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ABSTRACT 

Xu, Qi, Ph.D., July 2012          Integrative Microbiology and Biochemistry 
 
Abstract Title: pH modulation of fibril dissociation and copper binding properties of 
the prion protein 
 
Chairperson: Dr. Michele McGuirl 
 

The cellular form of prion protein (PrPC) is a cell-surface glycoprotein attached 
to lipid rafts via its glycosylphosphatidylinositol anchor. Conversion of PrPC to its 
“scrapie” conformer (PrPSc, the fibrillar form) constitutes the key event of the 
etiology of prion diseases. Fibril dissociation is necessary for efficient conversion 
and continued propagation of the disease state. Recent studies have revealed that 
conversion occurs along the endocytic pathway. To better understand the dissociation 
process, we have investigated the effect of low pH on the stability of recombinant 
prion fibrils. We show that under conditions that mimic the endocytic environment, 
amyloid fibrils made from full-length recombinant prion protein dissociate both 
laterally and axially to form protofilaments. About 5% of the protofilaments are 
short enough to be considered soluble and contain ~100-300 monomers per structure; 
these also retain the biophysical characteristics of the filaments. We propose that 
protonation of His residues and charge repulsion in the N-terminal domain trigger 
fibril dissociation. Our data suggest that lysosomes and late endosomes are 
competent milieus for propagating the misfolded state not only by destabilizing the 
normal prion protein, but by accelerating fibril dissociation into smaller structures 
that may act as seeds for further fibril formation. 

PrPC binds four Cu(II) in its octarepeat region and another at the fifth binding 
site. Previous work has demonstrated detailed structural information on copper 
binding to these sites at neutral pH. Both types of binding sites contain ionizable 
groups, thus the effect of pH on copper binding needs to be clarified. Moreover, 
much less attention has been devoted to understanding copper binding in PrPSc, 
which is more pathologically relevant. These two aspects are investigated here using 
isothermal titration calorimetry and X-band electron paramagnetic spectroscopy. Our 
results confirm that copper binding to both the octarepeats and the fifth binding site 
is pH-dependent. We show that both sites bind copper in the fibrillar form with 
coordination modes similar to their monomeric counterparts. However, the ratios of 
the different coordination modes have changed in the fibril, which might suggest 
changes in their affinities after conversion and have potential effects on the redox 
properties of fibrils.  
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The infectious pathogen of scrapie, one form of transmissible spongiform 

encephalopathies (TSEs) that occurs in sheep, was recognized in the 1960’s as a 

protein due to its unusual resistance to UV inactivation and ionizing radiation [1, 2]. 

This agent was named “prion”, which stands for proteinaceous infectious particle, by 

Prusiner in 1982 [3]. The major protein component of scrapie prion isolated from 

hamster brain was then purified and identified as prion protein (PrP) [4]. Since then, 

tremendous efforts have been devoted to understanding the biochemical and 

biophysical features of the prion protein and unraveling the enigmatic relationship 

between prion protein and formation of the prion particle, which is believed to be the 

cause of TSEs. Recent advances in protein research also reveal that prion may 

represent a more common phenomenon than was previously thought, from both 

physiological [5] and pathological [6] perspectives. The term prion has been used in 

yeast to describe the templated conformational change of yeast proteins into 

differently folded states, which can propagate in a way similar to that of infectious 

mammalian prion [7, 8], despite the fact that there is no sequence similarity between 

them. This chapter provides an overview of the main characteristics and biological 

and pathological relevance associated with normal mammalian cellular PrP (PrPC) 

and its related misfolded scrapie conformers (PrPSc). The structures and functions of 

yeast prions are briefly addressed as well.  

I. Prion diseases and amyloid diseases  

Amyloid diseases are disorders caused by the accumulation of misfolded 
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proteins, which lead to the formation of extracellular ordered aggregates, i.e. 

amyloid [9] or intracellular aggregates, such as Lewy bodies [10]. Among these are 

TSEs, also called prion diseases, where the misfolded protein is the prion protein. 

Prion diseases are notorious for their unique ability to transmit disease from one 

individual to another and often across species [11]. However, there is increasing 

evidence that other amyloid diseases may adopt a similar prion-like transmission 

mechanism under specific circumstances, which are known as prionoids [12].  

Prion diseases are a group of neurodegenerative diseases that are associated 

with the accumulation of a misfolded conformer of PrP (PrPSc) in the central nervous 

system (CNS) of animals and humans. Examples include Creutzfeldt-Jakob disease 

(CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), kuru, fatal familial 

insomnia (FFI) and sporadic fatal insomnia in humans, scrapie in sheep, chronic 

wasting disease in elk and deer (CWD), and bovine spongiform encephalopathy in 

cattle (BSE) [13-15]. These fatal diseases are pathologically characterized by 

neuronal vacuolation and loss, synaptic dysfunction, and reactive gliosis of the CNS 

[13, 16, 17]. In addition, peripheral nerves, spleen, muscle tissue and lymphoid 

tissue such as tonsils, also harbor PrPSc [18]. Although the deposition of amyloid 

plaques in the brain is the hallmark of amyloid diseases [19], in prion diseases they 

are restricted to certain subtypes, including kuru, MV2 subtype of sporadic CJD 

(sCJD) [20, 21] and variant CJD (vCJD). The amyloid plaques of vCJD have a 

unique florid appearance, which distinguish it from the other human prion diseases 

[22]. Despite their heterogeneity, disease-associated PrPSc form large and insoluble 
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aggregates and are thus partially resistant to digestion by the protease proteinase K 

(PK), whereas PrPC is PK-sensitive [3, 23]. However, a novel human prion disease 

characterized by the presence of PK-sensitive PrPSc has been described, which shows 

a distinct phenotype from the known prion diseases [24].  

In humans, prion infection is associated with a long incubation time, which can 

exceed 50 years in some cases [25]. One unique feature of prion diseases is the 

existence of three distinct manifestations. Sporadic CJD with no known cause 

accounts for approximately 90% of human prion diseases, whereas 10% are inherited 

(autosomal dominant) disorders associated with more than 30 mutations in the 

regulatory and coding regions of the prion gene, PRNP (familial CJD, GSS, FFI) [15, 

26]. In addition, a very small number of cases are acquired forms of this disease. 

These include kuru, iatrogenic CJD and vCJD, which are caused by exogenous 

infection [26, 27]. The vCJD has gained special interest due to an outbreak in the 

mid 1990's in the United Kingdom, which is thought to have resulted from the 

consumption of BSE-contaminated beef. Although the number of confirmed human 

vCJD cases is relatively modest (183 cases worldwide to date) [28, 29], it still raises 

significant public-health concerns due to the lack of early diagnosis and effective 

treatment, and the deficit in our knowledge about its transmission routes [29]. 

Horizontal transmission, mainly through the oral route [30], plays a major role in the 

spread of prion disease. Prion infectivity, however, has also been detected in urine, 

blood, saliva, milk and other body fluids in infected animals and humans, which 

suggests the need for caution [31, 32]. Although vertical transmission has been 
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demonstrated in a transgenic mouse model [33], to date there is no evidence for 

vertical transmission in humans [34]. However, the latter may require a longer 

incubation time before a firm conclusion can be reached.  

Interestingly, the susceptibility to sporadic or acquired CJD in humans is 

profoundly influenced by the PRNP gene polymorphism. Heterozygosity at residue 

129 (methionine/valine) and 219 (glutamate/lysine) is highly protective against 

sporadic and acquired prion diseases in Europeans [35, 36] and the population in the 

Asia-Pacific region [37] respectively. On the other hand, homozygosity at residue 

129 increases the risk of sCJD development and the acquisition of iatrogenic CJD 

[35, 36]. Furthermore all the vCJD cases diagnosed to date are homozygous for 

M129 [38]. In a mechanism that is poorly understood, the M/V129 polymorphisms 

can influence the phenotypes of sporadic and acquired prion disease [39]. In addition, 

phenotypes of familial prion diseases are also influenced by the M/V129 

polymorphism. For example, the D178N mutation causes FFI in combination with 

V129, but results in CJD with M129 [40]. Accumulating evidence suggests that the 

polymorphism may change intermolecular β-sheet formation that results in different 

prion protein variants [41].  

A. Protein-only hypothesis 

According to the generally accepted protein-only hypothesis, conversion of the 

normal cellular prion protein, PrPC, proceeds through the direct interaction of this 

protein with PrPSc [3, 42]. PrPSc acts as a conformational template and uses PrPC as a 

substrate, causing PrPC to misfold and become part of the continuously growing 
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aggregate, thus propagating the misfolded state [3].  

Though definitive evidence that the infectious agent of prion diseases is strictly 

proteinaceous is still missing, a large body of evidence has provided compelling 

support for this model in the past few decades. Some of the strongest supporting 

evidence comes from PrPC knockout mice, which do not contract prion disease even 

after inoculation with brain homogenate from scrapie infected mice [43]. Although 

the existence of other infectious agents cannot be ruled out by this study, it shows 

that PrPC is necessary for PrPSc propagation and infectivity. Another important line 

of evidence is the successful conversion of purified brain PrPC into a 

protease-resistant form similar to PrPSc in a cell free system. However, the yield of 

the PrPSc-like conformers is very low and no obvious infectivity has been detected 

[44]. One technological breakthrough is the protein misfolding cyclic amplification 

(PMCA) assay, in which a mixture of PrPSc seed and healthy brain homogenate is 

subject to a cyclical process involving incubation and sonication [45]. Unlike 

experiments using purified PrPC, both PrPSc-like conformers and infectivity can be 

recapitulated in the PMCA assay, which provides direct evidence that PrPSc 

infectivity can be achieved in a cell-free system [46]. In a more recent attempt, de 

novo PrPSc was generated from brain homogenate using a modified PMCA protocol 

[47]. These reports lend direct support to the prion hypothesis. However, since 

PMCA uses brain homogenate as substrate, there is no way to exclude the 

contribution of other constituents present in the brain homogenate to the propagation 

and subsequent infectivity. This point is confirmed by the failure to reproduce prion 
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infectivity in PMCA using recombinant PrPC (rPrP) as substrate [48]. Supplementing 

the system with poly(A) RNA rescues the infectivity, which highlights the crucial 

role played by cofactors in PrPSc infectivity [48].  

Another line of studies in favor of the protein-only hypothesis comes from the 

finding that fibrils made from truncated recombinant PrP (residues 89-231) are able 

to induce the transmissible form of prion disease in transgenic mice that overexpress 

PrP (Tg9949). Fibrils isolated from these mice can transmit disease to both Tg9949 

and wild type animals in a second passage [49]. Again, this experiment is not 

conclusive in identifying PrPSc as the only infectious agent because it requires mice 

expressing extremely high levels of PrP and much longer incubation than typical 

PrPSc strains [25]. Alternatively, the low infectivity might be due to the extremely 

high stability of the recombinant prion fibrils, which are quite resistant to 

denaturation; the concentration of guanidine hydrochloride (GdnHCl) required to 

reach 50% denaturation (GdnHCl1/2) is about ~4.5 M [50]. In an attempt to reconcile 

the discrepancy between the behavior of rPrP fibrils and authentic PrPSc, Baskakov 

proposes that the rPrP fibrils have to undergo maturation before they are fully 

infectious [51]. This may involve interaction with unknown cellular cofactors and/or 

conformational adaptation, which implies that the infectivity is generated in vivo. 

This hypothesis is partially supported by the observation that infectivity of 

full-length recombinant prion fibrils can be reconstituted after annealing in the 

presence of normal brain homogenate [52]. Although the nature of these cofactors 

remains unclear, they could either be a constituent of PrPSc that stabilizes its 
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structure or a component that facilitates the conversion from PrPC to PrPSc [51]. A 

recently developed PMCA protocol that includes well-defined components to 

recapitulate the PrPSc infectivity in vitro suggests a promising way to identify these 

cofactors [53].  

Despite these and other important advances, there is still evidence against the 

protein-only hypothesis. One of the strongest criticisms comes from the existence of 

multiple strains of TSEs (see below) that are characterized by diverse phenotypes in 

prion diseases [13]. This raises the question of how the prion protein can encode 

information required for strain-specific properties, which is always specified by a 

nucleic acid genome in conventional infectious diseases [54, 55]. However, no 

nucleic acid consistently associated with PrPSc has been identified. Instead, a 

growing number of observations now strongly indicates that the PrPSc strains can be 

rationalized in the frame of the protein-only hypothesis, with strain diversity 

representing the conformational diversity of the PrPSc aggregates [56-59].  

B. Prion-like mechanisms in other amyloid diseases 

To date, about 40 amyloid diseases have been identified; each is associated with 

a specific misfolded protein [9]. A growing body of evidence implicates that a 

prion-like template-directed misfolding and auto-seeding mechanism might be 

employed by the culprit proteins in these diseases [6, 60]. Examples include Aβ in 

Alzheimer’s disease, α-synuclein in Parkinson’s diseases, huntingtin in Huntington’s 

disease and tau in tauopathies [6, 10, 61-64]. Understanding the mechanism of prion 

formation and replication and its role in prion diseases could therefore potentially 
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extend our understanding of other amyloid diseases, in addition to the direct benefit 

to understanding prion diseases. Interestingly, interactions between PrPSc and Aβ 

have been reported recently, which leads to the acceleration and exacerbation of both 

pathologies [65]. A cross-talk mechanism between different amyloidogenic proteins, 

or cross-seeding, has been suggested. The authors also propose that patients having 

one amyloid disease may have a higher risk of developing a second one [65].  

Although prion disease is the first contagious amyloid disease that can transmit 

between individuals, recent data indicate that AA amyloidosis, a disease caused by 

the accumulation of serum amyloid A protein in a variety of organs, may also be 

contagious [66, 67]. In a mouse model, this disorder can easily be transmitted 

between animals by both intravenous and oral routes [68]. Transmission in the wild 

within the same species (cheetah) and also across species (from duck or goose to 

mice) has also been suggested [69, 70].  

II. The cellular prion protein (PrPC): structure, biology and 

function 

PrPC is a highly conserved cell-surface glycoprotein attached to lipid rafts via 

its glycosylphosphatidylinositol (GPI) anchor [71]. It is ubiquitously expressed in all 

mammals and avian species with high expression in central nervous system, 

especially on the presynaptic membrane [72, 73]. The structure and biosynthesis of 

PrPC have been elucidated; however, its physiological function is still puzzling 

despite worldwide research.  
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A. Structural features of PrPC 

Most mammalian prion proteins have ∼210 amino acid residues after the 

cleavage of the N-terminal signal peptide and processing of the C-terminal GPI 

anchor sequence. Because it is difficult to obtain enough protein in a highly purified 

state [48], structural studies of PrPC are mostly done on recombinant proteins. To 

date, the structures of recombinant PrPC from more than 20 different species [74] 

have been solved by NMR [75] or X-ray crystallography [76]. These proteins lack 

both glycosylation and the GPI anchor, but  reveal a consensus structure composed 

of a large disordered N-terminal domain (~ 100 residues), a highly conserved 

globular domain (residues 125-228) and a short flexible C-terminal tail (residues 

229–230/232) [75, 77] (Figure 1-1, A and B).  

Depending on the species, the N-terminal domain contains at least four 

glycine-rich octarepeats (OR), which are highly conserved among species [77]. The 

ORs, which encompass residues 60-91 in hamster that contain four identical copies 

of PHGGGWGQ, have a high affinity for divalent cations, especially for Cu(II) ions 

(see chapter III). Another conserved region in the N-terminal domain is the 

hydrophobic domain (HD) downstream to the ORs, which contains a high 

percentage of alanine residues [29]. This domain has received special interest 

because the corresponding peptide exhibits neurotoxicity [78-80] and has a high 

propensity to form β-sheets [81] and amyloid fibrils [82, 83] in vitro. Deletion or 

mutation of the HD domain produces lethal cation flux in host cells [84-86]. This 

aberrant current may be caused by the formation of new ion channels or by the 
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disturbance of the functions of existing ion channels [84, 85].  

 

 

Figure 1-1. Structural features of the Syrian hamster PrPC. 

(A) Schematic depiction of the structural elements of processed 
hamster PrPC (residues 23-232). The N-terminal signal peptide (residues 
1-22) and the C-terminal GPI anchor signal sequence (residues 233 – 253 
have been removed by cellular processing enzymes. The numbering of 
amino acid residues is from PDB 1B10 [87]. OR (grey), octarepeat; HD 
(black), hydrophobic domain; S1 and S2 (blue), β-strands; H1, H2 and H3 
(brown), α-helices. Adapted from reference [88]. (B) Tertiary structure of 
PrPC (residues 125-228) as deduced from solution NMR spectroscopy (PDB 
1B10 #3) [87]. The figure was generated using ViewerLab. The N-terminal 
domain (residues 23 – 124) is disordered.  

Although intrinsically disordered, the conformation of the OR regions is 

heavily influenced by the environment. As revealed by NMR spectroscopy, the 

unfolded state is in equilibrium with a β-turn conformation under physiologically 

relevant conditions. This folded state is more favored at neutral pH [89]. In a 

membrane environment, the ORs may attach to the membrane through tryptophan 

A 
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anchors and form well-defined loops that are linked by the flexible glycine triplets 

[90]. In addition, the ORs gain ordered structure in the presence of certain ligands. 

Copper binding results in a β-turn conformation ordered around the Cu(II) ions, and 

might be  involved in prion pathogenesis [91]. Binding of ORs to sulfonated 

glycans also triggers the formation of a repeating loop-turn motif, similar to that 

found in the copper-bound state [92].  

The structured globular domain consists of 3 α-helices (H1, H2 and H3) and 2 

short anti-parallel β-strands (S1 and S2) preceding H1 and H2 respectively [87]. This 

region contains a conserved hydrophobic core, which endows the global domain 

with stability. The hydrophobic core is mainly found between H2 and H3 and 

between H1 and the loop located around H3 [93, 94]. Many germline mutations 

associated with inherited human prion diseases cluster in the globular domain. Even 

though none of these cause dramatic changes in global structure [95, 96], an 

increased population of partially structured intermediates has been reported in a vast 

majority of cases [97]. Some mutations may modify the contact surface between H2 

and H3, resulting in the disturbance of normal PrP folding pathway [96, 98].  

The conformation of H1 is significantly influenced by environmental pH. The 

last three residues of H1 adopt a 310 helix at neutral pH and a more flexible structure 

at pH 4.5 [99]. During PrPC to PrPSc conversion, dissociation of the S1-H1-S2 region 

from the H2-H3 region promotes the misfolding of PrPC [100]. The second and third 

α-helices are bridged by a disulfide bond formed between Cys179 and Cys214, 

which remains intact in PrPSc [101]. A threonine stretch in H2 destabilizes this helix, 
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but this is partially compensated by contacts between H2 and the unstructured 

N-terminal domain [102]. The loop between S2 and H2 (residues 166-175 in hamster) 

is highly flexible in most species, whereas it is well-ordered in cervids due to the 

presence of Asn and Thr at position 170 and 174 [103, 104]. In cervids the rigidity of 

this loop is also modulated by long-range interactions between residues 166 and 225 

[105]. Introduction of these two substitutions into mouse PrP renders mice with high 

susceptibility (100%) to spontaneous prion disease [104, 106]. It is still unclear 

whether this is caused by the rigid structure or is simply a result of manipulating the 

mouse genome [104].  

The global domain also contains two N-linked glycosylation sites [77]. In many 

studies recombinant PrP, which lacks the glycosylation and GPI-anchor, has been 

utilized to characterize the structure of PrPC. Glycosylation only enhances the 

thermodynamic stability of the protein by ~1 kcal/mol, which may not be significant 

[74]. Furthermore, molecular dynamics simulation on di-glycosylated and 

GPI-anchored PrP implies that post-translational modifications do not significantly 

alter the structure or dynamics of PrPC as compared with rPrP [107], suggesting that 

rPrP is an appropriate substitute for prion protein structural research.  

B. Cell biology of PrPC 

Translocation of the nascent PrP into the endoplasmic reticulum (ER) is 

initiated when the emerging N-terminal signal sequence is recognized by the signal 

recognition particle (SRP). This results in the arrest of translation and targeting of 

the ribosome-PrP complex to the Sec61 translocon. Binding of SRP to its receptor on 
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the ER membrane resumes the translation and transfers the polypeptide into the ER 

lumen cotranslationally [108-110].  

PrPC glycosylation is achieved in the ER by transferring the core 

oligosaccharide unit to the nascent chain while it is still associated with the 

translocon. PrPC contains two N-linked glycosylation sites [109]. Under 

physiological conditions, PrPC can be di-, mono-, and un-glycosylated [111]. Shortly 

after PrPC is fully translocated into the ER lumen, the C-terminal signal peptide is 

cleaved and a GPI anchor is attached to the terminal serine residue [108, 109]. The 

N-terminal signal peptide is also cleaved in the ER lumen [108]. The properly folded 

PrPC is then transported into the Golgi apparatus, where the N-linked glycosylation 

and GPI-anchor are trimmed and structural diversity in the carbohydrates is 

introduced in a cell type-specific manner [108, 109] (Figure 1-2). The glycosylation 

pattern is also influenced by the differentiation state of neuronal cells [112].  

Recent studies show that PrPC can be targeted to lipid rafts by the GPI-anchored 

heparan sulfate proteoglycan glypican-1, which binds to its N-terminal region [113]. 

Some of the PrPC molecules on the surface will be internalized and constitutively 

recycled between the plasma membrane and the endocytic compartments, involving 

a transit time of ~60 min. Two internalization pathways, the clathrin-dependent 

pathway [114] and the caveolae-dependent pathway [115], have been described for 

PrPC. Both of them participate in the Cu2+-stimulated internalization of PrPC [115].  

The PrP signal sequence is less efficiently translocated than the signal 

sequences of other proteins [108], which results in the formation of a minor 
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proportion of aberrant PrP molecules when they interact with the Sec61 translocon. 

These include cytosolic PrP (cyPrP) and two topological conformers; NtmPrP in 

which the N-terminus resides in the ER, and CtmPrP in which the C-terminus resides 

in the ER [108, 116]. Although increased levels of cyPrP have been shown to be 

detrimental in cultured cells [117], other studies show that cyPrP has a protective 

effect [118]. CtmPrP has been shown to confer neurotoxicity at elevated level as well 

[108, 119]. Under physiological conditions, cyPrP and CtmPrP are subject to 

lysosomal and proteasomal degradation, which keeps their concentrations at low 

levels (~ 1% of total) [108]. However, in TSE, the accumulation of PrPSc in cells 

may cause lysosomal dysfunction and proteasome inhibition, leading to higher levels 

of cyPrP and CtmPrP. This may contribute to the neurodegeneration noted in TSEs 

[116, 118]. Both cyPrP and CtmPrP are not transmissible and do not convert to PrPSc. 

Other aberrant forms include the GPI-free form, which may take part in signal 

transduction. At least four mechanisms have been associated with the formation of 

soluble PrP: these include the removal of its GPI-anchor by escape of glycolipidation 

[120]; cleavage of the GPI anchor by phospholipase C [121]; secretion by exosomes 

[122]; and alpha cleavage mediated by ADAMs (A Disintegrin And Metalloproteases) 

[123]. 
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Figure 1-2. Overview of PrPC biosynthesis and its conversion to 
PrPSc.  

After being synthesized in the ER and trimmed in the Golgi apparatus, 
PrPC is targeted to the cell surface. PrPC constitutively recycles between the 
plasma membrane and the endocytic compartments, eventually being 
degraded in lysosomes. Conversion of PrPC to PrPSc occurs on the cell 
surface after PrPC reaches the plasma membrane and in the endocytic 
pathway when PrPC recycles back from the membrane. The presence of 
preformed PrPSc substantially enhances the conversion efficiency although 
spontaneous conversion is also possible. Once it is formed, PrPSc can 
accumulate on the cell surface or in the endosome-lysosome system. 
Adapted from references [67, 108].  

C. Putative physiological functions of PrPC 

The widespread expression of PrPC in vertebrates in almost all tissues and its 

remarkably conserved sequence and structure among species suggest that PrPC may 

participate in fundamental biological processes [124]. Therefore, it was surprising 

that PrP knockout mice did not show any overt abnormality as compared with 

wild-type animals [125]. The results suggest that either the functions of PrPC are 

non-essential or that redundant proteins exist. Nowadays, PrPC or PrPC-mediated 

events are thought to be required for or associated with a variety of physiological 

processes, although its exact function(s) is still poorly understood. 

A number of PrPC interaction partners have been identified. Unfortunately, the 
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physiological relevance of most of these interactions is still controversial [119, 

126-129]. Furthermore, some physiological functions proposed for PrPC are based on 

disturbances in cellular activities while PrPC expression is manipulated, rather than 

the direct observation of protein activity. The following paragraphs therefore 

describe only a few partners and functions for which strong evidence exists. 

As a GPI-anchored protein localized in lipid rafts, one popular hypothesis is 

that PrPC may serve as a scaffold protein to interact with a wide variety of molecules 

at the plasma membrane and in different subcellular compartments [127]. This would 

facilitate the assembly of various sets of functional protein complexes, integrating 

distinct intracellular pathways and providing signals for not only the survival but 

also the differentiation and functional integrity of the cells [130]. Some of the 

proposed functions are summarized below. 

Knowledge of the role of PrPC in signal transduction has been advanced by 

recent studies. Research on non-receptor tyrosine kinase Fyn shows that 

antibody-mediated cross-linking of PrPC is able to induce the activation of Fyn in a 

caveolin-1-dependent manner, which results in the downstream activation of 

extracellular signal-regulated protein kinases of the ERK1/2 pathway [131]. 

Interaction between endocytosed PrPC and growth factor receptor binding protein 

(Grb2) has been reported to provide signals for neuronal survival by activating ERK 

1/2 and mitogen activated protein (MAP) kinases [132]. Other signaling pathways or 

signaling proteins, such as PI3-kinase/Akt [133], cyclic AMP/protein kinase A (PKA) 

[134] and PKCδ [135], have also been proposed to involve PrPC-mediated signal 
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transduction.  

The expression of PrPC throughout the entire CNS and its purported 

involvement in many signaling pathways strongly support a functional role of PrPC 

in the nervous system. Several processes in the nervous system have been shown to 

be influenced by PrPC. Evidence from PrPC-deficient mice implies that the absence 

of PrPC may result in changes in neurotransmission and synaptic plasticity [136], 

altered circadian rhythms and sleep [137, 138], damaged hippocampal spatial 

memory [139], impaired olfactory behavior and physiology [140], and 

depression-like behavior [141]. It is now believed that PrPC may regulate 

neurotrophic activities by modulating neuronal survival and differentiation, neurite 

outgrowth, and synaptic functions through selective interaction with a wide array of 

ligands and transmembrane signal pathways [128]. This aspect of PrPC function is 

tightly related to its cytoprotective activity (see below). Support for this hypothesis 

comes from studies on stress inducible protein 1(STI1) [134, 142]. Binding of STI1 

to PrPC triggers both protection against anisomycin-induced apoptosis by the PKA 

pathway and neuritogenesis by the ERK 1/2 pathway [134, 143]. The list of ligands 

involved in PrPC-mediated neurotrophic activities has been reviewed in depth 

elsewhere [127, 128]. Loss of the neurotrophic functions of PrPC during conversion 

to PrPSc has been proposed as a mechanism of neuropathological changes observed 

in prion diseases [128]. Researchers studying PrP mutants postulate that PrPC 

interacts with a hypothetical signal transduction protein (Tr) in two sites (the 

C-terminal and the HD domains) and generates non-essential signals for neuronal 
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survival. When only the C-terminal binding site is occupied, Tr undergoes a 

conformational change and elicits neurotoxic signals [144]. 

Several lines of evidence have emerged suggesting that PrPC may exert 

cytoprotective activity, particularly against stress-induced apoptosis. One of the 

clearest examples comes from the experiment in which PrP potently protects human 

fetal neurons from Bax-induced apoptosis [145]. The OR region is essential since 

deletion or mutation in this region completely or partially abolishes the 

anti-apoptotic effect [146]. While glycosylation confers PrPC with 

apoptosis-resistance properties [111, 147], the GPI-anchor is not required for this 

activity [145]. This conclusion was confirmed by subsequent research conducted by 

the same lab, which showed that the cytosolic PrP (cyPrP) is the predominant 

anti-Bax PrP form [118]. The anti-apoptotic effect of PrPC is influenced by the basal 

level of PrPC expression. While expression of PrPC in PrPC-deficient cells exhibits 

anti-apoptotic effects, PrPC overexpression in different cell lines displays 

pro-apoptotic properties [148]. Current evidence suggests that instead of directly 

inhibiting Bax apoptotic activity, PrPC probably prevents the initial Bax 

conformational change that converts cytosolic Bax into a pro-apoptotic protein. 

Along with Bcl-2, both proteins maintain Bax in an inactive state and prevent 

apoptosis [149].  

Some of the PrPC ligands identified to date play a role in cell adhesion, 

including  laminin [150], the laminin receptor (LRP/LR) [151], STI1 [134, 142] 

and neural cell adhesion molecules (NCAM) [152]. Engagement of PrPC with these 
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ligands contributes to cell adhesion on a matrix enriched with laminin and triggers 

different downstream events in a cell type-specific manner. The role of PrPC in 

embryonic cell adhesion and cell-cell communication has also been demonstrated in 

zebrafish in which the PrP knock-down animals are characterized by impairment of 

embryonic cell adhesion and arrested gastrulation [153]. Both Ca2+-independent and 

Ca2+-dependent cell adhesion are modulated by PrP [153]. The participation of PrPC 

in early embryonic stem cells differentiation has also been suggested [154, 155]. In 

mammals, the functions of PrPC in embryonic development are able to be 

compensated by other molecules since no birth defect has been reported in PrPC 

knock-out animals [114, 156].  

Other functions proposed for PrPC are its involvement in copper metabolism 

(see chapter III), and development and maintenance of the functions of the immune 

system [157]. One recent research reports an interesting link between Alzheimer’s 

disease (AD) and prion disease, revealing that PrPC inhibits the cleavage of amyloid 

precursor protein, which makes PrPC a potential target for AD treatment [158]. More 

recently, an involvement of PrPC in mediating the cytotoxicity of other 

beta-sheet-rich conformers of completely different origins has been observed [159], 

which does not require prion propagation. This implies a toxic signaling role of PrPC 

beyond its assumed cytoprotective functions.  



 

21 
 

III. The scrapie prion protein (PrPSc): structure, 

conversion and strains 

Although chemically identical to PrPC, PrPSc is insoluble and aggregates in 

nature, showing partial resistance to PK digestion [160, 161]. The conversion of 

PrPC into PrPSc involves both the global rearrangement of the peptide backbone and 

protein polymerization. Recent studies indicate that PrPSc may be generated either at 

the plasma membrane or, more likely, in compartments along the endocytic pathway, 

which have acidic pH [162] (Figure 1-2). The latter observation led to the proposal 

that conversion is favored under low pH conditions [163, 164] (See Chapter II). 

However, the location for conversion might be cell type-specific since the 

distribution of PrPC and PrPSc depends on cell types [162]. Several critical aspects of 

PrPSc remain elusive, including its high-resolution structure(s), its role(s) in prion 

neurotoxicity, and the molecular basis of prion strains and the transmission barrier. 

A. Proposed structures of PrPSc 

Attempts to resolve the structure of PrPSc using conventional techniques, such 

as X-ray crystallography and NMR, have been hampered due to its insoluble and 

fibrillar nature. Therefore, lower resolution techniques have been widely used for 

structure determination. For example, electron microscopy demonstrates that PrPSc 

displays a wide variety of morphologies and aggregation characteristics, which are 

believed to be strain-specific [165]. X-ray fiber diffraction reveals that PrP amyloid 

fibrils share a common cross-β strand core with other types of amyloid fibrils, in 
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which the individual strands of each β-sheet run perpendicular to the fibril axis (4.7 

Å spacing) and the β-sheets (~ 10 Å spacing) are parallel to the fibril axis [166]. 

Fourier transform infrared (FT-IR) analysis has revealed a marked increase in 

β-sheet content (~ 20% in the full-length protein) at the cost of α-helix (~ 14% in the 

full-length protein) and random coil [167, 168]. Interpretation of the secondary 

structure of PrPSc from these low resolution techniques remains controversial, as 

different techniques yield conflicting results [169]. The truncated form of prion 

protein (PrP90-232 in hamster) has been widely used in structural studies because it 

encompasses the entire sequence of protease-resistant core of PrPSc [4] and it is 

sufficient to propagate prion disease. In addition, most known point mutations 

associated with human prion diseases are located in this region [96]. However, our 

recent findings (Chapters II and III) suggest that truncated PrP90-232 may not be an 

ideal mimic of PrPSc. 

A number of in silico mammalian PrPSc models have been proposed over the 

past 15 years [170-175]. Among them, the β-helical model (Figure 1-3A) was 

constructed by threading residues 89–175 of PrP through a known β-helical fold 

[171]. This model proposes that the core region of PrPSc is composed of left-handed 

β-helices which associate into trimers. The trimers are stackable along the fibril axis. 

The two C-terminal α-helices are largely unaffected in this structure. The β-spiral 

model (Figure 1-3B) is derived from molecular dynamics simulations using the 

D147N mutant of hamster PrP (109–219) under moderately acidic conditions [170]. 

The heart of the β-spiral model contains a three-strand sheet (E1-E3) and an isolated 
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strand E4 from another monomer. Similar to the β-helical model, most of the 

α-helices found in PrPC retain their native conformations. Docking of an incoming 

PrP substrate to the growing end through the E1-E4 interface propagates the amyloid 

fibrils. A detailed comparison between these two models has been published, and 

comparison with experimental data favors the β-spiral model [175]. One deficiency 

of the β-helical model is that it is not consistent with the cross-β diffraction pattern, 

since no β-sheet is aligned parallel to the fibril axis [169].  

In addition to these theoretical models, another model has recently emerged 

(Figure 1-3C), based upon experimental data obtained from hydrogen/deuterium 

exchange mass spectrometry (HXMS) [176] and site-directed spin labeling electron 

paramagnetic resonance (SDSL-EPR) spectroscopy [177]. These studies examined 

amyloid fibrils formed by recombinant human PrP corresponding to residues 90-231. 

The β-sheet core of this structural model encompasses residues ~160-220, which 

form single β-strand layers that stack on top of each other with parallel, in-register 

alignment, with dimensions of 10 × 3.5 nm [176-178]. In sharp contrast to 

above-mentioned in silico models shown in Figure 1-2A and 1-2B, in this model all 

three original α-helices in PrPC undergo major refolding upon conversion, and no 

native α-helices are present in PrPSc [176-178]. The starting point of the β-sheet core 

has also been confirmed by atomic force microscopy, which maps the amyloid core 

to residue ~164-169 [179]. However, this model is not in agreement with maps of 

antibody-binding that indicate many epitopes are retained upon conversion [96].  
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Figure 1-3. Proposed structures of PrPSc and other amyloid fibrils.  

The figures are adapted from reference [66], reprinted with permission 
from American Chemical Society, Copyright 2009. (A) PrPSc left-handed 
β-helical model based on a threading analysis (reproduced from reference 
[171], reprinted with permission from the National Academy of Sciences, 
Copyright 2004). (B) PrPSc β-spiral model, derived from molecular dynamic 
simulations (reproduced from reference [170], reprinted with permission 
from the National Academy of Sciences, Copyright 2004). (C) Parallel and 
in-register β-sheet model determined on recombinant human PrP(90-231) 
amyloid fibrils, deduced from spin labeling EPR and H/D exchange 
(reproduced from reference [66], reprinted with permission from American 
Chemical Society, Copyright 2009). (D) Left-handed β-solenoid structure of 
amyloid fibrils formed by yeast prion HET-s, determined by solid-state 
NMR (reproduced from reference [180], reprinted with permission from 
AAAS, Copyright 2008). (E) Parallel and in-register β-sheet model of yeast 
prion Sup35NM as suggested by solid-state NMR (adapted from reference 
[181], reprinted with permission from the National Academy of Sciences, 
Copyright 2006). Amyloids of yeast prion, Ure2p, and Rnq1, may adopt 
similar structures [182-184]. (F) Steric zipper motif determined using X-ray 
crystallography of microcrystals formed by a heptapeptide of yeast Sup35 
(reproduced from reference [185], reprinted with permission from 
Macmillan Publishers Ltd., Copyright 2005). 

The highly protected region in the parallel, in-register structure varies slightly 

depending on the source of the species. Recombinant prion fibrils generated by 

A B C 
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PMCA and seeded with PrPSc contain a much longer protected region, spanning from 

residues ~117-133 to the C-terminus [186]. In brain-derived GPI-anchor-free PrPSc, 

the protected core extends up through residues ~80-90 [187]. These differences in 

the β-sheet core region may explain the low infectivity of rPrP fibrils [187]. 

Research on full-length rPrP fibrils from mice, cow, and elk show that in addition to 

the C-terminal region (residues ~182-212), the region encompassing residues ~24-98 

is also highly protected. The residues in between these regions are less solvent 

exposed than those in PrPC but more exposed than the protected region [188]. The 

involvement of the N-terminal region in forming a PK-resistant core has also been 

recently reported by Baskakov and coworkers [189]. The identification of multiple 

structures for the β-sheet core suggests that it might be different in distinct prion 

strains.  

Despite the lack of high-resolution structural data for mammalian prions, the 

past decade has seen advances in resolving the structures of yeast prions and of 

amyloid-like fibrils formed by short peptides. With the exception of the amyloid 

fibrils formed by the HET-s (218-289) peptide, which has a left-handed β-solenoid 

structure [180] (Figure 1-3D), most amyloid fibrils formed by yeast prions 

characterized adopt a common parallel, in-register β-sheet structure [182, 190] 

(Figure 1-3E). Using microcrystals formed by a variety of short peptides, including 

the heptapeptide of the yeast Sup35 and fragments of disease-related amyloidogenic 

proteins, X-ray crystallography has revealed that the basic unit of a cross-β structure 

is composed of a pair of beta strands with the facing side chains interdigitated in an 
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anhydrous (dry) interface called the “steric zipper” (Figure 1-3F) [185, 191, 192]. 

B. PrPSc neurotoxicity 

The precise nature of the neurotoxic species and the mechanism of 

neurotoxicity in prion disorders remain elusive. A simple relationship between the 

loss of PrPC function upon conversion and neurotoxicity can be excluded, as 

PrPC-deficient mice are essentially normal [125] and neuron-targeted deletion of 

PrPC in adult mice does not result in neurodegeneration [193].  

Although the presence of PrPSc is generally considered essential for definitive 

diagnosis of prion disease, the direct association between PrPSc and prion-induced 

neurotoxicity has been increasingly challenged due to the discrepancies between 

amyloid plaque deposition in the brain and clinical symptoms or neuronal loss [20, 

194-197]. To the contrary, a number of results suggest that PrPSc accumulation and 

neurotoxicity can be uncoupled. This is supported by the study on subclinical prion 

infection in which the first passage mice infected with mouse-adapted hamster 

scrapie are free of any clinical disease, even though the PrPSc load and scrapie 

infectivity reach high levels in the mice (asymptomatic carriers) [198]. In addition, a 

recent study with transgenic mice expressing GPI-/- PrPC (anchorless) has shown that 

after inoculation with mouse scrapie, only minimal neurotoxicity is observed in these 

mice, despite extensive build-up of GPI-/- PrPSc adjacent to blood vessels [199]. 

Moreover, after knockout of PrPC expression in neurons, early cognitive deficits and 

neurophysiologic dysfunction established in young adult mice could be reversed, 

although PrPSc propagation continues in glia [195, 196].  
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Figure 1-4. Schematic model for PrPL production.  

In this model, PrPL can be generated either as an intermediate (pathway 
1) or an off-pathway product (pathway 2) during PrPC to PrPSc conversion. 
PrPL matures into PrPSc if it is generated as an intermediate. Otherwise, it 
will not be incorporated into the growing PrPSc. Adapted from ref [200]. 

Infectivity and neurotoxicity of prion are generally accepted to be two related 

but distinct events [200, 201]. The neurotoxic species, which has been termed PrPL 

(for ‘lethal’), may correspond to soluble prefibrillar intermediates or off-pathway 

products generated during the conversion of PrPC to PrPSc [200, 201]. Nonetheless, 

our knowledge of this species is currently limited due to the lack of a precise 

physical definition for these soluble intermediates or off-pathway products. 

According to the toxic templated intermediate model, PrPC to PrPSc conversion is 

composed of four steps, i.e., binding of PrPC to a PrPSc surface, conversion to PrPL, 

maturation of PrPL into PrPSc and finally dissociation (Figure 1-4 pathway 1). The 

levels of PrPL and PrPSc are controlled by the interplay between two independent rate 

constants, the rate of conversion (k1) and the rate of maturation (k2). The clearance 

rate of PrPL also affects the level of PrPL. An increased k2/k1 ratio (Figure 1-4) leads 
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to accumulation of PrPSc, or infectivity, but with little or no neurotoxicity because 

most PrPL will be consumed to form PrPSc. In this regard, mature amyloid fibrils can 

be considered to act as a “graveyard” for removing the toxic species from circulation 

[196].  

As an alternative, the off-pathway product model proposes that the on-pathway 

intermediates are benign and that PrPL is generated as an off-pathway product using 

PrPSc particles as a catalytic surface (Figure 1-4 pathway 2). The latter mechanism is 

favored by a recent experiment that demonstrates that prion propagation in mice can 

be divided into two distinct phases [201]. The infectious but non-toxic 

PrPSc accumulates in the first phase and reaches maximal titer after a short time, 

regardless of the original PrPC concentration. The second plateau phase is 

accompanied by the production of toxic PrPL, which will eventually trigger the onset 

of prion disease when it reaches a critical concentration. The duration of the plateau 

phase is inversely proportional to the PrPC expression level. The relationship 

between PrPSc and PrPL is largely in agreement with recent research on Alzheimer's 

disease in which intermediates between Aβ peptides and Aβ amyloid are believed to 

be the neurotoxic species [202]. One caveat of the second PrPL production pathway 

is that PrPL has to be generated intra-neuronally [194]. A possible explanation for the 

lack of neurotoxicity in GPI-/- PrPC transgenic mice is that GPI-/- PrPC does not attach 

to the plasma membrane and is not recycled back into the cells to generate PrPL 

[199]. This concept is supported by the fact that PrPSc replication in astrocytes is not 

sufficient for prion neurotoxicity while neuron-specific propagation is required 
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[203]. 

Mechanisms proposed for the neurotoxicity of prion diseases include 

impairment of lysosomal functions [108] and ER stress [204-207] caused by 

accumulation of PrPSc, proteasome inhibition [116, 207, 208], neurotoxic signal 

transduction [86], calcium homeostasis dysregulation [209], metal imbalance [210], 

and formation of aberrant ion [86] channels. Since PrPC is required to manifest 

neurotoxicity, one cannot rule out the potential toxic roles assumed by cellular 

partners of PrPC in prion diseases. Neurodegeneration in TSEs may not be caused by 

a single mechanism and several parallel mechanisms may contribute to the disease to 

varying extents. 

C. Prion strains and the species barrier 

 An important aspect of prion diseases is the existence of multiple strains. 

Strains differ in the physicochemical properties of PrPSc and are associated with 

distinct phenotypes: including stability to denaturation by guanidine, conformational 

templating activities, morphology (shape, diameter, length and twist/periodicity), 

proteinase K (PK) digestion profiles, glycosylation patterns, incubation time before 

the onset of symptoms, and patterns of neuropathological targets (histopathological 

lesion profiles and specific neuronal target areas)  [66, 67, 165, 189, 211-213]. 

Kinetic modeling further indicates that different strains may display distinct rates of 

fibril dissociation and aggregation [214]. Strain features are not altered even after 

repeated passaging in experimental animals [66].  

Research on yeast and mammalian prions suggest that PrPSc strain diversity 
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might be encoded in their physical structures, resulting in strain-specific 

conformations [56-58, 189, 215]. Strain diversity also reflects variation in the steric 

zipper. Two distinct steric zipper polymorphisms have been identified in 

microcrystals formed by short peptides. In the packing polymorphism, the steric 

zipper is built from the same peptide, which assembles in an alternative packing 

arrangement. In the segmental polymorphism, the steric zipper is formed by different 

segments of the same protein [59]. Additional polymorphisms, including the 

combinatorial polymorphism and the single-chain registration polymorphism, have 

been proposed. Neither of them has been observed in microcrystals yet [59]. Yet 

another factor contributing to strain diversity is the glycosylation patterns of PrP 

[212]. Different glycosylation patterns may modulate the surface accessibility of 

PrPC and its conversion efficiency into PrPSc [107]. The presence of glycans may 

also constrain protein molecules in PrPSc to adopt different conformations or alter its 

packing by introducing specific steric constraints [66].  

Prion strains are quasi-species - a group of conformationally related sub-strains 

or types that only bear subtle differences between each other [216]. Unlike RNA 

viruses in which the heterogeneity of quasi-species is caused by point mutations, in 

the case of prion strains, the heterogeneity originates in structure. Interconversion 

between different sub-strains is relatively easy because they are separated by a low 

energy barrier. On the other hand, interconversion between different strains is more 

difficult due to the presence of a relatively higher energy barrier [216]. Like other 

quasi-species, the prion strains are subject to constant selective pressure arising from 
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the environment, which may result in the development of new phenotypes during 

transmission [216-218] or the emergence of a so-called “new strain” within different 

tissues [219]. Co-infection of the host with two prion strains may also cause the 

appearance of novel phenotype due to interference between strains, although there is 

no new strain generated in this case [220]. Whether a specific prion disease 

phenotype is always associated with a distinct PrPSc strain/sub-strain is still not clear, 

as host genetic variability and other factors may significantly modify the phenotype 

[213]. All the phenotypes identified in human prion disease patients are thought to be 

caused by a limited number of PrPSc strains [213].  

As mentioned earlier, PrPSc strains are mainly determined by their structural 

diversity, despite there being no high resolution PrPSc structure. If true, the search for 

a unified PrPSc structure might be unattainable [74].  

Another feature tightly associated with PrPSc strains is the so-called 

“species-barrier,” which is invoked to explain the observation that initial passage of 

prion diseases between different species, when possible, is always inefficient, and is 

characterized by a much longer and more variable incubation period in the new host 

as compared with transmission within the same species. Subsequent passage of 

PrPSc in a homologous host leads to shortened incubation times, which resembles 

intra-species transmission [13, 26, 221]. Studies done with transgenic mice have 

shown that species barriers are determined not only by the PrP sequence differences 

between the donor and the recipient [222, 223], but also by prion strains. The 

sequence-dependent effect of the species barrier appears to be governed by a few key 
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residues [223]. One model proposes that the effects of these two factors on the 

species-barrier can be ascribed to the conformational selection mechanism. This 

describes the ability of donor PrPSc to adopt conformations that are 

thermodynamically accessible to the host PrPSc [213]. The PrP sequence affects the 

transmission barrier by altering the spectrum of possible PrPSc conformations in a 

given species. If the conformation of donor PrPSc is not accessible to host PrPSc, a 

transmission barrier will be observed [26, 66, 200, 224]. During cross-species 

transmission, characteristics of the donor strain might switch due to the selection of 

an optimal sub-strain for more efficient propagation in the new host, or the 

conformational conversion of the donor strain to accommodate the available host 

PrPSc conformations [66, 200].  

IV. Prions beyond disease 

In addition to its well established role in prion diseases, prion-like behavior 

may also have physiological functions. In yeast, recent studies indicate that a prion 

mechanism might function as an epigenetic regulatory strategy by influencing 

important cellular pathways. The yeast translation termination factor Sup35p is 

deactivated in its prion state, [PSI+], which leads to increased levels of nonsense 

suppression and programmed frameshifting. This can confer selective advantages to 

the host under diverse conditions [225, 226]. Other yeast prions, as demonstrated by 

[URE3] and [GAR], are connected with the regulation of nitrogen metabolism and 

energy sources [227, 228]. However, other results imply that prion status is 



 

33 
 

detrimental to yeast based on the finding that it is not widespread in wild strains 

[229]. The acquired phenotype offered by prions is transmissible to daughter cells by 

non-Mendelian cytoplasmic inheritance [230].  

In mammalian cells, the melanocyte-specific glycoprotein, Pmel17, is able to 

form self-propagating aggregates and play a role in mammalian skin pigmentation 

[231]. Furthermore, recent studies show that amyloid may serve as a reservoir for 

several peptide and protein hormones in pituitary secretory granules [5]. It remains 

unclear that whether these amyloid-like aggregates are transmissible. However, these 

findings suggest a new approach in investigating prion biology and the role of 

protein structure in determining function.  

V. Concluding remarks 

Despite extensive research, there are still many aspects regarding the 

physiological functions of PrPC and prion disease pathogenesis that are poorly 

understood. Key questions exist regarding the role of PrPC in the nervous system, the 

effect of conversion on the physiological functions of PrPC, the molecular 

mechanism underlying the PrPC to PrPSc conversion, and the toxic species that is 

responsible for neurodegeneration, and these need to be elucidated. 

Data from this dissertation research aim to address two different topics related 

to prion disease pathogenesis: the behavior of rPrP fibrils (as a model for PrPSc) 

under conditions that resemble those of lysosomal vesicles, and the characteristics of 

copper binding to different rPrP conformers. These are discussed in detail in Chapter 
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II and Chapter III, respectively. The overall conclusions drawn from this research 

and work to be done in the future are discussed in the last chapter. The results 

provide deeper insight into the pathway of conversion of PrPC to PrPSc and the 

interaction between copper and PrP, offering new avenues for prion research. 
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I. Introduction 

A. Mechanism of conversion of PrPC to PrPSc 

It is believed that PrPSc is more thermodynamically stable than PrPC and may 

represent the global minimum of the energy landscape [232]. However, the folding of 

PrP into its monomeric PrPC form is extremely fast, with a rate constant at 20 °C 

under physiological conditions reaching 20,000 s -1 [98]. In contrast, folding to the 

PrPSc form is slower by several orders of magnitude. As a result, PrP is kinetically 

trapped in the PrPC state under physiological conditions [232].  

Conversion of PrPC to PrPSc requires crossing a high energy barrier, including the 

formation of “amyloid-competent” intermediates and the oligomerization of these 

intermediates [232]. Initial steps of conversion are favored under acidic conditions 

[163, 164]. Experimental data show that the second half of helix 2 (H2) and segments 

of helix 3 (H3) bear intrinsic conformational flexibility [102, 233] (Figure 2-1). 

Extensive molecular dynamics studies suggest that these regions undergo a loss of 

helical structure with the gain of β-sheet characteristics at low pH [234-239]. 

Dissociation of the S1-H1-S2 region from the H2-H3 region also takes place at acidic 

pH, which is associated with the protonation of His187 that connects S1-H1-S2 and 

H2-H3 at neutral pH [100, 240]. H1 is believed to be the least stable helix at low pH 

whereas H3 is the most stable one [240]. The conformational rearrangement is 

accompanied by an increased exposure of hydrophobic patches on the surface of the 

protein as well as a more solvent exposed peptide backbone [99, 241-243]. These 
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changes in turn facilitate conversion and result in a high propensity for intermolecular 

aggregation. The effect of acidic conditions on conversion and aggregation is 

evidenced by in vitro formation of recombinant human PrP fibrils at pH 4.5 without 

any denaturants [178].  

The unstructured N-terminal region may also play a role in the conversion 

process. It has been shown that the N-terminal region in PrPSc is not accessible to 

antibodies targeted to the same region in PrPC, and vice versa [244, 245]. These data 

indicate that the N-terminal region undergoes a conformational change during the 

conversion. Molecular dynamic simulation reveals that the N-terminal region forms 

an extended structure in the form of β-sheet at low pH, which further extends to helix 

1 [246]. However, these data are inconsistent with more recent experimental results, 

which show that the N-terminus is left unattached in PrPSc [176, 177, 187]. 

Interestingly, transgenic mice carrying N-terminal deleted PrPC stay healthy for longer 

than 400 days whereas deletion of the C-terminal α-helices causes spontaneous 

disease [247]. There are also mutations in the N-terminal region that are associated 

with inherited forms of prion diseases. Together, the data suggest that the N-terminal 

region is heavily involved in the pathogenesis of prion diseases.  
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Figure 2-1. Structural features of the Syrian hamster PrPC. 

Tertiary structure of the PrPC (residues 125-228) as deduced from 
solution NMR spectroscopy [87]. The figure was generated from PDB 1B10 
# 3 using ViewerLab. Three α-helices (H1-3), 2 β-strands (S1-2) and a single 
disulfide bond can be seen. 

The nature of “amyloid-competent” intermediates is still elusive. Kinetic studies 

on PrP folding using continuous-flow measurements identify a monomeric 

intermediate that forms on the microsecond time scale (~50 μs) [241, 248]. It 

populates and becomes stabilized under mildly acidic conditions [241, 248]. A series 

of locally unfolded intermediates, which are in equilibrium with the α-monomers and 

unfolded PrP, have been suggested by NMR spectroscopy studies [249]. Oligomeric 

and multimeric on-pathway, β-sheet-rich intermediates have also been reported 

[250-252]. All atom computation simulations suggest that the likely pathway is from 

monomers to an initial nucleus of octamers, with tetramers as the transition state. 

Once nuclei are formed, there will be no major energy barriers to forming higher 

order aggregates [253]. Recent studies show that conversion can also be initiated from 
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a yet uncharacterized soluble β-sheet-rich oligomer [254, 255]. However, a slow, 

concentration-dependent equilibrium between β-oligomer and α-monomer has been 

observed in these studies, which makes the identity of the true on-pathway 

intermediate questionable. The resultant fibrils from this intermediate distinguish 

themselves from the fibril formed from α-monomer by its worm-like morphology 

[254, 255]. This pathway does not require a nucleation process. 

Incorporation of PrPC into the end of a growing fibril can be described by a 

dock-and-lock mechanism, in which the initial binding of a PrPC -monomer to the 

PrPSc occurs in the first stage (dock), followed by the conformational change of bound 

monomer to adopt the structure of PrPSc (lock). The lock stage is the rate-limiting step 

of the reaction [256-258]. Further conformational changes may be required to obtain 

the structural features of mature amyloid. In vitro studies indicate the presence of a 

series of high molecular mass, on-pathway multimeric species [232, 251]. Among 

them are multimer I and II. Both of these are enriched in β-sheet. Multimer I is 

considered to be the conformer that commits the protein to amyloidogenesis, a process 

that has been generally believed to be irreversible [251]. It is noteworthy that 

multimer I lacks the ability to bind the amyloid-specific dye Thioflavin T (ThT). It has 

to convert to higher order multimers, such as multimer II, to acquire the ThT binding 

activity [251].  
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Figure 2-2. Models for mechanisms of PrPC to PrPSc conversion.  

(A) Templated assembly (TA), (B) Monomer-directed conversion 
(MDC), (C) Nucleated polymerization (NP) and (D) Nucleated 
conformational conversion (NCC) models. Adapted from reference [259, 
260]. See text for details.   

Although conversion is still not fully understood, several models have been 

proposed to address the mechanism of conversion, including the templated assembly 

(TA), monomer-directed conversion (MDC), the nucleated polymerization (NP) and 

the nucleated conformational conversion (NCC) models [259, 260]. In the TA model, 

conversion of PrPC to PrPSc occurs coincidently with the assembly of PrPC monomer 

into PrPSc amyloid. Assembly is the cause of PrPC to PrPSc conversion, during which 

the PrPSc amyloid acts as a template (Figure 2-2A). The MDC model considers that 

B 

C 

D 
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the spontaneous conversion of PrPC to PrPSc is unfavorable because of the 

aforementioned kinetic trap. Conversion requires the formation of a 

PrPC-PrPSc heterodimer, which lowers the energy barrier between PrPC and PrPSc and 

templates the conversion [261, 262]. The product is then assembled into PrPSc amyloid. 

In this mechanism, assembly is the result of conversion (Figure 2-2B). For the NP 

model, PrPC and PrPSc are proposed to be in an equilibrium that strongly favors the 

formation of PrPC. Once the slowly-formed PrPSc aggregates exceed the critical 

nucleus size (nucleation), further addition of PrPSc monomer, generated from the 

equilibrium, into the PrPSc amyloid becomes thermodynamically favorable (Figure 

2-2C) [263]. The NCC model is a combination of MDC and NP models with 

additional features. Here the formation of PrPC oligomer and nuclei by conformational 

arrangement is followed by slow conversion to nuclei of PrPSc. Once PrPSc nuclei are 

present, further conversion of PrPC nuclei into PrPSc and assembly will be greatly 

accelerated through the templating mechanism (Figure 2-2D) [260, 264].  

B. Rationale and aims 

In addition to the primary nucleation events discussed above, fibril dissociation 

is necessary for efficient conversion of α-monomeric PrP to its misfolded state and 

continued propagation into amyloid [66]. Fibrils must dissociate into smaller nuclei 

that can seed additional conversions in a process known as secondary nucleation [66, 

265, 266]. If not, the conversion process is too inefficient to accumulate much product. 

Thus, the rate of fibril dissociation contributes significantly to the overall rate of 

propagation [214, 267]. 
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Studies on mammalian PrP suggest that the conversion of PrPC to PrPSc takes 

place both on the plasma membrane and along the endocytic pathway [42, 67, 162, 

268, 269]. The majority of PrPSc has been shown to accumulate in the lysosomes of 

infected cells [270]. Interestingly, Atg5-/- fibroblasts, which lack the ability to execute 

autophagy and thus transport PrPSc aggregates into lysosomes, show significantly 

increased resistance to prion infection [271]. Together these results indicate that there 

must be a mechanism within the endocytic pathway to dissociate the mature PrPSc into 

seeds and thus continue efficient propagation [200]. One potential environmental 

contributor to dissociation is the acidic pH of lysosomes [272].  

We have observed that the solution circular dichroism (CD) spectrum for 

amyloid fibrils generated from full-length recombinant hamster PrP (rPrP23-232) can 

be measured only at acidic pH. As large fibrils merely scatter the CD light, we 

postulated that dissociation of some fibrils was occurring under acidic conditions. We 

therefore investigated the behavior of recombinant PrP fibrils under mildly acidic 

conditions that mimic the endocytic environment. The first aim of this thesis is to 

evaluate the stability of recombinant fibrils under different conditions. This aim is 

achieved by using asymmetric flow field fractionation, which is theoretically able to 

separate particles in the size range of 1 nm to 1 μm under normal operation mode. The 

second aim of these experiments is to characterize any smaller species that are 

detected in the first aim. This goal is achieved by various biophysical and biochemical 

techniques, including circular dichroism spectroscopy, Fourier-transform infrared 

spectroscopy, transmission electron microscopy, mass spectrometry, and proteinase K 
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digestion. Additionally, the radius of gyration (Rg) of isolated species, which 

describes the distribution of mass elements in an object around its center of mass, is 

determined by static multi-angle light scattering. The truncated recombinant hamster 

PrP (rPrP90-232) fibrils are also included for comparison. The third aim is to evaluate 

the competency of these smaller species to catalyze the fibrillation of α-monomer in 

vitro, under physiologically relevant conditions. This aim is achieved using the ThT 

assay and fluorescence spectroscopy. These aims provide a possible explanation for 

how PrPSc is able to propagate efficiently in vivo. Successful completion of these aims 

will aid in further understanding of the mechanism of prion disease pathogenesis. 

Overall, we demonstrate that full-length fibrils dissociate both laterally and 

axially to form shorter oligomeric structures we term protofilaments; ~5% of these are 

soluble and contain ~100-300 monomers. Regardless of their length, the 

protofilaments retain the characteristic intermolecular β-sheet structure of the mature 

fibrils. Compared with intact fibrils, they are more efficient at accelerating fibril 

formation on a per monomer basis since they are shorter and provide more ends to 

facilitate conversion. We propose that protonation of histidine residues in the 

N-terminal region of PrP is involved in fibril dissociation; suggesting that this region, 

which is intrinsically disordered in the α-monomeric form of PrP, might take on 

structure when amyloid fibrils are formed. Our results provide new insight into the 

mechanism for dissociation of mammalian PrP fibrils, and help to extend our 

knowledge on the molecular events of prion propagation in vivo. 
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II. Experimental procedures 

A. Protein expression and purification 

The genes encoding residues 23-232 or 90-232 of golden Syrian hamster PrP 

were amplified by PCR from plasmid pHaPrP [273] by Dr. Hui-Chun Yeh. Hamster 

PrP is 86% identical to human PrP but contains an additional amino acid at position 

228. The amplified genes were inserted into the expression vector pET24a+ and 

transformed into BL21(DE3)-Rosetta cells (Novagen). Proper gene insertion was 

confirmed by DNA sequencing at the Murdock Sequencing Facility (University of 

Montana, Missoula, MT).  

Recombinant hamster PrP (rPrP23-232 or rPrP90-232) was expressed and 

purified using modifications of published protocols [273, 274]. Typically, 1% of a 

starter culture was inoculated into 2xYT media containing 50 μg/mL kanamycin and 

34 μg/mL chloramphenicol; this was grown at 37 °C until the OD600nm reached 1-2. 

Expression was induced by the addition of 0.5 mM isopropyl-β-d-thiogalactoside and 

cells were harvested 6 h after induction. Cell pellets were resuspended in lysis buffer 

(50 mM Tris-Cl, 2 mM EDTA, pH 7.5 containing 100 μg/ml lysozyme and 10 μg/ml 

DNase), and lysed by several freeze/thaw cycles. The lysate was centrifuged at 4 °C at 

12,000 rpm for 20 min and the resulting pellet was then washed twice with 50 mM 

Tris-Cl, pH 7.5 containing 1% Triton X-100, followed by an extra wash with 20 mM 

Tris-Cl, pH 7.4 containing 150 mM NaCl and 2 M urea. After solubilization of the 

inclusion bodies in buffer A (8 M urea, 0.1 M KPO4, pH 8.0), the sample was 
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centrifuged at 19,000 rpm for 30 min and the supernatant was passed through a 0.45 

µm mixed cellulose ester syringe filter (Fisherbrand) prior to loading the 

Ni(II)-charged Chelating Sepharose Fast Flow resin (GE Healthcare). For every 3 

liters of initial culture, 100 mL of pre-equilibrated resin was added, and the slurry was 

incubated at 37 °C for 2 h with continuous shaking. The suspension was then poured 

into a 5 x 20 cm Bio-Rad Econocolumn and washed with 5 column volumes of buffer 

A. Next, the protein was refolded on the column by applying a linear gradient (20 

column volumes) from buffer A to buffer B (0.1 M KPO4 , pH 8.0) at a flow rate of 10 

mL/min, followed by washing with 5 column volumes of buffer B. The protein was 

then eluted using 60 mM imidazole in buffer B, followed by a second elution with 

200 mM imidazole in buffer B. 

For rPrP90-232, eluent from immobilized metal affinity chromatography was 

further purified using hydrophobic interaction chromatography. About 20 mg of 

protein was equilibrated in buffer containing 4.5 M guanidine hydrochloride 

(GdnHCl), 1 M (NH4)2SO4, 0.1 M KPO4 at pH 8, and then passed through a 0.22 µm 

regenerated cellulose membrane syringe filter (Corning). Protein was purified on an 

AKTA-FPLC using a HiPrep Phenyl Sepharose 16/10 column (GE Healthcare) 

pre-equilibrated with buffer C (4 M urea, 1 M (NH4)2SO4, 0.1 M KPO4, pH 8.0). 

Recombinant PrP90-232 was eluted using a linear gradient from buffer C to buffer D 

(4 M urea, 0.1 M KPO4, pH 8.0) between 30-50% buffer D. 

The purity of rPrP was confirmed by SDS-PAGE (8-25% gradient gels) on a 

PhastSystem (GE Healthcare, Inc). Stocks of purified protein were stored in 6 M 
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GdnHCl, 0.1 M KPO4, pH 8.0 and used within two weeks. The concentration of the 

stock GdnHCl was determined on a refractometer [275]. Protein concentration was 

determined spectrophotometrically in 6 M GdnHCl using ε280 = 61,025 M-1 cm-1 for 

rPrP23-232 and 24,345 M-1 cm-1 for rPrP90-232, as calculated using the ProtParam 

program on the ExPASy web server [276].  

B. Preparation of recombinant PrP23-232 conformers 

The α-helical, PK-sensitive monomeric form of rPrP (α-monomer), which is 

structurally similar to PrPC but lacks the GPI anchor and glycosylation [107], was 

used in all experiments. The α-monomer was formed by extensively dialyzing the 

stock solution against 20 mM sodium acetate (NaOAc), pH 4.5. We also prepared a 

previously characterized octameric conformer that is highly enriched in β-sheet 

structure, which is termed the β-oligomer [232, 274], as follows: 120 μM recombinant 

PrP23-232 in 6 M guanidine-HCl, 10 mM KPO4, pH 8 was diluted 6-fold with 

conversion buffer (3.6 M urea, 160 mM NaCl, 60 mM NaOAc, pH 3.7) and incubated 

overnight at 37°C, followed by dialysis into 20 mM NaOAc, pH 4.5 [232, 274]. The 

secondary structures of the α-monomer and the β-oligomer were confirmed using 

circular dichroism (CD). 

To generate the initial PK-resistant amyloid-like fibrils, stock solutions of rPrP 

were first refolded into the α-monomer by dialyzing the protein from the GndHCl 

storage buffer into 15 mM KPO4, pH 6.5. This protein was then diluted 3-fold into 

denaturant fibrillation buffer, to give a final concentration of 1 mg/mL protein in 15 

mM KPO4, 0.5 M GdnHCl, 1.2 M urea, pH 6.5 [277-279]. Samples (0.6 - 1 mL) were 
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incubated at 37 °C under continuous orbital shaking at 600 rpm in 1.5 ml siliconized 

Eppendorf tubes (Fisher). Fibrils were collected by centrifugation at 15,000 g for 10 

min for use in other experiments. The amyloid nature and morphological 

characteristics of the fibrils were confirmed by ThT fluorescence assay [251] and 

transmission electron microscopy (TEM), respectively. 

C. Dissociation of rPrP fibrils and preparative 

ultracentrifugation 

Approximately 300 μM rPrP fibrils were incubated in 20 mM sodium acetate 

(NaOAc), pH 4.5 at 37 °C for 3 days, with continuous rotation at 8 rpm (Labquake 

Shaker Rotisserie). Samples were then ultracentrifuged using a TLA-55 rotor at 

120,000 g for 2 h and the supernatant, which contained very short protofilaments, was 

used for further studies. 

D. Asymmetric flow field-flow fractionation (AF4) and 

light scattering analysis of prion conformers 

As previously reported, the α-monomer does not behave ideally on a size 

exclusion chromatography column, perhaps due to electrostatic and/or hydrophobic 

interactions between the protein and the column matrix [280]. Consequently, prion 

conformers were isolated, analyzed, and sized by AF4 using an AF2000 instrument 

(PostNova, Inc), equipped with in-line UV-Vis and 7-angle light scattering (MALS) 

detectors [274, 281]. Samples were loaded in one 20-30 µl injection and then focused 

for 4 min with a crossflow of 3.5 ml/min on a regenerated cellulose membrane (5-kDa 
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MWCO). Samples were first eluted with 20 mM NaOAc, pH 4.5, at a channel flow of 

1.5 ml/min and a crossflow of 2.5 ml/min for 30 min. The crossflow was then 

decreased to 0.1 ml/min linearly over 10 min, followed by a constant crossflow of 0.1 

ml/min for another 30 min [282, 283]. The molar mass and radius of gyration (Rg) of 

the protofilament peak were determined using the software provided by the 

manufacturer [284] and the resulting plots were evaluated using the Berry method 

[285, 286], as it is well suited for the analysis of non-spherical polymers.  

E. Circular dichroism (CD) and thermal denaturation 

Far-UV circular dichroism spectra between 180 and 300 nm were recorded on a 

Jasco 810 spectrophotometer equipped with a Peltier temperature controller using the 

following parameters: protein concentration, 1 mg/mL; cuvette path, 0.01 cm; scan 

speed, 20 nm/min; response time, 4 s [287]. Typically, five spectra were averaged and 

smoothed after subtracting out the rather small contribution of the buffer, which 

improved the signal to noise ratio. Protein secondary structure analysis from CD 

spectra was performed using the DICHROWEB server and the CDSSTR program 

[288, 289] with Dataset #3. 

Thermal denaturation of PrP conformers was monitored in a 0.1 cm cuvette at 12 

µM protein concentration, using a scan speed of 200 nm/min. The samples were 

equilibrated at 25 °C and the temperature was incrementally increased at a rate of 

2°C/min, where the temperature in a cuvette was monitored using an external 

microprobe. Each spectrum represents the average of three scans.  
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F. Fourier transform infrared (FT-IR) spectroscopy 

FT-IR spectroscopy was performed using a Thermo Nicolet NEXUS 670 FT-IR 

spectrometer with continuous nitrogen purge. Samples for FT-IR were exchanged into 

D2O buffer and analyzed in a demountable liquid cell fitted with two CaF2 windows 

separated by a 50 µm Teflon spacer. Spectra were obtained from 128 cumulative scans 

at 1400–2000 cm-1 with 2 cm-1 resolution. Spectra were corrected by scaled 

subtraction of a water vapor spectrum until the region from 1900 to 1750 cm-1 no 

longer showed a negative lobe [290, 291]. Peak assignment was performed with 

OMNIC 5.2 software provided by the manufacturer. 

G. Proteinase K (PK) digestion 

Samples for PK digestion were adjusted to a final concentration of 2 mg/mL in 

15 mM KPO4, pH 6.5 or 20 mM NaOAc, pH 4.5. PK digestion was performed for 2 h 

at 37 °C at PK:rPrP ratio of 1:10; higher concentrations of PK resulted in significant 

PK auto-cleavage. Digestion products were separated and analyzed by SDS-PAGE on 

a PhastSystem using high density gels (GE Healthcare Life Sciences). Molecular 

weights of the individual PK-resistant bands were estimated from their relative 

mobility compared with peptide standards (MW-SDS-17S, Sigma). 

H. In-gel tryptic digestion and mass spectrometry 

To determine which residues comprise the PK-resistant core, the PK-resistant 

protein bands were subjected to trypsinolysis and mass spectrometry analysis. Trypsin 

(sequencing grade, modified, Promega) digestion was performed using the in-gel 
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protocol of Shevchenko et al with slight modifications [292]. Briefly, after staining 

the SDS-PAGE gels with Bio-Safe Coomassie stain (BioRad), the protein bands were 

excised, washed with 50 mM NH4HCO3, dehydrated with acetonitrile for 10 min, and 

then further dried in a Speed Vac (Savant). The protein was reduced by incubation in a 

minimal volume of 10 mM DTT, 25 mM NH4HCO3 for 30 min at 56 °C. After 

washing with 25 mM NH4HCO3, all protein thiols were alkylated by reaction with 

100 mM iodoacetamide in 25 mM NH4HCO3 in the dark at room temperature for 15 

min. The gel was then washed with 25 mM NH4HCO3, dehydrated, vacuum-dried 

and resuspended in a minimal volume of trypsin digestion buffer provided by the 

manufacturer and trypsin was added at approximately 10% of the PrP concentration. 

After overnight incubation at 37 °C, the supernatant was collected. Gel pieces were 

further extracted twice with 60% acetonitrile, 0.1% trifluoroacetic acid (TFA). The 

supernatant and the extracts were pooled and dried. Tryptic peptides were re-dissolved 

in 10 μL of 50% acetonitrile + 0.1% TFA for MALDI-ToF (Matrix Assisted Laser 

Desorption Ionization-Time of Flight) mass spectrometry (MS) analysis.  

For MALDI-ToF, 1 μL of the tryptic digest was mixed 1:1 with a saturated 

solution of α-Cyano-4-hydroxycinnamic acid (α-CHCA) matrix. MS spectra were 

acquired on an ABI Voyager DE Pro workstation (Applied Biosystems) in reflectron 

mode at the University of Montana Mass Spectrometry and Proteomics Core Facility. 

MALDI-ToF MS/MS was carried out with a Bruker Daltonics AutoFlex ToF/ToF in 

reflectron mode at the Montana State University Proteomics & Mass Spectrometry 

Facility. Both instruments were calibrated using peptide calibration standard I (Bruker 
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Daltonics). Data were processed using mMass software [293].  

I. Transmission electron microscopy 

TEM was done at the Electron Microscopy Facility of the University of Montana. 

A 5 μL aliquot of sample (20 – 50 μM) was cast on a Formvar coated copper grid and 

allowed to adsorb for 3 – 30 min in a constant humidity chamber. The grid was then 

rinsed with distilled water and stained with 2% (w/v) uranyl acetate for 30 sec before 

briefly washing again with water. Varying the staining time did not change the results. 

After air drying, the sample was viewed using a Hitachi H-7100 instrument at 75 kV 

at standard magnifications of 20,000× and 100,000× [251]. Fibril dimensions were 

determined using Image J software (NIH, Bethesda, MD); between 30 and 450 

individual structures were measured per image. Widths and lengths are reported as 

mean ± SD; average lengths are reported as the geometric mean.  

Rg of the soluble protofilaments was also estimated from TEM images using the 

following formula based on the total moment of inertia of a rigid, solid cylinder [294].  

For a rigid solid cylinder of radius r, height h and mass m, its moment of inertia 

along the z axis can be described as  

2

2Z
mrI =

. 

Its moment of inertia along the x and y axis can be described as 

2 2(3 )
12X Y
mI I r h= = +

. 

So the total moment of inertia of a rigid solid cylinder is  
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( )
22 2 21 (3 )

2 6Total g X Y Z
rI m R I I I m r h

 
= = + + = + + 

 
, 

Rg of a rigid solid cylinder can then be calculated as 

1
2 2

2 21 (3 )
2 6g
rR r h

 
= + + 
 

, 
where r is treated as the arithmetic mean of the radius of protofilaments; and h is the 
geometric mean of their length. 

J. Kinetic analysis 

The kinetics of fibril formation from the α-monomer of rPrP23-232 was 

monitored under de novo (unseeded), and protofilament-seeded conditions, using 

buffer that did not contain denaturants. Conversion was carried out in a 96-well 

non-binding microplate (Corning #3651) with a total reaction volume of 0.2 mL/well 

containing 50 µM of α-monomer in 20 mM NaOAc, 0.1 M NaCl, pH 4.5 and 10 µM 

ThT; at this concentration ThT has a negligible effect on the kinetics of fibril 

formation [295]. For seeded reactions, soluble protofilaments were added into the 

reaction mixture to a final concentration of 0.5%, 1% or 2% (w/w). Plates were 

covered with Crystal Clear sealing film (Hampton Research) and incubated at 37 °C 

in the SpectraMax M2e Microplate Reader (Molecular Devices). The fluorescence 

emission intensity at 488 nm was recorded hourly (excitation at 445 nm, plate was 

shaken briefly just prior to each measurement) using the bottom-read function in 

conjunction with a 475 nm emission cutoff filter. 
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III. Results 

A. Mildly acidic conditions induce protofilament formation 

Negative stain TEM images revealed that fibrils formed under partially 

denaturing conditions from either N-terminally truncated rPrP90-232 or full-length 

rPrP23-232 consisted of long unbranched structures. They were typically well over 

1000 nm in length, with widths of 27 ± 2 nm and 27 ± 3 nm (mean ± SD) respectively 

(Figure 2-3). Both fibrils displayed twists, with a periodicity of about 180 nm for 

rPrP90-232 and 250-360 nm for rPrP23-232. This suggests that the fibrils are 

composed of at least two thinner strands, as has previously been described [165, 277], 

and which we will refer to as protofilaments. The amyloid nature of fibrils was further 

confirmed by high ThT fluorescence. 

To determine whether the acidic environment of endosomes might encourage 

fibril dissociation, rPrP23-232 and rPrP90-232 fibrils were resuspended in pH 4.5 

buffer for 3 days with continuous rotation at 8 rpm. The slow rotation prevented 

fibrils from settling to the bottom of the reaction tubes. TEM showed that the 

morphology of the rPrP90-232 fibrils was unaffected by the decrease in pH; no 

changes in twist, width, or length were noted (Figure 2-3AD). In contrast, the 

rPrP23-232 sample was dramatically different. TEM revealed that at low pH the 

fibrils were changed into a population of structures of various lengths that were 

devoid of twist (Figure 2-3EH). We then used ultracentrifugation (120,000 g for 2 

h) to isolate the smallest of these structures, which were recovered from the 
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supernatant and deemed soluble according to the standards of Hjelmeland and 

Chrambach. These researchers state that particles remaining in the supernatant after 

centrifugation at 100,000 g for 1 h are regarded as soluble [296]. About 5% of the 

original rPrP23-232 fibrils were present in the supernatant (Figure 2-3I). The lengths 

of these soluble structures ranged from 20 to 150 nm (mean = 65 nm). We also noted a 

consistent 50% decrease in width (15 ± 2 nm for supernatant and 14 ± 2 nm for pellet) 

and a lack of twist for both the soluble and insoluble samples (Figure 2-3I & J). The 

TEM images indicate that at pH 4.5 the rPrP23-232 fibrils dissociate both laterally 

and axially to form protofilaments that are heterogeneous in length. 
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Figure 2-3. TEM images of rPrP23-232 and rPrP90-232 fibrils 
showing pH-triggered dissociation of rPrP23-232 fibrils. 

Top panel: truncated rPrP90-232 fibrils at pH 6.5 (A, B) and after three 
days incubation at pH 4.5 (C, D). Middle Panel: full-length rPrP23-232 
fibrils at pH 6.5 (E, F) and after three days incubation at pH 4.5 (G, H). 
Bottom Panel: The sample in (G, H) was ultracentrifuged at 120,000 g for 2 h 
to separate the soluble portion (I) from the insoluble portion (J). Images were 
taken at 20,000× (scale bar 500 nm) or 100,000× magnification (scale bar 
100 nm). 

A C D 

E F G H 

I J 
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B. Composition of the protofilaments amyloid core 

To compare the composition of the amyloid cores of the protofilaments with 

those of their parent fibrils, we performed proteinase K (PK) digestion. Full-length 

PrP fibrils were digested at pH 6.5 and also after the fibrils had been resuspended in 

pH 4.5 buffer. In the pH 4.5 experiments, PK digestion was performed immediately 

after the change in pH and again 72 hours later. TEM imaging indicated that at 72 

hours, the sample has mostly dissociated into protofilaments of varying lengths. This 

pre-incubated sample was further processed by centrifugation to remove the majority 

of the insoluble protofilaments prior to PK digestion.  

The results were then analyzed by SDS-PAGE (Figure 2-4 top). At pH 6.5 (lane 

1), the most intense PK-resistant band is ~5.5 kDa, although bands at 5 and 7 kDa are 

also visible. Lane 2 shows the results of the sample digested immediately after the pH 

was lowered to 4.5. A triplet of bands at 7, 9, and 12 kDa are detected. This shift of 

the PK-resistant PrP bands with pH is attributed to the pH dependence of PK 

specificity [297]. The same triplet was also present in the pre-incubated sample (lane 

3), although the band intensities were slightly different.  
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Figure 2-4. SDS-PAGE analysis of the PK-resistant regions of rPrP 
fibrils and protofilaments. 

Samples (2 mg/ml) were treated with PK at a PK:protein ratio of 1:10 
for 2 h at 37 °C and analyzed by SDS-PAGE. Top: full-length rPrP23-232; 
Bottom: truncated rPrP90-232. Lane S, MW standard; lane 1, pH 6.5; lane 2, 
pH 4.5; lane 3, samples pre-incubated at pH 4.5 for 72 hours prior to PK 
digestion. For lane 3 samples, the full-length sample was centrifuged prior to 
digestion but the truncated sample was not.  

For control purposes, PK digestion of truncated rPrP90-232 fibrils was also 

performed (Figure 2-4 bottom). Conditions were identical to those in full-length PrP 

except that the centrifugation step was omitted from the sample that was 

pre-incubated, since no protein could be found in the supernatant. As expected, the 

72-hour pre-incubation had no effect on the PK-resistance, as the truncated fibrils do 

not dissociate at low pH. There were slight variations in the band intensities, but 

overall the PK-resistance of truncated fibrils was similar to that of full-length PrP.   
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Table 2-1. MALDI/TOF Analysis of peptides generated from the 
tryptic digestion of PK-resistant fragments 

  Observed Mass  
Position 

Expected 
mass 

rPrP23-232 
α-monomer 

rPrP23-232 
fibril 

12 kDa    
in gel 

9 kDa    
in gel 

7 kDa    
in gel 

5.5 kDa    
in gel 

Modification 

23-27 713.51 / / / / / /  
28-37 988.46 988.74 988.62 / / / / 

 
38-48 1089.51 1089.81 1089.68 / / / / 

 
49-101 5332.35 / / / / / / 

 
102-104 331.20 / / / / / / 

 
105-106 244.17 / / / / / / 

 
107-110 493.24 / / / / / / 

 
111-136 2363.14 2363.27 2363.44 / / / / 

 
 

2379.14 
 

2379.41 / / / / Met Oxidation 

 
2395.13 

 
2395.38 / / / / Met Oxidation 

 
2411.13 

 
2411.46 / / / / Met Oxidation 

137-148 1534.62 1534.84 1534.79 / / / / 
 

 
1550.62 

 
1550.79 1551.08 / / / Met Oxidation 

 
1566.61 

 
1566.79 1567.08 / / / Met Oxidation 

139-148 1306.53 
 

/ 1306.94 / / / 
 

 
1322.52 

 
/ 1322.94 / / / Met Oxidation 

149-151 501.25 501.65 501.35 501.81 501.42 / / 
 

152-156 663.29 663.49 663.53 663.87 663.57 / / 
 

 
679.28 

 
679.53 679.87 679.59 / / Met Oxidation 

157-164 1102.53 1102.85 1102.71 1102.91 1102.76 1103.08 / 
 

165-185 2475.17 2475.28 / / / / / 
 

 
2532.19 

 
/ / / / / Cys Alkylation 

186-194 1016.54 
 

1016.88 / / / / 
 

195-204 1153.54 1153.86 1153.68 1153.91 1154.24 1154.09 1154.38 
 

205-208 548.29 548.46 548.49 548.86 548.47 548.81 548.98 
 

 
564.28 

 
564.48 564.85 564.46 564.80 564.98 Met Oxidation 

209-220 1457.68 1458.07 / / / / / 
 

 
1514.70 

 
1514.89 1515.16 1515.41 1515.21 1515.61 Cys Alkylation 

 
1530.69 

 
1530.89 1531.16 1531.41 1531.23 1531.61 

Cys 
Alkylation+ 

Met Oxidation 
221-229 1088.46 1088.78 1088.64 1088.83 1088.70 / / 

 
For each gel lane in Figure 2-4, the peptides bands were excised, digested with 

trypsin and analyzed by mass spectrometry to map the composition of each fragment.  

The results were summarized in Table 2-1 (refer to Chapter V Figure 5-3, 5-4, 5-5, 

and 5-6 for representative MALDI spectra). No peptides from residues 23-137 were 

detected in any PK-resistant fragment. This confirmed that protofilament formation 
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did not involve refolding of all or part of the N-terminal domain into a PK-resistant 

β-sheet structure. The 1306.94 peak was abundant in the spectra of 12 KDa fragment, 

whereas its signal dropped significantly in the spectra of 9 KDa fragment and was not 

detectable in the 7 KDa fragment. This indicated that this section has been 

PK-digested in both 9 KDa and 7 KDa fragments. The identity of the peak was 

verified by MALDI-ToF/ToF as peptide 139-148 (Figure 2-5). Altogether, the data in 

Table 2-1 show that the 12, 9, and 7 kDa peptide fragments begin at residues 137-139, 

149 and 157, respectively. There was little difference in the MS data collected for 

identical masses derived from different gel lanes. The start site for the 5.5 KDa 

fragment was ambiguous due to the gap encompassing residues 165-194. Based on its 

mass and the identity of the C-terminal tryptic peptide, we estimate that this 

PK-resistant peptide begins near residue 175. This region showed a relatively high 

mobility by SDSL-EPR compared with other portions of the amyloid core and may 

correspond to a loop or turn in the core [177]. 
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Figure 2-5. MALDI-TOF/TOF spectrum of the 1306.94 peak 
detected in the 12 kDa fragment. The y and b ions identify this peptide as 
residues 139-148. 

The identity of the 7 kDa peptide (~residues 157-220) is consistent with the 

amyloid core detected by hydrogen/deuterium exchange mass spectrometry [176] and 

site-directed spin labeling electron paramagnetic resonance spectroscopy [177] for 

human rPrP90-232. We attribute the presence of larger peptide fragments in these 

samples to the inability of PK to fully access non-amyloid regions of PrP [176]. 

PK-resistant, non-specific aggregates have been shown to form after the N-terminal 

domain of amyloid PrP is cleaved and/or partially digested [277]. It is believed that 

the exposure of hydrophobic residues causes non-specific aggregation that impedes 

PK digestion. Therefore, the presence of larger PK-resistant peptides noted in Table 

2-1 does not mean that the amyloid core of the protofilaments has extended beyond 
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the 7 kDa β-sheet core identified for recombinant PrP fibrils by other techniques 

[177].  

Overall, it appears that fibrils and protofilaments possess similar global 

architectures in their amyloid core regions; there is no evidence that protofilament 

formation involves reorganization of the N-terminal domain into an amyloid state.  

C. Purification and size determination of soluble 

protofilaments 

We then used AF4 and MALS to further purify and analyze the soluble 

protofilaments of rPrP23-232 that were isolated by ultracentrifugation (Figure 2-6A). 

The majority of the sample eluted under low crossflow at 42.6 min along with 2 minor 

components that elute at 6.8 and 20.9 min under high crossflow. The molar mass 

elugram (Figure 2-6B) revealed this major peak had significant polydispersity with 

the centroid at 5.8 MDa, which is equivalent to ~250 monomeric subunits. The radius 

of gyration (Rg) for the species eluted at the centroid is 29.5 nm, which is close to the 

Rg value of 27 nm that we estimated from the TEM images. This value was calculated 

using the average radius of 7 nm and a mean particle length of 65 nm (Figure 2-3I) 

and treating the protofilaments as rigid cylinders. This result confirms that the soluble 

protofilaments observed by TEM are the main constituent purified by AF4 from the 

supernatant. The elution profiles of 2 minor components at 6.8 and 20.9 min are 

similar to those of α-monomer and β-oligomer prepared independently by refolding.  

As expected, no peaks were observed in the supernatant of low pH treated 

rPrP90-232 fibrils (Figure 2-6A). We also note that the starting material (the long, 
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twisted amyloid fibrils) is undetectable under the AF4 crossflow conditions used here. 

Re-injection of the 42.6 min peak after storage for an additional 3 days showed no 

significant changes (Figure 2-6A). SDS-PAGE analysis confirmed that the purified 

protofilaments contain full-length rPrP; no degradation products were observed 

(Figure 2-6C). These results demonstrate that the soluble protofilaments are quite 

stable under acidic conditions. Axial dissociation of the long, insoluble protofilaments 

to form short, soluble structures reached a steady state maximum after ~ 2 days 

incubation at pH 4.5 (Figure 2-6D). 
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Figure 2-6. Purification and size determination of soluble 
protofilaments.  
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(A) AF4 analysis of rPrP23-232 conformers: black, the low-pH 
supernatant; red, re-injection of the 42.6 min protofilament peak 72 h after 
collection; green, pure α-monomer; and blue, β-oligomer. The elution profile 
of low-pH treated rPrP90-232 fibrils (orange) is included for comparison. 
The crossflow rate is denoted by dotted line. (B) Semi-log mass elugram 
plots for the rPrP23-232 conformers separated using AF4 (Figure 2-6A). 
Molar masses were calculated to be 25 kDa, α-monomer; 180 kDa, 
β-oligomer, and 5.5 MDa, protofilaments. (C) 8-25% SDS-PAGE analysis of 
rPrP23-232 conformers. Lane S, MW standard; lane 1, α-monomer at pH 6.5; 
lane 2, fibril at pH 6.5; lane 3, fibril incubated at pH 4.5 for 72 hours. 
(D)Time course of protofilament formation as monitored by AF4. (E) pH 
dependence of protofilament formation. 

D. The effect of pH and salt on protofilament formation 

To confirm the pH-dependent nature of this phenomenon, we assessed the 

stability of rPrP23-232 fibrils after incubation at pH 6.5, 5.5, and 4.5 for 3 days. AF4 

analysis (Figure 2-6E) showed that soluble protofilaments are also formed at pH 5.5, 

although the centroid of the protofilament peak shifted to a higher apparent molecular 

weight (43.7 min, 8.5 MDa, ~370 monomers) compared with the results obtained at 

pH 4.5. No short protofilaments were formed at pH 6.5. These data confirm that fibril 

dissociation and the size distribution of the products are pH dependent, and that 

rPrP23-232 fibrils are stable under neutral conditions.  

The effect of salt on protofilament formation has also been investigated. The data 

suggest that lateral dissociation of mature fibrils into protofilaments occurs within 24 

hours, with or without 0.1 M NaCl. However, when salt is present, axial dissociation 

to produce measurable quantities of short, soluble protofilaments takes longer (~8 

days, Figure 2-7 E-J) compared with the reaction in the absence of NaCl (2~3 days, 

Figure 2-7 A-D). The soluble protofilaments are qualitatively the same (compare 

Figure 2-7 K with Figure 2-6A) though the yield is somewhat lower in the presence 
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of 0.1 M NaCl.  

 

  

 

   

 

 

Figure 2-7. Effect of salt on the dissociation of rPrP23-232 fibrils 
into protofilaments.  

TEM images of rPrP23-232 fibrils showing the time dependence of 
pH-triggered lateral and axial dissociation. Images taken at 20,000× (scale 
bar 500 nm) or 100,000× magnification (scale bar 100 nm). Top panel: 
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dissociation of rPrP23-232 fibrils after incubation for 2 days (A, B) or 3 days 
(C,D) at pH 4.5 in the absence of NaCl. Middle panel: dissociation of 
rPrP23-232 fibrils after incubation for 2 days (E, F), 3 days (G, H), or 8 days 
(I, J) at pH 4.5 in the presence of 0.1M NaCl. Bottom Panel: After 8 days, the 
sample containing salt was subjected to AF4 analysis (K), which showed an 
elution peak at 40.3 min.  

E. Characterization of soluble protofilaments 

The CD spectrum of the soluble protofilament fraction (42.6 min peak) is shown 

in Figure 2-8A. The protofilament signal is markedly different from both the 

α-monomer and the β-oligomer. A single negative peak centered at 216 nm was 

associated with a rather large MRE value (-12,000 deg∙cm2∙dmol-1∙residue-1). 

Secondary structure analyses indicate that the soluble protofilaments have 

considerably less α-helix and more β-sheet in comparison with the α-monomer (Table 

2-2) [288, 289]. Although the overall shapes and MRE values of the protofilaments 

and the β-oligomer are quite different, the predicted secondary structure content is 

surprisingly similar. However, CD spectroscopy often misestimates β-sheet content 

due to the significant overlap of the β-sheet absorption band with that from α-helices. 

We could not obtain a solution CD spectrum of fibrils at neutral pH for direct 

comparison with the protofilaments, probably because they scatter too much light. 

The solution CD spectrum of similar fibrils has been previously published [189], but 

these fibrils were in an acidic buffer and thus the reported CD signal may actually be 

that of dissociated, soluble protofilaments. The amyloid nature of the soluble 

protofilaments was confirmed by their resistance to thermal denaturation and the ThT 

fluorescence assay (Figure 2-8B & C).  
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Table 2-2. Secondary-structure composition of rPrP23-232 
conformers as estimated from CD Spectra 

Secondary 
structure type α-monomer β-oligomer protofilaments 

α-helix 23% 4% 7% 
β-sheet 26% 38% 30% 
Turn 21% 25% 25% 
Loop/Unordered 29% 32% 37% 

 

  
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-8. Biophysical characterization of rPrP23-232 
protofilaments.  

(A) CD spectra of the supernatant components after separation by AF4. 
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(B) Thermal denaturation profiles of soluble protofilaments recorded at 
216nm. The data for rPrP23-232 α-monomer recorded at 222nm is included 
for comparison, which shows two-state behavior with a Tm of ~67 °C when 
fitting to the sigmoidal Boltzmann equation [273]. (C) ThT fluorescence 
emission spectra of soluble protofilaments. Spectra were recorded at a protein 
concentration of 5 μM and ThT concentration of 10 μM in 20 mM NaOAc, 
pH 4.5. The ThT fluorescence of fibrils at pH 6.5 is included for comparative 
purposes. (D) Second derivative FT-IR spectra of protofilaments at pH 4.5 
(solid red); 10 min (dashed blue) and 72 h (dotted green) after raising the pH 
to 7.0. The spectrum of the parent fibrils at pH 7.0 is included for comparison 
(solid black). (E) TEM image of aggregates formed after 72 h at pH 7.0. 

The identities of 2 minor components eluted at 6.8 and 20.9 min under high 

crossflow were confirmed by circular dichroism (CD) [232, 274], shown in Figure 

2-8A. The CD spectrum of the 6.8 min peak was dominated by negative bands at 209 

and 222 nm with a mean residue ellipticity (MRE) of -8,100 deg∙cm2∙dmol-1∙residue-1 

at 222nm. This compares well with the α-monomer made by refolding rPrP23-232 

(MRE = -8,800 deg∙cm2∙dmol-1∙residue-1). The high β-sheet content of the 20.9 min 

peak was evidenced by both the overall shape of the CD spectrum (a single minimum 

at 213 nm) and the smaller MRE value of -6,450 deg∙cm2∙dmol-1∙residue-1. The CD 

spectrum of purified β-oligomer made by refolding has a similar negative band at 213 

nm (MRE = -6,300 deg∙cm2∙dmol-1∙residue-1). We then compared the secondary 

structure of the soluble protofilaments with that of their parent rPrP23-232 fibrils 

using FT-IR spectroscopy (Figure 2-8D). Unlike CD, FT-IR spectroscopy may be 

used for both solution and solid samples and is better suited for the characterization of 

β-sheet structure. Taking into account the limitations of both techniques, the FT-IR 

results are reasonably consistent with the results obtained from CD. The high cross-β 

sheet content of protofilaments is evident in the strong single amide I band centered at 
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1621 cm-1 (solid red line), which is shifted to slightly higher frequency as compared 

with the recombinant fibrils (1619 cm-1, solid black line). A shoulder at 1628 cm-1 in 

the fibril spectrum is absent in the protofilament spectrum. The amide I bands 

previously assigned to turns and loops (1663 cm-1 and 1676 cm-1) [168, 189, 277] 

were less substantial in protofilaments as compared with fibrils, possibly indicating 

some unfolding of these structures. Overall, the spectrum of protofilaments is quite 

similar to the parent fibrils. 

Raising the pH of the protofilaments to 7.0 caused an immediate shift of the 

β-sheet amide I band from 1621 cm-1 to 1619 cm-1, and the shoulder at 1628 cm-1 

appeared, becoming more defined after 72 hours incubation at pH 7.0 (Figure 2-8D, 

dashed blue and dotted green lines). Overall the data suggest that the minor 

differences in the β-strand structure between protofilaments at acidic pH and fibrils 

are pH-dependent and largely reversible. However, we did not observe any 

re-assembly of protofilaments into twisted or parallel fibrils by TEM; instead, clumps 

of aggregates were formed when the pH was raised (Figure 2-8E). In regions of the 

TEM image where individual structures could be isolated and measured, the widths of 

the structures were ~14 nm, resembling protofilaments and not fibrils. 

Overall, the biophysical and spectroscopic data suggest the main secondary 

structural characteristics of amyloid fibrils are preserved in the soluble protofilaments 

with slightly pH-dependent and eversible difference.  

F. Ability of protofilaments to accelerate PrP conversion 

Typical fibril formation shows a characteristic nucleation-dependent pattern with 
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three kinetic phases: the initial lag phase is followed by a steep log phase and then a 

final plateau. It has been well-established that in the presence of pre-formed fibril 

seeds, conversion under partially denaturing conditions is accelerated with a 

dramatically shortened lag phase [277]. We examined whether this also held true for 

pre-formed protofilament seeds under physiologically relevant conditions, i.e. in the 

absence of denaturants.  

 
                   
 
 
 
 
 
 
 

 

Figure 2-9. Protofilament-seeded conversion of rPrP23-232 
α-monomer under mildly acidic, non-denaturing conditions.  

(A) Kinetics as followed by the ThT fluorescence assay. Seed 
concentration: 2% (black); 1% (red); 0.5% (blue); and 0% (green); 
α-monomer + 2% seed in the absence of NaCl (magenta). (B) TEM image of 
products formed after 3 weeks in 2% seeded reaction with NaCl. (C) AF4 
analysis of the conversion products of 2% seed + NaCl (black); 0% seed + 
NaCl (green); and 2% seed without NaCl (magenta). 

Propagation experiments were performed using conformers of rPrP23-232, in 20 

mM NaOAc, 0.1 M NaCl, pH 4.5 to approximate the environment of late endosomal 

vesicles. A direct comparison between fibrils and protofilaments is not possible since 

fibrils dissociate into protofilaments of varying lengths in less than 24 h at pH 4.5. 

Similarly, protofilaments form amorphous aggregates at neutral pH.  

The ratio of soluble protofilaments (seeds) to α-monomer was varied from 0-2 % 

A C B 
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(Figure 2-9A). The unseeded control samples showed little change even after 3 weeks, 

but all seeded experiments followed a typical nucleation-dependent polymerization 

mechanism. Adding more protofilament seeds proportionally shortened the incubation 

times and increased both the rate of the log phase kinetics and the final plateau levels 

of ThT fluorescence intensity. However, overall the lag phase was significantly 

elongated (days) as compared with reactions carried out in the presence of denaturants 

(hours) [277].  

After 3 weeks the products from the 2% seeded reaction were examined by TEM 

imaging (Figure 2-9B). There were considerable amounts of small particles present in 

the sample. This was confirmed by AF4 (Figure 2-9C, top trace), which detected both 

β-oligomer (retention time 20.9 min) and ThT-binding high-molecular-weight 

aggregates that were larger than the seeds themselves (broad peak with retention time 

~46 min). Control experiments showed that this peak results from conversion of the 

α-monomer, as the seeds themselves (retention time 42.6 min) are undetectable at the 

highest concentration used (Figure 2-9C, bottom trace). 

The TEM image in Figure 2-9B also indicated that some highly elongated, 

unbranched structures had also formed in the reaction, with an approximate width of 

34 ± 5 nm. This width matches that of the parent fibrils produced under partially 

denaturing conditions (Figure 2-3E) and not that of the protofilament seeds. 

The presence of salt (0.1 M NaCl) facilitated the conversion process. No log 

phase was ever achieved in the seeding experiments carried out without salt, even 

when 2% seeds were added in the system (Figure 2-9A, dotted magenta trace). AF4 
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showed that the α-monomer is mostly unreactive and remains in the starting, 

monomeric state (Figure 2-9C, dotted magenta trace). The destabilizing effect of salt 

on α-monomer has been previously documented [298]. Thus, in the presence of 0.1 M 

NaCl, analysis of the unseeded control (Figure 2-9C, dashed green trace) shows that 

the peak at 6.8 min (the α-monomer) has decreased and larger products appear at 

longer retention times. The major product is the β-oligomer (peak at 20.9 min). Small 

amounts of non-ThT binding aggregates are also formed, which result in the elevated 

baseline at later elution times. This is consistent with the kinetic assay, which showed 

little change in fluorescence intensity even after 3 weeks when seeds were omitted 

from the system (Figure 2-9A, dashed green trace).  

IV. Discussion 

The current study demonstrates that full-length rPrP fibrils dissociate when they 

are exposed to mildly acidic conditions. As judged from microscopy imaging, 

dissociation occurs in two dimensions: lateral and axial. Lateral dissociation involves 

the disassembly of mature fibrils into constituent protofilaments, while axial 

dissociation further divides the protofilaments along the fibrillar axis into smaller 

entities of variable lengths. To our knowledge, the ability of mature amyloid fibrils to 

undergo dissociation into protofilaments under mildly acidic conditions has not been 

previously reported. The pH conditions used here are similar to those found in late 

endosomal and lysosomal vesicles. Kinetic analysis shows that the protofilaments 

preserve the ability to propagate in vitro and thus may be of physiologic relevance, as 
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our conditions mimic those of late endocytic and lysosomal vesicles. 

A. Mechanism of fibril dissociation 

Two possible mechanisms for fibril dissociation have been proposed in the 

literature: mechanical stress-induced dissociation and chaperone-mediated 

dissociation [268, 299]. The results from this study suggest another possible 

mechanism; fibril dissociation into protofilaments induced by low pH.  

The pH dependence of protofilament formation suggests that protonation of Asp, 

Glu, and/or His residues are keys to dissociation. According to the parallel, in-register 

β-structure proposed by the Surewicz group, the amyloid core has only one charged 

residue, Glu211, buried within the dry interface. This residue forms a hydrogen bond 

with Gln186 to stabilize the otherwise unfavorable intermolecular electrostatic 

interactions [177]. Protonation of Glu211 could abolish this interaction and facilitate 

the disassembly the fibril, but if this were true we would have expected that both 

rPrP90-232 and rPrP23-232 fibrils would dissociate under acidic conditions. The 

rPrP90-232 fibrils remain intact at pH 4.5, which essentially rules out this 

explanation. 

The lack of dissociation in N-terminally truncated fibrils (rPrP90-232) at low pH 

indicates that the N-terminal region of PrP is important to the dissociation process. In 

full-length hamster PrP, this region (residues 23-140) is quite basic, containing 0 Asp, 

0 Glu, 4 Arg, 7 Lys, and 7 His; this pattern is highly conserved among mammalian 

PrPs. His residues have a pKa of ~6.8 and thus are the only residues present that could 

account for the observed pH effect. We hypothesize that protonation of His residues in 
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a domain already enriched with positively charged residues leads to charge repulsion, 

which causes the dissociation of fibrillar superstructures into protofilaments. 

Conformational perturbations induced by charge repulsion in residues 90-140 

(contains 3 of the conserved His) have been reported in studies of human truncated 

rPrP90-231, with an associated pKa of 5.5 [178]. Given that we did not observe 

dissociation of N-terminally truncated fibrils (hamster rPrP90-232) into 

protofilaments, we postulate that the four additional His residues found in residues 

23-89 play an important role in acid-induced fibril dissociation. Additional studies to 

test this hypothesis will be necessary. The slower dissociation of mature fibrils in the 

presence of salt may be associated with the shield effect of counterions on charged 

residues. 

B. Protofilament structure and seeding capability 

Some of the protofilaments are small enough to be considered soluble. These 

have an average length of about 65 nm and an apparent molecular weight of ~5.5 

MDa (~250 monomeric subunits). The soluble protofilaments retain the hallmark 

characteristics of full-length amyloid fibrils and share the same amyloid core. Small 

but mostly reversible pH-dependent differences in the β-sheet core structure were 

noted by FT-IR. The protofilaments have a unique CD spectrum compared with other 

soluble forms of PrP.  

At pH 4.5 in the presence of 0.1 M NaCl and α-monomer, protofilaments are 

efficient seeds. The propagated products are mostly elongated protofilaments, though 

a few fibrils are detectable after several weeks. This fits with our initial observations 
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that the yield of soluble protofilaments from parent fibrils was higher when salt was 

omitted from the acidic buffer. It is likely that the presence of counterions in the 

buffer shields the large positive charge on the N-terminal domains of individual 

protofilaments, permitting some fibrils to be formed when there is an excess of 

α-monomer present. 

The effect of salt on fibril formation noted by others [254, 255] is confirmed in 

our research that shows no α-monomer was converted to high order aggregates in the 

absence of NaCl. Prion protein exhibits reduced thermodynamic stability over a wide 

range of NaCl concentrations (20-200 mM) at both neutral and acidic pH [298]. The 

destabilizing effect of NaCl on α-monomers may decrease the energy barrier that 

separates α-monomers from the amyloid fibrils [232] and thus will facilitate the 

conversion. Another possible mechanism may relate to the screening effect of 

counterions in the solution that attenuates the repulsion between biomolecules and 

promotes aggregation [74]. 

C. Pathological relevance of pH-induced protofilament 

formation 

A number of studies have proposed that the endocytic pathway, including 

endosomes and lysosomes, is important for the PrPSc conversion in vivo [42, 67, 162, 

268, 269]. Although most efforts have been devoted to illustrating the destabilizing 

effect of these acidic vesicles on the global structure and thermodynamic stability of 

PrPC [163, 164, 240], less attention has been paid to its impact on mature amyloids. 

We show here that in addition to destabilizing α-monomers and thus facilitating 
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primary nucleation, low pH may also contribute to fibril dissociation, a secondary 

nucleation event that is necessary for efficient conversion and maintenance of the 

prion state [300]. Results from the present in vitro studies offer direct evidence that at 

low pH mature fibrils can dissociate both laterally and axially into protofilaments, 

which are then able to recruit and convert α-monomer. Assuming that a similar 

dissociation mechanism occurs in vivo, protofilaments of PrPSc formed in the 

lysosome might be excellent seeds for the propagation of PrPC during its normal 

recycling from the cell surface via the endocytic pathway [67]. 

It has been observed in PMCA experiments that decreasing the particle size by 

longer sonication results in a reduction in infectious titer, which indicates a more 

efficient clearance by the cells [301]. In line with this assumption, it has been reported 

that stimulating autophagy with lithium [302] has a protective role on prion infected 

hosts. Thus, seeding effects of protofilaments in vivo might be counter-balanced by 

cellular clearance mechanisms. This suggests the net effect of low pH-induced fibril 

dissociation on PrPSc propagation may depend on the size of protofilaments generated 

in vivo. While ~5% of the protofilaments were soluble, the majority were ~ 50-400 

nm in length (Figure 2-3G) and therefore less likely to be steered into the degradation 

pathway. These insoluble protofilaments are much shorter than the mature fibrils, and 

would be more efficient seeds for secondary nucleation events, per PrP subunit.  

In summary, we provide experimental evidence that mildly acidic conditions 

resembling those of late endosomal and lysosomal vesicles are sufficient to dissociate 

rPrP23-232 fibrils laterally and axially. The dissociation is believed to involve charge 
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repulsion of protonated His residues in the N-terminal domain. The protofilaments 

thus formed retain amyloid characteristics and are competent seeds for propagating 

new prions. Thus, late endocytic and lysosomal vesicles are sites of efficient prion 

propagation not only because they destabilize the α-monomer, but because they 

accelerate the dissociation of fibrils into protofilament seeds.  

 

  



CHAPTER III:                                   

EFFECT OF pH AND FIBRILLATION ON 

COPPER BINDING TO PRION PROTEIN 
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I. Introduction 

Although the precise physiological functions of PrPC is still unknown, it is clear 

that PrPC binds several divalent cations in vivo, with high affinity for Cu(II) [303, 

304]. A large effort has been made to characterize the structural features of the copper 

centers in PrP and to understand the physiological and pathological relevance of 

copper binding to PrP. Several copper-related functions have been suggested for PrPC, 

including superoxide dismutase (SOD)-like activity [305], anti-oxidation [306], 

copper sequestration [307] and copper-induced PrPC internalization [115, 308]. In 

addition, a substantial and somewhat confusing body of literature describes the role of 

copper in the prion diseases, although no consensus has been achieved [295, 309]. 

Below, we first review the literature on the coordination structures and affinity of 

copper binding to PrP. The physiological and pathological implications of PrP-copper 

interactions will be discussed afterwards.  

A. Copper binding in the octarepeat region 

Two primary copper binding sites have been identified [310], the four octarepeat 

regions (OR) found in the N-terminal domain [307] and the fifth binding site located 

within residues 91-111 [307, 311]. It is well accepted that the octarepeat region is the 

major copper binding site [307]. There have been some rather controversial studies 

that indicate the existence of other binding sites, including some in the C-terminal 

domain [312, 313], and binding sites that are only observed under low pH conditions 

[312, 313]. Non-specific binding sites have also been detected at high copper 
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concentrations (> 10x protein) [312].  

 

Figure 3-1. Structure of Cu(II) bound pentapeptide, HGGGW.  

Structure of component 1, in which the copper ion is coordinated with 
an equatorial binding mode of 3N1O (reproduced from reference [314], 
reprinted with permission from American Chemical Society, Copyright 
2002).  

The octarepeat region, which is composed of 4 (occasionally 5) tandem 

sequences of PHGGGWGQ (four repeats encompassing residues 60–91 in human and 

hamster PrP), has been extensively investigated [72]. The X-band EPR spectrum and 

crystal structure of the Cu(II)-bound HGGGW segment (pH 7.4) reveals that Cu(II) is 

equatorially coordinated with a 3N1O binding mode (3 nitrogens and 1 oxygen serve 

as ligands to the metal ion), involving the imidazole Nδ, 2 deprotonated backbone 

amide nitrogens from adjacent glycine residues, and the oxygen atom of the carbonyl 

group from the second glycine [314, 315]. In the crystal structure, a water molecule is 

axially ligated at a longer distance via its oxygen atom. This water bridges the copper 

ion and the indole nitrogen of the tryptophan residue [314, 315] (Figure 3-1). 

However, molecular dynamics (MD) simulations and theoretical calculations suggest 

that this axially coordinated water is not incorporated into the coordination sphere and 



 

81 
 

can be easily removed at room temperature [316-318]. 

Further research showed that coordination is influenced by copper load [319, 

320]. Component 3 is the main species observed only at low copper occupancy (< 1 

equivalent). This component displays 3N1O or 4N modes that involve one Cu(II) 

binding to nitrogens that come from His residues of multiple ORs [321-323]. It is 

worthwhile to note that this coordination cannot rule out the possibility that His 

residues may come from more than one PrP monomer, especially in the fibrillar form 

when monomer subunits are in close proximity. The previously characterized 3N1O 

arrangement, which is termed component 1, dominates at high copper occupancy (≥ 2 

equivalents of Cu(II). Component 2 is present at intermediate occupancy and has a 

2N2O coordination mode, which involves the imidazole Nδ and one amide nitrogen of 

the histidine residue [319, 323] (Figure 3-2A). Switching from component 3 to 

component 1 requires structural rearrangements of the N-terminal region, which may 

serve specific biological functions [324].  

The redox properties of these components have been investigated by several 

groups, whose work yields contradictory results. One working hypothesis is that 

component 3 is redox active, whereas component 1 is not, and its formation 

effectively quenches the redox cycling activity of Cu(II) [325]. Studies on a synthetic 

peptide containing four ORs demonstrate that component 3 has the ability to reduce 

Cu(II) to Cu(I) at both pH 7.4 and 6.4 [326, 327]. This hypothesis has been disputed 

on the grounds that the redox potential of the Cu(II)-component 3/Cu(I)-component 3 

couple is higher than that of O2/H2O2 couple, which makes redox cycling on 
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component 3 impossible [328]. Instead, these researchers propose that component 1 

leads to the generation of H2O2 (sub-μM level) in the presence of O2 and ascorbic 

acid [328]. However, voltammetric data show that copper might dissociate from the 

component 1 site as a consequence of Cu(II) reduction [329]. These findings suggest 

that additional studies on the redox behavior of copper bound PrP are needed, which 

would help elucidate the possible functions of PrPC.  

 

 
 

Figure 3-2. Models of the coordination modes of Cu(II) binding to 
the octarepeats region. 

(A) Coordination modes of copper binding to octarepeats peptides 
proposed by Millhauser’s group. Component 1, observed at ≥ 2 equivalents 
of Cu(II); component 2, between 1 and 2 equivalents of Cu(II); and 
component 3, at ≤ 1 equivalents of Cu(II) (reproduced from reference [319], 
reprinted with permission from American Chemical Society, Copyright 2005). 
(B) Coordination modes of copper binding to octarepeats in full-length 
protein proposed by Parak’s group (reproduced from reference [330], 
reprinted with permission from Elsevier Limited, Copyright 2007). 

Work on full-length rPrP23-232 α-monomer using a suite of EPR techniques 

along with EXAFS (extended X-ray absorption fine spectroscopy) only partially 

agrees with the coordination modes of copper complexes in OR peptides discussed 

A 

B 

Component 1(3N1O) Component 2 (2N2O) Component 3 (4N or 3N) 

Species 1 (3N1O) Species 2(4N) 
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above. The coordination mode observed at low copper occupancy, called species 2, 

displays a 4N configuration involving two imidazole nitrogens and two glycine amide 

nitrogens (Figure 3-2B) [330, 331]. This structure is different from that of component 

3, although the all-nitrogen atom ligation of copper is similar. At higher copper 

concentrations, the coordination of species 1 was detected, which is identical to that of 

component 1. This disparity may reflect the presence of the C-terminal domain on 

copper binding in the octarepeat region, or different experimental conditions, or both. 

Component 2 was not detected. 

B. Copper binding at the fifth binding site 

The fifth binding site that follows the OR region has been reported to include 

His96 and His111 residues. Unlike the ORs, the fifth binding site region is part of the 

proteinase K-resistant core of PrPSc [4]. The His111 residue is also located in the 

so-called HD domain, which has a high propensity to form β-sheets [81] and amyloid 

fibrils [82, 83] in vitro. PrP92-96 (GGGTH in hamster) and PrP106-113 

(KTNMKHMA in hamster) have each been identified as the minimal sequence 

required for copper binding [332]. Although His96 is more favored as the key copper 

ligand in some studies [320, 333], other groups suggest His111 to be the most 

important residue involved in copper binding [334, 335]. This discrepancy might 

reflect differences in experimental conditions, as temperature-dependent differences 

have been observed between room temperature NMR and low-temperature EPR. 

Using peptides that encompass various parts of the fifth binding site region, Berti et al 

showed that at room temperature, Met112 stabilizes the Cu(II)-complex at 
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His111 through hydrophobic shielding, which makes His111 the preferred nitrogen 

ligand over His96 [332]. However, at liquid nitrogen temperature, binding at His96 

was preferred. Others report that copper coordination to His96 or His111 depends on 

the sequence of the neighboring residues, and thus is different across species [311]. 

His111 has the highest affinity in human whereas His96 is the preferred ligand in 

chicken PrP. On the other hand, it has also been reported that both His residues bind to 

Cu(II) with similar affinity [310]. 

 

Figure 3-3. Models of the coordination modes of Cu(II) binding to 
the fifth binding site. 

Coordination modes of Cu(II) binding to His96 and/or His111 proposed 
by Viles’s group. Complex 1, observed at pH 9; complex 2, at pH 6.5; and 
complex 3, at pH 5.5 (reproduced from reference [335], reprinted with 
permission from the Biochemical Society, Copyright 2007). 

Copper coordination modes of the fifth binding site have also been studied as a 

function of pH by the Viles group [335, 336]. At pH 6.5, copper is coordinated with a 

3N1O equatorial coordination mode. Increasing the pH shifts the coordination to a 4N 

complex with a pKa of 7.5 [337]. This implies that at cellular physiological pH, the 

coordination environment around these binding sites is a mixture of two species [336, 

337]. The sulfur atom of Met109 may also serve a weak axial ligand, which favors 

Complex 1 (4N) Complex 2 (3N1O) Complex 3 (2N2O) 
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coordination of Cu(II) at His111, especially for the 3N1O coordination mode [337]. 

Lowering pH to 5.5 and/or substoichiometric amounts of Cu(II) could convert this site 

to a 2N2O coordination mode involving both histidine side chains [335, 336] (Figure 

3-3). Recent studies indicated that at pH 5.5, histidine residues within and outside the 

octarepeats region have a preference to form inter-site macrochelate structures 

containing multiple His residues with the highest affinity among all copper 

coordination modes [338-340]. Copper binding to His96 and/or His111 is difficult to 

identify in peptide or protein samples that contain the OR region, since any signal 

from the fifth binding site is obscured by those from the ORs [330, 331, 341].  

Redox studies on peptides of the fifth binding site demonstrate a quasi-reversible 

Cu(II)/Cu(I) redox reaction at the copper center with His111 as ligand. Copper-bound 

peptide containing His111 produces superoxide radical in the presence of ascorbate 

and oxygen [342]. The authors suggest this to be a possible neurotoxic mechanism. At 

His96, switching the coordination mode from 3N1O to 4N by raising the pH is 

accompanied by a structural rearrangement that brings Trp99 into the vicinity of the 

copper ion. This makes it easier to oxidize Trp99 to produce a highly reactive Trp 

radical species [336]. 

C. The affinity of PrP for Cu(II) 

The precise affinity of PrP for Cu(II) has been hotly contested. There has been 

considerable variability in reported affinity of the octarepeat region for copper, 

ranging from micromolar to femtomolar [343-345]. Studies by Millhauser’s group 

have placed the affinity of each coordination mode for copper into the more 
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biologically plausible nano- to micro- molar range, with evidence for negative 

cooperativity [319, 320, 346]. Positive cooperativity has also been claimed in earlier 

research using fluorescence and circular dichroism techniques [347]. It is important to 

consider differences in buffers, pH, and temperature when comparing the rather 

disparate results.  

Using surface plasmon resonance (SPR) analysis, two groups demonstrated that 

the affinity of the fifth binding site for copper is in the mid-micromolar range [333, 

334]. In contrast, Viles’s group found that its affinity is in the nanomolar range and 

higher than that of octarepeats region [348]. Earlier results from Millhauser’s group 

also pointed towards a sequential binding mechanism, in which the His96 residue is 

occupied prior to copper binding to the octarepeats [307]. The affinity of the fifth 

binding site for Cu(II) is dramatically influenced by the peptide fragment length [335]. 

Using isothermal titration calorimetry and cyclic voltammetry, Brown’s group 

reported extensive cooperativity between different binding sites [349]. While they 

found that both octarepeats region and the fifth binding site have sub-nanomolar 

affinity for Cu(II), they suggest that the first binding event occurs within the 

octarepeat region [349]. A micromolar binding affinity has also been reported for the 

C-terminal domain [312, 313], but these data were not reproducible [310]. 

It is important to emphasize that copper binding to PrP is significantly influenced 

by the experimental conditions. The investigation techniques used and mathematical 

models chosen may also lead to deviation in the results. Thus, one has to be very 

cautious when comparing different experimental results. Furthermore, as mentioned 
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earlier, most data regarding copper binding to PrP come from peptide experiments, 

which may not wholly recapitulate the behavior of the real protein. Interactions 

between different domains or binding sites in the protein may also complicate the 

results [350].  

D. Physiological significance and pathological 

implications of PrP-Cu(II) interaction 

Initially it was thought that PrPC itself is not a major component of the copper 

trafficking system [350] since PrPC knockout (PrPC -/-) mice are basically healthy as 

compared with wild type animals [125]. This is further supported by a study that 

showed only minimal difference in the brain copper content between wild type mice 

and PrPC -/- mice [351]. However, growing evidence suggests that PrPC is involved in 

maintaining copper homeostasis [320, 352, 353]. One recent study found that the level 

of PrPC in vivo is closely related with other proteins associated with copper uptake, 

storage and export from the cell [354]. Thus, it is plausible that other proteins of the 

copper trafficking system compensated for the loss of PrP in the earlier knockout 

experiments. 

The role of copper in PrPC internalization is supported by the observation that 

exposure to high Cu(II) concentrations (> 250 μM) stimulates endocytosis of 

PrPC [355]. Surprisingly, studies at physiological concentrations of Cu(II) lead to the 

conclusion that PrPC does not participate in the uptake of extracellular Cu(II) [356]. 

Conflicting results have been reported regarding copper-induced PrPC internalization 

at physiological levels of Cu(II) (8 μM in blood plasma and 15 μM at the synapse) 
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[357], leaving the matter unsettled. It has recently been suggested that PrPC may act as 

a copper transporter in the synaptic cleft, where peak copper concentrations reach 

100-300 μM during neuronal depolarization [358]. Thus, PrPC may thus be part of a 

mechanism to facilitate transferring Cu(II) back into the intracellular space after 

neuronal signaling, delivering copper to the intracellular copper transportation system 

[320].  

The ability of PrP-bound Cu(II) to undergo redox cycling [359] has invoked the 

proposal that PrPC may possess superoxide dismutase (SOD)-like activity [305]. The 

picture is further colored by the reduction of SOD activity by 10 - 50 % in PrP 

knockout mice as compared with wild type [360]. However, the original observation 

of SOD-like activity was measured in vitro using physiologically irrelevant copper 

concentrations (in the presence of 5 mM of CuSO4) [305, 350]. The SOD hypothesis 

is further challenged by the failure to detect any SOD-like activity both in vivo and in 

vitro using more robust methods [361-363]. An alternative hypothesis is that PrPC may 

protect cells from copper-induced oxidative stress by functioning as a sacrificial 

antioxidant of free radical superoxide generated by redox-active Cu(II) [364, 365].  

The role of copper binding in the conversion of PrPC to PrPSc and in the 

pathogenesis of prion diseases has also been controversial [366]. It has been shown 

that copper chelation delays the onset of prion disease in scrapie infected mice [367]. 

In contrast, a significant delay in prion disease onset was also observed in 

scrapie-infected hamsters treated with copper [368]. In vitro, copper seems to promote 

self-association of PrPC and acquisition of protease K resistance [309, 369], but other 
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studies show that copper inhibits fibril formation [295]. These contradictory results 

suggest a complex relationship between copper and PrP conversion [370]. It has been 

suggested that the effect of copper on conversion may depend on PrP conformation 

[295]; while copper prevents conversion of rPrP 23-230 α-monomer to amyloid fibrils, 

it also stabilizes preformed amyloid fibrils. 

E. Techniques to elucidate PrP-Cu(II) interactions 

Different techniques have been used to elucidate the interactions between PrP 

and Cu(II) ions, including fluorescence spectroscopy, circular dichroism spectroscopy 

(CD), mass spectrometry, isothermal titration calorimeter (ITC), and electron 

paramagnetic resonance spectroscopy (EPR). Two major techniques employed in this 

dissertation, ITC and EPR, are described in detail below.  

Modern ITC instruments operate on the heat compensation principle [371]. They 

measure the amount of power necessary to maintain the temperature equilibrium 

between a reference and sample cell as a function of time. The binding of copper to 

PrP is measured in a titration experiment, with copper being added to the protein 

solution in small aliquots. The results are displayed in the form of a titration isotherm 

(Figure 3-4).  

Curve-fitting of the resultant isotherm to an appropriate binding model provides 

the stoichiometry (n), binding constant (Ka), and change in enthalpy (ΔH°). The 

dissociation constant (Kd) may be calculated as the reciprocal of Ka. The change in 

entropy (ΔS) is calculated using ΔG = -RT*ln Ka and ΔS = (ΔH - ΔG) /T. The curve 

fitting function of the ITC software (Origin 7.0, OriginLab) provides one set of 
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binding sites model to analyze any number (n) of identical sites; and two sets of 

binding sites model to analyze two independent sites (any number of each site) with 

distinct thermodynamic properties. A sequential binding mode is also provided to 

examine the interaction between multiple non-identical sites, assuming the binding of 

a ligand to one site will be affected by previous binding events, as long as the 

thermodynamic difference between bindings at individual sites is sufficiently large. 

 

Figure 3-4. Schematic diagram of an ITC instrument.  

(A) In a typical ITC instrument, the sample cell and the reference cell 
are kept at same temperature and housed in an adiabatic jacket. A small 
constant power (reference power) is applied to the reference cell throughout 
the ITC experiment, which sets the approximate value of the baseline when 
the system is fully equilibrated. During a titration, the heat change associated 
with binding between the ligand and macromolecules results in a temperature 
change in the sample cell. The temperature difference between the reference 
and sample cells (ΔT) is detected by a thermopile/thermocouple detector. 
Consequently, the feedback heater will change the power applied to the 
sample cell accordingly to reestablish temperature equilibrium between the 
reference and sample cells. (B) The time integral of differential power (DP, 
μcal/sec) between the reference and sample cell yields a measurement of 
thermal energy of the binding reaction, ΔH [372, 373].  

EPR is a technique used to study atoms with unpaired electrons. Cu(II) has the 

B A 
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electronic configuration of 4s03d9 and is a spin quantum number I = 3/2 system, and is 

thus EPR-active. Although the EPR signals of copper proteins do not provide detailed 

structural information at the resolution level provided by X-ray crystallography, much 

information can be gleaned regarding the nature of the metal ligands (N, O, or S are 

most common) and their coordination geometries [374].  

When an unpaired electron is placed in an external magnetic field B0, the 

interaction between the electron spin moment and the magnetic field splits the 

degeneracy of the electron spin states, creating two spin states (Ms = ±1/2) (Figure 

3-5A). The energy difference between the two states is given by the equation 

E = hv = gβeH, 

where h is Plank’s constant, ν is frequency of the spectrometer ( for X-band EPR, 

this is about 9.5 GHz), g is a dimensionless g-factor that describes the intrinsic 

magnetic moment μ of the electron (g = 2.0023 for the free electron in space), βe is 

the Bohr magneton, and H is the external magnetic field at which the resonance 

condition is satisfied [375]. Resonance absorption occurs when the 

frequency/radiation energy satisfies the equation. For reasons associated with 

instrument design, the EPR spectrum is conventionally presented as the first 

derivative of the absorption signal (Figure 3-5B). 

Unlike a free electron, an atom possesses orbital angular momentum L in 

addition to the intrinsic spin angular momentum S. Thus, the g factor contains 

intrinsic structural information as it is affected by spin-orbit coupling. For some atoms 

like H, N, O, and C, the g-factor will be very close to that calculated for the free 
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electron in space, whereas for others, particularly metal ions, the g-factor may differ 

significantly. Additionally, since the orbitals of a molecule often exhibit directional 

dependence (anisotropic), the g-factor may also be anisotropic since it arises from 

spin-orbit coupling.  

For every molecule with an unpaired electron, a unique axis system may be 

defined using the terms gx, gy, and gz. The g-factor EPR signal will be “split” along 

these axes. For some atoms, the three principle g-factors are similar and thus the 

signal is isotropic (gx= gy= gz). For others, each g-factor is discernible from the others 

((gx≠ gy≠ gz, called rhombic). In others, only one g-factor will be different. This last 

situation is termed an axial signal (gx = gy ≠ gz) and by convention, the g-factor that is 

different is called g‖  (g-parallel) and the two that are similar (gx and gy,) are 

collectively known as g⊥ (g-perpendicular). Biologically relevant Cu(II) complexes 

are typically axial systems. 

The magnetic field experienced by the unpaired electron is also affected by its 

nucleus, if the atom has a non-zero spin quantum number, I. In this case, the spin of 

the nucleus can cause the absorption band to be split into a specific number of 

hyperfine peaks, where the number of hyperfines = 2I +1. This is termed hyperfine 

coupling and is called A. In anisotropic systems, hyperfine splitting (A-value) may 

only be observed for one or two of the directional g-factors. The magnitude of the 

A-value is related to the environment and coordination geometry of the atom 

containing the unpaired electron. In the case of Cu(II), which has a d9 electron 

configuration with a single unpaired electron, the interaction between the electron 
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spin and the nuclear spin gives rise to four features of nuclear hyperfine splitting since 

the spin quantum number (I) of Cu(II) is 3/2 (Figure 3-5C). The parallel region (g‖ 

and A‖) is particularly informative regarding the coordination number, geometry, and 

identity of the copper ligands. 

 

Figure 3-5. Schematic diagram of EPR theory.  

 (A) The schematic diagram of energy level for the simplest system 
(free electron) as a function of applied external magnetic field. The energy 
difference between two spin states is shown. (B) Examples of absorption and 
first derivative EPR spectra. (C) The schematic diagram of energy level of 
Cu(II) systems (S = 1/2 and I = 3/2). The arrows indicate allowed transitions 
with the selection rules of ΔMS = ±1 and ΔMI = 0.  

Nearby nuclei with non-zero spin quantum numbers, which include nitrogen 

ligands to copper, may also further split the signal. Since these nuclei are further away 

from the unpaired electron, their effect, termed superhyperfine splitting, is normally 

smaller than hyperfine splitting. The number of superhyperfine peaks also follows the 

A 

B 

C 
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2I+1 rule. Note that the true formula is actually 2(N)*I + 1, where N = the number of 

equivalent nuclei with non-zero spin.  

The g-factors and A-values of structurally well-defined copper complexes and 

copper proteins have been measured and tabulated. Their distribution on what is 

known as the Peisach-Blumberg Plot provides assignments of ligands for unknown 

complexes [374](Figure 3-6). However, it is important to keep in mind that due to the 

dependence of g ‖  and A ‖  on the net charges of the overall complex, the 

Peisach-Blumberg plot alone only serves a rough guideline for coordination sphere 

assignment. 

 

Figure 3-6. Original Peisach-Blumberg Plot of type II Cu(II) 
complexes [374].  

Data obtained from copper complexes with sulfur ligands have been 
added and the data tabulated (see Table 5-1 in Chapter V). 

F. Rationale and Aims 

The ambiguities in copper coordination discussed above highlights the need for a 
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thorough analysis of copper-prion interactions, so a comprehensive understanding of 

the role of copper in prion diseases can be achieved. In contrast to PrPC, much less 

attention has been devoted to understanding the interaction between PrPSc and copper, 

which may be more pathologically relevant. All important putative copper binding 

sites, including the fifth binding site, are located in the unstructured N-terminal 

domain of PrPC. However, whether these binding sites adopt different coordination 

modes in PrPSc is still unknown; nor do we know whether the N-terminal domain 

remains unstructured after amyloidosis. Although the octarepeats region are not part 

of the β-sheet core of the most widely accepted theoretical and experimental models 

[170, 171, 177, 187] proposed for PrPSc to date, the region where the fifth binding site 

is located plays a pivotal role in misfolding [376] and appears to be highly protected 

in authentic PrPSc [187]. Given our results regarding the effects of charge in the 

N-terminal domain in influencing the fibril to protofilament dissociation, it is 

important to consider the effects of copper binding on this domain. Therefore, 

comparative analyses of copper-prion interactions in rPrP α-monomer and fibrils, 

serving as substitutes for PrPC and PrPSc, respectively, will be useful to elucidating the 

role of copper in modulating the conversion of PrPC to PrPSc and its contribution to 

prion diseases.  

The first aim of this research is to determine the copper binding affinity for 

different PrP conformers. This goal is achieved using ITC, from which the reaction 

stoichiometry, association equilibrium constants, and change in enthalpies can be fully 

quantified. The second aim is to examine the coordination mode(s) of Cu(II) in PrP 
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conformers. This goal is approached using EPR. This methodology is complementary 

to ITC and provides insight into the Cu(II)-PrP coordination geometries and the 

identity of the coordinating ligands. Completion of these aims provides a deeper 

understanding of copper binding to rPrP fibrils. Additionally, by comparing 

thermodynamic and EPR parameters obtained for different conformers, uncertainty 

about whether conversion from PrPC to PrPSc will alter copper binding properties can 

be addressed. Our results demonstrate that His96 is the most important copper ligand 

in the fifth binding site, and His111 is not required. As expected, we confirm that 

copper binding to both the octarepeat region and the fifth binding site is highly 

pH-dependent. The major finding of the present research is that the types of 

coordination structures of Cu(II)-PrP complexes are largely similar between 

α-monomer and fibrils. However, the ratios of the different coordination modes have 

changed in the fibril. This finding might help to elucidate the pathogenesis of prion 

diseases.  

II. Experimental procedures 

A. Protein expression and purification 

A detailed description of the experimental procedures used to express and purify 

recombinant hamster PrP23-232 and PrP90-232 is provided in Chapter II.  

B. Mutagenesis  

Mutations of the histidine residues in the putative binding site of rPrP90-232, 
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H96A and H111A, were prepared from the template plasmid pET24PrP90 expressing 

wild-type rPrP90-232 via site-directed mutagenesis using a QuikChange kit 

(Stratagene). Small-scale plasmid purification was performed with a QIAprep 

miniprep kit (Qiagen) using standard protocols. The sequences of the mutations were 

verified and then the plasmids were transformed into BL21 (DE3)-Rosetta cells 

(Novagen) for large-scale expression. Mutagenesis was confirmed by DNA 

sequencing at the Murdock Sequencing Facility (University of Montana, Missoula, 

MT).  

The following oligonucleotide primers were used: H96A, 5’-GGT CAA GGA 

GGT GGC ACC GCT AAT CAG TGG AAC AAG CCC-3’ for the forward primer and 

5’-GGG CTT GTT CCA CTG ATT AGC GGT GCC ACC TCC TTG ACC-3’for the 

reverse primer; H111A, 5’-CCA AAA ACC AAC ATG AAG GCC ATG GCC GGC 

GCT GCT GCG-3’ for the forward primer and 5’-CGC AGC AGC GCC GGC CAT 

GGC CTT CAT GTT GGT TTT TGG-3’ for the reverse primer.  

C. Preparation of recombinant PrP conformers 

A detailed description of the experimental procedures used to prepare the 

α-helical forms (α-monomer) and fibrillar forms is provided in Chapter II. The 

secondary structure of the α-monomer was confirmed using CD. Fibrils were 

confirmed using the ThT fluorescence assay and TEM imaging [251]. 

D. Asymmetric flow field-flow fractionation (AF4)  

A detailed description of the experimental procedures employed to characterize 
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the size of PrP conformers using AF4 is provided in Chapter II.  

E. Circular dichroism (CD) 

The protocol of CD experiments is detailed in Chapter II.  

F. Isothermal titration calorimeter (ITC) 

In this study, all ITC measurements were carried out at 25 °C on a VP-ITC 

microcalorimeter (MicroCal). Both copper and protein solutions were prepared in the 

same buffer (from the same flask) and the pH of the metal solution was matched to 

within 0.05 pH units of the protein solution prior to the titration. These procedures 

minimized any heat changes from possible mismatches in salt or hydronium ion 

concentrations. All samples used in the experiments, except the fibrillar form, were 

passed through 0.22 µm regenerated cellulose membrane syringe filter (Corning) to 

remove small aggregates. All solutions were thoroughly degassed before the titrations 

were performed.  

In a typical ITC experiment, ten microliters of 3 mM buffered copper sulfate 

solution were delivered over 10 s into the sample cell, which was filled with ~ 1.4 ml 

of buffered PrP solution at a concentration of 50 μM. The sample cell was stirred 

constantly at 300 rpm by the syringe to maintain homogeneous mixing and keep the 

mechanical noise to a minimum. A total of 25 injections were performed to ensure that 

all the binding sites had been saturated. To account for diffusion of the solutions 

during the insertion of the syringe a small (2 μL) aliquot was delivered at the 

beginning of the experiment and the first data point was then deleted from data 
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analysis. Each injection was followed by a 5 min period to allow the reference power 

baseline to be re-established before the next injection. Titration of the copper sulfate 

solution into a protein-free buffer was recorded as a baseline, and then subtracted 

from each experimental titration to correct for the effect of any heat of dilution or 

metal/buffer reaction. After subtraction of this blank, the binding isotherm was then 

fitted with ITC software (Origin 7.0 OriginLab) using an appropriate binding model to 

yield the reaction stoichiometry, association equilibrium constants, change in 

enthalpies, and change in entropies as described in the previous paragraph.  

G. Electron paramagnetic resonance (EPR) 

The continuous wave (cw) X-band EPR spectra were collected on a Bruker EMX, 

X-band spectrometer at Montana State University. The following conditions were 

used: microwave frequency, ~9.3 GHz; microwave power, 0.3-0.7 mW, modulation 

amplitude, 10 G; and modulation frequency, 100 kHz. EPR spectra were recorded at 

77 K using a finger quartz Dewar with liquid nitrogen. 

EPR experiments were carried out in either 20 mM 2-(N-morpholino) 

ethanesulfonic acid (MES), pH 5.5 or 20 mM piperazine-N,N’-bis(2-ethanesulfonic 

acid) (PIPES), pH 7.0 to evaluate the effect of pH on the coordination modes of 

copper in Cu(II)-PrP complexes. Buffer solutions mixed with free Cu(II) (up to 1 mM 

CuCl2) did not show any significant copper signals; and copper ions bridged by 

chloride ions are EPR silent due to coupling between copper centers [315]. All 

samples for EPR experiments were prepared with 63CuCl2 (98.9%, Cambridge Isotope 

Laboratories). The 63Cu isotope was used to avoid inhomogeneous broadening of the 
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EPR lines caused by the mixture of naturally occurring isotopes 63Cu and 65Cu. The 

stock 63CuCl2 solution was adjusted to pH ~ 4 with concentrated sodium hydroxide.  

Double integrations of EPR spectra were calculated and normalized to a standard 

protein concentration to quantify the amount of spin-active Cu(II) incorporated into 

the PrP conformers. The EPR signals were calibrated by comparing their signal 

intensities to a standard solution of Cu(EDTA)2 made by mixing 100 μM CuCl2 with 

10 mM ethylenediaminetetraacetic acid (EDTA) at pH 8.0. Unbound Cu(II) in the 

form of copper hydroxide gives a broad signal of very small amplitude near the g⊥ 

region and  makes negligible contributions to the integration. The coordination 

configurations were derived from Peisach and Blumberg analysis using g‖ and A‖

directly measured from EPR spectra [374]. The cw X-band EPR spectra of type II 

Cu(II)-protein complexes show distinctive features with g‖ > g⊥ > 2.0023 and a 

hyperfine splitting of g‖ into the expected four features with A‖ being in the range of 

~ 450–750 MHz and A⊥  < 100 MHz [377]. The MI = +3/2 line of the parallel region 

overlaps with the perpendicular region, which makes it difficult to directly determine 

g⊥ and A⊥  at this frequency. 

EPR spectral simulations were carried out using the EasySpin program [378]. 

The spin Hamiltonian of the system can be written as: 

  

eH SgB AS Iβ= + 

 

where the terms describe the electronic Zeeman interaction and the interaction 

between the electron spin and nuclear spins that include 63Cu (the hyperfine 

interaction) as well as 14N (the superhyperfine interaction). βe is the Bohr magneton, 
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B is the external magnetic field at which the resonance condition is satisfied, g is the 

dimensionless electron g-factor, and A is the hyperfine coupling/splitting constant. S 

and I are the operators for electron and nuclear spins, respectively.  

III. Results 

A. Copper binding to the fifth binding site at neutral pH 

The characteristics of copper binding to the fifth binding site at pH 7.0 were 

investigated by ITC and EPR using rPrP90-232 conformers. The stoichiometry and 

affinity of the binding were determined by ITC at 25 °C in 0.1 M Tris-Cl, pH 7.5, to 

prevent the precipitation of cupric hydroxide (Ksp = 2.20 x 10-20 M3) [379]. It is known 

that under these conditions a single Cu(II) ion is complexed by 4 Tris molecules in the 

form of Cu(II)(Tris)4, which has a log stability constant (logβ4) of 14.1 [380]. 

 

 

Figure 3-7. ITC isotherms for copper binding to rPrP90-232 
conformers and mutants.  

Recombinant PrP90-232 α-monomer (■), 46 μM; H111A α-monomer 
(●), 48 μM; H96A α-monomer (▲), 51 μM; and rPrP90-232 fibrils (□), 46 
μM. Parameters for fitting the isotherms to the model of one set of binding 
sites are given in Table 3-1.  
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The titration isotherm of rPrP90-232 α-monomer by Cu(Tris)4
2+ complex is 

shown in Figure 3-7. Fitting these data to a model with a single type (set) of binding 

site provided a stoichiometry (n) of 1.02. The pH-dependent apparent binding 

constant (Ka) was determined to be 2.18 × 104 M-1, which translates to a Kd of 45 μM, 

and the change in enthalpy (ΔH) was -4.4 kcal/mol (Table 3-1). This is in line with 

SPR results [333, 334]. The reliability of the fitting was evident by the small standard 

deviation (3%) and χ2 values. The fifth binding site includes 2 histidine residues, 

His96 and His111, thus the titration isotherm was also fitted with a model that 

contains two sets of binding sites, which assumes that the macromolecule has 2 

groups of independent sites. The best fit to the isotherm revealed a stoichiometry of 

2.8 and 0.8 respectively, but had such a large standard deviation (34%) that it was 

deemed an inappropriate model. Fitting the isotherm to the sequential binding sites 

model, which is most suitable for a system where the binding of a ligand to one site 

will be affected by previous binding events, was also attempted since intra-region 

cooperation between His96 and His111 was recently reported and resolved with 

sequential model [341, 381]. This fitting routine yielded a Kd of 47 μM and ΔH of 

-4.6 kcal/mol for one site and 2.2 mM and -0.89 kcal/mol for a second site. The 

parameters for the first site were very close to those obtained from the one site model, 

and those of the second site could be considered as non-specific binding with no 

biological significance due to the comparatively weak affinity. Overall, the results 

indicate that there is only one type of site in rPrP90-232 that is able to coordinate 

Cu(II), at room temperature in a Tris-buffered solution at pH 7.5.   
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To elucidate the contributions of His96 and His111 residues to the binding 

process and the resulting coordination site [311, 332-335], H96A and H11A mutants 

were constructed. The titration isotherm of Cu(II) binding to H111A was similar to 

that of wild-type (Figure 3-7), with a binding stoichiometry of 1.1 when fitted with 

the one set of binding sites model. The apparent dissociation constant and ΔH were 47 

μM and -5.0 kcal/mol respectively, which are very close to wild-type protein. Unlike 

wild-type and H111A, the titration isotherm of H96A displayed no inflection points 

after subtraction of the buffer signal (Figure 3-7). These data suggest that His96 is 

required to coordinate Cu(II), whereas His111 is not involved in binding or is 

insufficient. This conclusion is agreement with those observed using SPR [333].  

Table 3-1. ITC parameters of Cu(II) binding to truncated 
rPrP90-232 conformers 

 α-monomer H111A 
α-monomer 

H96A 
α-monomer Fibrils 

 1 set of  
sites 

sequential 
model (N=2) 

1 set of  
sites 

1 set of  
sites 

1 set of  
sites 

N 1.02 ± 0.03   1.1 ± 0.02 n.d 0.84 ± 0.04 
Kd (μM) 45 ± 1.5 47 2200 47 ± 0.9 n.d. 24 ± 1.6 

ΔH(kcal/mol) -4.4 ± 0.15 -4.6 -0.89 -5.0 ± 0.09 n.d. -2.9 ± 0.16 

ΔS(cal/mol-K) 4.96 4.42 15.1 2.94 n.d 11.4 

χ2 99 60.2 58 n.d. 171 

n.d.: Not determined.  

The effect of fibrillation on copper binding to the fifth binding site was examined 

using rPrP90-232 fibrils. The isotherm (Figure 3-7) was characterized by a steeper 

slope in the initial stage as compared with that of α-monomer, which suggests that the 

binding of Cu(II) is tighter in rPrP90-232 fibrils. This graphic interpretation was 
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supported by the regression analysis of the isotherm using the one set of sites model, 

which yielded a Kd of 24 μM. The stoichiometry (n) was 0.84. This value is lower 

than expected, and could be caused by an error in actual fibril concentration, as fibrils 

tend to adsorb to the glass surface of the loading syringe, which would reduce the 

actual fibril concentration in the sample cell. We also attempted to fit the data with the 

stoichiometry of reaction being fixed to 1, as rPrP90-232 α-monomer only possess 

one Cu(II) binding site at His96. This resulted in only minor changes, yielding a Kd of 

19.3 ± 1. μM and ΔH of -2.4 ± 0.4 kcal/mol. However, the χ2 value of this fit is much 

larger as compared with fitting when all parameters were free-floating (329 vs. 171). 

These data demonstrated that the fifth binding site binds only one Cu(II) in both 

α-monomer and fibril. However, fibrillation increased the affinity for Cu(II) 2-fold.  

The copper coordination of the fifth binding site was then examined by EPR at 

77K. There is a large temperature difference between the EPR and ITC experiments, 

but since ΔH is negative, we expect that the affinity for copper will increase as the 

temperature decreases. This will also be true for adventitious copper binding. Another 

condition worthy of note is the buffer system. The Tris system is not used for EPR, as 

the EPR signal from the Cu(Tris)4
2+  complex will interfere with the analysis. 

Additionally, the pKa of Tris is quite sensitive to temperature, increasing 0.03 pH 

units per °C decrease). Thus, non-coordinating Good’s buffers were used for EPR.  

The EPR spectra of both rPrP90-232 conformers showed typical features for type II 

copper centers (Figure 3-8), indicative of a tetragonal Cu(II) center with a 

half-occupied dx2-y2 orbital [377]. Two distinct species were identified in the EPR 
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spectra for the rPrP90-232 α-monomer (Figure 3-8A and C) (Table 3-2). At 1 molar 

equivalent of Cu(II) and below, the spectra were dominated by the signal with g‖ = 

2.20, g⊥ = 2.037, and A‖= 565 MHz (Spectrum 1). Continuously increasing the Cu(II) 

load to 1.5 molar equivalents and higher led to the emergence of another signal with 

g‖ = 2.27, g⊥ = 2.047, and A‖ = 504 MHz (Spectrum 2). This is in agreement with 

previous studies [307]. The second signal continued to grow slowly, and both signals 

saturated when ~ 4-5 molar equivalents of Cu(II) had been added. 

We also determined the amount of copper loaded into the protein as a function of 

the total copper added. This copper loading curve was determined from integration of 

the total EPR signal as compared with copper-EDTA standards, and indicated 2 molar 

equivalents of Cu(II) were bound per PrP (Figure 3-8E). The copper loading curve 

also showed that the spin intensity of the first signal increased almost linearly with 

added copper. These data suggests rPrP90-232 α-monomer has two copper binding 

sites at 77K. The first site takes up copper preferentially, which gives rise to the EPR 

signal observed at low copper loading. The second site binds copper much more 

weakly and only appears at high copper concentration, which corresponds to the EPR 

signal that appeared at high copper load. This conclusion is not in conflict with ITC 

data, which only identifies only one copper binding site at 298K (Table 3-1). As 

pointed out previously, the affinity of rPrP90-232 conformers for Cu(II) is expected to 

increase significantly at 77 K, which implies that weak binding events that cannot be 

detected by ITC at 25 °C will become discernible in low-temperature EPR 

experiments. Therefore, we tentatively assign the first EPR signal to the binding site 
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identified by ITC, i.e. His96, which binds Cu(II) in the micromolar range. The second 

EPR signal is assigned as adventitious binding, which has much lower affinity at 

room temperature.  

The EPR spectra for rPrP90-232 fibrils also showed two signals that were 

basically the same as for the α-monomer (Figure 3-8A and C, Table 3-2). However, 

the two signals increased almost equally as a function of added Cu(II), which suggests 

they have similar affinities for copper. No saturation was observed for either of the 

signals as judged by EPR spectra and binding titration curve, indicating that the His96 

5th binding site has a decreased affinity for copper in fibrils than in the α-monomer. 

This is predicted from the smaller, less negative ΔH of copper binding to fibrils, 

assuming that the samples have at least partially equilibrated at the lower temperature 

used in EPR.   

The magnetic parameters for the EPR spectra of both rPrP90-232 conformers are 

summarized in Table 3-2. According to the Peisach-Blumberg plot [374], the first 

binding site has at least 2 nitrogen ligands (2N2O) but could contain up to 4 nitrogen 

ligands (4N). The second binding site has at least 1 nitrogen ligand (1N3O) but could 

also contain up to 4 nitrogen ligands (4N). We note that a decrease in A‖ is typically 

associated with the loss of a nitrogen ligand [320], indicating that the second binding 

site may have more oxygen ligands than the first site. The magnetic parameters for the 

first binding site are quite close to the reported His96 binding site in the α-monomer 

conformer of 3N1O configuration (g‖ = 2.21, A‖ = 588 MHz) [307]. For this site, 

Cu(II) was determined to be coordinated by the Nδ atom of the histidyl imidazole and 
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the remaining 2 nitrogens provided by deprotonated backbone amide groups. The 

oxygen is provided by a backbone carbonyl [307, 336]. This assignment is consistent 

with our previous conclusion based on ITC results that His96 is the major binding site. 

In hindsight, we should have measured the EPR spectrum of the H96A and H111A 

mutants in both α-monomeric and fibrillar conformers, to nail down the assignment of 

each signal. It would also be quite informative to measure the room temperature EPR 

spectra of the rPrP90-232 α-monomer and fibrils for a direct comparison with ITC 

data. However this approach might be impeded by the much lower affinities at room 

temperature (~40 μM).  

Altogether, these data demonstrate that both rPrP90-232 conformers possess 2 

copper binding sites. However, His96 is the only site with high affinity under 

physiologic conditions. Although adventitious binding of copper is not remarkable at 

room temperature, it might make a significant contribution to data collected at low 

temperature.  
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Figure 3-8. Titration of rPrP90-232 conformers with Cu(II) at pH 
7.0.  

Titration was performed with 145 μM of rPrP90-232 α-monomer and 
107 μM of rPrP90-232 fibril in 20 mM PIPES, pH 7.0. (A) and (B) show the 
X-band of EPR spectra of the rPrP90-232 α-monomer and rPrP90-232 fibril 

rPrP90-232 α-monomer at 
pH 7.0 

rPrP90-232 fibril 
at pH 7.0 

A B 

D C 

E 

Spectrum 2 Spectrum 2 

Spectrum 2 
Spectrum 2 

Spectrum 1 Spectrum 1 

Spectrum 1 Spectrum 1 
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respectively. (C) and (D) The 2600-3000 Gauss region was enlarged to 
demonstrate the presence of two distinct Cu(II) complexes (E) Integrated 
EPR spin intensity vs. [CuCl2] added.  

B. Copper binding to the fifth binding site at pH 5.5 

The fifth binding site contains protonatable histidine side chains (minimally 

His96), thus the Cu(II) coordination structure was further probed at pH 5.5 to examine 

the effect of pH on copper binding. The EPR data for copper binding to   

rPrP90-232 α-monomer indicates a single mode of binding at low copper 

concentrations. The EPR parameters of this binding mode are g‖ = 2.29, g⊥ = 2.067, 

and A‖ = 479 MHz (spectrum 3). This signal continued to grow in as more copper 

was added. Additionally, another signal emerged with similar g⊥ and A‖ but a 

distinct g‖ of 2.22 (Spectrum 4) (Figure 3-9A and C). These data suggest that 

rPrP90-232 α-monomer has two distinct copper binding sites of slightly different 

affinity at pH 5.5. The first site binds Cu(II) preferentially at low copper concentration, 

whereas the second site only binds Cu(II) at high copper concentration, which implies 

relatively low affinity for this site and might be a result of adventitious binding. The 

EPR spectra of rPrP90-232 fibril were dominated by a signal with g‖ = 2.27, g⊥ = 

2.06, and A‖ = 529 MHz (Spectrum 5) (Figure 3-9B and D). However, a close 

inspection of the signals showed asymmetry in the first three hyperfines, which 

indicates that there are really two signals/binding sites with only slightly different 

EPR magnetic parameters. Unlike that observed at pH 7.5, both rPrP90-232 

conformers showed no sign of saturation at pH 5.5 even at 4 molar equivalents Cu(II) 

added (Figure 3-9E).  
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Figure 3-9. Titration of rPrP90-232 conformers with Cu(II) at pH 
5.5. 

Titration was performed with 190 μM of rPrP90-232 α-monomer and 

rPrP90-232 α-monomer 
at pH 5.5 

rPrP90-232 fibril 
at pH 5.5 

A B 

D C 

E 

Spectrum 3 

 
Spectrum 4 

 

Spectrum 5 

 

Spectrum 5 

 

Spectrum 3 

 

Spectrum 4 
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377 μM of rPrP90-232 fibril in 20 mM MES, pH 5.5. (A) The X-band of 
EPR spectra of rPrP90-232 α-monomer collected at ~ 9.322 GHz. (B) The 
X-band of EPR spectra of rPrP90-232 fibril collected at ~ 9.465 GHz. The 
frequency difference accounts for the difference in the X-axis position of the 
spectra. Insets show the simulated spectra (dashed lines) of the EPR spectra 
at 1 molar equivalent of Cu(II) in Figure 3-13A and Figure 3-13B 
respectively. Magnetic parameters for these simulations are: g⊥ = 2.061, g‖ = 
2.294, A⊥ = 22.0 MHz and A‖ = 474.33 MHz; g⊥ = 2.056, g‖ = 2.276, A⊥= 
31.5 MHz and A‖ = 521.9 MHz respectively. (C) and (D) The 2600-3000 
Gauss region was enlarged in the inset to demonstrate the presence of 
multiple Cu(II) complexes at pH 5.5 as the Cu(II) concentration increases. (E) 
Integrated EPR spin intensity as a function of CuCl2 added to the protein 
solution.  

The magnetic parameters of these distinct species are summarized in Table 3-2. 

All copper centers in rPrP90-232 conformers observed at pH 5.5 satisfy 2-4 nitrogen 

coordination [374]. Since at pH 5.5, amide nitrogens will strongly prefer to be 

protonated and thus no longer able to coordinate Cu(II), the most plausible nitrogen 

donor is the imidazole nitrogen of His residues. One might expect a copper center 

with 2 histidine residues for all species observed in rPrP90-232 conformers at pH 5.5, 

which should be more stable than one with 1 amide nitrogen and 1 histidine nitrogen. 

On the other hand, the number of oxygen ligands will increase at pH 5.5 due to the 

loss of N-coordination and replacement by water or perhaps carbonyl oxygen. 

Lowering the pH changes the coordination modes of the fifth binding site as 

compared with those at pH 7.5, with a probable loss of a nitrogen ligand, which we 

presume to be an amide nitrogen. The results also suggest that both rPrP90-232 

conformers contain 2 copper binding sites at pH 5.5. 

C. Copper binding to the octarepeat region at neutral pH 

After demonstrating the effect of pH and fibrillation on copper binding to the 
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fifth binding site, we then focused on understanding their effect on copper binding to 

the octarepeat region using rPrP23-232.  

 

Figure 3-10. ITC isotherms for copper binding to rPrP23-232 
conformers.  

 rPrP23-232 α-monomer (■), 46 μM; rPrP23-232 fibrils (□), 51 μM. 

Copper binding to rPrP23-232 conformers at neutral pH was first investigated 

using ITC. Unlike rPrP90-232 α-monomer, the titration isotherm of Cu(II) binding to 

the rPrP23-232 α-monomer was complicated by the presence of exothermic reactions 

at the end stage of titration, even when the heat change resulting from dilution or 

metal/buffer reaction was subtracted (Figure 3-10). This indicates a secondary event 

that could not be accounted for by the blank titration. Samples after ITC experiments 

were therefore subjected to AF4 analysis to further investigate the interaction between 

Cu(II) and rPrP23-232 α-monomer. In contrast to Cu(II)-bound rPrP90-232 

α-monomer, which was dominated by a single monomeric elution peak (Figure 

3-11D), the AF4 trace of the rPrP23-232 α-monomer sample after Cu(II) titration 

showed a major elution peak at 12.2 min with two minor peaks at 6.3 and 40.9 min 

(Figure 3-11A). This implicates the formation of higher molecular weight species 
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during copper titration, which may well be responsible for the exothermic events at 

the end stage of the ITC experiment.  

The 6.3 min and 40.9 min elution peaks can be respectively assigned to 

monomeric and a large multimeric rPrP23-232 species based on evidence presented in 

Chapter II. The major peak showed a much shorter elution time (12.2 min) than that 

of rPrP23-232 octameric β-oligomer (~20.9 min), indicating it is less than octameric. 

This species is assigned as an rPrP23-232 dimer based on calculated molecular weight 

(51 KDa) using monomer (~ 6.3 min) and octamer as standards, though this is just a 

rough approximation. Far-UV CD of the mixture showed two negative peaks at 209 

and 222 nm and a MRE of -6,841 deg∙cm2∙dmol-1∙residue-1 at 222nm (Figure 3-11B). 

This MRE is smaller than the MRE of Cu(II)-free rPrP23-232 α-monomer (-8,376 

deg∙cm2∙dmol-1∙residue-1), which suggests a loss of α-helicity and/or formation of new 

structure. The non-fibrillar characteristics of post-ITC samples were supported by the 

ThT fluorescence assays, which showed no emission at 485 nm (Figure 3-11C). Our 

results suggest that Cu(II) is able to promote oligomerization of the rPrP23-232 

α-monomer, and indeed convert the monomer into a dimeric species. Although the 

resultant species failed to be characterized as having extended β-sheet characteristics, 

it does have reduced α-helical features. 
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 Figure 3-11. Characterization of post-ITC products of rPrP23-232 
and rPrP90-232 α-monomer.  

 (A) AF4 elution profiles of rPrP23-232 α-monomer before and after ITC 
Cu(II) titration. (B) Far-UV CD spectra of rPrP23-232 α-monomer before and 
after ITC Cu(II) titration. (C) ThT fluorescence spectra of rPrP23-232 
α-monomer before and after ITC Cu(II) titration. (D) AF4 elution profiles of 
rPrP90-232 α-monomer before and after ITC Cu(II) titration.  

Similar to rPrP90-232 fibrils, copper binding to rPrP23-232 fibrils also showed a 

A 
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D
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rPrP 23-232 α-monomer 

rPrP 90-232 α-monomer 
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steeper slope in the initial stage (Figure 3-10), which suggests a higher binding 

affinity than that of its α-helical conformer. Unfortunately, analysis of the ITC 

isotherm was hindered by the lack of an appropriate model to account for the presence 

of three different coordination modes with negative cooperativity as a function of 

copper occupancy [319]. In fact no regression model available in the Origin 7.0 

package provided by the manufacturer could be fitted to the data with confidence. A 

simple graphic interpretation of the titration isotherm indicates the presence of only 

one binding site. Attempts to fit the data with one set of binding sites model yielded a 

binding stoichiometry of 0.89 ± 0.04 with Kd of 7.5 ± 1.5 μM, ΔH of -3.0 ± 0.15 

kcal/mol, and ΔS of 13.4 cal/mol-K. This is quite close to that observed for 

rPrP90-232 fibril except for the higher affinity (lower Kd) (Table 3-1). However, the 

quality of this model is relatively poor as evident by the large χ2 of 5657. ITC research 

on copper binding to rPrP23-232 α-monomer has been reported previously using 

glycine buffer and fitted with the sequential binding sites model [341, 381]. However, 

no goodness of fit parameters was given, and no comparison of fits to other models 

was reported. We believe that this model only accounts for interactions between 

different independent binding sites; it is not appropriate to apply it to a binding event 

involving a switch from one coordination mode to another. Further, a binding event 

with negative cooperativity would display an ITC isotherm with more than one phase 

and different slopes, indicative of the distinct binding affinities. This has never been 

observed in this study or in any published data [341, 381].  

The EPR spectra of both rPrP23-232 conformers showed three sets of hyperfine 
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splitting patterns (A‖) as a function of Cu(II) concentration, suggesting the formation 

of three distinct Cu(II)-prion complexes. The magnetic parameters, g‖and A‖, of 

these complexes are summarized in Table 3-2. These values approximately match the 

parameters of species identified by Millhauser’s group using synthetic peptides 

covering the whole octarepeat region [307, 319, 320]. Thus, these three complexes are 

assigned as component I, II, and III accordingly. The changes in the g‖and A‖ have 

been ascribed to the changes in the ligand environment around the cupric ion, ranging 

from three nitrogen and one oxygen (3N1O) for component I, two nitrogens and two 

oxygens (2N2O) for component II to four nitrogens (4N) for component III. 
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Figure 3-12. Titration of rPrP23-232 conformers with Cu(II) at pH 
7.0.  

Titration was performed with 125 μM of rPrP23-232 α-monomer and 
107 μM of rPrP23-232 fibril in 20 mM PIPES, pH 7.0. (A) and (B) show the 

rPrP23-232 α-monomer 
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X-band of EPR spectra of the rPrP23-232 α-monomer and rPrP23-232 fibril 
respectively. (C) and (D) The 2600-3000 Gauss region was enlarged in the 
inset to demonstrate the presence of three Cu(II) complexes at pH 7.0 as the 
Cu(II) concentration increases. (E) Integrated EPR spin intensity as the 
function of CuCl2 added to the solution. 

As anticipated from the Millhauser studies [319, 321], in rPrP23-232 α-monomer, 

component III dominated at < 1 molar equivalent of Cu(II). With continued addition 

of 1-2 molar equivalents of copper, the position of the EPR signals gradually shifted 

to lower field range; this is consistent with the formation of component II. At 3 molar 

equivalents, component III was completely replaced by component II and the signal of 

component I emerged at this point. Integration of the spectrum indicates that about 

half of the copper (1.5 molar equivalents) has been taken up by the protein. From 3 

molar equivalents and onwards, EPR spectra revealed a coexistence of components I 

and II. The intensity of component I grew with increasing additions of Cu(II) although 

component II was still clearly present (Figure 3-12A and C) at the highest 

concentration of the experiment.  

Three similar species were also characterized in the EPR spectra of rPrP23-232 

fibril, confirming that rPrP23-232 fibril binds Cu(II) with the same coordination 

modes as the α-monomer (Figure 3-12B and D). However, component II is more 

dominant in the fibrillar form, as its signal grew in almost equally with component I 

even at high equivalents of copper added, suggesting approximately similar affinity 

for copper exists between these two species in the fibrillar conformer. The spin 

quantitation (Figure 3-12E) indicates that additional copper binds to the full length 

protein at 77K. Of note, the EPR spectrum of mouse PrP121-231 at pH 7.4 with less 
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one equivalent of copper added consists of a component I-type signal even no 

octarepeat or canonical 5th binding site (His96) is present in this peptide [312]. It is 

therefore worthwhile considering the possibility that the C-terminal region has at least 

one binding site with a very similar coordination mode as found in the N-terminal 

domain.  

The differences in binding behavior between rPrP23-232 conformers are clearly 

demonstrated in their copper loading curves (Figure 3-12E). Both conformers were 

found to bind about 6 equivalents of Cu(II) per PrP at pH 7.0, with 5.8 ± 0.6 for 

α-monomer and 6.0 ± 0.2 for fibril. Considering the octarepeat region takes up 4 

equivalents of Cu(II), His96 binds 1 equivalent of Cu(II), and at least 1 equivalent of 

adventitious copper may bind, the stoichiometry detected by EPR suggests that all 

binding sites in rPrP23-232 preserve their ability to bind Cu(II) in the fibril form. 

However, the sigmoidal titration curve of rPrP23-232 α-monomer is replaced by a 

hyperbolic curve in fibril. Similar sigmoidal binding curves have been reported for 

rPrP23-232 α-monomer or an octarepeat peptide using EPR [307] or CD [304, 315], 

although an alternative explanation has been offered) [346]. Since component III, 

which has a reported Kd ~ 0.1 nM, only forms at one molar equivalent of copper or 

below [319, 320, 346], the titrations done here mostly report on total copper uptake by 

component II (Kd ~ 13 μM) and / or component I (Kd ~ 7 μM) [346], as few points 

were taken below 1 equivalent of copper. For rPrP23-232 fibril, the relative affinities 

of these components are different, perhaps due to conformational changes as 

suggested in our studies of the truncated rPrP90-232 conformers. This hypothesis is 
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supported by the observation that the EPR spectra of rPrP23-232 fibril showing equal 

distribution between component II and component I. 

Altogether, these data demonstrate that both rPrP23-232 α-monomer and 

rPrP23-232 fibril bind Cu(II) at neutral pH. They each form three identical complexes 

as a function of Cu(II) concentration. However, we propose that affinities of 

component I and component II for copper are different as a consequence of 

conformational change. Fibrils made from constructs containing only one component 

will be helpful to clarify these mysteries, as would visible CD experiments, which 

selectively monitor component I. Additionally, we note that inconsistencies between 

ITC and EPR data may largely be due to temperature differences. 

D. Copper binding to octarepeat region at pH 5.5 

 Each of the four octarepeat regions contains one histidine residue, whose 

protonation status (and thus copper ligation status) will be affected by environmental 

pH. Therefore, the Cu(II) coordination structure was also explored at pH 5.5. EPR 

spectra for rPrP23-232 conformers are shown in Figure 3-13. Comparison of the 

conformers revealed very similar spectra with typical type II Cu(II) geometry. At 0.5 

molar equivalent of Cu(II), the spectrum consisted of a set of signals with g‖ = 2.25, 

g⊥ = 2.055 and A‖ = 569 MHz (spectrum 6) (Table 3-2). As the copper loading was 

raised, the g‖ and hyperfine splittings shifted to a lower field. At 8 molar equivalents 

of copper, a signal with g‖ = 2.28, g⊥ = 2.064 and A‖ = 530 MHz (spectrum 7) 

(Table 3-2) was observed. Simulation showed reasonable fits to the experiment data; 

with calculated magnetic parameters matching measured ones (Figure 3-13D). The 
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contribution of aqueous copper to the spectra could be ruled out as judged from the 

A‖ value of the hyperfine splitting in the parallel region [307, 315]. The changes in  

magnetic parameters with copper loading suggests that changes in the coordinating 

ligands of the copper center(s) occur, similar to those observed between component 3 

and component 2. The decrease of A‖ indicates that there may be an increase in the 

number of oxygen ligands as the copper load is increased. A Peisach–Blumberg plot is 

rather uninformative regarding the coordination mode of spectrum 6 (4N, 3N1O, 

2N2O, or 1N3O configuration). However, it does appear that a loss of one nitrogen 

has occurred for the species associated with spectrum 7 (1N3O, 2N2O, or 3N1O). In 

both rPrP23-232 conformers, the intensity of the EPR signals increases linearly with 

the equivalents of Cu(II) added to the solution, until maximal binding of about 4 Cu(II) 

ions per PrP molecule is achieved (Figure 3-13E). 
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Figure 3-13. Titration of rPrP23-232 conformers with Cu(II) at pH 
5.5. 

Titration was performed with 197 μM of rPrP23-232 α-monomer and 
136 μM of rPrP23-232 fibril in 20 mM MES, pH 5.5. (A) and (B) show the 
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X-band of EPR spectra of the rPrP23-232 α-monomer and rPrP23-232 fibril 
respectively. Insets show the simulated spectra (dashed lines) of spectrum 6 
collected at 1 molar equivalent of Cu(II) and spectrum 7 collected at 6 molar 
equivalents of Cu(II). Magnetic parameters for these simulations are: g⊥

=2.053, g‖ = 2.256, A⊥= 45.98 MHz and A‖ = 568.82 MHz for spectrum 6, 
and g⊥=2.058, g‖ = 2.282, A⊥= 20.77 MHz and A‖ = 526.33 MHz for 
spectrum 7. (C) and (D) The 2600-3000 Gauss region was enlarged in the 
inset to demonstrate the shift of hyperfine splitting pattern at pH 5.5 as the 
Cu(II) concentration increases. (E) Integrated EPR signal intensity as the 
function of CuCl2 added to the solution.  

Table 3-2. Measured EPR parameters of Cu(II) complexes formed 
with rPrP90-232 and rPrP23-232 conformers. 

Species g‖ g⊥ A‖ Possible 
coordinations ‖MH

 
10-4cm-1 

rPrP90-232 conformers at pH 7.5 
Spectrum 1 2.20 2.037 565 189 3N1O [307] 

Spectrum 2 2.27 2.047 504 168 
1N-4N, but likely 
less N than 
spectrum 1 

rPrP90-232 α-monomer at pH 5.5 
Spectrum 3 2.29 2.069 479 160 2N-4N, containing 

O from water or 
carbonyl Spectrum 4 2.22 2.069 475 158 

rPrP90-232 fibril at pH 5.5 

Spectrum 5 2.27 2.06 529 176 
2N-4N, containing 
O from water or 
carbonyl 

rPrP23-232 conformers at pH 7.5 [319] 
Component 1 2.22 n.d. 490 163 3N1O [319] 
Component 2 2.26 n.d. 533 178 2N2O [319] 
Component 3 2.25 n.d. 573 191 3N1O or 4N [319] 

rPrP23-232 conformers at pH 5.5 

Spectrum 6 2.25 2.055 569 189 1N-4N 
(component 3?) 

Spectrum 7 2.28 2.064 530 177 
1N-3N, one less N 
than spectrum 6 
(component 2?) 

                                                             

Taken together, these data suggest the interactions between Cu(II) and PrP are indeed 

pH dependent, which is in agreement with previous data [307, 335, 340].  
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IV. Discussion 

In order to better clarify the effect of conversion of PrPC to PrPSc on copper 

binding to PrP and the role played by copper in prion diseases pathogenesis, a 

comprehensive understanding on the interactions between copper and different PrP 

conformers is necessary. Although there has been a long list of publications on the 

relationship between PrPC and copper [319, 321, 343, 346, 382-386], due to the 

inconsistency of methods used to evaluate their interaction, copper binding to PrPC is 

still a matter that generates much  controversy. Copper binding in PrPSc is a field that 

is relatively unexplored.  

Here, we present a preliminary comparative study on copper binding to rPrP 

conformers, α-monomer and fibril, at physiologically relevant pH values. Using ITC, 

we show that His96 is the major copper binding site in the fifth binding site while 

His111 itself is not sufficient or required. Furthermore, we demonstrate that 

rPrP23-232 α-monomer forms a higher molecular weight species, most likely a dimer, 

after copper binding. From this point of view, ITC alone is not an appropriate 

approach to study copper binding in full-length PrP α-monomer, unless every single 

event can be independently isolated. However, data need to be collected under 

uniform conditions of pH, buffer salts, and temperature for a clear picture to emerge. 

As validated by both ITC and EPR, conversion of α-monomer to rPrP fibril does 

not abolish the ability of rPrP to bind copper. The coordination structures of Cu(II) 

complexes are largely similar between α-monomer and fibril. However, the relative 

affinities of the different coordination modes have changed somewhat in the fibril. 
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Our results confirm that copper binding to both the octarepeats and the fifth binding 

site are affected by pH. 

E. The role of copper binding in PrP aggregation 

It has been reported that copper binding induces small-size aggregates of PrP 

with amyloid characteristics [309, 369]. However, our results reveal that rPrP23-232 

α-monomer mainly forms a dimer, along with a small amount of high molecular 

weight aggregates (Figure 3-11B). The post-ITC sample only shows decreased 

α-helicity and/or increased random coil as judged from CD results; no increase in 

β-sheet is detected (Figure 3-11B & C). ThT fluorescence assay rules out the 

presence of amyloid features in the sample (Figure 3-11D). These data are supported 

by recent research on the effect of copper binding on the secondary structure and 

folding stability of α-monomeric PrP23-232, which did not show any generation of 

β-sheet structures [387]. Interestingly, in previous research, amyloid features were 

determined by the PK-resistance assay in the presence of Cu(II) [309, 369]. But it has 

been pointed out that Cu(II) also binds to PK and destroys its activity, thereby causing 

PK-resistance [388]. Thus, prior results that reported amyloid formation in the 

presence of copper need to be viewed with caution. Birkmann’s group has reported a 

pre-amyloid state in the presence of SDS, in which the partially α-helical and partially 

denatured PrP is in a monomer-dimer equilibrium [389, 390]. They believe this state 

is an essential step during fibrillation. Our results implicate the presence of a similar 

quaternary state after copper binding. We postulate that the dimeric species might 

represent an intermediate of fibril formation. Furthermore, although copper-induced 
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dimerization is a separate event from fibrillation by shaking in the presence of 

denaturants, the dimer could be a more favored yet transient substrate for fibrillation. 

This hypothesis can be tested by isolating the copper-induced dimer via AF4 and 

monitoring the evolution of monomer, dimer, and fibrils under optimal fibrillation 

conditions.  

Results from the present research shows that octarepeat region is required for 

copper-dependent dimerization/aggregation since the PrP90-232 α-monomer remains 

in a monomeric state even in the excess of Cu(II). One possible explanation is that 

copper induced dimerization/aggregation is mediated by the formation of component 

III, in which the multiple histidine ligands come from more than one prion subunit. 

However, in the α-monomer, this type of self-association always occurs at 

sub-stoichiometric quantities of Cu(II) and disappears as Cu(II) load increases due to 

the formation of component 1 (Cu(II) coordinated by one octarepeat with only one 

imidazole Nδ donor) [340]. The persistence of dimer and high molecular weight 

aggregates that do not retain the features of component 3 at 9 molar equivalents of 

Cu(II) argues against this. Another probable mechanism involves the noncovalent 

cross-linking between PrP molecules mediated by the glutamine residues in the 

octarepeat region. It proposes that the octarepeat region forms ordered structures only 

when it is fully copper-loaded [319], bringing the glutamine residues close to each 

other and facilitating the aggregation process [314]. This may explain the existence of 

aggregates at high copper concentrations. Additional experiments are warranted in 

which copper loading is both monitored by EPR and correlated with the appearance of 
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higher MW species by AF4. 

F. Location of the fifth copper binding site 

Wide disparity exists in the literature regarding copper binding to His96 and/or 

His111 residues. Some of these have been addressed from the point of sequence 

context. It has been recently reported that the presence of a tyrosine residue in chicken 

PrP makes the His110 (equivalent to hamster His96) the stronger Cu(II) binding site 

[311]. As illustrated in Table 3-3, however, no such a sequence difference is 

identifiable between hamster and mouse PrP, although the His residues show opposite 

affinity for copper. The inconsistency in the literature might also result from variation 

in experimental conditions. As an example, using glycine as the chelator in the ITC 

buffer, one group found that His111 has a greater affinity for copper than His96 in 

mouse PrP [349, 381]. However, a careful examination of the methods shows that the 

Cu(II) donating species are heterogeneous due to the presence of multiple 

Cu(II)-glycine species under the experimental conditions used [380]. Furthermore, 

glycine allows for the formation of ternary complexes with PrP bound copper [346]. 

This makes the data less straightforward to interpret.  

In the present study, we used a large excess of Tris-Cl to ensure Cu(II)Tris4 was 

the sole copper-donating species in the titrant. ITC data from PrP90-232 wild-type 

and histidine mutants strongly argue that His96 residue is sufficient for Cu(II) binding 

in the fifth binding site with an apparent dissociation constant in the micromolar range. 

Deletion of His111 has little to no effect on the ITC titration isotherm. This hints that 

His111 is not required in the coordination as postulated by other researchers [333].  
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Table 3-3. Alignment of prion sequence 91-120 of hamster, mouse 
human and chicken. 

Species [311] Aligned sequence 
PrP_Ha QGGGTHNQWNKPSKP-KTNMKHMAGAAAAGA 30 
PrP_Mu QGGGTHNQWNKPNKP-KTSMKHMAGAAAAGA 30 
PrP_Hu QGGGTHSQWNKPSKP-KTNMKHMAGAAAAGA 30 
PrP_Ch SGGSYHNQ—-KPWKPPKTNFKHVAGAAAAGA 29 

G. pH dependence of copper binding in PrP 

The effect of pH on Cu(II) binding in PrP has been attributed to its effect on the 

protonation status of ligands in the first coordination shell, including the carbonyl 

oxygen, the imidazole nitrogen, and the amide nitrogen. These ligands become more 

available for coordination as the pH increases. The amide nitrogen usually 

deprotonates from pH 13 to 15 [391, 392]. However, copper binding to the nearby 

histidine residue, which serves as the primary ligating site for the metal ion, markedly 

promotes deprotonation of the amide nitrogen. In acetylglycylglycylhistidine, the pKa 

is 6.5 and 7.4 for first and second deprotonation, respectively [391, 392]. The amide 

nitrogen becomes a nitrogen donor to coordinate Cu(II) after deprotonation. This 

Cu(II)-amide bond is sensitive to pH and the copper will dissociate when the 

environmental pH drops. The pKa of free histidyl side chain is ~ 6.5. However, its 

pKa changes significantly in different environments. The pKa of the His nitrogen 

bound to copper is much lower; it does not protonate until very low pH is reached. 

Thus, at low pH, the histidyl side chain provides the major Cu(II) coordination site. 

When the pH decreases to very low values (<4.5), only oxygen is available for metal 

coordination.  

The data presented herein confirm the pH dependence of Cu(II) binding in both 
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the octarepeat region and the fifth binding site, as revealed by the significant 

differences in the magnetic parameters of EPR spectra recorded at pH 7.0 and pH 5.5 

(Table 3-2). This finding agrees well with the results of other researchers on 

PrP-copper interactions [307, 315, 320, 393].  

Magnetic parameters obtained from the present EPR studies suggest that the fifth 

binding site may adopt a 3N1O configuration at pH 7.0 (spectrum 1) (Figure 3-8), 

which is in line with published results (Figure 3-3) [335, 336]. Three different copper 

complexes as a function of Cu(II) concentration have also been resolved from the 

EPR spectra of rPrP23-232 α-monomer (Figure 3-8Figure 3-12), whose magnetic 

parameters measured by us match well to the  three components reported by 

Millhouser’s group [319, 323]. These results confirm that the material used in this 

study bear typical characteristics of Cu(II)-PrP interactions. An additional signal 

(spectrum 2) arising from adventitious binding is resolvable in the EPR spectra of 

rPrP90-232 conformers as well. Its larger A‖ indicates fewer coordinating nitrogen 

ligands in this species, most likely with a 2N2O or 1N3O coordination mode. Spin 

integration of EPR signals reveals ~ 6 molar equivalents of Cu(II) have been 

incorporated into rPrP23-232 α-monomer, including the octarepeats and the fifth 

binding site. Signals arising from the fifth binding site (spectrum 1) are not 

discernible from those from the octarepeats region, which is expected given the 

similarities between the EPR spectrum of PrP90-232 and that of the full-length 

protein.   

The coordination of Cu(II)-PrP complexes formed at pH 5.5 is still difficult to 
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pinpoint. Backbone amide nitrogens are much less likely to deprotonate and serve as 

ligands to copper at this pH. Thus the imidazole nitrogens of histidine residues 

become the primary nitrogen donors. For rPrP90-232 α-monomer, its EPR spectrum is 

dominated by a single species (spectrum 3) at < 1 equivalent of bound Cu(II), yet the 

EPR parameters suggest there is more than one nitrogen ligated to the copper. Thus, 

spectrum 3 may be a multiple histidine species, with a probable 2N configuration. 

Previous CD and EPR data proposed a 2N2O configuration for the PrP90-126 peptide 

at pH 5.5, in which the Cu(II) is shared between His96 and His111 [335]. Oxygen 

ligands are also present in this species, whose origin can be differentiated by other 

spectroscopic techniques, such as electron–nuclear double resonance (ENDOR) and 

hyperfine sublevel correlation (HYSCORE) [336]. The coordination structure for 

spectrum 4 might be similar to spectrum 3. Meanwhile, participation of histidine 

residues from the C-terminal domain at pH 5.5 cannot be ruled out. This can be 

clarified using structures without the C-terminal region or by the systematic mutation 

of other His residues.  

For the rPrP23-232 α-monomer, the magnetic parameters for spectra 6 and 7 

recorded at pH 5.5 bear strong resemblance to those of components 3 and 2 

respectively, suggesting a probable 4N configuration for spectrum 6 and a 2N2O 

configuration for spectrum 7. We proposed that spectrum 6, which is the binding 

mode occurring at low Cu(II) occupancy, coordinates Cu(II) through 4 imidazole 

nitrogens from the unstructured region. Increased Cu(II) occupancy favors the 

formation of a new species with EPR spectrum 7, in which Cu(II) is coordinated by 2 
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imidazole nitrogens. It has been reported that this 2N2O coordination mode of 

component 2 is the intermediate state during component 3 to component 1 transition 

at pH 7.4 [320]. At pH 5.5, if the amide nitrogen is no longer available to coordinate 

Cu(II), the copper center might be trapped in this intermediate state and be unable to 

convert to component 1. This implies that the octarepeat region can bind only up to 2 

molar equivalents of copper at pH 5.5. The EPR titration curve showed that 4 molar 

equivalents of Cu(II) could be incorporated into the α-monomer, we believe the 

additional 2 equivalents of Cu(II) are bound at the fifth binding site and another 

adventitious binding site of much lower affinity, as demonstrated for the rPrP90-232 

protein. Similar to rPrP23-232 α-monomer at pH7.0, signals arising from these two 

sites might not be discernible in the full-length protein. NMR studies on copper 

binding to full-length human rPrP at pH 5.5 advocates the coexistence of copper 

binding to both the octarepeat region and the fifth binding site [340]. Switching from 

Nδ to Nε coordination in the imidazole ring to facilitate the 2N2O configuration might 

also be necessary [393]. Even the involvement of the N-terminal amine group in the 

coordination has been implicated [340]!  

The pH dependence of Cu(II) binding in PrP is physiologically relevant to its 

functions in vivo. As Cu(II)-loaded PrP is trafficked from the plasma membrane to the 

endosomal compartments, it will experience a similar pH change used in the present 

research. We have shown here that the Cu(II)-PrP complexes adopt distinct 

coordination modes as a function of pH. Clearly, this in turn will affect its affinity for 

copper along with modulating redox properties. Furthermore, the propagation of 
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multiple histidine Cu(II) complexes under low pH conditions may favor the 

aggregation of PrP within the endosomal pathways. In lysosomes or copper storage 

vesicles, where the pH is about 4.5, the Cu(II) might be released from the protein 

altogether.  

H. Effect of fibrillation on copper binding 

Results from the present study show that the fibrillar forms of PrP bind copper 

with coordination structures that are quite similar to their α-helical counterparts 

(Table 3-2). However, the relative ratios of the different copper binding modes are 

affected by fibrillation, especially at pH 7.0. While spectrum 1 is the major species in 

rPrP90-232 α-monomer at low copper equivalents, the spin intensity splits almost 

equally between spectra 1 and 2 in the fibrillar form at the same copper concentration 

(Figure 3-8). Similar results were found in rPrP23-232, where component 1 is the 

major species at high copper equivalents in the α-monomer. In the fibril state, 

component 2 and component 1 grow in simultaneously as Cu(II) loading increases 

(Figure 3-12). These effects may be the consequences of conformational changes in 

fibril. There may also be differences in coordination modes associated with changes in 

affinities for copper as a function of temperature, which we have demonstrated based 

on ITC results. Room temperature EPR experiments on the fibrillar form will rule out 

or support the possible role of temperature on binding affinity, illuminating the 

contribution of each coordination mode under more physiologically relevant 

conditions. The redistribution of spin intensity between different coordination modes 

in the fibrillar form could have some effects on PrP physiological functions. It has 
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been suggested that component 1 may regulate the generation of H2O2 [328], which is 

believed to be a signaling messenger and involved a variety of cellular event [394]. If 

this holds true, a decrease in the amount of component 1 in fibrils might lead to less 

production of H2O2, which can further influence other physiological processes. From 

this point of view, conversion of PrPC to PrPSc can still be treated as a 

loss-of-function.  

In summary, we confirmed here that copper binding in both rPrP90-232 and 

rPrP23-232 conformers is sensitive to pH changes, which we believe is mainly due to 

the protonation status of amide nitrogen ligands under different pH conditions. We 

demonstrated that both the octarepeats and the fifth binding site preserve their ability 

to bind Cu(II) in the fibrillar state. Similar coordination modes are characterized in 

both α-monomer and fibril. However, the relative ratios of the different binding modes 

have changed in the fibril. This change might have potential effects on redox 

properties of the fibril. 

 

  



CHAPTER IV:                                    

GENERAL DISCUSSION 
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The overall goal of this study was to investigate the effect of mildly acidic pH on 

the stability of rPrP fibrils and evaluate the impact of fibrillation on the copper 

binding characteristics of rPrP. Results from this study reveal some new properties of 

PrP fibrils. As these aspects have not been addressed previously, the information from 

this study allows for the opportunity to explore the pathogenesis of prion disease from 

new perspectives.  

I. Low-pH induced fibril dissociation 

Contrary to the prevailing thought that prion amyloid fibrils are inert, stable final 

products of amyloidogenesis, the present study demonstrates that incubation of 

rPrP23-232 fibril at pH 4.5 – 5.5 results in lateral and axial dissociation of fibrils into 

protofilaments. Dissociation occurs even in the presence of high (0.1 M) 

concentration of NaCl, albeit at slower rate. Morphological evidence suggests that the 

protofilaments are single- or possibly double-stranded, and are about 50% of the 

width of the original fibrils. They are heterogeneous in length. The amyloid nature of 

protofilaments was confirmed by amyloid-specific ThT fluorescence and other 

spectroscopies. Based on their behavior in ultracentrifugation, protofilaments can be 

further separated into two categories: about 5% of the original rPrP23-232 fibrils form 

protofilaments that are small enough to be considered as soluble, with a molecular 

weight around 5.8 MDa and radius of gyration around 27.4 nm. A very small amount 

of monomeric and octameric PrP is also found in the soluble fraction. The rest of the 

protofilaments are still relatively long and form a pellet after ultracentrifugation. In 
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sharp contrast, the rPrP90-232 fibrils are unaffected at pH 4.5 and keep the typical 

unbranched, twisted structures. This difference is of interest as PrP90-232, which 

contains the protease-resistant core of PrPSc [4] and is sufficient to propagate the prion 

diseases, has been widely used as a substitute for PrPSc in prion research [175].  

Results from this study conclude that low pH dissociation of rPrP23-232 fibrils 

into protofilaments does not involve changes in the amyloid core or its secondary 

structure. Investigation of the amyloid core region of protofilaments using partial PK 

digestion and mass spectrometry showed that the amyloid core comprises residues 

157-220, which is consistent with those detected for fibrils [176, 177]. Further efforts 

to compare the secondary structure of rPrP23-232 protofilaments with their fibrillar 

counterparts using FT-IR revealed quite similar spectra, with only subtle, pH-related 

differences in the β-sheet structure. The PK digestion results, combined with the 

spectroscopic data, suggest that protofilaments possess the main structural 

characteristics of their parent fibrils. Thus, fibril dissociation is not triggered by the 

folding of the N-terminal domain of rPrP23-232 into a PK-resistant β-sheet structure, 

nor the unfolding of the PK-resistant amyloid core. The minor spectral differences 

observed between protofilaments and fibrils were largely reversible as the pH of 

protofilaments was increased to 7.0, and morphological changes of protofilaments at 

pH 7.0 were observed by TEM as well. The pH dependence indicates the contribution 

of protonatable residues to the dissociation process. 

While the dissociation of fibrils into protofilaments or smaller particles is an 

essential step of the secondary nucleation process, its mechanism has been poorly 
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understood. One possible mechanism proposed by this study is that the accumulation 

of positive charges in the N-terminal region of rPrP23-232, specifically due to the 

protonation of His residues within the octarepeats region, results in charge repulsion 

among individual rPrP23-232 molecules, leading to the dissociation of fibrils into 

protofilaments. This hypothesis is supported by the fact that fibril dissociation is pH 

dependent and no protofilaments form at neutral pH. Increasing the pH from 4.5 to 5.5 

led to the formation of longer protofilaments as compared with the size of 

protofilaments formed at pH 4.5. Additional evidence for the charge repulsion 

mechanism is the observation that N-terminally truncated fibrils do not dissociate at 

low pH, even though the amyloid core is nearly identical to that of rPrP23-232 fibrils. 

An informative experiment to test this mechanism would be the use of a single 

rPrP23-232 mutant, in which all the four octarepeat histidine residues are mutated to 

alanine to abolish charge repulsion.  

It is noteworthy that the stability of rPrP90-232 fibrils under mildly acidic 

conditions might be one reason for the failure to induce prion disease using 

recombinant mouse PrP89-231 in wild-type animals [52, 53, 67]. Thus, examination 

of the complex interactions between low pH-induced fibril dissociation and prion 

propagation would be a fruitful avenue for future studies in prion diseases. 

Although tentative, this proposed mechanism is intriguing and of pathological 

relevance. As demonstrated by the kinetic results of this study, protofilaments are 

efficient seeds for fibrillation in vitro under mildly acidic conditions in the absence of 

denaturants. PrPSc may be subject to a similar dissociation mechanism after it is 
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autophagized and transported into the lysosome [67, 271], where the pH is similar to 

that used in this study [272]. The protofilaments of PrPSc formed in the lysosome may 

serve as excellent seeds for conversion of PrPC into PrPSc as PrPC recycles from the 

plasma membrane into the endocytic pathway [67], thus maintaining the prion state.  

This mechanism may exert significant effects on the onset of prion diseases.  

Expansion of the octarepeats is associated with the early onset of human prion 

diseases [395]. The average onset age for patients with five to nine octarepeat 

insertions is 38 years, which is about three decades earlier than the age of onset for 

those with a normal number of octarepeats [395]. A few mechanisms have been 

proposed for this association, including altered copper binding activity [396] and a 

more rapid binding between PrP molecules [397]. Alternatively, data from this work 

implicate that the early onset may be the result of accelerated fibril dissociation in the 

lysosome. Additional positive charges will accumulate in the N-terminal region due to 

the octarepeat insertions that add additional histidine residues. This hypothesis can be 

tested in vitro using octarepeat variants with different numbers of octarepeats and 

monitoring their relative rates of dissociation.  

Data from this study suggest that protofilaments, particularly the shortened, 

soluble forms, could be candidates for the neurotoxic species of prion diseases. 

Current views on the identity of neurotoxic species hold that they are transient, 

soluble intermediates generated on the path to, or as a side product of, making 

insoluble fibrils from misfolded protein [194, 200, 201]. The biochemical nature of 

these intermediates is not well understood, but it is generally accepted that the 
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intermediates have to be generated intra-neuronally to exert toxicity [194, 196]. A 

large and somewhat confusing body of literature describes many types of PrP 

intermediates [251, 252, 389, 398] and their roles in prion diseases neurotoxicity are 

still intensely debated. Although still preliminary, we note that the soluble 

protofilaments identified in our studies might be good candidates for toxicity for the 

following reasons: they may be generated intra-neuronally in the late endocytic 

pathway, they have a secondary structure characteristic of amyloid fibrils, and they 

exert enhanced seeding activity under physiologically relevant conditions. The role of 

protofilaments in prion neurotoxicity represents a fascinating aspect of prion 

pathogenesis that clearly warrants future study.  

An important future experiment arising from this study is to determine whether 

authentic PrPSc behaves similarly under lysosomal condition. The ion composition of 

lysosome lumen is quite different from the buffer we used in the present research. As 

an initial step, the stability of rPrP23-232 fibril has also been tested in a buffer that 

mimics lysosomal conditions (20 mM NaOAc, 60 mM KCl, 5 mM CaCl2, pH 4.5) 

[399]. In this preliminary experiment, we found that recombinant fibrils dissociated 

into short protofilaments within 72 hours (Figure 4-1), which is comparable to those 

in the absence of NaCl. This demonstrated that dissociation of fibrils occurs relatively 

rapidly under more physiologic-like conditions. Molecular crowding in the lysosome 

has also been reported to contribute to fibrillation [400]. Investigating pH-induced 

fibril dissociation in the presence of crowding agents would be worthwhile. In vivo 

experiments to isolate lysosomes from scrapie-infected cells or animals will extend 
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our knowledge on fibril dissociation even further. 

              
 

Figure 4-1. Dissociation of rPrP23-232 fibrils into protofilaments in 
lysosome-like buffer.  

TEM images of rPrP23-232 fibrils showing the time dependence of 
pH-triggered lateral and axial dissociation after incubation for 2 days (A, B) 
and 3 days (C, D) in 20 mM NaOAc, 60 mM KCl, 5 mM CaCl2, pH 4.5. 
Images taken at 20,000× (scale bar 500 nm) or 100,000× magnification (scale 
bar 100 nm).  

This work also revealed the co-existence of rPrP23-232 α-monomer, albeit at low 

concentrations, with protofilaments at low pH. The source of the monomeric rPrP is 

not clear. One possibility is that unconverted monomers adsorb to the surface of 

amyloid fibrils. We believe this to be implausible, because the fibrils were extensively 

washed prior to the dissociation experiments. Furthermore, the monomeric peak is 

absent in the AF4 elution profile of fibrils at pH 7.0. For other amyloid fibrils like 

PI(3)K-SH3 and Aβ, recycling molecules by dissociation and re-association of 

monomers at the ends of fibrils has been reported [401, 402]. This leads us to 

hypothesize that prion fibrils may employ a similar, pH-dependent mechanism in 

which the monomers within the fibrils dissociate from the fibril edges and refold back 

to the α-monomer. This is an area that will need to be investigated further. This goal 
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can be achieved by a time course study using H/D exchange mass spectrometry, in 

which changes in the population of fully H/D exchanged molecules and partially H/D 

exchanged molecules over time indicates the rate of recycling [401]. These data may 

highlight the dynamic nature of prion amyloid fibrils and help develop new 

therapeutic strategies. 

In conclusion, the study described here was carried out with the aim of probing 

the behavior of rPrP fibrils under mildly acidic conditions. Data obtained from this 

work have paved the way for further characterization of the mechanism of low pH 

induced fibril dissociation, which might be associated with charge repulsion in the 

N-terminal region of rPrP23-232 molecules. This work has also addressed the seeding 

activity of protofilaments in the absence of denaturants. Such considerations are of 

particular importance in understanding of prion propagation in vivo, as the endocytic 

pathway is a major site for conversion of PrPC to PrPSc [42, 67, 162, 268, 269]. 

Numerous questions regarding the role played by fibril dissociation in prion diseases 

remains, including the neurotoxicity of protofilaments and recycling between 

monomers within fibrils and a monomer pool in solution. The answers to these 

questions will enlighten our understanding of the mysterious mechanisms of prion 

infectivity and toxicity.  

II. Copper binding to prion conformers 

Our initial exploration of copper-prion interaction focused on the so-called fifth 

binding site that is located within residues 91-111. The characteristics of binding 
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events at this site are the subject of controversy. Fitting the titration isotherm of 

rPrP90-232 α-monomer to single set of binding sites model suggested the presence of 

only one primary copper binding site in this region. ITC experiments with histidine 

mutants, H96A and H111A, revealed the His96 residue to be required for copper 

binding. The thermodynamic parameters of the H111A mutant are similar to that of 

the wild type, which suggests that His111 is not part of the complex under the 

conditions tested. The affinity of His96 for Cu(II) is in the low micromolar range, 

which is close to the affinity reported by surface plasmon resonance [333]. The fifth 

binding site has been reported to have a femtomolar affinity for copper using 

tryptophan fluorescence quenching [383]. However, as argued by many other groups, 

quenching mechanisms that do not represent direct Cu(II) binding, such as collisional 

quenching between aqueous, unbound copper and tryptophan, also contribute to the 

quenching of the fluorescence [90, 403]. This may overestimate the binding affinity. 

ITC studies on recombinant mouse PrP23-232 has found a nanomolar affinity for the 

fifth binding site [343]. We were not able to reproduce this result under the current 

experiment settings. As noted in chapter III, we believe this disparity might be due to 

specific buffer conditions. 

Upon successfully identifying His96 is the major residue in the fifth binding site, 

efforts were devoted to characterizing the thermodynamic parameters of copper 

binding in full-length α-monomeric protein using ITC. This was complicated by the 

persistence of unusual exothermic reactions at the end stage of titration, which led to 

an investigation of the final products of ITC titration. Using AF4, we found the 



 

143 
 

formation of a rPrP23-232 dimeric species (although trimer cannot be ruled out) 

occurred during the ITC experiment, which is the most likely reason for the observed 

exothermic anomalies. Although the product shows decreased α-helical features by 

CD spectrometry, it does not possess amyloid characteristics. In sharp contrast, the 

rPrP90-232 α-monomer remains monomeric even in a large excess of Cu(II). These 

results are interesting for several reasons. First, it implies that the octarepeat region is 

required for dimer or trimer formation. Second, the observation of quaternary 

structure at high copper load could rule out the possibility that the dimerization (or 

trimerization) is mediated by the formation of a multi-histidine complex (component 3) 

[340] since component 3 dissociates at high copper occupancy and is replaced by 

component 1. A time course study on dimerization as a function of copper loading 

will provide more insight into the underlying mechanism. Third, it raises the concern 

regarding the previously reported ITC data on copper binding to recombinant 

full-length prion protein [341, 343, 349]. Although ITC is sensitive in determining the 

thermodynamic parameters of association and dissociation reactions, it cannot 

differentiate the contribution of more than one reaction to the overall thermodynamic 

evolution of the system. In our hands, for the case of copper binding to rPrP23-232, 

both copper binding and rPrP23-232 oligomerization contribute to the final isotherm, 

and both must then be used to fit the existing mathematical models. Thus, it is 

inappropriate to interpret ITC data based on the assumption that the isotherm solely 

reports on copper binding [341, 343, 349]. The identity of the copper-induced dimer 

can be further characterized by AF4 (size), CD (secondary structure, especially 
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α-helical component) and FTIR (secondary structure, especially β-sheet component). 

The contact sites in this dimeric species can be further identified using chemical 

cross-linking and mass spectrometry. Its potential capability to convert to a fibrillar 

form can be tested using the ThT fluorescence assay and monitoring the amount of 

monomer, dimer, and fibril over time under optimal fibrillation conditions. These 

proposed studies will help elucidate the role of copper-induced dimer in fibrillation.  

The present studies also confirmed the pH-dependence of copper binding to PrP 

as evident by distinct electron paramagnetic resonance parameters collected at pH 7.0 

and 5.5 respectively. This is not surprising because one would expect all amides to be 

protonated at pH 5.5 even in the presence Cu(II); histidyl side chains and water would 

become the major Cu(II) ligands at low pH. The EPR spectra suggested 

multi-histidine complexes in both octarepeats and the fifth binding site at low pH. 

This is consistent with previous studies [320, 335, 340].  

A major part of this work was to assess the effect of conversion of rPrP 

α-monomer to fibril on copper binding. We found that fibrils retain the ability to bind 

copper at both neutral and mildly acidic pH. The coordination structures of the copper 

centers in fibrils are quite similar to those observed in α-monomer based on EPR 

parameters. However, the detailed characterization of the ligands in the first 

coordination shell of these binding modes identified in the fibril form is hindered by 

the limitations of X-band cw-EPR. Despite this, our EPR results still provide clues to 

design future studies. For example, we noticed that the multi-histidine species, 

component 3, in the fibrillar form might be formed between histidines located on 
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different monomers rather than different octarepeats of the same monomer. This 

question can be addressed by producing protein where His residues are globally 

replaced by thio-histidine, and then fibrils are formed using a mixture of all-His and 

all-thioHis monomers. It is possible to dissect the coordination shells using extended 

X-ray absorption fine structure spectroscopy (EXAFS) (Figure 4-2). EXAFS is an 

element-specific technique that investigates the scatter of electrons that are emitted 

from the core of a nucleus upon bombardment of the sample by powerful X-rays. 

EXAFS gives statistical information about the neighboring atoms around the emitting 

atom due to interference between the outgoing photo-electron wave and the 

backscattered electron waves caused by the neighboring atoms in the first 

coordination shell. It is sensitive to the metal redox species, coordination numbers, 

and the bond angles and bond lengths of the neighboring atoms [404]. Thus, if the 

copper ion is coordinated by a histidine residue from one monomer and a 

thio-histidine from another monomer, it will produce a distinct EXAFS spectrum 

compared with a mixture of all-His and all-thioHis proteins. Furthermore, in 

combination with multi-frequency EPR, other techniques, such as electron spin echo 

envelope modulation (ESEEM), pulsed electron nuclear double resonance (ENDOR), 

and hyperfine sublevel correlation (HYSCORE) can reveal the coordination structures 

of the copper centers. 
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Figure 4-2. Schematic diagram of the proposed thio-histidine and 
EXAFS experiments.  

(A) The structure of thio-histidine, in which the hydrogen is replaced by 
sulfur. Adapted from [319]. (B) Hydrogen and sulfur backscatters the 
outgoing photo-electron wave differently, thus they can be differentiated in 
the EXAFS spectrum. Adapted from [404].  

Although the fibrillar form shows similar copper coordination modes to 

α-monomer, the relative affinities of the different complexes are somewhat different. 

The underlying mechanism of this observation is still unclear. Conformational change 

in the N-terminal region after fibrillation may contribute to the disparity. But it may 

also simply reflect temperature-dependent changes in the affinities for copper, as 

predicted from ITC results. Room temperature EPR experiments on both conformers 

will rule out or support this possibility, illuminating the contribution of each 

coordination mode in the fibril from under more physiologically relevant conditions. 

These aspects highlight the importance of examining room temperature copper 

binding to rPrP fibrils in the future.  

Of note, we have reported that rPrP23-232 fibrils dissociate into protofilaments 

under acidic conditions. Results from this part of study show that rPrP23-232 

B A 
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protofilaments still possess the ability to bind Cu(II) at pH 5.5. Furthermore, the 

coordination modes are identical to that of α-monomers. This suggests that 

dissociation of rPrP23-232 fibrils has no effect on copper binding properties. 

Recombinant PrP23-232 fibrils dissociate into much smaller protofilaments at pH 4.5. 

However, imidazole nitrogen is typically protonated at ~pH 4.5 and thus is less likely 

to coordinate Cu(II). Consequently, the relationship between fibril dissociation and 

copper binding was only pursued at pH 5.5. One key future experiment is to 

determine the effect, if any, of copper bound to fibrils at pH 7 on the rate of 

dissociation into protofilaments, as a function of pH. 

While the ability of PrP to bind Cu(II) has been well established and beyond 

doubt, there is still no consensus regarding the affinity of each binding site and the 

way that the cupric ion is coordinated by the PrP. This study supports the models 

where His96 is the imidazole ligand in the fifth binding site, which binds copper with 

low micromolar affinity. This study has also confirmed many previous reports 

concerning Cu(II) binding to PrP. More importantly, this study provides preliminary 

data on copper binding in rPrP fibrils, which may lead to further advances in our 

knowledge of the role of copper in neurodegeneration.  
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Figure 5-1. MALDI-TOF spectra of tryptic digest peptides of 
rPrP23-232 α-monomer.  

Samples were tryptic digested at a 1:10 (w/w) trypsin to rPrP23-232 
ration and reduced with 10 mM DTT. All data were collect in reflectron 
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mode. (A) 450-700 Da mass range; (B) 500-1500 Da mass range; (C) 
500-2000 Da mass range; and (D) 450-3000 Da mass range. The masses are 
reported and the corresponding tryptic peptides are identified by residue 
numbers in parentheses. 
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Figure 5-2. MALDI-TOF spectra of in-gel tryptic digest peptides of 
rPrP23-232 fibril. 

After SDS-PAGE, excised bands were in-gel tryptic digested at about 
1:10 (w/w) trypsin to rPrP23-232 ration, reduced with 10 mM DTT, and 
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alkylated with 100 mM iodoacetamide. All data were collect in reflectron 
mode. (A) 450-700 Da mass range; (B) 700-1080 Da mass range; (C) 
1100-3000 Da mass range; and (D) 450-3000 Da mass range.  
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Figure 5-3. MALDI-TOF spectra of in-gel tryptic digest peptides of 
the 12 KDa PK-resistant fragment of rPrP23-232 fibrils.  

After SDS-PAGE, excised bands were in-gel tryptic digested at about 
1:10 (w/w) trypsin to protein ration, reduced with 10 mM DTT, and alkylated 
with 100 mM iodoacetamide. All data were collect in reflectron mode. (A) 
450-700 Da mass range; (B) 1140-2000 Da mass range; and (C) 450-3000 Da 
mass range. 
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Figure 5-4. MALDI-TOF spectra of in-gel tryptic digest peptides of 
the 9 KDa PK-resistant fragment of rPrP23-232 fibrils.  

After SDS-PAGE, excised bands were in-gel tryptic digested at about 
1:10 (w/w) trypsin to protein ration, reduced with 10 mM DTT, and alkylated 
with 100 mM iodoacetamide. All data were collect in reflectron mode. (A) 
450-700 Da mass range; (B) 1140-2000 Da mass range; and (C) 450-3000 Da 
mass range. 
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Figure 5-5. MALDI-TOF spectra of in-gel tryptic digest peptides of 
the 7 KDa PK-resistant fragment of rPrP23-232 fibrils.  

After SDS-PAGE, excised bands were in-gel tryptic digested at about 
1:10 (w/w) trypsin to protein ration, reduced with 10 mM DTT, and alkylated 
with 100 mM iodoacetamide. All data were collect in reflectron mode. (A) 
450-700 Da mass range; (B) 1140-2000 Da mass range; and (C) 450-3000 Da 
mass range. 
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Figure 5-6. MALDI-TOF spectra of in-gel tryptic digest peptides of 
the 5.5 KDa PK-resistant fragment of rPrP23-232 fibrils.  

After SDS-PAGE, excised bands were in-gel tryptic digested at about 
1:10 (w/w) trypsin to protein ration, reduced with 10 mM DTT, and alkylated 
with 100 mM iodoacetamide. All data were collect in reflectron mode. (A) 
450-700 Da mass range; (B) 1140-2000 Da mass range; and (C) 450-3000 Da 
mass range.  
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Table 5-1. Parameters for copper complexes (expansion of the 
original Peisach-Blumberg plot).  

This table includes a list of copper model compounds, their EPR 
parameters, and coordination configuration (reproduced from reference [405], 
reprinted with permission from Springer, Copyright 2005).  
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