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Boger, Ryan, Ph.D., Fall 2011 Chemistry

Anomalous Wave-Velocity Dispersion in the Ferroin-Catalyzed CHD-BZ Chemical

Oscillator

Chairperson: Professor Richard J. Field

A modified six-variable Oregonator model presented here successfully reproduces
a significant portion of the behavior observed in the Ferroin-catalyzed cyclohexane-
dione variant of the Belousov-Zhabotinsky (CHD-BZ) reaction. The phenomena of
anomalous velocity dispersion (in which following waves may catch up to, rather than
fall behind an initial excitation wave), wave-stacking, and backfiring have been suc-
cessfully reproduced numerically as resulting from non-monotonic [Br−] decay to the
steady state in the wake of an excitation pulse. The non-monotonic decay is seen as a
“dip” in [Br−] following the passage of a chemical wave. This dip in [Br−] decay curve
allows a following wave to accelerate and catch up to the initial wave. The origin of
anomalous dispersion as the result of such a non-monotonic decay curve in [Br−] has
been suggested previously by Steinbock et al. and Szalai et al. However, the work pre-
sented here is the first successful representation of anomalous wave-velocity dispersion
using a chemical model. This model is based on the well-understood chemistry of the
Oregonator model of the Belousov-Zhabotinsky reaction, coupled to a second path-
way (based on chemistry related to uncatalyzed bromate oscillators) for the oxidation
of organic substrate to provide the new dynamics.
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1 INTRODUCTION.

We provide here an introduction to general ideas of far-from-equilibrium chemical

dynamics as well as general considerations of the chemistry and dynamics of oscillating

chemical reactions and traveling waves. The concept of anomalous dispersion in a set

of traveling waves is introduced. The chemistry and dynamics of the oscillatory

Belousov-Zhabotinsky (BZ) reaction in both its metal-ion catalyzed and uncatalyzed

variations is discussed in detail, and its reduction to the simple Oregonator model is

considered.

1.1 Thermodynamic Factors

This work involves dynamic phenomena displayed by complex reacting chemical sys-

tems (Field (2008)), whose behavior may be rationalized by means of a mechanism

composed of some number of simple chemical reactions, typically assumed to be ele-

mentary, i.e., occurring in a single collision (Espenson (1995); Houston (2001)). Such

simple reactions are often represented by the general reaction aA + bB → cC + dD.

Lower-case letters in the preceding equation refer to stoichiometric coefficients, and

upper-case letters refer to chemical species (Field (2008); Atkins and de Paula (2009)).

The rates of these reactions are, according to the Law of Mass Action (Field (2008)),

in most cases proportional to the concentration of a single reacting chemical species,

e.g., Rate = (1/c)d[C]/dt = k [A], that is, linear dynamics, or proportional to the

concentrations of two (either reactant or product) species, e.g., Rate = (1/d)d [D]/dt
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= (k)[A][D], i.e., nonlinear (in this case also autocatalytic) (Epstein and Pojman

(1998)) dynamics. The parameter k is the rate constant for the particular chemical

reaction represented.

The most interesting behaviors of such complex chemical systems occur far from

thermodynamic equilibrium and are governed by overall dynamic laws containing

positive and/or negative feedback loops (Nicolis et al. (1975); Nicolis and Prigogine

(1977, 1989)).

1.1.1 Thermodynamic and Kinetic Constraints at or Near to Chemical

Equilibrium

The state of chemical equilibrium (Pitzer (1995)) is very special. It is a dynamic

state in which individual atoms and molecules are in a continual process of inter-

conversion via individual elementary reactions among species identified as reactants,

products and intermediates. However, the net rates of production and consumption

of all species at the equilibrium state are balanced and no net chemical change occurs.

Furthermore, the principle of detailed balance (based on the time-reversibility of wave

mechanics) requires that at chemical equilibrium each elementary process at equilib-

rium must proceed at the same rate in both the forward and the reverse direction

(Steinfeld et al. (1999); Houston (2001)). A chemical system not at thermodynamic

equilibrium (Pitzer (1995)) will spontaneously move toward equilibrium. This change

will be accompanied by an increase in entropy (∆S > 0). At equilibrium ∆S = 0 and

S is a maximum. It is also true that during spontaneous motion toward chemical

equilibrium ∆G = ∆H - T∆S < 0, reaching a minimum at equilibrium. At the point

of chemical equilibrium (starting from a particular set of initial concentrations) the
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thermodynamic requirement ∆G = 0 (G is a minimum) requires the system to take

on a unique chemical composition! The above constraints cause the behavior of chem-

ical systems at or near to equilibrium to be relatively simple. Thus the behavior of

chemical systems is not complex compared to mechanical systems. For example, the

principle of detailed balance requires they cannot approach their equilibrium point via

damped oscillation (about it) as can a pendulum. Isolated chemical systems closed to

the exchange of matter with their environment must approach their final equilibrium

composition monotonically. Neither damped nor undamped oscillations of chemical

concentrations are possible near to chemical equilibrium.

This restriction to monotonic motion does not hold far-from-equilibrium (Pri-

gogine and Nicolis (1967); Nicolis and Prigogine (1977, 1989)) even in systems closed

to exchange of matter! Chemical driving forces may become very large and nonlin-

ear in a system far-from-equilibrium, and detailed balance is no longer maintained.

Thermodynamics gives us no guidance to behavior during the early stages of reaction

in an initially far-from-equilibrium system. Furthermore, nearly all thermodynamic

bets are off in a system open to exchange of matter as well as energy with its environ-

ment. In such cases we may see both thermodynamically spontaneous behaviors and

behaviors driven by matter or energy exchange. Spontaneous changes must still be

accompanied by decreasing ∆G. Far-from-equilibrium chemical phenomena we will

investigate here include oscillation of the concentrations of intermediate species and

reaction-diffusion supported moving or stationary patterns of intermediate concen-

trations (Epstein and Pojman (1998)). Oscillations and spatial patterns are often

observed in the same chemical system. Some initial considerations concerning the

thermodynamic constraints on oscillating chemical reactions can be made and are

3



important. The most significant constraint is that in a closed system the concentra-

tions of only intermediate species may oscillate. The decrease in free energy necessary

to drive the oscillations must result from the spontaneous monotonic disappearance

of some species referred to as reactants and appearance of other species referred to as

products, ∆Goverall < 0. The concentrations of reactant species must be much higher

than the concentrations of oscillatory intermediates in order to sustain a far-from-

equilibrium condition. Furthermore, no particular elementary reaction can proceed

in the forward direction during one stage of the overall approach to equilibrium and

in the reverse direction in another stage.

We point out the existence of dynamic stationary states of the concentration of in-

termediate species during an oscillating, or any other, chemical reaction. These states

are thought by some to be characterized by a minimum entropy production associated

with the set of elementary reactions involved in the stationary state (Prigogine and

Nicolis (1967)). Steady states may be stable or unstable.

1.2 Oscillating Chemical Reactions - History

1.2.1 Temporal Oscillation

Oscillation of intermediate species concentrations in the biochemistry of living

cells has been occurring since the beginning of life on earth, especially in metabolic

processes. However, the systematic investigation of oscillating enzyme reactions (and

other oscillations) found in living organisms (Tyson et al. (1989); Winfree (2002))

and oscillations in non-biological organic and inorganic chemical systems, as well as

development of the theory of dynamic far-from-equilibrium systems is a relatively

recent endeavor (Epstein and Pojman (1998)). Indeed serious systematic work in this

4



area became established only in the 1960s and 70s.

The earliest mention of an oscillating chemical reaction appears to be the report

by Robert Boyle (Boyle (1680)) of emission of periodic pulses of light during the

gas-phase oxidation of phosphorus. Early reports of oscillation in non-homogeneous

(multi-phasic) systems include the oscillation of current in an electrochemical system

by Fechner (Fechner (1828)) and oscillation in the rate of chromium oxidation in aque-

ous acid by Ostwald (Ostwald (1899)). Special mention also is due early pioneering

experimental work and theoretical interpretation by W.C. Bray(Bray (1921)), Bray

and Caulkins (Bray and Caulkins (1931)), Bray and Liebhafsky (Bray and Liebhafsky

(1931)), and Liebhafsky, Furuichi, and Roe (Liebhafsky et al. (1981)) of oscillation of

[I2 ] during the IO−
3 -catalyzed decomposition of H2O2 and the later systematic inves-

tigation of oscillatory, gas-phase combustion chemistry by Peter Gray and colleagues

(Gray et al. (1991)).

1.2.2 Modern History

The rapid growth of research work in oscillatory chemistry in the 1960s - 70s men-

tioned above resulted from the confluence of several factors, including a sense of

theoretical legitimacy given to chemical oscillations in the 1960s by the theoretical

work of Ilya Prigogine and coworkers (Nicolis and Prigogine (1977); Prigogine and

Nicolis (1967)) on nonlinear, far-from-equilibrium chemical dynamics. This work led

to understanding of so-called “dissipative structures” in which patterns in time and

space may be supported by the dissipation of free energy. The above theoretical sug-

gestions were supported by the nearly simultaneous discovery of an apparent experi-

mental example of a Prigogine-like system by B.P. Belousov (Belousov (1958, 1982))

and its initial investigation and interpretation by A. M. Zhabotinsky(Zhabotinsky
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(1991)). This system became known as the Belousov-Zhabotinsky (BZ) Reaction. It

may generally be described as the metal-ion, e.g., (Ce(IV)/Ce(III) or Fe(phen)3
3+ /

Fe(phen)3
2+-catalyzed (phen ≡ 1,10-phenanthroline)) oxidation of organic substrates,

e.g., CH2(COOH)2 or cyclohexanedione (CHD) by bromate (BrO3
−) ion in strongly

acid, aqueous media. The oscillations appear to result from an autocatalytic process

generating HBrO2 but subject to a negative feedback carried by Br− (Zhabotinsky

(1991)). Subsequent detailed elucidation of the fundamental mechanistic chemistry

and dynamic structure of the so-called Belousov-Zhabotinsky (BZ) reaction by Field,

Körös, and Noyes (FKN) in 1972 (Field et al. (1972)), and the suggestion by Field

and Noyes (Field and Noyes (1974a)) of a skeleton chemical model (referred to as

the Oregonator) that established the BZ chemistry as an example of a far-from-

equilibrium system governed by a nonlinear dynamic law. Thus further exploration

of the dynamics of oscillating chemical reactions, especially but not limited to the

BZ system, became a heuristic method for understanding features of the mathemat-

ics of nonlinear dynamical systems, e.g., the Hopf bifurcation bistabiliy, oscillation,

and chaos (Epstein and Pojman (1998); Strogatz (2001)). These efforts have drawn

general interest from areas as diverse as mathematics, physics and biology.

Research in these areas came to fruition in the 1980s as a major area of inter-

est, largely by the remarkably broad body of research on other (mostly inorganic)

oscillating chemical reactions and basic ideas of nonlinear dynamics by I.R. Epstein,

Ken Kustin and their colleagues at Brandeis University (Epstein and Pojman (1998)),

coupled with their scientific and personal leadership.
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1.2.3 Spatial Patterns

Zaikin and Zhabotinsky (Zaikin and Zhabotinskii (1970)) discovered traveling waves

of chemical oxidation in the BZ reaction with Fe(phen)3+
3 (blue)/Fe(phen)2+

3 (red) as

catalyst and CH2(COOH)2 as organic substrate. The liquid chemical reagent is spread

in a thin-layer on a flat surface where the patterns appear as blue bands (ferriin)

moving in a red (ferroin) medium. These nerve-impulse-like traveling waves (Field

and Troy (1979)) result from coupling of an autocatalytic pulse in the FKN chemistry

with diffusion of the autocatalytic species HBrO2. Such chemical structures often

appear as moving concentric circles centered on a so-called initiation pacemaker,

whose mechanism of action is not yet fully understood (Hastings et al. (2003)). A.T

Winfree (Winfree (1972)) soon showed that when a band is suitably broken, blue

spirals develop and that these traveling bands of chemical activity are of considerable

interest to biological structure and function, e.g., spatial structure development and

signal transmission (Winfree (2002)).

The concentric moving bands described above often form a target-like pattern of

concentric circles as shown in Figure 1.

Pacemakers may trigger circles at fairly rapid frequencies. Thus one circle may

appear before its predecessor has moved far from the pacemaker center, causing it to

follow the leading circle quite closely but to move more slowly because of increased

(but declining with separation) [Br−] behind the leading circle. See FKN mechanism

below for the source of Br−. In such a case the following circle falls behind its prede-

cessor while its speed increases as [Br−] decreases, eventually reaching the speed of

its predecessor. Thus, far enough from the pacemaker center the circles are dispersed

into a pattern of equally spaced circles moving at the same speed. This is referred to

7



Figure 1: Target Patterns in a Thin-layer of BZ Reagent in a 9-cm Diameter Petri
Dish
(a) 1 minute after mixing; (b) after 3 min 30s; (c) after 7 min 15 s; (d) after 7 min
35 s; (e) after 16 min 20s. Three random pacemaker centers initiate targets, but
as the system evolves, the successive annihilations of colliding waves from adjacent
targets occur closer and closer to the lower frequency pacemaker. In time, the higher
frequency source entrains the lower frequency one. In a given target pattern, the
outermost wave travels at a slightly higher velocity than those inside the pattern.
(Photographs by M. Pearson). From S.K. Scott, Oscillations, Waves, and Chaos in
Chemical Kinetics, Oxford Science Publishers, Oxford.
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Figure 2: Four Consecutive Snapshots of a Typical Target Pattern Showing Anoma-
lous Wave-velocity Dispersion in the Ferroin-CHD-BZ Reaction

Time between snapshots: 10 s. Image size: 13.8 × 13.0 mm2. Initial concentrations:
[NaBrO3] = 0.09 M, [1,4-CHD] = 0.19 M, [H2SO4] = 2.0 M, [ferroin] = 5.0 mM.
Figure from Hamik and Steinbock (2003)
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as “normal dispersion”.

Steinbock and coworkers (Hamik and Steinbock (2003); Manz and Steinbock

(2004); Manz et al. (2006); Bordyugov et al. (2010)) discovered several years ago

a BZ traveling-wave behavior he referred to as “anomalous dispersion”. A quasi two-

dimensional experiment performed by Steinbock and co-workers (Hamik and Stein-

bock (2003)) shows anomalous dispersion in the concentric rings of a target pattern

(fig. 2). The target pattern becomes non-concentric as waves accelerate and merge.

Quasi one-dimensional experiments carried out in a 6-mm capillary tube containing a

Fe(phen)3
3+/Fe(phen)3

2+-catalyzed BZ reagent with cyclohexanedione as the organic

substrate and open to the atmosphere at one end show the anomalous phenomenon.

It seems the atmosphere itself and/or some imperfection near the cut end of the glass

capillary tube acts as a pacemaker. Thus moving bands of chemical activity are ini-

tiated near the end of the capillary and move down the cylinder of reagent. The

anomalous behavior appears in several forms, apparently depending on the frequency

of the pacemaker and the chemical composition of the reaction medium. Recall that

“normal dispersion” at relatively rapid pacemaker-frequency is for successive bands to

fall behind each other and speed up to eventually develop far from the pacemaker into

a sequence of equally spaced bands traveling at the speed the first band moves into

the steady state reagent. However, in an anomalous system, initially closely spaced

bands may instead catch up with the one ahead of it, eventually reaching the same

speed as this band or merging with it. Less closely spaced bands (slower pacemaker)

tend to behave normally. In fact the range of observed anomalous behaviors includes

densely packed patterns, well-segregated clusters, traveling shock structures, as well

10



the merging and stacking of waves discussed above (Vanag and Epstein (2001, 2002);

Yang et al. (2002); Huh et al. (2001)).

The cyclohexanedione organic substrate used in the Steinbock anomalous disper-

sion system belongs to a class of organic BZ substrates, also including phenol and

hydroxyquinone, which oscillate without a metal-ion catalyst. Only bromate ion and

the substrate in an acidic medium is necessary for oscillation to occur. In this work

we attempt to interpret anomalous dispersion as resulting from the coupling of the

chemistries of a Fe(phen)3
3+/Fe(phen)3

2+-catalyzed cyclohexanedione oscillator and

an uncatalyzed cyclohexanedione oscillator.

1.3 The Belousov-Zhabotinsky Reaction and the FKN Mech-

anism.

1.3.1 Classic Metal-Ion-Catalyzed Oscillations.

The BZ reaction is normally run in either a closed-system, batch reactor or an

open Continuous-flow, Stirred Tank Reactor (CSTR) (Roux et al. (1983); Maselko

and Swinney (1986); Gyorgyi et al. (1992)). Typical BZ initial concentrations (near to

room temperature, 25 ◦C) in a batch reactor are [BrO−
3 ]0 = 6.25x10−2 M, [CH2(COOH)2]0

= 0.275 M, [Ce(IV)]0 = 2x10−3 M, and [H+]0 = 2 M (Scott (1994)). The reaction

mixture must be well-stirred to avoid transient transport effects (Gyorgyi and Field

(1992)). The system may be readily monitored electrochemically with a Pt-electrode

sensitive to overall redox potential (typically controlled by [Ce(IV)]/[Ce(III)]) or a

Br−- selective electrode, both relative to a double-junction calomel electrode. Spec-

trophotometric methods may be used to measure metal-ion concentrations, e.g.,
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Ce(IV) or Fe(phen)3
3+, as well as the concentrations of other intermediate species

including Br2, HOBr, BrO�
2 or HBrO2. Figure 3 shows typical BZ redox potential

curves related to [Ce(IV)]/[Ce(III)] and ln [Br−].

Figure 3: Potentiometric Traces of ln [Br−] and ln [Ce(IV)]/[Ce(III)] for a Represen-
tative Belousov-Zhabotinsky Reaction

Initial concentrations: [CH2(COOH)2]0 = 0.032 M; [KBrO3]0 = 0.063 M; [KBr]0 =
1.5x10−5 M; [Ce(NH4)2 (NO3)5]0 = 0.001 M, [H2SO4]0 = 0.8 M. From R.J. Field, E.
Körös, and R.M. Noyes, J. Amer. Chem. Soc., 1972 94, 8649- 8664.

Belousov-Zhabotinsky oscillations are typically preceded by an induction period

(See Figure 3) after which oscillations appear at full amplitude rather than grow in

from zero-amplitude. This is the behavior expected if the onset of oscillation is marked

by a sub-critical Hopf bifurcation (Epstein and Pojman (1998); Strogatz (2001)). The

amplitude of the oscillations change (increase or decrease) as the reaction proceeds,

presumably because reactant concentrations decrease or product concentrations in-

crease. True unchanging stationary states, completely periodic oscillatory states, or

true chaotic states may be obtained, controlled and studied in a CSTR (Gyorgyi et al.

(1992)).

Field, Körös, and Noyes (FKN) (Field et al. (1972)) suggested a chemical mecha-

nism for occurrence of the BZ oscillations in the [Ce(IV)]/[Ce(III)]-catalyzed system

with the organic substrate CH2(COOH)2. Their approach involves a pair of inde-

pendent reaction sets coupled by a negative feedback loop. The first set (referred
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to as Process A) occurs at high [Br−] with the major effect of removal of [Br−] to

eventually yield BrCH(COOH)2. The second set (referred to as Process B) occurs

autocatalytically at [Br−] below a critical value. Processes A and B are coupled by

a third set of reactions (referred to as Process C) that generates Br− when Process

B is occurring at low [Br−], thus supplying a strong negative feedback on Process B

(HBrO2, the autocatyalytic species in Process B is removed by Br− in reaction R2

below) and shifting control of the system back to Process A as Process B slows down.

Process A then begins the removal of Br− to reset the cycle. The autocatalytic nature

of Process B (carried by the intermediate HBrO2) below a critical [Br−] is important

because it helps destabilize the overall steady state in which the effects of Processes

A, B and C are balanced. Processes A and B separate so cleanly because Process A is

an entirely non-radical process while Process B involves radicals. The detailed chem-

istry of Processes A, B and C in the presence of CH2(COOH)2 is given below. The

non-intuitive numbering is the result of a historical artifact (Field et al. (1972)) in

which reactions (R1) - (R5) are numbered according to the number of oxygen atoms

in the transition state.

Process A is a series of non-radical reactions occurring at higher [Br−] that re-

move Br− and BrO−
3 with the simultaneous bromination of CH2(COOH)2 to yield

BrCH(COOH)2. Ce(IIII) is not oxidized to Ce(IV) during Process A because of the

absence of radical, single-electron oxidants, e.g., BrO2
�.
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Br−+BrO−
3 +2H+ 
 HBrO2+HOBr (R3)

Br−+HBrO2+H+ → 2HBrO2 (R4)

3x(Br−+HOBr+H+ 
Br2+H2O) (R1)

NET: 5Br−+BrO−
3 +6H+ → 3Br2+3H2O

ADDING: 3Br2+BrO3+3H++3CH2(COOH)2 → 3BrCH(COOH)2+3H2O

NET PROCESS A:

2Br−+BrO−
3 +3H++3CH2(COOH)2 → 3BrCH(COOH)2+3H2O (A)

Process B is a series of radical reactions occurring at lower [Br−] and relatively

lower [Ce(IV)]/[Ce(III)] leading to the oxidation of Ce(III) to Ce(IV) and the auto-

catalytic production of HBrO2.

HBrO2+BrO−
3 +H+ 
 Br2O4 + H2O 
 2BrO�

2 + H2O (R5)

2x(BrO�
2+Ce(III)+H+ 
 Ce(IV)+HBrO2) (R6)

NET:

HBrO2+BrO−
3 +3H++2Ce(III)
 2HBrO2+2Ce(IV)+H2O (D)

Finally,
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2x(HBrO2+BrO−
3 +3H++2Ce(III)
 2HBrO2+2Ce(IV)+H2O)

ADDING:

HBrO2+HBrO2 → HOBr+BrO−
3 +H+ (R4)

Overall Net:

4Ce(III)+BrO−
3 +5H+ 
 4Ce(IV)+HOBr+2H2O (B)

Note that Stoichiometry D is kinetically autocatalytic in [HBrO2]. Stoichiometries

A and B are in agreement with experiment. R.C. Thompson (Thompson (1971))

experimentally investigated the kinetics of stoichiometry B with Ce(III), Np(V), and

Mn(II) and found the rate expression below, Eq 1, for [Ce(III)] >> [BrO−
3 ].

d[BrO−
3 ]/dt=kexperimental[BrO−

3 ]2[H+]2 (1)

The reaction rate of Process B is independent of both the concentration and the

identity of the metal-ion! Application of the steady-state approximation to [BrO2
�]

and [HBrO2] (ignore Br2O4) in the mechanism of Process B with the assumption

k 6[Ce(III)][BrO2
�] >> k−5[BrO2

�]2 yields Eq 2 (Noyes et al. (1971)).

d[BrO−
3 ]/dt=(k2

5/4k4)[BrO−
3 ]2[H+]2 (2)

Eq 2 suggests k experimental = (k 5
2 /4k 4 ). The [Br−]crit at which control passes be-
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tween Process A and Process B resulting from the above mechanism can be calculated

to be Eq 3.

[Br−]crit=(k5/k2)[BrO−
3 ] (3)

The values of all rate constants in Process A and B are reasonably well established

(Field and Foersterling (1986); Hegedus et al. (2001)) and reproduce the experimental

values of k experimenta l and [Br−]crit .

Process C. The major overall effects of Process C are the reduction of Ce(IV)

to Ce(III), the generation of BrCH(COOH)2, and the regeneration of Br−. It is the

necessity for accumulation of BrCH(COOH)2 that leads to the induction period before

the onset of FKN oscillations. Process C is not as well understood as are Processes A

and B. The net stoichiometry of the complete reaction of Ce(IV) with CH2(COOH)2

is expected to be Eq 4.

CH2(COOH)2+6Ce(IV)+2H2O→6Ce(III)+HCOOH+2CO2+6H+ (4)

Remember that BrCH(COOH)2 is a product of the reaction of Br2 or HOBr with

CH2(COOH)2 in both Processes A and B. The net Stoichiometry of the complete

reaction of Ce(IV) with BrCH(COOH)2 is given by Eq 5.

4Ce(IV)+BrCH(COOH)2+2H2O→Br−+4Ce(III)+HCOOH+2CO2+5H+ (5)
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Process C is the sum of Stoichiometries (4) and (5) and is the origin of the Br−

that poisons Process B by reaction R2 when the rate of Process C is sufficiently

high. However Stochiometries (4) and (5) are not well understood. Process C typ-

ically does not go to completion with substantial amounts of Br2C(COOH)2 and

Br3COOH accumulating during the BZ reaction. There are many potential par-

tially oxidized intermediate organic species such as HOCH(COOH)2, O=C(COOH)2,

HOCH(COOH), and decarboxlated species such as HOCH2(COOH) that may accu-

mulate. Not all potential partially oxidized organic derivatives of CH2(COOH)2 have

been detected in BZ mixtures. There also are many organic radical species poten-

tially present, e.g., �CH(COOH)2, CH2(COOH)(COO�), BrO2
�, and �OCH(COOH)2.

Radical species seem to largely disappear via radical-combination processes (Hegedus

et al. (2001)).

The important feature of Process C is that it generates Br− from a mixture of

Ce(IV), CH2(COOH)2, HOBr, and BrCH(COOH)2. The stoichiometry of Br− pro-

duction per Ce(IV) in Process C is most important to the appearance of oscillation in

the full system, as will be seen in the next section. Most FKN mechanisms of Process

C do not produce sufficient Br− for oscillations to occur, suggesting that there are

reactions of BrCH(COOH)2 (or other bromine-containing species) with species other

than Ce(IV) (perhaps radical intermediates) that lead to Br−.
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1.3.2 Uncatalyzed Belousov-Zhabotinsky Oscillators

Oscillations in redox potential were observed by Babu and Srinivasulu (Babu and

Srinivasulu (1976)) during oxidation of Gallic Acid (3,4,5 - benzoic acid) by BrO3
− in

the presence of Co ion. These oscillations were unexpected because even in a strongly

acid medium BrO−
3 does not have the potential to oxidize uncomplexed Co(II) to

Co(III). This was noted by Körös and Orbán (Orban and Koros (1978b)), who thus

found Br−-controlled FKN-like oscillations in redox potential even in the absence of

Co ion. Kuhnert and Linde (Kuhnert and Linde (1977)) had reported an uncatalyzed

oscillator a year earlier using p-diethylaminobenzenediazonium tetrafluoroborate as

organic substrate. Orbán and Körös (Orban and Koros (1978a)) list 23 phenol and

aniline derivatives that may serve as organic substrate in uncatalyzed BrO3
− oscilla-

tors.

Essentially all metal-ion catalyzed BZ oscillators form CO2 bubbles that disrupt

pattern formation. However, Farage and Janjic (Farage and Janjic (1982b,a)) re-

ported uncatalyzed oscillation in a the BrO3
−-cyclohexanedione (CHD) oscillator

present in the anomalous dispersion system discussed above. An significant advantage

of this system is that the cyclohexane ring in CHD is not broken during the reaction

but is instead converted to quinones without the release of CO2. The mechanism of

the CHD-BrO3
−-Fe(phen)3

3+/Fe(phen)3
2+ system has been considered carefully by

Szalai et al. (Szalai et al. (2003)) and is discussed below.

The mechanistic details of the uncatalyzed BrO3
−-CHD (Britton (2003); Ko-

ros et al. (1998)) and the metal-ion (typically Fe(phen)3
3+/Fe(phen)3

2+)-catalyzed

BrO3
−-CHD (Szalai et al. (2002, 2003)) systems have been studied in some detail.
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It seems clear that the active organic species are in fact derivatives of the starting

organic substrate, CHD. The organic chemistry suggested by the above authors is

shown in Figure 4.

Figure 4: Key Organic Species in the Oxidation of 1,4-cyclohexanedione by Bromate
(Upper Pathway) and by Catalyst (Lower Pathway).
Abbreviations: CHD, 1,4-cyclohexanedione; CHDE, enol form of CHD;
BrCHD, 2-bromo-1,4-cyclohxanedione; CHED, 2-cyclohexane-1,4-dione; H2Q, 1,4-
hydroquinone; Q, 1,4-benzoquinone. From I. Szalai, K. Kurin-Csörgei, I. R. Epstein,
and M. Orbán, J. Phys. Chem. A, 2003, 107, 10074-10081.

The experimentally identified intermediate 1,4-hydroquinone (H2Q) is thought to

be produced at a constant rate from BrCHD and eventually oxidized autocatalytically

to 1,4-benzoquinone (Q). It seems to be the time-scale separation between the slow

accumulation and the autocatalytic consumption of H2Q that leads to oscillatory

behavior. This suggests that the uncatalyzed mechanism is more related to an empty-

refilling dynamics (Tinsley and Field (2001)) than to the switching (relaxation) FKN

mechanism.

The actual chemical mechanism used in simulations by Szalai et al. (Szalai et al.
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(2003)) comprises Processes A and B from the FKN mechanism, the reactions below

(S1 - S3) involving the oxidized form (Oxn+) and reduced form (Red(n−1)+) of the

metal-ion catalyst, as well as reactions coupling the various reaction sets.

2Oxn++CHD →2Red(n−1)++H2Q+2H+ (S1)

2Oxn++BrCHD →Q+Br−+2Red(n−1)+ (S2)

2Oxn++H2Q →2Red(n−1)++Q+2H+ (S3)

Szalai et al. (Szalai et al. (2003)) developed a model that comprised 30 reactions

and 16 variables (chemical species). Most rate constants in this system have been de-

termined previously (Szalai et al. (2002)). Simulations based on this model reproduce

well the observed well-stirred temporal behavior of BrO−
3 -CHD-metal-ion systems

1.4 Skeleton Models of Oscillatory Chemistry

Theoretical work on oscillations resulting from nonlinear dynamic equations largely

has been based on simple models with dynamics expressed as polynomial differential

equations.

1.4.1 The Lotka-Volterra Model

This model is largely due to Alfred Lotka (Lotka (1910)) who showed that a set of

two consecutive chemical reactions can give rise to damped oscillation when occurring

far from chemical equilibrium. He continued his work on oscillating chemical reactions
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resulting from mass action kinetics in a later paper (Lotka (1920)). These models are

not related to any known chemical reaction, but have been of considerable interest

to ecologists and were noted by W.C. Bray (Bray (1921)) in his early investigation

of the IO3
−-catalyzed decomposition of H2O2. The best-known model resulting from

Lotka’s early work is referred to as the Lotka-Voltera model (Nicolis and Prigogine

(1977)) and is typically applied to predator-prey dynamics.

The Lotka-Volterra model is presented as a set of three, coupled, simple, irre-

versible transformations (perhaps chemical) whose dynamics is governed by mass-

action kinetics. It contains two variable species, X and Y and four parameters, kLV 1,

kLV 2, kLV 3, and A.

A+X →2X (LV1)

X+Y →2Y (LV2)

Y →P (LV3)

A → P

A set of differential equations can be generated to describe the behavior of predator

(y = bobcats) and prey (x = rabbits) species on the basis of transformations LV1 -

LV3.

dx/dt = kLV 1ax -kLV 2xy (5)
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dy/dt = kLV 2xy-kLV 3y (6)

Reaction LV1 is the autocatalytic (+ kLV 1ax ) growth of rabbits from grass (A)

in dx/dt. Reaction LV2 is the autocatalytic growth of bobcats (+ kLV 2xy in dy/dt)

with loss of rabbits (- kLV 2xy in dx/dt). Reaction LV3 is the loss of bobcats (- kLV 3y

in dy/dt). Autocatalysis typically appears in oscillatory, mass-action models. In

the case of simple autocatalysis as in the Lotka-Volterra model, there must be two

autocatalytic steps to destabilize the dx/dt = dy/dt = 0 steady state.

The Lotka-Volterra model otherwise is not a very good model of a chemical system

(Epstein and Pojman (1998); Epstein et al. (2006)). It oscillates at a unique period

and amplitude for any particular set of values of kLV 1, kLV 2, kLV 3, A, and initial

values of x and y. The model responds to perturbation of x and y by moving to a new

orbit. Real oscillatory chemical systems do not behave in this manner. They instead

approach an oscillatory orbit referred to as a limit cycle (Epstein and Pojman (1998);

Strogatz (2001)) whose period and amplitude is determined by the values of the

parameters of the system, i.e., kLV 1, kLV 2, kLV 3, and A. This limit cycle is furthermore

asymptotically approached, when the steady state is unstable, by trajectories starting

from any physically realistic initial condition.

1.4.2 The Brusellator Model

The simplest model based on mass-action kinetics and exhibiting limit-cycle os-

cillations was proposed by Prigogine and Lefevre (Lefever et al. (1967)) and dubbed

the “Brusselator” by Tyson (Tyson (1973)). Its origin seems to be related to a more
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complex model proposed by Turing (Turing (1952)) as “The Chemical Basis of Mor-

phogenesis”. The Brusselator is closely related to no real chemical reaction. However,

it is rich dynamically and its investigation has been instructive (Nicolis et al. (1975);

Nicolis and Prigogine (1977, 1989)). Its major importance lies in its demonstration

that a mechanism of chemical form can show homogeneous oscillation and traveling

waves such as seen experimentally in the BZ system.

The Chemical form of the Brusselator is given below (B1 - B4).

A 
 X (B1)

2X+Y 
 3X (B2)

B+X 
 Y+D (B3)

X 
 E (B4)

A+B
C+D

Exploration of the near-to-equilibrium behavior of the Brusselator is normally

done with the reverse rate constants set to one. The far-from-equilibrium dynamic

behavior of the Brusselator is investigated with the reverse rate constants set to zero.

The mass-action kinetics for this irreversible case are given below.

dx/dt = k1A+k3x
2y - k3Bx - k4x (7)

23



dy/dt = - k2x
2y+k3Bx (8)

The Brusselator shows a variety of limit-cycle and spatial-pattern behaviors. Tyson

and Light (Tyson and Light (1973)) showed that the trimolecular step (B2) is nec-

essary for the appearance of limit cycle oscillations in a two-variable, polynomial

system.

1.4.3 The Oregonator Reduced Model of the FKN Mechanism

The FKN mechanism described above for the BrO3
−- Ce(IV)/Ce(III) - CH2(COOH)2

- H2SO4 oscillator may be reduced to a variety of simple models (Gyorgyi and Field

(1991)) similar to the Lotka-Volterra or Brusselator models except that these models

are closely related to a real oscillating chemical reaction. The simplest of these mod-

els is referred to as the Oregonator (Field and Noyes (1974a)) because of its origin at

the University of Oregon.

The major Oregonator variables are X ≡ HBrO2; Y ≡ Br−; Z ≡ 2Ce(IV); P

≡ HOBr or BrCH(COOH)2, and A ≡ BrO−
3 . The reduction process leading to the

simple Oregonator is described below.

Reaction (R3), BrO−
3 +Br−+2H+ 
 HBrO2+HOBr, becomes (O3) in the Orego-

nator, A+Y
X+P, with kO3 = kR3 [H+]2, kR3 = 2 M−3s−1 and k−O3 = k−R3 = 3.2

M−1s−1. Reaction (R3) is often substantially reversible during the BZ oscillations,

but this reversibility is typically neglected in the simple Oregonator. Reaction (R2),

HBrO2+Br−+H+ →2HOBr becomes (O2), X+Y→2P, with kO2 = kR2 [H+] and kR2

= 3x106 M−1s−1. Reaction (R1) followed by the bromination of CH2(COOH)2 is

assumed to be the ultimate fate of nearly all HOBr and Br2. Thus we ignore these
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reactions and instead consider the species P to be BrCH(COOH)2 rather than HOBr.

Process B It is assumed in simplification of Process B that nearly all BrO·
2 pro-

duced in reaction (R5) reacts rapidly with Ce(III) in reaction (R6). This implies

reaction (R5) is not reversible, making it rate-determining for reaction (R6). If reac-

tion (R6) is also assumed not to be reversible, reaction (R5) becomes rate-determining

for Stoichiometry (D) as well. Thus for each HBrO2 that disappears via reaction (R5),

two Ce(IV) ions and two HBrO2 molecules are generated. For the above approxima-

tions to be correct it must be so that Rate (R6) = kR6 [Ce(III)][BrO�
2][H+] >> Rate

(-R5) = 2k−R5 [BrO2
�]2 or kR6 [Ce(III)][H+] >> k−R5 [BrO2

�]. Using well-known values

of k−R5 and kR6 (Field et al. (1972); Field and Foersterling (1986); Hegedus et al.

(2001)) and reasonable estimates of [Ce(III)] and [BrO2
�] when Process B is dominant

during the BZ oscillations, we find (6.2x106 M−2 s−1)(0.0005 M)(0.8 M) = 2480 s−1

>> (2x107 M−1s−1)(1x10−6 M) = 20 s−1. Thus the assumption that reaction (R5)

is rate determining for reaction (R6) in the forward direction is supported, and we

define the third-step of the Oregonator (reaction O5) as analogous to Stoichiometry

(D)

A+X→ 2X+Z (O5)

Recall that Z ≡ 2 Ce(IV). The rate constant kO5 = kR5 [BrO3
−][H+] with kR5 =

42 M−2s−1. Note that the parameter A (BrO3
−) is absorbed into kO5.

It turns out that reaction (R6) is significantly reversible. This complication is

usually ignored in order to preserve the simple form of reaction (O5). However, the

reversibility of reaction (R5) may be readily accounted for by adding the multiplica-
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tive term (C0 - Z/2)/C0 to kO5 in order to diminish the rate of reaction (O5) as Z

accumulates. Thus we have kO5 = kR5 {(C0 - Z/2)/C0} [BrO3
−][H+] when the re-

versibility of (O5) needs to be considered. The quantity C0 is the total of the oxidized

and reduced forms of the metal-ion catalyst, e.g., C0 = [Ce(III)] + [Ce(IV)].

Reaction (R4) is readily converted to reaction (O4) by simple identity to yield

X+X →A+P kO4=kR4=3x103M−1s−1 (O4)

Process C reduces Ce(IV) back to Ce(III) with the regeneration of Br− dur-

ing dominance of the system by Process B. This increase in [Br−] and decrease in

[Ce(IV)]/[Ce(III)] eventually resets the BZ cycle to Process A. It is this negative

feedback coupled with the autocatalytic nature of Process B that destabilizes the BZ

steady state in favor of limit cycle oscillation. Process C can be imagined as the

combination of reactions (4) and (5) together reducing Ce(IV) and generating Br−.

CH2(COOH)2+6Ce(IV)+2H2O→ 6Ce(III)+HCOOH+2CO2+6H+ (4)

4Ce(IV)+BrCH(COOH)2+2H2O→Br−+4Ce(III)+HCOOH+2CO2+5H+ (5)

However there are stoichiometric problems. If reactions (4) and (5) both occur as

written, then for each ten Ce(IV) reduced only one Br− is released. This is not enough

Br− to disable the autocatalysis in Process B by winning the competition between

reactions (R2) and (R5) for HBrO2. Indeed linear stability analysis (Field and Noyes

(1974a); Epstein and Pojman (1998); Freire et al. (2009)) of the Oregonator shows
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that a minimum of one Br− must be generated for each Ce(IV) reduced for the FKN

steady state to be destabilized and the system evolve to limit-cycle oscillation.

It seems apparent that for sufficient Br− to be produced by reactions (4) and (5) to

destabilize the steady state then CH2(COOH)2 and BrCH(COOH)2 are likely not re-

duced all the way to the stoichiometric final products of HCOOH and CO2. Potential

products not oxidized by Ce(IV) might include HOCH(COOH)2 and O=C(COOH)2.

It also seems likely that organic radical species such as �CH(COOH)2, �OCH(COOH)2

or �CH2COOH might bite on BrCH(COOH)2 to yield excess Br−, although the major

fate of radicals in Process C seems to be dimerization (Hegedus et al. (2001)). Thus

Process C is not well understood mechanistically and Process C is represented in the

Oregonator by the generic reaction (OC).

B+Z →1/2fY kOC=1 (OC)

The quantity B is typically taken to be [CH2(COOH)2]0. The quantity f is the

stoichiometric factor defining how many Br− are produced per Ce(IV) reduced. The

two factor results because Z = 2 Ce(IV).

Thus the Oregonator model becomes Reactions O2 - OC.

Process A

A+Y→X+P kO3=kR3[H+]2 (O3)

X+Y→2P kO2=kR2[H+] (O2)

Process B
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A+X→2X+Z kO5=k5{(C0-Z/2)/C0}[BrO−
3 ][H+] (O5)

X+X→A+P kO4=kR4 (O4)

Process C

B+Z → 1/2fY kOC=expendable (OC)

The Oregonator dynamic equation for a well-stirred batch reactor is shown below.

dX
dt

= k3AY-k2XY+k5AX-2k4X2 (9)

dY
dt

= k3AY-k2XY+1/2f kcBZ (10)

dZ
dt

= 2k5AX-kcBZ (11)

Equations (6) - (8) may be investigated by analytical methods and by numerical

integration, as is done here.

Equations (9) - (11) may be expressed in dimensionless form as below.

dx

dτ
= {(qy-xy+x (1-x )}/ε (12)

dy

dτ
= (-qy-xy+fz )/ε

′
(13)

dz
dτ

= x-z (14)
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with variable scalings x = 2k 4X /k 5A; y = k 2Y /k 5A; z = k ck 4 BZ/(k 5A)2; τ =

kCBt and parameter scalings ε= kCB/k 5A; ε′ = 2kCk 4B/k 2k 5A; and q = 2k 3k 4/k 2k 5.

Typical parameter values for A = 0.06 M and B = 0.02 M are ε = 1x10−2, ε′ =

2.5x10−5; q = 9x10−5.

The advantages of scaling a set of differential equations include (1) they may

assume a simpler form, e.g., compare Eqs (9) - (11) and Eqs (12) - (14), and (2)

small parameters may appear in the scaled equations that may allow a system of

equations to be reduced by changing a differential equation to an algebraic equation.

Furthermore, nullcline methods (Gray and Scott (1990)) of investigation of sets of

differential equations are often simplified by scaling the equations (Scott (1994)).

As an example (Scott (1994)) of reducing a set of scaled differential equations may

be seen by inspecting Eqs (12) - (14). Rearrangement of Eq (13) yields

(ε
′
)dy/dτ = -qy-xy+fz (15)

Recall ε′ = 2.5x10−5. On the crudest approximation we then assume ε′ = (dy/dτ)

= 0. Thus equation (12) becomes 0 = (- qy - xy + fz ) or y = ysteadystate = fz/(q + x ).

Substituting this result into Eqs. (9) and (11) yields a reduced set of two equations,

Eqs. (16) and (17).

ε(
dx
dτ

) = x(1-x)-{(x-q)/(q+x)}fz (16)

dz
dτ

= x-z (17)
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Methods of differential equation reduction are much more subtle and powerful

than shown in this simple example (Kalachev and Field (2001)).
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2 The Anomalous Wave Dispersion Model

The model used here for simulation of anomalous wave-dispersion in the CHD-BZ

reaction consists of six dynamic variables, representing the most important chemical

species, and two parameters, representing the concentrations of the major pool re-

actants bromate and and cyclohexanedione. The model is of polynomial form and

is constructed by mass-action. We begin with an analysis of the model in a well-

stirred batch system, which exhibits only spatially homogeneous temporal dynamics.

The analysis then continues to spatially distributed systems including the interaction

of reaction and diffusion and the development of traveling spatial waves where the

phenomenon of anomalous wave dispersion may appear.

2.1 The Mass-Action Equations

X+Y → P (1)

A+Y → X (2)

X+X → A (3)

A+X → 2X+2Z+gJ (4)

Z+B → 1

2
fY (5)

J+M → 2M (6)

M+Y 
 Q (7)

M+M → (8)

The variables f and g are stoichiometric factors, and are treated as expendable pa-

rameters. Species included in the mechanism are X≡HBrO2, Y≡Br-, Z≡[Fe(phen)3]
3+
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k 1 4.0x107 M−2s−1

k 2 2.0 M−3s−1

k 3 9.0x103 M−2s−1

k 4 42.0 M−2s−1

k 5 0.5 M−1s−1

k 6 70.0 M−1s−1

k 7f 5.0x104 M−1s−1

k 7r 5.0x10−4 s−1

k 8 35.0 M−1s−1

Table 1: Rate Constants

(phen≡1,10-Phenanthroline). The identities of the remaining species are not specifi-

cally defined but can be speculated upon. The species J is most likely a brominated

or oxidized organic byproduct of the auto-catalytic production of bromous acid. The

species M is similar, while species Q is a brominated organic. These identifications

will be discussed further.

The first five reactions constitute the oscillatory Oregonator mechanism (Field and

Noyes (1974a)), which is a well understood model of the Belousov-Zhabotinsky reac-

tion. Reactions 6-8 are a second pathway for the oxidation of organic substrate, cou-

pled to the Oregonator to provide non-monotonic recovery of Br− to the steady state

after an autocatalytics pulse of oxidation (Process B). The model can be considered

a heuristic skeleton model to provide dynamics favorable to reproducing anomalous

dispersion in a wave train simulation.

The model can be written as a series of differential equations.
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R1 = k1XYH

R2 = k2AYH
2

R3 = k3X
2H

R4 = k4AHX(1− Z/C0)

R5 = k5BZ

R6 = k6JM

R7f = k7fYM

R7r = k7rQ

R8 = k8MM

(9)

dX
dt

= −R1 +R2− 2.0R3 +R4

dY
dt

= −R1−R2 + 1
2
fR5−R7f +R7r

dZ
dt

= 2.0R4−R5

dJ
dt

= gR4−R6

dM
dt

= R6−R7f +R7r − 2.0R8

dQ
dt

= R7f −R7r

(10)

It is important to note the mass-balance term, (1 − Z/C0), present in R4. The

inclusion of the ratio of ferroin to that of the total catalyst concentration limits

uncontrolled growth of the ferriin concentration. This is necessary to account for the

reversability of Process B over a wide range of reaction conditions. C0=3.0x10−3 in

all calculations, unless explicitly stated otherwise.

2.2 Chemical Processes

2.2.1 The Oregonator

The Oregonator as described previously consists of the following equations

Process A
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A+Y →X+P kO3 = kR3[H+]2 (O3)

X+Y →2P kO2 = kR2[H+] (O2)

Process B

A+X →2X+Z kO5 = {(C0-Z/2)/C0}[BrO−
3 ][H+] (O5)

X+X →A+P kO4 = kR4 (O4)

Process C

Process C refers to the regeneration of Br− via the products of Process B. The

classic FKN understanding of Process C suggests that the organic substrate can be

brominated through HOBr, probably via the formation of Br2. In the CHD-BZ system

cyclohexanedione and the brominated species react with ferriin catalyst, oxidizing the

organic species, and resulting in bromide ion and reduced catalyst.

2Zox+CHD+BrCHD→ f Br−+2Zred+other products (OC)

The stoichiometric factor, f, used in the reaction is an adjustable parameter that

describes the amount of Br− produced during the process. If the reaction proceeds

exclusively via brominated organic species, f =2. In the analysis we have taken f is

a constant, although it has been used as a dynamic variable in other studies (Janz

et al. (1980)). It is also worth noting that stoichiometric factors with a value greater

than two seem to violate the stoichiometry of the reaction. With respect to the FKN

mechanism this concern has been addressed through a chain-mechanism involving

malonyl radicals and bromine atom radicals (Gyorgyi et al. (1990)).
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2.2.2 The Modified Oregonator

To create a model that exhibits the phenomenon of anomalous wave-dispersion an ex-

tension to the Oregonator has been constructed. This consists of three new reactions

and an additional product in Process B, which then becomes

BrO−
3 +HBrO2+2Zred+3H+ →2HBrO2+2Zox+H2O+gJ

where g is an expendable stoichiometric coefficient and J is a byproduct of Process

B. The three additional reactions are as follows:

J+M→2M (6)

M+Y
Q (7)

M+M→ (8)

In this model Process C consists of Reactions 5-8. Several conjectures can be

made concerning the identity of the unnamed species, J, M and Q, in the modified

Oregonator reactions. In the absence of experimental observations, the mechanism

must be judged predominantly in terms of what it accomplishes. The added reactions

provide a second, uncatalyzed, pathway for the oxidation of the organic substrate.

The time scale for the uncatalyzed pathway is sufficiently different from the cat-

alyzed Oregonator mechanism that new behavior of anomalous wave-dispersion can

be observed.

The model equations were integrated using FORTRAN77 driver code and the Liv-

ermore Solver for Ordinary Differential Equations (LSODES) (Hindmarsh (1980)).

All results were obtained using the six-variable modified Oregonator mechanism, un-

less otherwise specified.
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2.3 Stability Analysis

The stability of the system is determined by the eigenvalues of the Jacobian matrix,

evaluated at the steady state, defined by the six differential equations. By calculating

the steady states of the system for any set of parameters, the Jacobean matrix can

be evaluated, and the stability of the system determined. This allows us to deter-

mine for which values of the principal bifurcation parameters the system is stable, or

oscillatory.

2.3.1 Linearized system

The evolution (growth or decay) of a small disturbance from the steady-state defines

the stability of the system. By linearizing the system near to the steady-state it is

possible to determine the stability of that fixed point.

For a two dimensional system,

dx/dt = f(x, y)

dy/dt = g(x, y)

let f(x∗, g∗) = 0, g(x∗, y∗) = 0

Which denotes x*,y* as a steady state. A small perturbation to the steady state

can be defined as

u = x− x∗, v = y − y∗

Forming differential equations for u and v through a Taylor series expansion allows

us to determine whether the perturbation grows, or returns to the steady state.

du
dt

= u∂f
∂x

+ v ∂f
∂y

+O(u2, v2, uv)

dv
dt

= u∂g
dx

+ v ∂g
dy

+O(u2, v2, uv)

Here O(u2,v2,uv) is a shorthand representation of quadratic terms arising from

the Taylor expansion. Since the values of u and v are very small, the quadratic terms

can be eliminated, limiting the analysis to the linear regime very close to the steady
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state. Writing the above in matrix notation gives us the following du
dt

dv
dt

 =

 ∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y


 u

v

+ quadratic terms

The matrix

A=

 ∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y


evaluated at (x*,y*) is the Jacobian matrix for the system of differential equations.

The eigenvalues of this matrix indicate the stability of the fixed point (x*,y*). If the

real parts of the eigenvalues are negative, then a small perturbation will decay to the

steady state. Conversely, if the real part of any eigenvalue is positive, the result of

a small perturbation will result in motion away from the steady state. An analysis

of the stability of the modified Oregonator was performed by solving for the steady-

state and evaluating the resulting Jacobian matrix. For example, fig. 5 shows for

what values of f the system is stable, with A=0.06, B=0.02, H=1.0, g=0.1. For

clarity a dashed line is included at zero on the y-axis. For any value of f where the

eigenvalue is positive, a stable limit cycle may exist. The plot shows that while varying

f and holding all other parameters constant the system transitions from stability to

instability at f u 0.615, and returns to stability at f u 2.07.

2.3.2 Analysis of Bifurcation Type

The points at which the eigenvalues pass through zero are Hopf bifurcations where

a pair of eigenvalues of the Jacobian exist as complex conjugates. The change of

sign (passage through zero) of the real part of the complex conjugate pair defines

the point where stability changes. In the Oregonator model bifurcations may be ei-

ther subcritical or supercritical; the low-f bifurcation is often subcritical while the

high-f bifurcation is often supercritical. The figures 6 and 7 show the effect of a

small perturbation to Y on this system at f u 0.55, in the neighborhood of the low-f
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Figure 5: Bifurcation Diagram of Equations 1-8
A=0.06, B=0.02, H=1.0, g=0.1

bifurcation. Figure 6 shows that a small perturbation results in damped oscillations

rapidly decaying to the steady state. Figure 7 is the result of a slightly larger per-

turbation, which moves the system to the surrounding stable limit cycle. This is an

example of hysteresis occuring in the vicinity of a subcritical Hopf bifurcation where

there is a coexistence of a steady state, an unstable limit cycle, and a stable limit

cycle. As f increases the steady state remains stable until crossing the bifurcation

point, and the system evolves to the already existing limit cycle. If f continues to

increase to the second, supercritical, bifurcation oscillations decay to zero-amplitude

as the steady-state regains stability.

2.3.3 Mapping Stability

Maps of stability can be created by evaluating the modified Oregonator over a variety

of parameter values. These maps are useful in determining excitable conditions that

are necessary for the formation of traveling chemical waves.
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Figure 7: Large Perturbation Leading to Sub-critical Excitation to the Limit Cycle
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Figure 8: Exploration of parameters f (abscissa) and H (ordinate) on regions of
stability and instability at various values of parameters A and B

(a) A=0.06 M, B=0.02 M (b) A=0.06 M, B=0.02 M

(c) A=0.06 M, B=0.1 M (d) A=0.06 M, B=0.15

(e) A=0.06 M, B=0.2 M (f) A=0.1 M, B=0.5 M
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Figure 9: Exploration of parameters f (abscissa) and H (ordinate) on regions of
stability and instability at various values of parameters A and B

(a) A=0.1 M, B=0.1 M (b) A=0.1 M, B=0.2 M

(c) A=0.15, B=0.05 (d) A=0.15 M, B=0.1 M

(e) A=0.15 M, B=0.2
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The series of sub-figures contained within Figures 8 and 9 demonstrate the stability

of the system for a variety of parameter values. The principal bifurcation parameters,

f and H, are on the x and y axes, respectively. The line separating stable and unstable

regions of parameter space indicates a bifurcation between stable and unstable steady

states. Altering the system parameters A and B does little to affect the location of

the bifurcation line in the f-H plane. This reinforces the notion that f and H should

be treated as the principal bifurcation parameters, and that the system parameters A

and B have a small effect on the stability of the CHD-BZ system. These parameters

have a large effect on the dynamics of the system.

2.4 Modified Oregonator Dynamics

Our additions to the simple Oregonator model modify its dynamics and provide con-

ditions for anomalous wave-velocity dispersion in an excitable reaction medium. The

end result is a system that has what has been described (Szalai et al. (2003)) as non-

monotonic relaxation of [Br−] to the steady state. As f and H are varied, various

oscillatory and decaying [Br−] behaviors appear. Figure 12 shows a single excursion

decay, featuring a “dip” in [Br−] following excitation as the system relaxes to the

steady-state. Figure 13 shows an oscillatory (via a group of rapid oscillations) decay

to the steady state. Figure 14 shows a complex limit cycle composed of quiescent

periods separated by short periods of rapid oscillation. Figure 10 shows a diagram of

these behaviors in f-H space. At very low f the steady-state is stable. At low and high

values of f single excursion decay to the steady state is observed. At intermediate

values of f both multiple oscillation decay to the steady state, and complex bursting

oscillations are observed.

42



Figure 10: Map of Areas of Single-Excursion Decay, Complex Oscillations, and
Multiple-Excursion Decay to the Steady-State as f and H are Varied
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Figure 11: Monotonic and Non-monotonic Relaxation to the Steady State
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Figure 12: Single Excursion Decay to the Steady-State
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2.4.1 Single Excursion Decay to the Steady-State

Figure 11 shows the differences in character of [Br−] recovery to the steady state in the

simple Oregonator and the modified Oregonator. In both cases a small perturbation

is applied to [Br−] at t = 2000 s. The perturbation must be sufficient to move the

system beyond a threshold in order to induce an excursion. Once an excursion has

been initiated the system must traverse the limit cycle in order to return to the

steady state. The monotonic blue line represents results obtained using the simple

Oregonator where [Br−] recovers monotonically to the steady-state. The black line

represents results obtained using the modified Oregonator. The large dip in [Br−]

is the direct result of the reversible nature of reaction 7. The excursion is initiated

by the HBrO2 autocatalysis in reaction 4. As a result [Br−] is produced rapidly

via reaction 5, along with the intermediate species J. This in turn causes a second

autocatalyis in reaction 6, which leads to rapid sequestration of [Br−] in reaction 7f in

the form of the intermediate Q . The sequestration of Br− causes its concentration to

fall below that of the steady state. The slower process of reaction 7r results in a slow

recovery of bromide to the steady state from below. This non-monotonic recovery to

the steady state is necessary for anomalous wave velocity dispersion in a quasi one-

dimensional spatial system. Figure 12 shows the behavior of all six variables during

non-monotonic decay to the steady-state.

In addition to non-monotonic recovery to the steady state, the modified model

exhibits a variety of interesting temporal behaviors, some of which are described in

experimental observations of the CHD-BZ oscillator (Hamik and Steinbock (2003);

Ginn and Steinbock (2005); Manz and Steinbock (2006)).

2.4.2 Multiple Oscillation Decay to the Steady-State

The excitable region in the model exhibits a second form of decay, consisting of

multiple oscillations while relaxing to the steady-state. Figure 13 shows the behavior
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Figure 13: Multiple Oscillation Decay to the Steady-State
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(a) Multiple Oscillatory Excursions, X and Z
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of all six variables during such a relaxtion. The slow, compared to the single excursion

case, accumulation of the intermediate Q during the oscillatory period eventually ends

the multiple oscillation burst by the poisoning of Process B.

2.4.3 Complex Limit Cycle

The complex limit cycles seen here are composed of a quiescent period, followed by a

period of oscillation, typically referred to as bursting (Janz et al. (1980)). Oscillations

are initiated at the end of the quiescent period in the same manner as in the Oregona-

tor. Process B becomes dominant here because [Br−] is removed from the system by

Process A. Process B also provides small amounts of intermediate J, which provides

coupling to the additional reactions in the modified Oregonator. Both the difference

between single excursion and multiple excursion decay, and the difference between

multiple excursion decay and complex oscillatory decay is the level of accumulation

of intermediate Q.

During a single cycle of the oscillation described above, reactions 6-8 also have an

impact on the dynamics of the system. Our analysis agains starts with process B.

The concentration of M is strongly affected via equilibrium 7 by the concentration

of Y, via equilibrium 7. When Y is large, such as during process C, M is rapidly

removed though 7f . When Y is decreasing, such as during process B, reaction 1

competes favorably for Y, allowing [M] to increase as Q increases. In this way [Y] is

accountable for rapid switching from 7f to 6 during process C.

Process C is also responsible for the growth of the intermediate Q. During process

C, an abundance of Y is formed, leading to a spike in the rate of 7f . Although the

increase in the rate of formation of Q is short lived, Q is not rapidly diminished. The

equilibrium 7 lies to the right, and as a set of oscillations proceeds the [Q] increases.

Eventually a critical [Q] is reached and new behavior is observed.

The species Q can act as a reservoir for Br−. Although Reaction 7r is slow, the
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Figure 14: Complex Bursting Oscillations
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relatively large [Q] makes it a significant independent source of Y during the removal

of Y by process B. The result of a large [Q] is the inhibition of process A via Reaction

7f . The switching between Process B and Process A occurs as [Y] reaches a critical

concentration, below which autocatalysis of X becomes dominant. At the end of the

oscillatory region of the limit cycle in a complex bursting oscillation, [Y] never reaches

the critical point, and the system remains under the influence of process B.

The result of this interaction is the “dip” seen in [Y] in fig 14. The value of Y

does reach a local minimum, and begins to rise because of the exhaustion of X and

the presence of excess of Y caused by the large value of Q. The system can no longer

oscillate as before due to the excess of Q. The long quiescent period is characterized

by the removal of Q via reaction 7r and the removal of M through the termination

step reaction 8. Once [Q] has sufficiently declined, it no longer provides a large

independent source of Y. Process A initiates and the oscillatory cycle can repeat.

2.5 Effects of Parameters on Model Dynamics

While the principal bifurcation parameters f and H determine the stability and overall

dynamics of the modified Oregonator, the parameters A and B can be used to alter

the dynamics. These parameters appear only in the Oregonator equations and thus

they can be evaluated in terms of the Oregonator processes.

2.5.1 The Parameter A

The parameter A, corresponding to BrO−
3 , appears in reactions 2 and 4. Because

A is a reactant in Processes A and B, it it is reasonable that it increases the speed

at which these reactions proceed. This effect is seen as a decrease in the period of

oscillation.

This effect is exhibited in figures 15 and 16. The frequency and number of os-

cillations increases as [A] increases. Parameter A appears in the rate constants of
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Figure 15: The Effect of Parameter A on Oscillatory Period, low A
A = 0.05, B = 0.05, f = 3.0, g = 0.2, H = 1.0
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Figure 16: The Effect of Parameter A on Oscillatory Period, high A
A = 0.1, B = 0.05, f = 3.0, g = 0.2, H = 1.0
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reactions 2 and 4. Increasing the value of A leads to an increase in reaction rate. In

terms of the Oregonator, Process A and Process B are both affected. The increase in

the rate of Reaction 2 speeds Process A, while the increase in the rate of Reaction

4 increases the rate of Process B. This is seen in the Modified Oregonator as the

increased frequency of oscillation in the time periods shown in figures 15 and 16.

2.5.2 The Parameter B

The effect of the value [B] (B≡CHD) on the modified Oregonator is less pronounced

than is the effect of A. Parameter B only appears in reaction 5, which is the basis of

Oregonator Process C. An increase in B leads to an increase in the rate of reaction 5,

which is the chemical process responsible for the recovery of [Br−] in the oscillatory

cycle. The result is a small decrease in the oscillatory period. Reaction 5 is also

responsible for the production of Br− in the recovery phase of the cycle. The presence

of the stoichiometric factor f on the right-hand-side of reaction 5 further minimizes

the effect of changes in the magnitude of B. A far more effective way to change the

Br− recovery rate is to alter f rather than B. Figures 17 and 18 show the increase in

oscillation period that is obtained by increasing B.

2.6 The Effect of Equilibrium Reaction 7 on Modified Orego-

nator Dynamics

Reaction 7 of the modified Oregonator determines the relaxation of Br− following

perturbation of a near to steady-state system. The stability of the dip in [Br−] is

increased when [Q] is increased from its reaction 7 steady-state value. The behavior of

the model was initially evaluated using k−7 = 5.0e−4. If reaction 7r is slowed to k−7 =

1.0e − 6 [Q] remains nearly constant throughout oscillatory behavior. The steady-

state [Q] is also significantly increased due to this change stabilizing the behavior

of the entire model. The increased [Q] is responsible for greater production of Y
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Figure 17: The Effect of Parameter B on Oscillatory Period, low B

0 2000 4000 6000 8000 10000
Time (s)

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

C
on

ce
nt

ra
tio

n 
(M

)

X
Y
Z

0 2000 4000 6000 8000 10000
time (s)

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01 J
M
Q

A = 0.05, B = 0.05, f = 3.0, g = 0.2, H = 1.0

53



Figure 18: The Effect of Parameter B on Oscillatory Period, high B
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Figure 19: Map of Areas of Excitability and Oscillation from the Steady-State
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througout all phases of the modified Oregonator cycle. This change results in the

loss of oscillatory bursts, as seen in figure 19. The minimization of bursting behavior

afforded by the slower reverse rate in reaction 7 is advantageous in the study of

traveling chemical waves in a quasi one-dimensional spatially distributed system.

2.6.1 Single Excursion Excitation in the modified Oregonator

The smaller rate constant k−7 allows for slightly different excitation dynamics. In

Figure 20 a perturbation applied at t = 2000 s results in a single oscillatory excur-

sion. The intermediate Q remains at a nearly constant concentration throughout the

excursion. As in calculations using the faster k−7 a small decrease in the amount

of Br− results in Oregonator Process B becoming dominant. The relatively small

change in the [Q] during an excursion makes it a candidate for removal as a dynamic

variable. This would allow the model to be reduced to five variables, and would allow

the use of Q as a useful parameter in the adjustment of the system to achieve sta-

ble wave propagation and dynamics in a quasi one-dimensional spatially distributed

experiment.

When using the slower rate constant k7r the system retains conditions in which

a small perturbation to Br− results in sustained oscillation. As in calculations done
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Figure 20: Single Excursion
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Figure 21: Multiple Oscillations
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Figure 22: Termination of Oscillatory Excursion
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with the faster k−7 a small reduction in the concentration of Br− results in Process B

becoming dominant. In sustained oscillation the intermediate Q is far from equilib-

rium, and increases constantly for a long time period as seen in figure 15 . Eventually

the concentration of Q reaches a critical point and the reverse of 7 is of sufficient

magnitude to inhibit autocatalysis and force the return of the system to steady-state.

This is in stark contrast to the single oscillatory excursion, where the concentration

of Q reaches a critical point after only a single excursion, and highlights the problems

that could be encountered if Q is removed from the system as a dynamic variable.

2.7 Dimensionless Equations

It is often convenient to rearrange differential equations into a dimensionless form.

The primary advantage of doing so is simplification of the rate equations 9 and 10. The

Tyson (Tyson (1982)) scaling of the Oregonator can easily be extended to the modified

Oregonator. By making substitutions for the dynamic variables, the equations can

be written in a dimensionless form which is often easier to work with. The following
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substitutions are made:

X = k4Ax
2k3

M = k1k4Am
2k3k7f

Y = k4Ay
k1

Q = (k4A)2q
2k3k7r

t = τ
k5B

Z = (k4A)2z
k3k5B

J =
k4k7f Aj

k1k6
C0 = (k4A)2c0

k3k5B

(11)

The scaled variables are proportional to the original variable, and are written

as the lower case of the corresponding variable. The dynamic equations become

dimensionless upon substitution of the new variables into the unscaled differential

equations.

(ε)dx
dτ

= ρy − xy + x(1− z/c0)− x2

(ε′)dy
dτ

= fz − xy + q − ym− ρy

dz
dτ

= x(1− z/c0)− z

(χ) dj
dτ

= gx(1− z/c0)− jm

(ψ)dm
dτ

= jm− ym− q − ρ′m2

(ω) dq
dτ

= ym− q

(12)

where

ε = k5B
k4A

ψ = k1k5B
k4k7A

ρ = 2k2k3

k1k4

ε′ = 2k3k5B
k1k4A

ω = k5B
k8

ρ′ = k9(k1)2

k3(k7)2

χ = 2k3k5k7B
k1k4k6A

Numerical values for the scaling constants are obtained by using typical values of

the parameters: A(0.06), B(0.02) and H (1.0), and rate constants in Table 1, and the

value k7r = 5.0e− 6.

ε = 1.19x10−2 ψ = 9.52

ε′ = 5.4x10−6 ω = 5.0x104 χ = 3.83x10−3
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The value of the scaled differential equations is their relatively simple form. Scaled

equations may be easier to work with, e.g., when solving the differential equations

for fixed solution points or steady states. In some cases with proper scaling the

stiffness of the set of equations is also decreased, yielding faster integration times

when extended into a quasi one-dimensional spatially distributed model. One is also

able to define the dimensionless constants ε, ε’, χ, ψ, and ω in such a way to separate

the time scales that the dimensionless variables move on. If one of the dimensionless

constants multiplies a rate term, i.e., (ω′ dq
dτ

), is sufficiently smaller in magnitude than

similar terms, that variable can be removed from the system via the steady-state

approximation, (ω′ dq
dτ

) = 0.

2.8 Five-Variable Model

The numerical value of w is much greater than that of the next largest coefficient, ψ,

resulting in the rate of change dq
dτ

being much smaller than the other rates of change.

This allows the use of a steady state approximation for the variable q, allowing a

subsequent reduction to a five variable system of differential equations.

(ε)dx
dτ

= ρy − xy + x(1− z/c0)− x2

(ε′)dy
dτ

= fz − xy − ρy

dz
dτ

= x(1− z/c0)− z

(χ) dj
dτ

= gx(1− z/C0)− jm

(ψ)dm
dτ

= jm− p′m2

(13)

This set of five dimensionless differential equations 13 is expected to reasonably

reproduce the behavior of the six-variable model. However, the five-variable reduced

model behaves significantly different from the original six-variable case. Figure 25

shows behavior at various values of the parameters f and H. The areas of primary

interest are excitable and oscillatory conditions. The five-variable model is used
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Figure 23: Scaled Model, Oscillations
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Figure 24: Scaled Model, Excitation
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Figure 25: Stability of the Reduced Model While Varying Parameters f and H
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with the smaller value for the rate constant k7r = 5.0x10−6, as a result no multiple

oscillatory relaxations to the steady-state are observed for excitable conditions.

2.8.1 Oscillations

Oscillations are seen in the five-variable model for the conditions seen in figure 25. The

five-variable model qualitatively reproduces some of the features of the six-variable

modified Oregonator. The elimination of q as a dynamic variable affects the dynamics

of the variables j, y, m during oscillatory behavior, while the dynamics of the species x

and z are largely unaffected. Figure 26 shows changes in behavior of the five-variable

model due to the elimination of q as a dynamic variable. The magnitude of variable

m decreases significantly, and the oscillations in j change character. With the large

decrease in magnitude of m, j becomes completely controlled by Process B. This is

seen as the spikes in j and x, both occurring during the autocatalytic reaction 4.

Autocatalysis of m in reaction 6 is not pronounced, because of the relatively small

magnitude of m, plus the second-order removal of m in reaction 8 prevents any large

increases in magnitude.
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Figure 26: Oscillations in the Five-Variable Model
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2.8.2 Excitability

The five-variable model also exhibits excitability from the steady state. However,

there is a large difference in the dynamics of the system. Non-monotonic relaxation

to the steady state is no longer observed in y, but appears in j, and to a lesser

extent in m. Excitation is obtained through a small instantantaneous decrease to the

magnitude of y, which is sufficient to initiate Process B. When autocalatylis of x ends

the system returns to equilibrium through Process A. During relaxation to the steady

state j is removed through the slow autocatalysis in Reaction 6. The peak magnitude

of m is delayed compared to that of x, y, and z. The autocatalytic production of

m is responsible for the removal of j, causing the drop in magnitude of j below its

steady state concentration. The overall dynamics of the system, seen in figure 27, is

greatly changed from that of the six-variable model. The model reduction removes the

dip in [Br−], and the five-variable system does not exhibit anomalous wave-velocity

dispersion.
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Figure 27: Excitation from the Steady State in the Five-Variable Model
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3 Travelling Waves in the Modified Oregonator

3.1 Flux Terms

The well-stirred modified model can be extended, by use of Fick’s second law, to

a quasi one-dimensional spatially distributed system analogous to the thin capillary

tube (Hamik and Steinbock (2003); Manz and Steinbock (2006); Bordyugov et al.

(2010)). A grid of points is constructed in one spatial dimension, each point containing

the temporal chemical dynamics of the six non-linear differential equations. Each

differential equation contains an extra term to describe the flux between adjacent

points. The flux term takes the form of Fick’s second law of diffusion, where c is the

concentration of the chemical species, D is the diffusion coefficient, and l is spatial

distance.

δc

δt
=

δ

δl
D
δc

δl
(14)

This equation describes the diffusive change in concentration at a point in terms of

the second dericative of the concentration gradient at that spatial point. In this work

the second derivative is numerically approximated by equation δc
δt

= (D/l2)[ci+1 +

ci−1 − 2(ci)], where i is the grid point at which the flux is desired; i+1 and i -1 are

adjacent grid points.

The diffusion coefficient used for all chemical species is 1x10−5cm2 s−1, which is

a default value used for small molecules in dilute aqueus solution (Field and Noyes

(1974b)). The spacing between grid points (l) is 0.04 cm.

The end result is a set of six partial differential equations, representing both the

reactive and diffusive processes occurring.
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dX
dt

= −R1 +R2− 2.0R3 +R4 + δX
δt flux

dY
dt

= −R1−R2 + 1
2
fR5−R7f +R7r + δY

δt flux

dZ
dt

= 2.0R4−R5 + δZ
δt flux

dJ
dt

= gR4−R6 + δJ
δt flux

dM
dt

= R6−R7f +R7r − 2.0R8 + δM
δt flux

dQ
dt

= R7f −R7r + δQ
δt flux

(15)

These equations are integrated using LSODES (Hindmarsh (1980)) with a varying

number of gridpoints, depending on the requirements of the individual calculation.

3.2 Anomalous Wave-Dispersion

Anomalous wave-velocity dispersion relationships in one and two quasi-dimensions

have been experimentally identified in the CHD-BZ reaction (Hamik and Steinbock

(2003); Manz and Steinbock (2006); Bordyugov et al. (2010)). A normal dispersion

relationship is described as a series of traveling waves proceeding at a constant veloc-

ity, c0 and at a characteristic distance, l0, between consecutive waves (fig. 1). The

original observation of traveling waves of chemical activity in the ferroin-catalyzed

BZ system (Zaikin and Zhabotinskii (1970)) was made in a quasi two-dimensional

system consisting of a thin layer of reagent in a petri dish. The waves appeared as an

expanding target pattern surrounding an initiating center. A quasi one-dimensional

system may be thought of as movement along a straight line passing through the

initiating center. In a system with normal dispersion a wave initated at a distance

less than l0 behind a preceeding wave will fall behind that wave until it reaches the

distance l0 and is traveling at the velocity c0. In a quasi one-dimensional system this

behavior appears as a series of waves of chemical activity starting at the initiation

center and moving down the line with uniform spacing and velocity.
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In anomalous wave velocity dispersion there exists a distance, lmax, between con-

secutive chemical waves below which a secondary wave arising at the initiation center

travels at an increased velocity with relation to the primary wave. If the secondary

wave is located at a distance greater than lmax, it travels at an identical velocity

to that of the primary wave. Various behaviors have been observed experimentally

when a second wave is initiated at an interpulse distance less than lmax. Depending

upon experimental conditions the CHD-BZ oscillator exhibits wave stacking, where

chemical waves travelling in the wake of the primary wave stack up behind it, much

like cars delayed behind a slow driver. Chemical waves are also observed to merge

with the leading pulse, as well as initiate new pulses upon interacting with the wake

of a leading wave.

3.3 Mechanism of Wave Propagation

Travelling waves in a BZ system are generally studied in a region where the chemical

steady-state is stable, but is excitable. This is similar to conditions in the well-stirred

model where a perturbation results in a single oscillatory excursion (Field and Troy

(1979)). A threshold exists that determines the behavior of the system after the

application of a perturbation. Any perturbation below the threshold will result in

a rapid return to the steady state, while a perturbation that exceeds the threshold

requires a complete traverse of the limit cycle to return to the steady state. In the

calculations described here all perturbations applied to the modified Oregonator are

instantaneous decreases to [Br−].

Pulses travel through the excitable medium as a chemical excitation wave. The

pulse is initiated through Process B, the autocatalytic generation of HBrO2, which

causes an increase in oxidized catalyst. The front travels through the excitable media

as an oxidation wave. Ahead of the chemical wave HBrO2 diffuses from the pulse into

the area directly in front of it, causing a decrease in [Br−] via reaction 1. As [Br−]
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ahead of the front is depleted the autocatalytic process B moves forward through

space. If the steady state is maintained in the direction of wave propagation, the

pulse will travel through the excitable medium at constant velocity.

The concentrations of intermediate species returns to the reduced steady state

behind the pulse. A maximum in [ferroin] and [Br−] follows directly behind the pulse

of HBrO2. The profile of the wake is similar to the relaxation of an oscillatory excur-

sion to the steady-state in the well-stirred model, as in fig. 12. [Br−] falls to a level

below the steady-state before recvovery from below. This is the behavior described

previously (section 2.4), and is a necessary feature for development of anomalous wave

velocity dispersion.

The standard Oregonator model produces travelling wave patterns with a normal

dispersion relationship. The interpulse distance is determined by [Br−] in the wake

of the excitation pulse. The trailing end of a travelling wave has [Br−] greater than

that of the steady state. This elevated [Br−] is inhibitory to the propagation of a

second wave. Any excitation wave found in this region will be subject to inhibition of

its movement and will collapse or travel at a reduced velocity until it has reached an

interpulse distance where the elevated concentrations behind the pulse have returned

to the steady state.

3.4 Single Waves

3.4.1 Wave Initiation From Steady-State Concentration

Traveling chemical waves are obtained by applying a perturbation, an instantaneous

reduction of [Br−], to the modified Oregonator equations in a region where the dy-

namics are excitable, but not spontaneously oscillatory. Regions where the system

is excitable to oscillation can also be used if the slowly changing [Q] is sufficiently

far from its steady-state value to prevent oscillation, but retains single excursion ex-

citability. The perturbation causes the reaction dynamics to be controlled by process
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B. NMR studies (Britton (2003)) of the CHD-BZ system have successfully measured

the speed of traveling waves, as have studies in thin capillary tubes (Hamik and Stein-

bock (2003)). In the calculations presented here, waves are initiated at a zero-flux

boundary condition to ensure propagation in only one direction.

Figure 28 provides a close view of the concentrations of the dynamic variables in

the wave front; the wave is traveling from left to right into an excitable steady-state

medium. The x -axis in this figure shows the spatially coupled points in the quasi

one-dimensional system. The decrease in [Y], which initiates wave propagation, is

clearly visible at the leading edge of the chemical wave. Autocatalytic production of

[X], and its rapid removal, are also visible directly behind the wave front.

Figure 29 provides a wide view of the same traveling wave shown in fig. 28. Visible

here is the recovery of the chemical species in the wake of the traveling wave. The non-

monotonic recovery of Y to the steady state is clearly visible at ~50 cm. This feature

coincides with small peaks in M and X, and a small valley to peak transition in Z.

These features are the result of the augmented Process C in the modified Oregonator.

In the wake of the chemical wave there is initially a large amount of J remaining from

Process B. This is involved in a slow auto-catalysis with M, which in turn aids in the

removal of Y through reaction 7f . The removal of Y causes Process B to begin to

compete favorably here, although the critical point for transition from Process A to

Process B is never reached, and Process B never becomes dominant. The constant

production of Y via reaction 7r is responsible for the retardation of Process B in this

situation. The result of the competition between Processes A and B is an unstable

region contained within the the non-monotonic recovery (dip) of Y to the steady

state, seen in fig. 29 between ~30 cm to ~50 cm. This is the area in which all

anomalous wave velocity is observed.
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Figure 28: Travelling Wave Front Propagation in an Excitable Medium
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Figure 29: Travelling Wave Propagation in an Excitable Medium

10 20 30 40 50 60 70
cm

1.0e-08

1.0e-06

1.0e-04

1.0e-02

C
on

ce
nt

ra
tio

n 
(M

)

X
Y
Z

10 20 30 40 50 60 70
cm

1.0e-08

1.0e-06

1.0e-04

1.0e-02

C
on

ce
nt

ra
tio

n 
(M

)

J
M
Q

A=0.06 M, B=0.02 M, H=2.0 M, f =4.0, g=0.2

73



3.4.2 Dynamic Control of the Wake Via Parameters A, B, and the vari-

able Q

The magnitude of the dip in [Br−] present in the wake of a traveling chemical wave is

the primary feature affecting anomalous wave dispersion in a quasi one-dimensional

spatially distributed system. The instability introduced by diffusive coupling through

space occasionally causes unexpected results in regions where the well-stirred model

predicts excitable behavior. This is perhaps analogous to the diffusive spatial desta-

bilization of a spatially homogeneous system leading to the formation of a Turing

structure (Turing (1952)). Altering the parameters A and B allows control of the

dynamics of the system to ensure traveling waves appear.

3.4.3 Parameter B

Figure 30 shows the effect of varying parameter B on the dynamics of [Br−] in a

traveling chemical wave. While parameter A is also changed in these figures, the

magnitude of the effect is much smaller than for changes in B, and can be neglected.

The primary change to the waveform visible in the figure is the broadening of the

Br− wave as [B] is decreased. This is a direct result of B appearing only in Process

C. If [B] is greater, R5 increases, resulting in a faster relaxation to the steady state,

and decrease in breadth of the chemical wave.

3.4.4 Parameter A

Parameter A has little effect on the [Br−] dip. Parameter values are identical in

figures 32a and 32b except for A. The shape of [Br−] is nearly identical, which should

be expected because small changes in A will result in only small changes in the rate

of reaction 2. The values of A used in this work are purposefully kept small to avoid

excessive removal of Br− via reaction 2.
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Figure 30: The Effect of Parameter B on [Br−]
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Figure 31: The Effect of Parameter A on [Br−] “dip”
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3.4.5 Treating [Q] as a Model Parameter

Although Q is a dynamic variable in the modified Oregonator, it can be useful to

consider [Q] as a parameter to affect the stability of the quasi one-dimensional system.

The scaling and model reduction of equations 13 suggests [Q] as a candidate for model

reduction through the steady-state approximation, because the reverse reaction 7 is

very slow. By supplying an initial condition [Q]0 that is far from its steady-state

concentration one can affect the stability of the quasi one-dimensional system through

the size of the [Br−] dip. An increase in [Q] results in a significant increase in [Br−]

during all model Processes. Figure 32 shows the difference in character of the [Br−]

dip in conditions where [Q] initially lies at the steady state, and where it has been

increased. Although the parameters A, B, H, and g are identical in the example,

the parameter f must be varied to obtain conditions where the system is excitable

to a single excursion. The very high value for f (6.5) is necessary for excitability in

conditions where [Q] lies at the steady state, while a much lower value for f can be

used if [Q]0 is far from the steady state. This is not unexpected, because [Q] has a

large role in Br− production. Altering [Q]0 is merely an alternate method of affecting

Br− and changing the stability of the system.

3.5 Multiple Traveling Chemical Waves

It is possible by applying a second perturbation to Y in the wake of a traveling

chemical wave to observe the dynamics of multiple chemical waves in the quasi one-

dimensional spatially distributed system. The presence of multiple waves allows the

study of anomalous velocity dispersion.

3.5.1 Anomalous Velocity Dispersion in a Pair of Chemical Waves

Figures 33 and 34 show in different formats the same pair of chemical waves traveling

through an excitable medium. Figure 33 is a time-space plot, where the lines in the
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Figure 32: The Effect of [Q] on [Br−] “dip”
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(a) A = 0.06 M, B = 0.02 M, H = 0.5 M, g = 0.2, f = 6.5,
[Q]steadystate = 0.0038 M
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(b) A = 0.06 M, B = 0.02 M, H = 0.05 M, g = 0.2, f =
2.1, [Q]0 = 0.096 M
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Figure 33: Two Traveling Chemical Waves Exhibiting Anomalous Velocity Distribu-
tion
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A=0.06 M, B=0.02 M, H=0.5 M, g=0.2, f =2.1, [Q]0=0.09 M. The initial interpulse
distance is 11 cm.

body of the plot represent the front of a chemical wave. The x -axis is the distance

from the origin, and the y-axis is total time elapsed. The inverse slope of the line at

any point is the velocity of the wave front in cm/min at that point. The figure clearly

shows the approach of the second chemical wave to the first, and the accompanying

increase in propagation velocity. As the second wave reaches the local minimum of

[Br−] its velocity slows to that of the first wave. Figure 34 shows the [Br−] at three

different times. The second wave approaches the non-monotonic wake of the first,

and quickly catches up before slowing.

3.5.2 Multiple Chemical Waves Displaying Anomalous Velocity Disper-

sion

Figure 35 shows conditions where multiple perturbations have been applied to a

system near to the steady state. It must be mentioned that the initial value of [Q]

has been modified to provide additional stability to the system. Temporally uniform

perturbations were applied, creating eight spatially non-uniform pulses. Pulses are
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Figure 34: Multiple [Br−] peaks in a Quasi One-Dimensional System
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(c) t=400
A=0.06 M, B=0.02 M, H=0.5 M, g=0.2, f =2.1, [Q]0=0.09 M. The initial interpulse
distance is 11 cm.
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Figure 35: Multiple Traveling Waves Exhibiting Anomalous Velocity Dispersion
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A=0.06 M, B=0.02 M, H=0.05 M, f =2.1, g=0.2 [Q0]=0.0961 M. Perturbations are
applied every 2000 s.

counted from the origin, increasing in number along the y-axis. The second pulse in

the sequence travels at an increased velocity with relation to pulse one, and reaches

the dip in [Br−]. Upon reaching the first pulse there is no longer a decresed [Br−], and

the second pulse travels with identical velocity to pulse one. The temporally uniform

perturbations result in the pulses formed having non-uniform spatial distribution.

Pulses three through eight are near lmax, and do not display anomalous velocity.

Figure 36 shows a calculation performed with identical paramater conditions to

fig. 35. In this calculation the time between perturbations was decreased, thus the

interpulse distance has also decreased. The behavior in fig. 36 has a striking resem-

blance to the behavior described by (Bordyugov et al. (2010)) as “wave bunching.”

The pulses in both experiment and calculation have a tendency to form pairs because

of the non-uniform spatial distribution in the reaction medium.
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Figure 36: Multiple Traveling Waves Exhibiting Anomalous Velocity Dispersion
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Figure 37: Space–time Trajectories of Fronts in a System with Bunching Dynamics

[H2SO4]=2.0 M, [CHD]=0.15 M, [NaBrO3]=0.14 M. Figure from Bordyugov et al.
(2010).
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3.5.3 “Backfiring” and Stable Wave Trains

Steinbock and co-workers have observed a phenomena described as “backfiring” in

experiments on the CHD-BZ system. This phenomenon arises in the six-variable

spatially distributed model under a variety of parameter conditions. Backfiring is

observed when the [Br−] falls to the critical level in the dip behind a wave front, and

Process B becomes dominant. Figure 38 is a time-space plot showing the emergence

of a backfiring event at the tail end of a wavetrain. A second perturbation applied

at a distance of 20.4 cm behind the first resulted in a multiple oscillatory excursion.

The dip following the tenth pulse in the series initates Process B, and a new initiation

point is formed, which undergoes a single oscillatory excursion. A time series of pulse

formation is shown in figure 39. The line with negative slope in the upper left hand

corner of figure 38 is a newly formed pulse traveling in the opposite direction. While

backfiring pulses have been observed experimentally (Manz and Steinbock (2006)),

the initation center has not been seen to form a new pulse traveling in the forward

direction as well as the reverse, as is seen here. Initiation points spontaneously formed

in the wake of traveling chemical waves may also undergo multiple oscillatory excur-

sions.

3.6 Five-Variable Spatially Distributed System

The five-variable model reduction is also extended into a spatially distributed quasi

one-dimensional system using Fick’s second law of diffusion. The equations become:

(ε)dx
dτ

= ρy − xy + x(1− z/c0)− x2 + δx
δτ flux

(ε′)dy
dτ

= fz − xy − ρy + δy
δτ flux

dz
dτ

= x(1− z/c0)− z + δz
δτ flux

(χ) dj
dτ

= gx(1− z/C0)− jm+ δj
δτ flux

(ψ)dm
dτ

= jm− p′m2 + δm
δτ flux

(16)
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Figure 38: Backfiring in an Unstable Wave Train
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The five-variable model fails to produce anomalous wave velocity dispersion. The

figures 40 and 41 show calculations performed using the five-variable reduced model.

While a non-monotonic recovery to the steady-state concentration is observed in j,

this is not the inhibitor species in wave propagation. Consequently, conditions do not

exist in the five-variable reduced model where anomalous velocity dispersion observed.
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Figure 39: [Br−] Time Series of “Backfiring”
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(c) t = 9000 s
A = 0.06 M, B = 0.02 M, H = 1.0 M, g = 0.2, f = 6.3

Figure 40: Five-Variable Spatially Distributed System
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A=0.1 M, B=0.05, H=2.0 M, f =2.5, g=0.2. Pulses are applied at τ=0, 0.25, and
0.5 in scaled time.
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Figure 41: Five-Variable Spatially Distributed System

0 50 100 150 200
distance (cm)

0

0.5

1

1.5

sc
al

ed
 ti

m
e 

(d
im

en
si

on
le

ss
)

A = 0.1 M, B = 0.05 M, H = 2.0 M, f = 2.5, g = 0.2. Perturbations are applied at
τ = 0 and 0.6 in scaled time.
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4 Conclusions and Future Direction

The modified six-variable Oregonator model presented here successfully reproduces a

significant amount of the experimental behavior observed in the CHD-BZ system. The

phenomena of anomalous velocity dispersion, wave-stacking, and backfiring have been

successfully reproduced numerically in terms of a non-montonic [Br−] decay to the

steady state in the wake of an excitation pulse. The origin of anomalous dispersion as

the result of such a non-monotonic decay curve in [Br−] has been suggested previously

by Steinbock et. el, Szalai et. el, as a precondition for anomalous dispersion. However,

the work presented here is the first successful representation of anomalous dispersion

using a chemical model. This model is based on the well-understood chemistry of the

Oregonator model of the Belousov-Zhabotinsky reaction, coupled to a second pathway

(based on chemistry related to uncatalyzed bromate oscillators) for the oxidation of

organic substrate to provide the new dynamics.

We believe that future work in this area should begin with re-evaluation of the

mechanism based upon what has been learned with the modified Oregonator model

presented here, and recent new experimental results (Jichan Wang, private commu-

nication). Potential unification of this model with the five-variable skeleton model

presented by Szalai et al. should also be pursued. While the Szalai model does not

produce non-montonic decay in [Br−] to the steady state, it provides an experimen-

tally based mechanism for a second oxidation pathway of the organic substrate. It

is possible that this chemistry can provide insight into the identities of intermediate

species in the CHD-BZ system.

The effect of Parameters A, B, H, and f on wave velocity is also a potential

area for exploration. These parameters play an important role in the stability of the

modified Oregonator model. It is reasonable to explore their impact on the [Br−]

steady state, and resulting effect on wave velocity. Exploration of diffusion effects on

the waveforms as well as the role of [Br−] on wave velocity is also a potential area of
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interest.
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