATsalin were near the lower bounds for values 

predicted for the CU (DIC=2150-2290 µmol kg
-1

, and AT=2250-2300 µmol kg
-1

 [van Geen et al., 

2000; Hales et al., 2005b]) Due to remote wind forcing [e.g. Hickey et al., 2006], low ΩAr waters 

(Figure 3.4.8f, point A) appeared long before local winds indicated upwelling- favorable 

conditions.  The periods of low saturation support the seasonal dynamics of ΩAr predicted for 
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shelf break waters by Juranek et al. [2009].  During early winter 2009, there was a large spike in 

shelf break physical and carbonate parameters (Figure 3.4.8, point B and Figure 3.4.9b).  

Table 3.4.4. Measured and calculated parameters for the shelf break. (Average ± standard 

deviation).  

n pCO2 

(µatm) 

T 

(°C) 

S ATsalin 

(µmol kg-1) 

2060 636±230 9.2±1.0 33.4±0.3 2243±14 

n DIC 

(µmol kg-1) 

ΩCa ΩAr     
    

(µmol kg-1) 

2060 2135±70 1.8±0.6 1.4±0.5 89±29 

  

When compared with surface values for ΩAr (Figure 3.4.9a), it appears that the water column is 

mixed by downwelling all the way to the shelf break. Comparison with MLD data (Figure 

3.4.9c) confirms that this is possible, with a MLD>70 m at that time.  Unlike the near-Gaussian 

distribution seen in surface ΩAr (Figure 3.4.10), the deep shelf break water was constrained by 

the lower ΩAr of the California Undercurrent end-member (Figure 3.4.9b); estimated to be 

0.9±0.3 from mean California Undercurrent T, S, DIC, and alkalinity (AT) (see section 3.4.2.1). 
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Figure 3.4.8. Shelf break (a) SAMI-CO2, (b) ATsalin, (c) DIC, (d) ΩAr, (e) ΩCa, (f) salinity, (g) 

temperature, and N-S wind component for 2009 (h) and 2010 (i).  
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Figure 3.4.9. (A) NH-10 and (B) shelf break (SB) ΩAr during autumn 2009 plotted with (C) 

MLD. 

 

Figure 3.4.10. Frequency distribution of ΩAr at (a) NH-10 and (b) the shelf break (SB).  
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3.4.4. Discussion 

Several processes contribute to ΩAr variability on the shelf including upwelling and other water 

mass changes (e.g. riverine inputs), NCP, and air-sea gas exchange.  Variability from CaCO3 

formation and dissolution is expected to be minimal in this area [Fassbender et al., 2011]. We 

plotted ΩAr versus DIC and S (Figure 3.4.11) to discern relative contributions from each 

mechanism, calculated as described in (section 3.4.2.1). Several of these processes were 

important but varied widely between seasons and from year to year (Figure 3.4.11). Spring data 

are discussed first with inter-annual variability discussed when applicable.  
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Figure 3.4.11. Property: property plots by season for NH-10 and shelf break (SB) ΩAr. ΩAr vs. 

DIC for spring (a), summer (c), autumn (e), and winter (g). The Redfield relationship (as an 

indicator of biological productivity, grey dashed line), CR dilution relationship (black dashed 

line), and gas exchange relationship (red line) are plotted over in situ values for 2007 (pink), 

2008 (orange), 2009 (green), 2010 (light blue), and 2011 (dark blue).  ΩAr vs. salinity for spring 

(b), summer (d), autumn (f), and winter (h) plotted with the CR dilution relationship (black 

dashed line). Colors represent the same years as in (a, c, e, g). 
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3.4.4.1. Spring Surface ΩAr Controlling Mechanisms 

Spring (April-May, 2008-2010) variability generally followed NCP and gas exchange 

relationships (Figure 3.4.11a). Surface ΩAr values extended along the Redfield relationship from 

low ΩAr (0.8-1.3) and high DIC indicative of the shelf break end-member to high ΩAr (>3.0) and 

low DIC as nutrient-rich upwelled waters triggered biological DIC uptake and drove ΩAr up. 

Biological production uses up the excess preformed nutrients that accompany the upwelled water 

[Hales et al., 2005a, 2005b, 2006] and surface water pCO2 can be driven well below atmospheric 

saturation, thereby increasing ΩAr and extending the original Redfield signature of the upwelled 

shelf break water (Figure 3.4.11a, shelf break data in g).  

Table 3.4.5. Mean Upwelling Index
a
 (UI, m

3
 s

-1
 100 m

-1
 coastline) and CR Discharge

b
 (m

3
 s

-1
) 

 

2007 2008 2009 2010 2011 

 

UI 
River 

Discharge 
UI 

River 

Discharge 
UI 

River 

Discharge 
UI 

River 

Discharge 
UI 

River 

Discharge 

Spring 22.2 5100 25.3 6870 19.9 7220 -1.55 3400 2.14 9710 

Summer 24.6 5910 34.8 6680 34.8 6460 43.4 5950 37.0 9340 

Autumn -1.95 2670 12.6 2710 -14.4 2490 -26.8 2750 NA NA 

Winter -42.8 3920 -30.7 3990 -105 3450 -77.0 5180 NA NA 
a
 PFEL Upwelling Indices for 125°W, 45°N, http://www.pfeg.noaa.gov/  

b
Columbia River Fisheries, http://www.fpc.org/ 

 

Spring 2011 exhibited strong effects of CR dilution relative to the previous springs as ΩAr was 

depressed due to dilution of [Ca
2+

] and [CO3
2-

] by the CR plume (Figure 3.4.11a-b) [Salisbury et 

al., 2008; Chierici and Fransson, 2009]. The CR plume regularly extends southward from the 

river mouth during spring and summer although its width and distance from shore vary based on 

wind conditions and water discharge [Hickey et al., 2005; Burla et al., 2010]. Water gauge 

http://www.pfeg.noaa.gov/
http://www.fpc.org/
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records for the Columbia River (Table 3.4.5, Figure 3.4.12) indicate the spring 2011 river 

discharge was 130-140% greater than that during spring 2008 and 2009. The higher discharge 

and weaker upwelling (as measured by upwelling index, Table 3.4.5) during this period resulted 

in a stronger influence of the CR plume relative to other years. The 2011 data do not exactly 

follow the CR dilution trend and it is likely that NCP increased ΩAr (up to ~0.75) above the ΩAr 

predicted by the CR dilution trend (Figure 3.4.10a-b).  

Fassbender et al. [2011] examined DIC dynamics on the U.S. West Coast using cruise data from 

two Northern California shelf transects during May 2007. They used a box model to estimate the 

effect of primary productivity on inorganic carbon dynamics and found that full utilization of 

available nitrate would result in a sea surface ΩAr of ~3. This value is comparable to the 

maximum spring sea surface ΩAr values observed at NH-10 (Figure 3.4.2; Figure 3.4.11a, 2008, 

2009), supporting the importance of NCP in regulating ΩAr on the shelf.  

3.4.4.2. Summer Surface ΩAr Controlling Mechanisms 

Relationships between ΩAr, DIC, and S during summer (June-August, 2008 and 2011) (Figure 

3.4.11c-d) are similar to those observed for the spring. In 2008 [Evans et al., 2011] and 2011 the 

strong influence of the CR plume due to weaker upwelling and higher CR discharge (compared 

to 2010, Table 3.4.5) suppressed ΩAr. 

3.4.4.3. Autumn and Winter Surface ΩAr Controlling Mechanisms 

Trends in ΩAr in autumn (September-October) (Figure 3.4.11e-f) and early winter (Figure 

3.4.11g-h) closely followed the predicted trends in biological productivity and gas exchange with 

little evidence of the dilution effects seen in spring and summer (Figure 3.4.11e and g). 
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Figure 3.4.12. Columbia River discharge at Bonneville, Washington. 

In autumn 2009 the ΩAr was high (>3.0, Figure 3.4.2e) but began to decline, likely due to 

convective mixing of the water column. In mid- to late November 2009, the MLD (Figure 

3.4.4e) deepened from near 25 m to >70 m, mixing surface and subpycnocline water and 

lowering surface ΩAr. Winter shelf break and NH-10 ΩAr relationships overlapped as a result of 

the homogenized water column (Figure 3.4.9; Figure 3.4.11g-h). After this period surface ΩAr 



79 
 

varied little for the remainder of winter 2009, with an average of 2.2±0.4. Autumn 2010 ΩAr was 

significantly lower than in 2009 as a result of the prolonged and intense summer upwelling 

(Figure 3.4.2e). 

3.4.4.4. Winter Shelf Break ΩAr Controlling Mechanisms 

Winter shelf break ΩAr were mainly influenced by vertical mixing, downwelling and movement 

of upwelled water onto the shelf driven by remote wind forcing[Hickey et al., 2006]  (Figure 

3.4.11g-i). There was little short-term variability in comparison to the surface data because these 

bottom waters were not influenced by gas exchange, heating or cooling, or the CR plume to any 

significant extent. 

3.4.5. Implications 

The range in inorganic carbonate data discussed above was used to back-calculate the natural 

(i.e. pre-industrial) ΩAr range on the shelf (see section 3.4.2.2). This analysis indicates that mean 

contemporary ΩAr is 0.52 less than mean pre-industrial levels (Figure 3.4.10). Pre-industrial ΩAr 

was rarely undersaturated whereas contemporary surface values occasionally drop as low as 

0.66. At the shelf break, contemporary ΩAr is undersaturated ~30% of the time whereas pre-

industrial undersaturation occurred only ~10% of the time. These changes in ΩAr from pre-

industrial levels are consistent with the findings of the modeled simulations of Hauri et al. 

[2013] which also concluded that contemporary ΩAr observations in the California Current 

System have already shifted substantially from the pre-industrial range. It is unclear to what 

extent the shift to lower saturation in surface waters is affecting local organisms, all of which 

evolved in pre-industrial conditions. Reductions in ΩAr, even for waters that remain 

supersaturated, have been shown to harm many aragonite-forming organisms, resulting in shell 
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dissolution for pteropods [Bednaršek et al., 2012; Comeau et al., 2012], decreased larval and 

mid-stage growth rates in bivalves [Gazeau et al., 2007; Barton et al., 2012; Green et al., 2012] 

and lower developmental rates in echinoderms [Shirayama and Thornton, 2005; O’Donnell et 

al., 2010]. Researchers that conduct ocean acidification-related organismal studies should 

consider the range of variability in this study when developing experimental designs. In addition, 

this study suggests that ΩAr can be calculated with reasonable accuracy from previously collected 

pH or pCO2 data if salinity was also measured and the relationship with alkalinity is known.  

With atmospheric CO2 concentrations continuing to rise and an increasing trend in upwelling 

wind strength and duration [Bakun, 1990; Schwing and Mendelssohn, 1997; McGregor et al., 

2007] it is likely that periods of undersaturation will increase in both frequency and intensity. 

Therefore, long-term monitoring of ocean saturation states will continue to be necessary.   
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3.5. Inorganic Carbon and Saturation State Dynamics during Upwelling Events in an 

Eastern Boundary Upwelling System 

3.5.1. Introduction 

There are four major Eastern Boundary Upwelling Systems (EBUS): the California Current 

System off the U.S. West Coast, the Humboldt Current System off the coasts of Peru and Chile, 

the Benguela Current System off the coast of West Africa, and the Iberia/Canary Current System 

off the coast of Spain [Chavez and Messié, 2009]. EBUS occur at the eastern edges of 

subtropical gyres where seasonal equatorward winds interact with the earth’s rotation to transport 

coastal surface waters toward the open ocean. These coastal waters are replaced by upwelling of 

subsurface waters near the coast [see Allen, 1973; Bakun, 1996].  The upwelled subsurface water 

has significantly higher salinity and partial pressure of carbon dioxide (pCO2) and lower 

temperature, pH, and calcium carbonate saturation states. Because of the transport of subsurface 

water to coastal surface waters, EBUS carbonate system parameters are highly variable during 

the upwelling season and thus have been a recent focus of study because of their contributions to 

the global carbon cycle [Chavez et al., 2007]. 

Most previous studies on carbonate system dynamics during upwelling events have been based 

on cruise data [e.g. van Geen et al., 2000; Borges and Frankignoulle, 2002; Cao et al., 2011; 

Fassbender et al., 2011] . Due to the temporal limitations of cruise data coverage, these datasets 

focused on single upwelling events. The main controlling mechanisms for the carbonate system 

were found to vary between studies.  van Geen et al. [2000] found significant spatial differences 

during upwelling off of Cape Blanco in southern Oregon, with biological productivity the main 

controlling factor north of Cape Blanco and mixing with upwelled bottom waters the main 
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control to the south. In the coastal upwelling system off the coast of Spain, Borges and 

Frankignoulle [2002] determined that mixing of surface water with the upwelled water mass and 

the primary production resulting from upwelled nutrients were the main controls of total 

dissolved inorganic carbon (DIC). Cao et al. [2011] studied upwelling carbonate system 

dynamics over the river-influenced Northern South China Sea shelf and found that mixing of 

shelf water with the low-DIC and AT water of the Pearl River plume was the major control of 

ΩAr variation.  Fassbender et al. [2011] determined that the DIC change during an upwelling 

event in May 2007 along the coast of northern California was primarily controlled by production 

and respiration of organic matter. In a study of an upwelling event along the Oregon coast in 

2001 Hales et al. [2005b] found that pCO2 could be drawn down below atmospheric 

concentrations post-upwelling due to biological utilization of pre-formed nutrients in the 

upwelled water mass. The potential impacts of ocean acidification on the marine biota that 

inhabit coastal upwelling zones make these important regions to study. However, shipboard 

measurements of the carbonate system during multiple upwelling events are difficult due to the 

focus on spatial coverage in lieu of greater temporal coverage. Shipboard studies are generally 

limited to a single upwelling event, making generalization of global or even regional upwelling 

systems difficult. 

Aragonite and calcite are biologically important to a number of marine organisms found in the 

coastal oceans of the CCS such as corals, bi-valves, clams, gastropods, and echinoderms.  

In experiments with elevated CO2 conditions (based on predicted future atmospheric CO2), the 

resulting lowered calcium carbonate saturation states negatively affected a variety of calcifying 

organisms [Green et al., 2009; Miller et al., 2009; Thomsen et al., 2010; Waldbusser et al., 

2011].  Although some studies indicate that higher CO2 oceans can have beneficial effects for 
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some calcifying species [see Wood et al., 2008; Byrne et al., 2009; Dupont et al., 2010; Pansch 

et al., 2012], there is evidence that these effects may not be sustainable over long periods [i.e. 

Wood et al., 2008]. The detrimental effects of low ΩAr waters on Pacific Oyster (Crassostrea 

gigas) larval production have already been observed in a hatchery along the Oregon Coast 

[Barton et al., 2012]. Adult oyster shells are predominantly calcite but oyster larvae shells are 

primarily made of aragonite and so are more susceptible to low pH conditions.  Because low 

calcium carbonate saturation states have damaging effects on the larval stages of this 

economically-important species and on multiple other coastal calcifying organisms (e.g., sea 

urchins, calcifying plankton, coralline algae [Kurihara and Shirayama, 2004; Morse et al., 2006; 

Ries et al., 2009]), these organisms are particularly susceptible to ocean acidification. Thus it is 

important to characterize and study upwelling ΩAr dynamics in the ecosystems where these 

organisms live. 

A unique high temporal resolution carbonate system dataset recorded over multiple years in the 

northern California Current System (CCS) allows a new opportunity to study upwelling in 

greater detail [Evans et al., 2011; Harris et al., 2013]. The upwelling season in the northern CCS 

starts when winds transition in the spring from predominantly poleward to predominantly 

equatorward. Throughout the summer periods of upwelling brought on by the strong 

equatorward winds alternate with  relaxation periods during weaker winds or changes in wind 

direction [Hickey et al., 2006]. The Oregon coastal carbonate system varies greatly as surface 

water mixes with upwelled bottom waters [Hickey et al., 1979]. During periods of upwelling, 

pCO2 increases from below atmospheric saturation (280 µatm) to values exceeding 1200 µatm in 

short periods of time [Evans et al., 2011; Harris et al., 2013]. DIC increases from near 1900 

µmol kg
-1

 to near or above 2100 µmol kg
-1

 during the same time period.  Saturation states of the 
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calcium carbonate minerals calcite and aragonite, ΩCa and ΩAr, decrease dramatically, with 

values for the more soluble aragonite saturation state decreasing from near 3.0 to values below 

1.0 (undersaturation) over a period of a couple of days [Harris et al., 2013].  Aragonite 

undersaturation (Ω<1.0) events can last from a few hours to a few days [Harris et al., 2013].  

During wind relaxation or intermittent downwelling-favorable conditions, the lower salinity (S), 

DIC, alkalinity (AT) and Ω Columbia River (CR) plume advects from offshore into shelf coastal 

waters [Hickey et al., 2010], altering the shelf carbonate system parameters.  

In this study, we use the high temporal resolution carbonate system data reported by Evans et al. 

[2011] and Harris et al. [2013] to investigate the controls on the carbonate system following 

multiple strong upwelling events.  Evans [2011] discussed the environmental controls on air-sea 

CO2 flux during a strong upwelling event in July 2008. Harris et al. [2013] characterized the 

range of ΩAr dynamics during the multi-year dataset and analyzed the seasonal controlling 

factors on ΩAr changes.  This study expands upon that work to encompass all upwelling seasons 

covered in the multi-year Oregon Coast dataset discussed by Evans et al. [2011] and Harris et al. 

[2013]. This includes upwelling events throughout the upwelling season and during different 

years spanning 2007-2011. 

 A simple box model was used to predict the relative influence of the three primary controlling 

mechanisms expected from previous studies: mixing with upwelled water or advection of CR 

plume freshwater, net community production, and air-sea CO2 gas exchange. DIC and ΩAr 

variability was modeled during each upwelling “event” and contributions from each of the 

controlling mechanisms were calculated. Correlations between post-upwelling rates of DIC or 

ΩAr change and a number of physical and environmental parameters (i.e., pre- and post-event 

upwelling index, chlorophyll-a concentrations, salinity changes, upwelling duration, etc.) were 
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determined.  Mixing/advection were the predominant control for both DIC and ΩAr during most 

events studied. Net community production (NCP) controlled a comparatively small proportion of 

DIC and ΩAr change mainly through the uptake of carbon; however, during one event net 

respiration contributed to the overall rate of change in DIC and ΩAr by somewhat suppressing the 

rate of change due to mixing/advection. Upwelling index had the strongest correlations with rates 

of DIC and ΩAr change, specifically with the changes due to mixing/advection. A larger 

upwelling index resulted in a larger rate of change due to mixing. 

3.5.2. Materials and Methods 

3.5.2.1. Field Site Data  

The CCS is divided into three separate sections, each with their own characteristics [Mackas, 

2006]. The Northern CCS is an area of intense seasonal upwelling which leads to large changes 

in the coastal marine inorganic carbon system [van Geen et al., 2000; Hales, 2005b; Hales et al., 

2006; Ramp and Bahr, 2008; Evans et al., 2011; Fassbender et al., 2011; Harris et al., 2013]. 

The upwelling of high pCO2, low pH waters results initially in large CO2 fluxes out of the water 

[Hales, 2005b; Evans et al., 2011] and low aragonite saturation states, sometimes to ΩAr<1.0 

[Feely et al., 2008; Fassbender et al., 2011; Harris et al., 2013]. The NH-10 mooring, run by 

Oregon State University as part of the Oregon Coastal Ocean Observing System (OrCOOS), is 

located on the Newport Hydrographic (NH) Line along 46.55°N near the southern edge of the 

Northern CCS. The mooring is located roughly at the mid-point of the continental shelf [Huyer et 

al., 2007]. This location was chosen for this study because bathymetry along the NH Line is 

relatively simple, unmarred by major seafloor canyons or ridges [Kundu and Allen, 1976; 

Kirincich and Barth, 2009]. The large, upwelling-induced changes in the inorganic carbon 
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system and the relatively uncomplicated bathymetry make the NH-10 mooring well-situated for 

research into the forces controlling the natural inorganic carbon dynamics during the summer 

upwelling season. 

Time-series carbonate system data were collected using Submersible Autonomous Moored 

Instruments for pH and pCO2 (SAMI-pH and SAMI-CO2), [DeGrandpre et al. 1995;1999; Seidel 

et al., 2008] deployed at a depth of ~2m on the NH-10 mooring (124.304°W, 44.633°N) 

approximately 18 km west of Newport, Oregon. Both instruments use spectrophotometric 

methods of detection. Prior to deployment the SAMI-pH is tested for precision and accuracy 

using a tris buffer certified reference material [Delvalls and Dickson, 1998] and the SAMI-CO2 

is calibrated in a temperature-controlled water bath using standard CO2 gas mixtures and the 

accuracy verified with concurrent measurements from an infrared CO2 sensor (LI-COR, LI-

840A). pCO2 and pH field data verification (quality assurance and quality control) are explained 

in detail in the supplemental material of Harris et al. [2013]. SAMI-CO2 accuracy during the 

five years of deployment averaged between 2-11 µatm and SAMI-pH accuracy averaged 

between 0.01-0.02 during the three years pH instruments were deployed. 

The recorded pH and pCO2 data were used along with a salinity-derived alkalinity (ATsalin) [see 

Gray et al., 2011; Harris et al., 2013] to calculate other carbonate system parameters in 

CO2SYS [Pierrot et al., 2006], including DIC and ΩAr. Uncertainty in DIC and ΩAr, based on 

the comparison of the values calculated for DIC and ΩAr in CO2SYS from ATsalin and pCO2 and 

ATsalin and pH was between 4±15 µmol kg
-1

 and 6±6 µmol kg
-1

 and -0.09±0.13 and 0.16±0.14, 

respectively. Additional data included temperature (T) sensors at 10 depths (Sea-Bird SBE39), 

salinity (S) at 4 depths (Sea-Bird Micro-Cat SBE37), and a solar radiation sensor at the surface 

((LI-COR LI-200). Upwelling indices (UI) were retrieved for 125°W, 45°N from Pacific 
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Fisheries Environmental Laboratory (PFEL) (www.pfeg.noaa.org). Satellite chlorophyll-a (chl-a) 

was retrieved from the European Space Agency’s GlobColour database (http://hermes.acri.fr).  

Level-3 products were averaged [Antoine, 2004; Lee, 2006] from MODIS, SeaWiFS, and 

MERIS chl-a products. The chl-a level-3 products used in this study were retrieved at a 1 km 

resolution for the 10 km x 10 km bin centered on NH-10 and averaged.  

3.5.2.2. Selecting Upwelling Events 

Each year’s upwelling season (2007-2011) was calculated using cumulative upwelling index 

(CUI) to approximate the start and end dates [see method by Schwing et al., 2006]. Plotting CUI 

(calculated using the PFEL-derived UI) yields an initially shallow curve followed by a steep 

increase before leveling off. The point at which the CUI initially becomes positive is the 

upwelling season start date and the inflection point when the curve begins to decrease is the end 

date of that upwelling season.  

Since the ultimate focus of this study was changes in ΩAr, ΩAr time-series data were low-pass 

filtered (30-hr) and plotted. Periods where the ΩAr dropped significantly and rapidly (ΔΩAr≥1.0, 

over a period of 3-4 days) and at least initial UI was high (>100 m
3
 s

-1
 100 m

-1
 coastline were 

selected to be analyzed.  During spring and autumn upwelling events of ~4 days are interspersed 

with long (6-7 days) periods of wind relaxation or reversal [Papastephanou et al., 2006]. During 

the summer, upwelling events are usually longer (8-10 days) and the alternating relaxation 

periods are shorter (2-3 days) [Huyer, 1983; Hickey et al., 2006; Kudela et al., 2006; 

Papastephanou et al., 2006]. These shorter periods of relaxation still allow ΩAr to return to 

baseline values (ΩAr ~2.1, see Harris et al. [2013]). However, sometimes the relaxation periods 

between upwelling events can be much shorter (<2 days) and ΩAr does not have the time to 

http://www.pfeg.noaa.org/
http://hermes.acri.fr/
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return to baseline values before more low ΩAr water upwells to the surface [Papastephanou et 

al., 2006]. For this reason, upwelling events closely followed by another upwelling event were 

omitted    Ten events were selected using the above criteria from the years 2007-2009 and 2011 

(Table 3.5.1) and ordered based on event start date.  

Table 3.5.1. Upwelling Event Dates and Duration. 

*Start date refers to the beginning of the upwelling event. 

 

Event # Start Date* End Date Duration 

Event 1 4/21/09 4/26/09 6 

Event 2 6/12/08 6/22/08 11 

Event 3 6/21/08 7/6/08 16 

Event 4 7/1/11 7/14/11 14 

Event 5 7/3/08 7/24/08 21 

Event 6 7/26/11 8/9/11 15 

Event 7 8/3/08 8/10/08 8 

Event 8 8/19/11 8/29/11 11 

Event 9 8/23/07 9/5/07 14 

Event 10 9/5/07 9/15/07 10 
 

  

 

3.5.2.3. Modeling Post-Upwelling Inorganic Carbon System Changes 

Because the field data from which this study stems were recorded at a stationary point (i.e. the 

NH-10 mooring), we must take an Eulerian model approach to study water passing across the 

field site instead of following an individual water mass. Our simple box model focuses on the 

changes in the inorganic carbon system that occur after strong upwelling-favorable winds begin 

to relax – i.e. the point at which high upwelled DIC values begin to decline to average surface 

water values of ~1990 mol kg
-1

 and low upwelled ΩAr values increase to baseline values of ~2.1 

(see Harris et al. [2013]) – and what specific environmental mechanisms drive those changes 

back to baseline values. The influence of three environmental controlling mechanisms was tested 
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through this simple box model: NCP, mixing of upwelled water with California Current (CC) 

surface water and advection of the freshwater CR plume across NH-10, and air-sea CO2 

exchange. 

To determine the point at which the chemical properties of NH-10 surface water began to restore 

to baseline values, a 30-hr low-pass filter was applied to the DIC and ΩAr data during each of 

these upwelling events. The 30-hr low-pass filter reduced the many short-term changes (<1 day) 

within each upwelling event as different water occupied the NH-10 site so that the major 

transitions could be determined. The point when the low-pass filtered DIC switched from 

increasing to decreasing (DICi) was defined as the starting point for modelling each selected 

upwelling event.  

The DIC change (
    

  
) was assumed to be the result of a combination of three processes: 

    

  
 

         

  
 

       

  
 

       

  
        (3.10) 

where the contributions to 
    

  
 from air-sea gas exchange, mixing with either upwelled 

California Undercurrent (CU) or fresh riverine water, and net community production (NCP) are   

         

  
 ,  

       

  
, and 

       

  
, respectively.  The contribution to the observed rate of DIC 

change from air-sea gas exchange was calculated from the equation 

         

  
 

           

     

  
           (3.11) 

where MLD is the mixed layer depth in meters and ρ is the density of seawater as calculated by 

Millero and Poisson [1981].         is the air-sea CO2 flux, 
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                         (3.12) 

where k is the gas transfer velocity calculated from wind speed [Ho et al., 2011], S is the 

solubility of CO2, and ∆pCO2 is the difference between in situ pCO2 and the average atmospheric 

value during the period studied of 392 µatm [Evans et al., 2011].  

Because salinity is a conservative property and differs between surface CC water, upwelled 

bottom water, the Columbia River plume and other freshwater sources, it was used to determine 

the mixing of water from each end-member at NH-10. These values were relative to CU water, 

the assumed dominant water mass present at NH-10 during the point of maximum upwelling 

[Thomson and Krassovski, 2010]. DICmixing and the contribution to total alkalinity (AT) due to 

mixing (ATmixing) were determined by proportionally changing DIC and AT based on changes in 

salinity using the equations: 

DICmixing = DICCU – (SCU-Smeas) /(SCU-Sshelf)*(DICCU-DICshelf)     (3.13) 

and  

ATmixing = ATCU – (SCU-Smeas) /(SCU-Sshelf)*(ATCU-ATshelf)       (3.14) 

where SCU is the salinity calculated for the California Undercurrent, Smeas is the in situ salinity, 

Sshelf, DICshelf, and ATshelf are the surface water (depth<30m) means for S, DIC, and AT from 

2007 NACP West Coast Cruise (cdiac.ornl.gov), and DICCU, ATCU, DICshelf, and ATshelf, are the 

DIC and AT for the California Undercurrent and NH-10, respectively. For the 2007 NACP West 

Coast Cruise surface mean T=11.0°C, S=32.2, DIC=1990 µmol kg
-1

, and AT=2175 µmol kg
-1

 

(cdiac.ornl.gov).  California Undercurrent water typically has  T=6.9°C, S=33.9 [MacFadyen et 

al., 2008] , DIC=2220 µmol kg
-1

 [van Geen et al., 2000], and AT=2275 µmol kg
-1

  [Hales et al., 
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2006]. During periods when S in events decreased to <30.0, the non-shelf end member was 

assumed to be fresh CR plume water and the following equations were used instead to determine 

DICmixing and ATmixing: 

DICmixing = DICR – (SR-Smeas) /(SR-Sshelf)*(DICR-DICshelf)     (3.15) 

and  

ATmixing = ATR – (SR-Smeas) /(SR-Sshelf)*(ATR-ATshelf)       (3.16) 

where SR, DICR, and ATR are the average S, DIC, and AT for the CR plume (S=15, DIC=1350 

µmol kg
-1

 [Dahm et al., 1981], and AT=1200 µmol kg
-1

 [Berner and Berner, 1987]), the 

predominant freshwater source to the shelf during summer upwelling [Burla et al., 2010]. When 

S<30.0 in any event, equations 3.15 and 3.16 were used for modelling mixing contributions. 

When S>30.0, equations 3.13 and 3.14 were used to model the mixing component. 

ΔDICmixing and ΔATmixing were calculated using the following equations: 

          

  
 

              

  
         (3.17) 

and 

         

  
 

            

  
         (3.18) 

where DICi and ATi are the initial DIC and AT at the start of modeling. 

The contribution of NCP was assumed to be equal to the change in DIC not accounted for via 

air-sea gas exchange or mixing: 

       

  
 

    

  
 

         

  
 

          

  
       (3.19) 
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DICmix and ATmix were used along with measured T and S values to calculate ΩAr change due to 

mixing in CO2SYS [Pierrot et al., 2006]. DICgasex was used with constant AT to model the ΩAr 

change due to gas exchange. The ΩAr change due to NCP was calculated as the residual between 

observed ΩAr and modeled ΩAr change from mixing and gas exchange. There is some uncertainty 

associated with the mixing component for ΩAr due to the fact that it is calculated using two 

modeled parameters, DICmix and ATmix. This resulted in under-representation of ΩAr rate due to 

mixing when compared with the changes in DIC rate due to mixing.    

Residual NCP was compared to NCP calculated based on satellite chl-a data and NH-10 solar 

radiation (NCPcal) for events when satellite chl-a was available for the NH-10 location (events 1, 

3, 5, and 6).  Primary productivity (PP) was calculated using the equation by Platt et al. [1980]: 

P z =Chl(z) (PsChl
-1
) (1-e

- I

PsChl
-1

⁄

) e

- I

PsChl
-1

⁄

       (3.20)  

where P(z) is the primary production at depth z, Chl(z) is the chl-a concentration at depth z, 

PsChl is the chl-specific maximum rate of photosynthesis in the absence of photoinhibition , I is 

photosynthetically active radiation (PAR),   is the Chl-specific rate of light limited 

photosynthesis, and   is the Chl-specific photoinhibition parameter. Values for  ,  , and PsChl 

for temperate waters were taken from [Harrison et al., 1985].  I was calculated as 45% of the 

solar radiation [Harrison et al., 1985] from the pyranometer located on NH-10.  NCPcal was 

calculated by subtracting respiration (R) from PP. R was estimated to be between 24 to 72 mmol 

m
-2

 d
-1

 by minimizing the differences in fit between the observed ΔDIC and ΔDIC due to NCPcal 

for each event. NCPcal (mmol C m
-2

 d
-1

) is then converted to mmol C m
-3

 d
-1

 by multiplying by 

the average MLD (m) during that event and to 
1
µmol C kg

-1
 hr

-1
 by converting mmol C to µmol 

C, d
-1

 to hr
-1

, and m
-3

 to kg using the density of seawater [ρ, Millero and Poisson, 1981]. The rate 
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of ΔDIC due to NCP was then calculated from converted NCPcal and observed DIC at the start of 

the model: 

          

  
            

    

   
        (3.21) 

where MLD is the mixed layer depth in m, n is the time elapsed (in hours) since the model was 

initiated and  at DICNCP 1 is equal to the observed DIC at the start of the model. The rate of 

change in DICcal was similar to the rate of change modeled using DICNCP (see Table 3.5.2). 

Residual NCP was ultimately used in place of NCPcal for all events because of cloud-limited 

coverage of the chl-a satellite data used in the calculation of NCPcal. Specifically, chl-a satellite 

data was not available during periods of cloud cover at the NH-10 site during events 3, 4, 5, 7, 

and 10. The rate of DICNCPcal change was within 80-100% of the rate of DICNCP change. 

Table 3.5.2. Comparison of ΔDICNCP residual and ΔDCINCPcal for events when satellite chl-a data 

was available. 

 

 

3.5.3. Results 

Throughout the upwelling season, the Oregon Coast carbonate system is highly variable. 

Frequent upwelling brings high pCO2, high DIC, and low ΩAr CU waters to the surface. Figures 

3.5.1-4 show the pCO2, DIC, ΩAr, UI, T, and S for the four years when carbonate system data 

was recorded during the summer, a subset of the data discussed by Harris et al. [2013]. Events 

Event #
ΔDICNCP residual 

(µmol kg-1 d-1)

ΔDCINCPcal 

(µmol kg-1 d-1) 

Event 1 -4.86 -4.49

Event 2 -7.21 -7.23

Event 6 -17.56 -14.13

Event 8 -8.82 -7.49

Event 9 -6.94 -6.17
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are numbered as listed in Table 3.5.1. During the ten selected upwelling events, pCO2 ranged 

from 158 to 1337 µatm, DIC from 1617 to 2250 µmol kg
-1
, and ΩAr from 0.7 to 3.8. Physical 

parameters varied greatly too. Upwelling indices were large and positive near the start of the 

events (up to 189 m
3
 s

-1
 100 m

-1
 coastline) but decreased to weaker upwelling or even 

downwelling-favorable conditions (down to -53 m
3
 s

-1
 m

-1
 coastline) as carbonate and physical 

parameters returned to baseline values. T ranged from 7.55 to 17.33°C and s ranged from 23.50 

to 33.71. Although parameters were highly variable throughout the upwelling season, the 

magnitude of the variation changed by event. The 10 events are discussed in order from smallest 

to largest magnitude carbonate system parameter changes. 

Event 1 from late spring (Figure 3.5.1) had the smallest overall changes to the carbonate system.  

This event had a relatively high UI (Figure 3.5.1d) but resulted in relatively small pCO2 changes 

from below ~230 µatm to above ~470 µatm (Figure 3.5.1a). DIC and ΩAr changes were, 

accordingly, also small compared to upwelling events later in the year (see Table 3.5.3). The 

initial, pre-upwelling DIC was around 1900 µmol kg
-1

 increasing only to 2040 µmol kg
-1

 during 

strongest upwelling before gradually decreasing to 1980 µmol kg
-1

 (Figure 3.5.1b). Before 

upwelling-favorable conditions began ΩAr was near 2.8 but decreased to 1.6 before returning to a 

pre-upwelling value of ~2.4. T and S changes were also relatively small; T ranged within 2.12 °C 

and S varied less than 1.00.  
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Table 3.5.3. The change in DIC and ΩAr during each upwelling event. 

Event # 
ΔDIC 

(µmol kg
-1

) 
ΔΩAr 

Event 1 137 1.27 

Event 2 512 3.05 

Event 3 373 2.07 

Event 4 425 1.33 

Event 5 179 0.95 

Event 6 303 2.43 

Event 7 278 2.08 

Event 8 288 2.33 

Event 9 211 3.351 

Event 10 253 1.36 

 

Late summer/early autumn upwelling events 8 and 10 had slightly larger dynamics than event 1 

in late spring. pCO2 ranged from ~280 µatm to up between 500 and 600 µatm (Figure 3.5.4a). In 

these events DIC changed by up to 250 µmol kg
-1

 (Figure 3.5.4b), but the oscillations between 

high and low DIC gradually dampened from late August into September, with baseline DIC 

values by the end of event 10 near 1880 µmol kg
-1

, nearly 80 µmol kg
-1

 higher than baseline DIC 

at the beginning of event 8 (Figure 3.5.4b). DIC dynamics at the end of August, 2011 showed a 

similar trend of decreasing ΔDIC over the course of event 9, although the baseline was near 1920 

µmol kg
-1

 by the end of the event (Figure 3.5.3b), a significantly higher DIC baseline than in 

events 8 or 10. The overall change in DIC (see Table 3.5.3) in event 9 (late August 2011) was 

also smaller than for events 8 and 10 (August/September 2007), suggesting inter-annual changes 

in the DIC baseline. ΩAr values decreased from near 3.7 in events 8 and 10 (Figure 3.5.4c) and 

3.3 in event 9 (Figure 3.5.3c) to around 1.5 (Figures 3.5.4c and 3.5.3c). Maximum upwelling 

indices during events 8-10 were <140 m
3
 s

-1
 100 m

-1
 coastline (Figure 3.5.3d and Figure 3.5.4d), 
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smaller than those during mid-summer. T and S changes were also relatively small compared to 

changes earlier in the summer (Figure 3.5.3e and Figure 3.5.4e). 

Early and mid-summer upwelling events 2-7 (Figures 3.5.2 and 3.5.3) had considerably greater 

changes than either late spring or late summer/early autumn upwelling events (Table 3.5.3). 

Maximum upwelling indices were higher (up to 189 m
3
 s

-1
 m

-1
 coastline) with the exception of 

events 3 and 7 (see Figures 3.5.2d and 3.5.3d).  pCO2 in events 2, 3, 5, and 7 ranged from <250 

µatm to near 1200 µatm (Figure 3.5.2a). Initial values of DIC around 1780 µmol kg
-1

  increased 

to over 2130 µmol kg
-1

 during upwelling-favorable conditions (Figure 3.5.2b). High upwelling 

indices (Figure 3.5.2d) resulted in exceptionally low ΩAr (Figure 2c) for events 2-5, with ΩAr<1.0 

for periods of hours to a couple of days. ΩAr undersaturation also occurred during events 6-7; 

however, maximum UI during these events was <105 m
3
 s

-1
 m

-1
 coastline (Figure 3.5.2c,d and 

3.5.3c,d).  These low ΩAr values were not sustained for as long as those in events 2-4. Following 

upwelling, ΩAr increased to maxima above 3.0 but remained highly variable (Figure 3.5.2c and 

3.5.3c). S varied greatly during summer events 2-4 and reached particularly low values - as low 

as 23.50 following the weakening of upwelling-favorable conditions (Figure 3.5.2e and 3.5.3e).   
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Figure 3.5.1. Spring 2009 with upwelling event 1 highlighted in yellow. (a) pCO2. (b) DIC. (c) 

ΩAr. (d) Upwelling index, where positive values indicate upwelling-favorable conditions. (e) 

Salinity (blue) and temperature (green). The event number (red) corresponds to the events 

identified in Table 3.5.1.  No data was collected for summer 2009. 
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Figure 3.5.2. Summer 2008 with upwelling events 2,3,5, and 7 highlighted in yellow. (a) pCO2. 

(b) DIC. (c) ΩAr. (d) Upwelling index, where positive values indicate upwelling-favorable 

conditions. (e) Salinity (blue) and temperature (green). The event numbers (red) correspond to 

the events identified in Table 3.5.1.   
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Figure 3.5.3. Summer 2011 with upwelling events 4,6, and 8 highlighted in yellow. (a) pCO2. (b) 

DIC. (c) ΩAr. (d) Upwelling index, where positive values indicate upwelling-favorable 

conditions. (e) Salinity (blue) and temperature (green). The event numbers (red) correspond to 

the events identified in Table 3.5.1.   
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Figure 3.5.4. Late summer into early autumn of 2007 with upwelling events 9 and 10 highlighted 

in yellow. (a) pCO2. (b) DIC. (c) ΩAr. (d) Upwelling index, where positive values indicate 

upwelling-favorable conditions. (e) Salinity (blue) and temperature (green). The event numbers 

(red) correspond to the events identified in Table 3.5.1.   
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annual variation can be seen in Figure 3.5.5. Events 2, 3, 5, and 7 during 2008 have lower initial 

and end ΩAr means than Events 4, 6, and 8 during similar time periods in 2011. 

 

Figure 3.5.5. Average ΩAr calculated from four days surrounding the start of each upwelling 

event (black), the lowest ΩAr values during each upwelling event (red), and the high values at the 

end of each event (blue). Refer to Table 3.5.1 for event dates. 

 

3.5.4. Discussion 

3.5.4.1. Modeled DIC and ΩAr 

To better understand which of the environmental controlling mechanisms had the strongest 

influence on the return from upwelling conditions to baseline DIC and ΩAr values, each DIC and 

ΩAr contribution were modeled starting from the relaxation of upwelling-favorable winds. 

Figures 3.5.6 and 3.5.7 show 30-hr low-pass filtered observed DIC and ΩAr compared to 

modeled components for mixing/advection, gas exchange, and residual NCP. DIC decrease and 

ΩAr increase during almost all of the events was primarily controlled by mixing/advection with 
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varying contributions from NCP. Event 6 (Figure 3.5.7a and f) was an exception; in this event 

nearly all of the changes in DIC and ΩAr were accounted for by the residual NCP from the 

modeled DIC and ΩAr. In all events air-sea CO2 exchange had very little control over the changes 

in DIC or ΩAr.   

 

Figure 3.5.6. DIC (a-e) and ΩAr (f-j) observed values (black) and modeled contributions from 

mixing and/or advection (blue), air-sea CO2 gas exchange (red), and residual NCP (green) for 

events 1-5. 
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Figure 3.5.7. DIC (a-e) and ΩAr (f-j) observed values (black) and modeled contributions from 

mixing and/or advection (blue), air-sea CO2 gas exchange (red), and residual NCP (green) for 

events 6-10. 

The rates of DIC decrease and ΩAr increase following the relaxation of upwelling-favorable 

conditions were calculated from the 30-hr low-pass filtered observations in Figures 3.5.6 and 

3.5.7. In addition, the rates for DIC and ΩAr change explained by each of the controlling 
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mechanisms were calculated. These results for DIC and ΩAr are shown in Figures 3.5.8 and 

3.5.9, respectively. The highest rate of decrease (50 µmol kg
-1

 day
-1

) was during event 2 and 7, 

while the lowest rates (between 15-20 µmol kg
-1

 day
-1

) were during events 1, 5 and 6 (Figure 

3.5.8). The other events had rates of DIC decrease between 23-45 µmol kg
-1

 day
-1

. 

The rates of ΩAr increase are shown in Figure 3.5.9. Qualitatively, the rates of observed ΩAr 

increase in each event are similar to the rates of observed DIC decrease. However, the relative 

contributions to the observed changes from mixing/advection and NCP vary between the DIC 

and ΩAr models (Figures 3.5.8 and 3.5.9). These differences are due to uncertainties in the model 

calculations for DICmix and ATmix that result in uncertainties in the ΩAr model calculations, as 

discussed in (section 3.5.2.3). Thus quantitative generalizations about each mechanism 

contributing to the observed ΩAr changes are discussed with caution.  

 

Figure 3.5.8. Rate of DIC change for each of the selected upwelling events. The observed rate of 

DIC decrease (black) and the rates of DIC change from residual NCP (green), modeled 

mixing/advection (blue), and modeled air-sea gas exchange (red).  
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Figure 3.5.9. Rate of ΩAr change for each of the selected upwelling events. The observed rate of 

increase in ΩAr (black), changes from residual NCP (green), changes from the mixing/advection 

model (blue), and changes from air-sea gas exchange model (red).  
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3.5.1- 3.5.4b,c,e).  Larger ΩAr changes (Table 3.5.3) have a positive correlation (R
2
=0.52, 

p<0.02) with greater mean UI prior to initiation of the model, as suggested by Torres et al. 

[2002] (Figure 3.5.12a). Stronger upwelling conditions brought the lowest ΩAr into shelf coastal 

waters and weaker UI brings shallower, higher ΩAr to the surface [Torres et al., 2002]. The 

return to pre-upwelling baseline values was controlled by gradual mixing of the upwelled water 

with the lower DIC and S and higher ΩAr CC surface water. 

 Events 1, 5, 6, and 8-10 had smaller rates of DIC and ΩAr change due to mixing than events 2-4 

and 7 (Figure 3.5.8 and 3.5.9), which had S near or <30.0, indicative of the low S CR plume 

(Figures 3.5.2e and 3.5.3e). The large rate of DIC and ΩAr change during these four events was a 

result of advection of the CR plume back and forth across the NH-10 site. Since in situ 

observations on the NH-10 mooring were fixed spatially, the rate of DIC decrease due to mixing 

of upwelled water with CC surface water was masked by the much larger rate of DIC decrease 

due to advection of the low DIC, low S CR plume across the NH-10 site. CR plume advection 

similarly affected the observed rate of ΩAr change, with the rate of ΩAr change due to mixing 

with higher ΩAr CC shelf water suppressed by advection of the lower ΩAr CR plume (ΩAr~1.8 

compared to CC shelf water ΩAr~2.1) across the NH-10 mooring location.  This also accounts for 

some of the discrepancy between the percent contribution of each controlling mechanism 

between DIC and ΩAr (Figures 3.5.10 and 3.5.11). Events 2-4 and 7 had the largest difference 

between the percent contribution of mixing/advection to observed rates in DIC and ΩAr change. 

The contribution of mixing to the observed ΩAr change was smaller than the mixing 

contributions to observed DIC changes in each of these events due to the low ΩAr CR plume 

suppressing the CC surface water contribution to ΩAr increase.  
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Hickey et al. [2005] found that downwelling conditions can push the CR plume into nearshore 

waters. During events 2-4 and 7 UI was initially high (~173, 103, 174 and 87 m
3
s

-1
100 m

-1
, 

respectively), but reached negative values during the post-upwelling period indicative of 

downwelling conditions (Figures 3.5.2e and 3.5.3e). These intermittent downwelling-favorable 

conditions during events 2-4 and 7 support the advection of the CR plume across the field site 

during these four events. 

 

Figure 3.5.10. Percent contribution of NCP (green), mixing/advection (blue), and gas exchange 

(red) to the observed rate of DIC change. 
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Figure 3.5.11. Percent contribution of NCP (green), mixing/advection (blue), and gas exchange 

(red) to the observed rate of DIC change. 

3.5.4.2.2 Net Community Production 

For the majority of the events, NCP contributed to the rate of DIC or ΩAr change by drawing 

down high DIC from upwelled waters, although in event 10, net respiration suppressed the 

overall decrease in DIC and increase in ΩAr caused by mixing (Figures 3.5.8- 3.5.11). With the 

exception of Event 6, NCP contributions DIC and ΩAr change were significantly smaller than 

mixing contributions (Figures 3.5.10 and 3.5.11).  
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site [Dugdale et al., 1990] or due to inhibition by ammonium [Dugdale et al., 2006]. For the 

Point Reyes study they additionally suggest infrequent wind relaxation at the study site may be 

the cause for low chl-a; i.e. without a relaxation in upwelling-favorable winds, there’s no time 

for chl-a build-up at the study site [Dugdale et al., 2006]. Bianucci and Denman [2012] suggest 

that a delay in the initiation of upwelling-favorable conditions at the beginning of the season can 

lead to reduced NCP in coastal Oregon waters. However, no correlation (p>0.20) was found in 

this study between CUI (indicative of the start and strength of upwelling conditions) and mean 

chl-a or the rate of ΩAr change due to NCP. 

Another potential explanation for the low contributions of NCP to DIC and ΩAr changes comes 

from Evans [2011]. Evans [2011] combined the NH-10 pCO2 data from event 5 in 2008 

presented here with drifter and cruise pCO2 data and satellite chl-a data found that low T, high S, 

and high pCO2 indicative of upwelling persisted across the shelf and chl-a values remained low 

throughout the upwelling event. Evans [2011] hypothesized that because of persistent upwelling 

winds (see Figure 3.5.2d) during this period, upwelled water was advected off shelf and then 

quickly subducted before phytoplankton communities had time to respond to the nutrient-rich 

upwelled water. Thus the increase in ΩAr at the end of this persistent period of upwelling was 

likely more due to the relaxation of upwelling-favorable winds and a transition to downwelling-

favorable winds that resulted in mixing with more productive offshore water than due to new 

production as a result of upwelled nutrients. It is likely that this advection-subduction process of 

nutrient-rich waters resulted in the negligible NCP contributions to DIC and ΩAr changes in 

events 3 and 4 as well. 

3.5.4.2.3 Air-sea Gas Exchange 
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High pCO2 at the surface during periods of upwelling leads to off-gassing which makes Oregon 

coastal waters a substantial CO2 source during much of the upwelling season overall [Evans et 

al., 2011]. However, due to the relatively slow rate of air-sea CO2 exchange compared to the 

other factors contributing to DIC dynamics, the air-sea gas exchange had a small to negligible 

effect on post-upwelling DIC decrease and ΩAr increase, as expected [Turi et al., 2013] (Figures 

3.5.10 and 3.5.11). Pre-formed nutrients (the amount of nutrients in upwelled water mass the last 

time it was at the surface [Friederich et al., 2008]) in the upwelled water allow pCO2 to be 

drawn down below atmospheric values [Hales, 2005; Fassbender et al., 2011]. This had the 

effect of greatly reducing the rates of air-sea gas exchange and results in the small contribution 

of gas exchange to changing DIC and ΩAr after upwelling. 

3.5.4.3. ΩAr Undersaturation 

Five of the selected upwelling events reached undersaturation: events 2, 3, 5, 6 and 7 (see 

Figures 3.5.2-3.5.4c). There were no significant correlations (p>0.1) between ΩAr 

undersaturation duration and mean NCP, change in salinity, mean Chl-a, start date, mean UI, or 

cumulative UI.  This lack of correlation highlights the complexities of determining relationships 

between physical parameters and carbonate system controlling mechanisms.  

A positive correlation (R
2
=0.58, p<0.02) was found between the rate of ΩAr change from NCP 

and the UI mean prior the upwelling event, indicating that upwelled nutrients did have a small 

effect on NCP (Figure 3.5.12b). However, chl-a concentrations (for the upwelling events where 

satellite chl-a was available) had no correlation (p>0.5) with either UI prior or during each 

upwelling event. ΩAr change due to NCP was the smallest when winds prior to the event were 

weak. The rate of ΩAr change from mixing also correlated positively (R
2
=0.75, p<0.02) with the 
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UI mean for the 8 days following initiation of the model (Figure 3.5.12c). The smallest rates of 

change from mixing occurred during relaxed conditions when the NCP contribution was larger, 

supporting the hypothesis by Dugdale et al. [2006] that chl-a has time to build up during 

relaxation. Longer duration events (those with longer periods of time between the relaxation of 

upwelling-favorable winds and the switch back to strong upwelling conditions) had a tenuous 

positive correlation (R
2
=0.38, p<0.06) with chl-a means (Figure 3.5.12d). Satellite chl-a means 

were calculated for the 10km x 10km area surrounding the NH-10 mooring and so potentially 

captured chl-a blooms not specifically recorded in the DIC and ΩAr observations at NH-10. This 

may be the reason the rates in DIC and ΩAr change due to NCP do not have a significant 

correlation with chl-a mean. 
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Figure 3.5.12. Correlations between the (a) overall change in ΩAr and the UI mean for the 2 days 

prior to the event, (b) ΩAr rate of change from NCP and the UI mean for the 2 days prior to the 

event, (c) ΩAr rate of change from mixing and UI mean for 8 days during the event, and (d) chl-a 

mean and the duration of the event.  

3.5.4.4. Inter-annual Variation 
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hard to assess due to the majority of the events covered coming from two years only (2008 and 
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change than events 4, 6, 8, and 9 in 2011. Upwelling was stronger in 2008 [Harris et al., 2013] 

than in 2011 and there is a very slight correlation (R
2
=0.34, p<0.08 and R

2
=0.38, p<0.06) 
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of stronger upwelling or later in the year had larger contributions from mixing. High C sinking 

rates as a result of advected phytoplankton blooms offshore earlier in the upwelling season 

results in remineralization of carbon in Oregon shelf bottom waters [Turi et al., 2013]. Earlier 

initiation of the upwelling season and stronger upwelling (resulting in higher cumulative UI 

values) leads to larger reductions in ΩAr values in the bottom boundary layer [Bianucci and 

Denman, 2012]. This, in effect, primes the upwelling source water later in the upwelling season 

and leads to the large rates of change during these longer and stronger upwelling years. 

3.5.5. Implications 

The rate of both mixing/advection changes in ΩAr and NCP-driven changes in ΩAr are correlated 

with the strength of upwelling-favorable conditions. Strong upwelling results in the shelf surface 

waters being primed for biological production with nutrients, but continued intermittent high 

upwelling indices advect those waters away from NH-10 and baseline values are restored when 

upwelling conditions relax by mixing with CC surface water. Observed overall rates of DIC and 

ΩAr change did not correlate with wind conditions (either cumulative or during upwelling 

events), satellite chl-a, or S changes indicative of the CR plume. Neither did the duration of ΩAr 

undersaturation. The DIC and ΩAr changes in the majority of the events studied were primarily 

controlled by mixing/advection, but this is in part a limitation of the Eulerian nature of a 

mooring-based study.  More spatially-diverse observations and further study are needed to 

capture carbonate system dynamics during additional upwelling events to more accurately link 

controlling mechanisms to physical parameters.  

An understanding of these controlling mechanisms and their links to physical parameters is 

important as the changing global climate will impact these secondary controlling mechanisms 
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and likewise the carbonate system.  Upwelling strength and duration is predicted to increase 

along the CCS [Bakun, 1990; Schwing and Mendelssohn, 1997]. More frequent and stronger 

upwelling events will bring more high DIC, low ΩAr water to the shelf, but shorter periods 

between upwelling events could decrease the potential for chl-a build-up and affect the rate at 

which carbonate system parameters return to pre-upwelling values.  In addition, predicted 

increases in major precipitation events over the CR watershed [Mass et al., 2011] and a predicted 

increase in annual CR water-basin runoff [Elsner et al., 2010] could increase the influence of the 

CR plume on shelf carbonate system dynamics.  Since an increase in the frequency and duration 

of low ΩAr periods may have detrimental effects on shelf biota [Gazeau et al., 2007; Barton et 

al., 2012; Comeau et al., 2012], it is important to continue to study the factors contributing to 

carbonate system dynamics in these highly productive regions.  
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CHAPTER 4 

Conclusions 

Long-term, high-temporal resolution observations of the inorganic carbon system are essential 

for studying the natural range and controlling mechanisms of ΩAr.  The California Current 

System coastal upwelling zone has already seen a change in ΩAr range since the industrial 

revolution due to anthropogenic ocean acidification.  The range of ΩAr has decreased by 

approximately 0.52 since pre-industrial times and water with ΩAr as low as 0.66 reaches surface 

waters.  Undersaturated water is present in shelf bottom waters 30% of the time as opposed 

 

Figure 4.1. Predicted ΩAr for NH-10 (a) and the shelf break (b) for the year 2100 under the SRES 

A2 emissions scenario (Future) [Nakicenovic et al., 2000] compared to previously-discussed 

estimates for the year 1850 (Past) and observations from between 2007-2011 (Present).  
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to 10% during the pre-industrial period.  Using the same method for predicting NH-10 and shelf 

break ΩAr as described in section 3.4.2.2 but with atmospheric CO2 predictions for the year 2100 

(using the SRES A2 emissions scenario [Nakicenovic et al., 2000]), the 2100 range of ΩAr for 

NH-10 surface and shelf break bottom waters was calculated (Figure 4.1, red bars).  Mean 

surface ΩAr has decreased by ~1.0 and rarely reaches saturations states above 2.0.  shelf break 

bottom waters are undersaturated 59% of the time (Figure 4.1) and mean surface ΩAr is 1.1, 

barely above saturation.   

 

Figure 4.2. Comparison of field ΩAr observations to ΩAr calculated using the Juranek et al., 2009 

relationship (green). 1 to 1 line (black). 

In situ ΩAr observations can be compared to methods of ΩAr calculation, such as those by 

Juranek et al., [2009] (Figure 4.2) and Alin et al., [2012]. The Juranek et al. [2009] relationship 
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uses an algorithm driven by O2 and T measurements to calculate ΩAr. Although the algorithm 

was determined for water below 30 m, the predicted ΩAr above 2.2 matched the in situ 

observations pretty closely. Below ΩAr=2.2, the algorithm predicted significantly lower ΩAr than 

the in situ values (off by an average of 0.4).  Different rates of gas-exchange between O2 and 

pCO2 accounted for the offset in the recently-upwelled, lower ΩAr water.  However, the 

comparison between observed and predicted ΩAr suggest that the relationship works well for 

non-upwelled surface waters; i.e. waters that have been at the surface for long enough for gas-

exchange rates for O2 and pCO2 to even out. In upwelling regions like the Oregon coastal 

upwelling zone, however, inorganic carbon parameter measurements still provide more accurate 

calculations of ΩAr. 

 

Figure 4.3. The range of observed NH-10 ΩAr compared to ΩAr modeled using the pH and pCO2 

climatologies from the ROMS model described in Hauri et al., 2009. 

Modeling systems like the eddy-resolving Regional Oceanic Modeling System (ROMS) used by 

Hauri et al. (2009) and Gruber et al. [2012] can provide detailed predictions of carbonate system 

changes across an entire current system.  However, there is always room for improvement in 
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these models as our knowledge of the region increases.  Figure 4.3 compares ΩAr observed at 

NH-10 to values calculated from ROMS-driven pH and pCO2 climatologies (from Hauri, 

personal communication 2011).   The model predicts slightly lower mean ΩAr (2.0) compared to 

the shelf (2.2), but the main difference is in the range of ΩAr.  The model predicts a much smaller 

range in ΩAr, from 1.3 to 2.8 and does not predict the undersaturation observed at NH-10.  The 

influence of inter-annual wind variation and Columbia River plume location are not incorporated 

in the model, but analysis of NH-10 ΩAr observations conclude that the plume location plays an 

important role in driving ΩAr variation during the spring and summer and inter-annual wind 

variability influences inter-annual changes in mean ΩAr.  Adding seasonal changes in ΩAr 

controlling mechanisms could contribute to more accurate predictions of future ΩAr in these 

economically and ecologically important coastal upwelling zones.   
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