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  Arenaviruses are globally distributed, negative-sense, single-stranded RNA viruses 

which persist in specific rodent host species.  Of the 32 known arenaviruses, 10 have 

been associated with human disease.  Of these, Lassa, Junín, Machupo, Guanarito, and 

Sabia viruses cause severe hemorrhagic fevers. The only current option for the treatment 

of arenavirus infection is the off-label use of ribavirin.  However, ribavirin is associated 

with severe side effects.  Clearly, there exists a need for the study of arenavirus biology 

and of novel drugs for the treatment of arenaviral infection.  My work focused on two 

attractive targets for inhibition of infection: the arenaviral RNA-dependent RNA 

polymerase, to block replication of the viral genome, and the arenaviral envelope 

glycoprotein (GPC), to prevent delivery of the viral genome to the cytosol. We showed 

that the novel purine analogue, T-705, is effective at inhibiting the replication of highly 

pathogenic arenaviruses in vitro.  Further, we showed that T-705 specifically blocks viral 

transcription without significantly reducing cellular transcription activity.  We also 

explored the interactions between the SSP and G2 subunits within GPC.  We 

demonstrated that the first transmembrane region of  SSP is a functional subdomain and 

that the interactions between this region and the transmembrane region of G2 are 

essential to fusion activity.  Further, we demonstrated that residues in this subdomain are 

key to drug sensitivity.  We also worked to characterize the arrangement between the 

transmembrane regions using cysteine-scanning mutagenesis and we engineered a 

construct linking the first transmembrane region of SSP to the transmembrane region of 

G2 to serve as a potential model for studying the interactions between these two regions.  
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Chapter 1: Introduction 

1a. The Arenavirus Family  

The Arenaviridae family of viruses comprises one genus, Arenavirus, which can be 

divided phylogenetically into two serocomplexes: the Old World (OW), or the Lassa-

Lymphocytic choriomeningitis group, and New World (NW) group.  Viruses from each 

serocomplex have been identified as causative agents of viral hemorrhagic fevers (VHF) 

(McLay et al., 2013). The NW viruses can be further divided into three clades (A, B, C) 

with all of the NW viruses capable of causing VHF clustered within clade B (Emonet et 

al., 2009).  These include the Junín (JUNV), Guanarito (GTOV) and Machupo (MACV) 

viruses (Buchmeier et al., 2007).  Arenaviruses are each harbored primarily within one 

major reservoir from the rodent family Muridae, with the possible exception of  the NW 

Tacaribe virus that been found in bats (Charrel et al., 2011; Salazar-Bravo et al., 2002).  

The association of virus and host limits the geographic distribution of each virus to the 

range of its host.  The prototypic OW Lymphocytic choriomeningitis virus (LCMV), 

which persists in the common house mouse, Mus musculus, is the only arenavirus found 

globally (figure 1). Of the arenaviruses, LCMV, Lassa virus (LASV) and JUNV are of 

particular significance to my research. LCMV, first isolated 1933, is the prototypic 

arenavirus and it has been extensively used as a model of arenaviral biology and 

infection.  It is reported that about 5% of humans are seropositive for LCMV (Emonet et 

al., 2009; Peters, 2006).  Generally not considered a public health threat as most acquired 

infections are asymptomatic, LCMV does cause serious infection in 

immunocompromised individuals and is an overlooked fetal teratogen (Barton et al., 

2002; McLay et al., 2013).   



2 

LASV is the causative agent of Lassa fever, first described in Nigeria in 1969.  

LASV is estimated to cause between 300,000–500,000 infections and 5000-6000 deaths 

annually throughout West Africa.  The highest incidence of disease has been reported in 

Mano River Union countries of Sierra Leone, Liberia, and Guinea.  (Khan et al., 2008; 

Russier et al., 2012).  Significantly, LASV has also been exported to North America and 

Europe several times by travelers (Ftika and Maltezou, 2013; Macher and Wolfe, 2006; 

Safronetz et al., 2010).  The natural reservoir of LASV is the ubiquitous rodent, 

Mastomys natalensis, which is found throughout sub-Saharan Africa (Ogbu et al., 2007).  

People most often become infected with LASV through either direct contact with infected 

rodents or inhalation of rodent excreta.   Those living in rural communities or areas with 

poor sanitation are most at risk.  Infection may then be passed between humans through 
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direct contact with bodily fluids or fomites.  The outcome of LASV infection varies from 

asymptomatic or mildly acute cases to severe disease and death.  The overall mortality 

rate for LASV infection is low, around 1%. Of those hospitalized for LASV infection, the 

mortality rate is 15%-20%.  Further, a significant number of Lassa fever survivors 

experience long-term neurological side effects such as deafness (30%) (Cummins D et 

al., 1990).  It is still unclear why some patients appear to recover from LASV and others 

develop VHF (Ogbu et al., 2007; Russier et al., 2012).   

JUNV, the causative agent of Argentine hemorrhagic fever, was first discovered 

and characterized in the 1950s (Parodi et al., 1958).  As with LASV, humans generally 

become infected through direct or indirect contact with the rodent reservoir, Calomys 

musculinus, though nosocomial spread is also possible.  The persons at highest risk are 

agricultural workers who have increased contact with C. musculinus. (Colebunders et al., 

2002; Enria et al., 2008; Radoshitzky et al., 2012).   It is estimated that most (80%) 

infections of JUNV result in disease.  Of these, the mortality rate is between 15% and 

30%.  Before the development and use of the JUNV vaccine strain Candid-1 in Argentina 

in the 1990s, JUNV caused between 300 and 1000 cases of VHF per year. Since then, the 

rate has dropped to between 30 and 50 infections every year (Ambrosio et al., 2011; 

Enria et al., 2008; Harrison et al., 1999).  Saliently, the region of endemic infection has 

been increased by 150,000km
2
 and there are now an estimated 5 million people at risk for 

infection (Ambrosio et al., 2011; Radoshitzky et al., 2012). 

VHFs caused by LASV and JUNV display similar symptoms. Reported 

incubation periods for LASV range from 3-21 days and 6-14 days for JUNV. Generally, 
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illness begins with non-specific signs: malaise, headache, fever, and muscle aches.  

Disease then progresses to petechial hemorrhage, edema, respiratory distress, shock, 

decreased platelets and white blood cells, and mucosal bleeding.  Liver dysfunction is 

more common in severe cases of Lassa fever than in VHF caused by NW viruses.  

Neurologic symptoms such as irritability, confusion, and tremors are much more 

common in JUNV infections.  Hemorrhage in LASV infections occurs in roughly 20% of 

patients, and is frequently localized to the gums.   In the case of JUNV infection, 

hemorrhage is more common, widespread, and severe.  (Cummins, 1991; Enria et al., 

2008; Khan et al., 2008; McLay et al., 2013; Ogbu et al., 2007). 

Treatment options for arenaviral infections are limited.  The Candid-1 attenuated 

vaccine is not FDA-licensed and there are no vaccines available for LASV or any other 

pathogenic arenavirus.  Treatment of JUNV patients with donor serum from survivors has 

been successful in treating JUNV infection when administered within 8 days of onset of 

symptoms, (Enria et al., 2008; Harrison et al., 1999) but this has not been the case with 

LASV infection (Cummins, 1991).  The only currently available drug for the treatment of 

arenaviral infection is the off-label use of ribavirin.  This drug has been used to treat 

LASV and JUNV infections with success, if administered early in the course of infection.  

However, its use is associated with some severe side-effects, such as anemia (Cummins, 

1991; Damonte and Coto, 2002; Enria et al., 2008).   

Arenaviruses continue to be a significant public health threat.  The increase of 

human activity (agricultural or recreational) within the natural habitats of rodent 

reservoirs, in combination with ecological changes, has been linked to the spread of 
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known arenaviruses and the emergence of new arenaviral species in people (Ambrosio et 

al., 2011; Charrel et al., 2011).  Novel pathogenic arenaviruses are reported to emerge on 

average every 2-3 years (Pasquato et al., 2011).  Further, the repeated exportation of 

LASV to the western world demonstrates that these viruses are not just a threat to their 

endemic regions, but to the global community.  Additionally, the fact that the natural 

mode of infection is inhalation of rodent excreta raises the concern that these viruses 

maybe intentionally aerosolized for use as weapons.  These factors, combined with high 

mortality rates and the lack of treatment options, have led to the classification of Lassa, 

Junín, Machupo, and Guanarito viruses as Category A priority pathogens by the U.S. 

(NIAID,2011).    There is a clear need to study arenaviral biology to further our 

understanding of how these viruses cause infection and how we may develop antiviral 

drugs to interfere with the viral life cycle. 

1b. Viral Life Cycle Overview 

 Arenaviruses are pleomorphic enveloped viruses which contain a bi-segmented 

ambisense RNA genome.  The large genome segment encodes the RNA-dependent RNA 

polymerase (L) and the matrix protein (Z).  The small segment encodes the envelope 

glycoprotein (GPC) and the nucleoprotein (NP) (figure 2) (Emonet et al., 2009; Meyer et 

al., 2002). GPC is expressed as a trimer on the viral envelope.  It forms a spike that is 

composed of three non-covalently associated subunits, G1, G2, and a stable signal 

peptide (SSP).  The G1 subunit is the ‘head’ on the spike and provides the receptor-

binding function for the virus (Kunz et al., 2003).  OW viruses and clade C NW viruses 

use α-dystroglycan to bind to the cell surface while NW clade B viruses utilize transferrin 

receptor-1 (Cao et al., 1998; Kunz, 2009; Radoshitzky et al., 2007; Rojek et al., 2008).  
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G2 forms the ‘stalk’ and is responsible for membrane fusion.  SSP is a 58 amino acid 

peptide that spans the membrane twice, with both termini residing on the cytosolic face 

of the membrane (Agnihothram et al., 2007).  Its importance in the structure and function 

of GPC will be discussed at length below.  The non-lytic viral life-cycle is initiated when 

virus binds to the surface of the cell.  The virion is then endocytosed.  Unlike NW clade 

B arenaviruses, which  are endocytosed  in a clathrin-dependent fashion (Vela et al., 

2007), OW arenaviruses undergo an unusual endocytotic pathway independent of 

clathrin, caveolin, dynamin, and actin (Pasqual et al., 2011).  Although the pathways are 

distinct, delivery into the low-pH late-endosome is essential for entry by both NW and 

OW arenaviruses (Rojek et al., 2008).  As the endosome is acidified, a series of dramatic 

conformational changes in G2 takes place which leads to fusion of the viral envelope 

with the endosomal membrane.  This allows entry of the viral genome into the host 

cytosol, where viral replication occurs.  NP and L are necessary and sufficient for 

replication of the genome (Emonet et al., 2009).  As the host does not have an RdRp, the 

viral polymerase is an attractive target for antiviral strategies and has been shown to be 

sensitive to drugs such as the purine analogs ribavirin and T-705, which we have 

investigated in chapter 2.  Preventing access of the virus to the cytosol by blocking 

membrane fusion is another very attractive target in the viral life cycle.  Elucidating the 

precise structure of GPC and how it mediates membrane fusion will help us to better 

understand the biology of arenaviruses and potentially aid in the development of fusion 

inhibitors.  This is the focus of chapters 3-5.  



7 

 

1c. Inhibiting Replication 

The arenavirus RdRp transcribes and replicates the viral genome.  During 

transcription, the RdRp produces subgenomic mRNAs which terminate at the IGR (figure 

2A) (Conzelmann, 1996). In replicating the genome, the RdRp reads through the IGR and 

synthesizes uncapped, full-length genomic and anti-genomic viral RNAs.  NP associates 

with the viral RNA to form the nucleocapsid, the template for the RdRp (Fuller-Pace and 

Southern, 1988).  The 3’ terminus of both the L and S segments contains a conserved 

sequence of 19 nucleotides which base-pairs with an almost complementary sequence in 
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the 5’ terminus to form a panhandle.   This structure, and its sequence, are essential for 

forming a functional promoter for transcription and replication  (Perez and de la Torre, 

2003).   Together, the nucleocapsid and  the RdRp make up the viral ribonucleoprotein 

complex, the minimum requirement for genome replication (Lee et al., 2000).   We have 

taken advantage of this fact by using a minigenome system to study the activity of the 

RdRp.  This system, developed by collaborators in the de la Torre laboratory (Lee et al., 

2000), involves the use of an LCMV minigenome cassette (MG) co-transfected with 

plasmids coding for the viral polymerase  and the NP.  The MG plasmid contains the 

firefly luciferase gene in the antisense orientation flanked by the necessary noncoding 

segments from the LCMV S RNA (5’ UTR, IGR and the 3’ UTR) and is dependent upon 

the viral polymerase for expression of luciferase.   

To date, the only treatment available for arenaviral infections is the off-label use 

of ribavirin (1-beta-D-ribofuranosyl-1,2, 4-triazole-3-carboxamide), which is 

phosphorylated in the cell to its active form (figure 3A).  Ribavirin has been used to treat 

other viral infections such as chronic hepatitis C (Maag et al., 2001) and it has been used 

to treat Lassa victims with mixed results (Khan et al., 2008).  The mechanism of action of 

ribavirin is unclear and it may vary among different viruses. Ribavirin is known to act as 

an inhibitor of RNA-capping in vaccinia infections and to antagonize RdRp activity by 

competing with GTP during influenza replication (Graci and Cameron, 2006).   
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Ribavirin can base pair to both cytidine and uridine (figure 3A), and therefore has 

the potential to lead a virus to lethal mutagenesis, as demonstrated in its inhibition of 

poliovirus (Crotty et al., 2000),  LCMV (Moreno et al., 2011) and hepatitis C (Maag et 

al., 2001).  Ribavirin is also known to inhibit the enzyme inosine monophosphate 

dehydrogenase (IMPDH).  This enzyme catalyzes the synthesis of xanthosine-5'-

monophosphate, the precursor to guanosine-5'-monophosphate.  Therefore, inhibition of 

IMPDH disrupts guanosine triphosphate (GTP) pools (figure 4).  This reduction in 

available GTP has been implicated in the inhibition of flaviviruses, paramyxoviruses, 

nidoviruses, and LCMV (Kim and Lee, 2013; Leyssen et al., 2005; Moreno et al., 2011).  

It is likely that the strong inhibitory effect of ribavirin on arenaviral infection is due to the 

combined effects of simultaneously increasing the rate of mutagenesis in the viral 

genome and by reducing available GTP (Moreno et al., 2011).  Importantly, the inhibition 

of IMPDH is not only inhibitory to viral replication, but also affects cellular transcription 
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(Damonte and Coto, 2002).  

There is a need for a safer alternative to ribavirin.  One novel candidate is the base 

analog T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide), also known as favipiravir.  

T-705 has been used to inhibit several positive- and negative-sense RNA viruses, but not 

DNA viruses (Clercq, 2012).  Like ribavirin, T-705 is converted in the cell to a 

nucleoside triphosphate, T-705RTP (figure 3B).   It has been shown to inhibit influenza 

replication by antagonizing the RdRp in a dose-dependent fashion and this effect could 

be reversed by the addition of GTP.  However, T-705RTP did not inhibit IMPDH (Furuta 

et al., 2005).  
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These results indicate T-705 may be a more specific inhibitor of viral replication 

with fewer off-target effects than ribavirin.   T-705 has been shown to effectively inhibit 

nonpathogenic arenaviral infection in tissue culture and rodent models (Gowen et al., 

2007).  However, T-705 has not been evaluated against highly pathogenic arenaviruses 

and its mechanism of action against arenaviruses remains undetermined.  In chapter 2, we 

determine the activity of T-705 against Junín, Machupo, and Guanarito viruses and we 

explore the mechanism of action of T-705 using the LCMV minigenome system..  

1d. The unique Arenaviral GPC and Inhibition of Fusion  

Entry is a promising step in the viral life-cycle for inhibiting the virus before it 

can usurp the host’s machinery and a better understanding of entry mechanisms will 

likely inform the search for antivirals (Rojek and Kunz, 2008).  Newly available small-

molecule inhibitors of membrane fusion may be the most promising new therapies to 

combat arenaviral infection (Bolken et al., 2006; Charrel and de Lamballerie, 2010; 

Larson et al., 2008).    Further, use of these fusion inhibitors may aid in probing the 

structure and function of GPC.  There are three main classes of viral fusion glycoproteins 

with varied organization, structures, and triggers.  However, they mediate a common 

function, membrane fusion, and they do so in a remarkably conserved manner.  In 

general, the fusion protein expressed on the viral envelope waits in a pre-fusion or a 

‘native’ state for an appropriate trigger.  This could be low pH and/or interaction with a 

host receptor.  Once triggered, the protein undergoes a series of conformational changes 

that result in the viral and cellular membranes fusing.  In class-I fusion, the fusion subunit 

extends and the receptor binding subunit is released, allowing the fusion peptide to be 
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inserted into the host membrane.   Now in a pre-hairpin intermediate form, this extended 

structure folds back on itself to form a trimer of hairpins.  This energetically favorable 

conformational change drives the merging of the two membranes (figure 5)  (Kim et al., 

2011; Schibli and Weissenhorn, 2004; White et al., 2008). 

 

 The arenaviral GPC is a class-I fusion protein (Gallaher et al., 2001).  Class-I 

fusion proteins exist as trimers in both the pre- and post- fusion state.  They are 

exemplified by their post-fusion adoption of a six-helix bundle.  This structure consists of 

a central N-terminal trimeric α-helical coiled-coil which is surrounded by 3 C-terminal 

helices (White et al., 2008).  Previous work in our laboratory has shown that the N- and 
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C- terminal heptad repeats in G2 (figure 6) are critical to fusion and can form a canonical 

six-helix bundle (York et al., 2005).   

GPC is synthesized as a single precursor protein that must be cleaved twice.  The 

first cleavage event is performed co-translationally by signal peptidase, which cleaves 

SSP.  The second proteolytic maturation step is performed by subtilisin kexin isozyme-

1/site-1-protease (SKI-1/S1P), which cleaves G1 and G2, and occurs in the Golgi 

apparatus.  Mature cleaved GPC is transported to the plasma membrane where virion 

budding occurs, mediated by Z (Emonet et al., 2009) (figure 2). Importantly, all three 

GPC subunits remain non-covalently associated with each other throughout the viral life 

cycle (figure 6).  This is unique to the arenaviral GPC.   

SSP is associated with G2 through its penultimate cysteine (C57), which 

participates in an intersubunit zinc binding domain (ZBD) (Briknarová et al., 2011; York 

and Nunberg, 2007a). As SSP remains associated with the mature glycoprotein complex, 

each trimeric GPC on the viral envelope contains nine TM domains.  Interestingly, SSP 

can be expressed in trans with a G1/G2 construct bearing the human CD4 signal peptide, 
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and these subunits will associate functionally to yield a mature GPC (York et al., 2004).  

Previous work has shown that SSP masks ER retention/retrieval signals in G2 and 

ergo, is essential to the proper trafficking, cleavage, and cell surface expression of GPC 

(Agnihothram et al., 2006).    SSP has also been shown to be essential for membrane 

fusion.  In Junín GPC (JGPC), lysine-33 (K33), in the short ectodomain loop of SSP, has 

been demonstrated to be critical in determining the pH at which fusion occurs.  

Substitution of K33 with the uncharged residue glutamine appears to stabilize the 

complex from pH-induced conformational change.  Compared to wild-type (wt) JGPC, 

which optimally fuses at pH5, K33Q requires a lower pH (4.5) to trigger membrane 

fusion.  Genetic studies have shown that compensating secondary mutations in the 

membrane-proximal region of G2 (D400A, E410A, R414A, K417A) are able to reverse 

the shift of pH-triggered fusion caused by the K33Q mutation (York and Nunberg, 2009).   

Together, the short ectodomain loop of SSP and the membrane-proximal region of G2 

form a pH-sensitive interface that is key to proper membrane fusion.   

Much study has been dedicated to this pH-sensitive, membrane-proximal interface 

between SSP and G2 and notably,  it is can be targeted by small-molecule inhibitors to 

prevent membrane fusion (York et al., 2008).  These inhibitors block pH-induced 

activation by stabilizing the pre-fusion form of GPC and they can be classified based on 

their specificity to OW viruses, NW viruses, or both.  Studies have shown that mutations 

within this membrane-proximal region can alter the sensitivity of GPC to these inhibitors.  

For example, mutations in the NW JGPC (T418N, L420T, A435I, I347A, D400A, K33H, 

K33R) reduce the sensitivity of JGPC to the NW specific fusion inhibitor ST-294.  

However, the mutation K33H confers sensitivity to the OW specific fusion inhibitor ST-
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161 (York et al., 2008). 

Interestingly, mutations within the transmembrane region of G2 have also been 

shown to be important to fusion (F427A, A435I, F438I, W428A) and drug sensitivity 

(F427A).  G2 mutations at residues F427, W428, and F438 also compensate for the 

K33Q fusion-deficient mutant.  (York and Nunberg, 2009; York et al., 2008).   

The TM regions within GPC are not uniformly hydrophobic.  Both the TM 

domain in G2 and the first TM region in SSP are predicted to form amphipathic helices 

while the second TM region of SSP has been shown to be resilient to alanine mutations 

and uniformly hydrophobic (Agnihothram et al., 2007).   My work in chapters 3-5 

focuses on furthering our understanding of the interactions between TM regions of SSP 

and G2.  

1e. Hypotheses and Significance 

 Without a licensed vaccine or treatment, arenaviruses continue to remain a 

significant threat to public health warranting further investigation into the biology of 

arenaviruses and treatment of arenaviral infections.  During my research I have focused 

on studying two aspects of arenavirus biology: the inhibition of viral replication by T-705 

and understanding the interactions between subunits within GPC. 

 T-705 is a promising new antiviral for the inhibition of RNA viruses and may be 

an alternative to the currently used ribavirin.  However, its ability to inhibit pathogenic 

arenaviral infections remained untested and it is important to learn more about its 

mechanism of action in arenaviral inhibition. In chapter 2, we hypothesized that T-705 

would specifically inhibit the viral RdRp with less cytotoxicity than ribavirin.  Consistent 

with this hypothesis, we demonstrated that three VHF viruses Junín, Machupo, and 
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Guanarito were inhibited by T-705 at similar concentrations to those used to inhibit the 

vaccine Candid-1 viral strain in tissue culture.  Importantly, time of addition studies 

demonstrated that T-705 is only effective during the middle of the viral life cycle, after 

entry and before budding, which is when viral replication occurs.  Using the LCMV MG 

system, I showed that T-705 inhibits viral polymerase activity at much lower 

concentrations than those required to interfere with cellular transcription, in contrast to 

ribavirin.  Using a panel of competing nucleosides and bases, I also demonstrated that T-

705 seems to be acting by a different mechanism than ribavirin.  These data are consistent 

with results others have observed using T-705 to inhibit influenza and serve as an 

important step in the development of T-705 as a treatment for acute arenaviral infection 

(Mendenhall et al., 2011).  

To further our goal of understanding the structure and function of GPC more 

precisely, we first sought in chapter 3 to identify the region(s) within SSP essential to 

fusion activity.  Because we know that the pH-sensitive, membrane-proximal interface is 

essential to membrane fusion, we hypothesized that the ectodomain loop of SSP would 

prove to be the most essential region.   However, we were surprised when our data 

indicated that a homotypic match between G2 and the first TM region of SSP was 

actually necessary and sufficient for fusogenicity.  Further, while it was previously 

accepted that the first TM region nominally began with E17 (Eichler et al, 2004), our 

studies suggest that this TM region actually begins at P12.  We discovered that residues 

P12 to K33 form a functional sub-domain within SSP and that sequence specificity 

within this domain is important to membrane fusion and drug sensitivity (Messina et al, 

2012).   



17 

This novel information prompted us to probe deeper into the potential interactions 

between SSP and G2.  Based on these new findings and previous data that indicate the 

TM region of G2 may be important to membrane fusion and drug sensitivity, we 

hypothesized that the first TM region of SSP interacts with the TM region of G2.  We 

explored two avenues to address this hypothesis.  I created a truncated GPC construct, 

termed TMCON, to serve as a potential model to study the  interactions between the G2 

TM and the first TM of SSP.  The generation and preliminary characterization of this 

construct is discussed in chapter 4. The other approach we used to pursue this hypothesis 

was to use cysteine-scanning mutagenesis and crosslinking experiments to study the 

orientation of the TM helices to each other within the trimeric GPC.  This approach and 

results are reviewed in chapter 5.  

The work I present here has furthered the understanding of T-705 in the treatment 

of arenaviral infection.  I developed a new biosafe fusion assay that does not rely on 

vaccinia virus as the current fusion assay used by the laboratory does (York et al., 2004).  

I used this novel assay to advance our understanding of how SSP interacts with G2 to 

mediate function.   I have also generated a  model construct for use in future studies for 

examining potential interactions between the first TM region of SSP and the TM region 

of G2.  Finally, I have attempted to map the arrangement of the transmembrane domains 

within GPC by creating a library of cysteine mutations and performing an exhaustive 

search for appropriate crosslinking conditions.  
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Chapter 2: T-705 (Favipiravir) Inhibition of Arenavirus Replication in Cell Culture 

Michelle Mendenhall, Andrew Russell, Terry Juelich, Emily L. Messina,
 
Donald F. 

Smee, Alexander N. Freiberg, Michael R. Holbrook, Yousuke Furuta, Juan-Carlos de la 

Torre,
 
Jack H. Nunberg, and Brian B. Gowen. Antimicrobial Agents and Chemotherapy. 

2011 February; 55(2): 782–787. 

 

This study was done in collaboration with Brian Gowen’s laboratory where the 

experiments using intact viruses were performed. I contributed the experiments involving 

the replicon system. 

 

Abstract 

 A number of New World arenaviruses (Junín [JUNV], Machupo [MACV], and 

Guanarito [GTOV] viruses) can cause human disease ranging from mild febrile illness to 

a severe and often fatal hemorrhagic fever syndrome. These highly pathogenic viruses 

and the Old World Lassa fever virus pose a significant threat to public health and national 

security. The only licensed antiviral agent with activity against these viruses, ribavirin, 

has had mixed success in treating severe arenaviral disease and is associated with 

significant toxicities. A novel pyrazine derivative currently in clinical trials for the 

treatment of influenza virus infections, T-705 (favipiravir), has demonstrated broad-

spectrum activity against a number of RNA viruses, including arenaviruses. T-705 has 

also been shown to be effective against Pichinde arenavirus infection in a hamster model. 

Here, we demonstrate the robust antiviral activity of T-705 against authentic highly 

pathogenic arenaviruses in cell culture. We show that T-705 disrupts an early or 

intermediate stage in viral replication, distinct from absorption or release, and that its 

antiviral activity in cell culture is reversed by the addition of purine bases and 

nucleosides, but not with pyrimidines. Specific inhibition of viral replication/transcription 

by T-705 was demonstrated using a lymphocytic choriomeningitis arenavirus replicon 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Freiberg%20AN%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Holbrook%20MR%5Bauth%5D
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system. Our findings indicate that T-705 acts to inhibit arenavirus 

replication/transcription and may directly target the viral RNA-dependent RNA 

polymerase. 

 

A. Introduction 

Several New World arenaviruses, including Junín (JUNV), Machupo (MACV), 

and Guanarito (GTOV) viruses, as well as the related Old World Lassa virus, are among 

a phylogenetically diverse group of negative-sense RNA viruses that cause severe viral 

hemorrhagic fevers (VHFs) in regions of the world where they are endemic (Geisbert and 

Jahrling, 2004). The National Institutes of Health has classified these viruses as category 

A agents because of the threat they pose to the U.S. population (NAID, 2002). Despite 

the biodefense and public health risks associated with these highly pathogenic viruses, 

there are no FDA-licensed arenavirus vaccines and current antiarenaviral therapy is 

limited to an off-label use of ribavirin (1-β-d-ribofuranosyl-1,2,4-triazole-3-

carboxamide), which has had only mixed success in the treatment of severe infections 

and is associated with significant toxicity in humans (Enria et al., 2008; Khan et al., 

2008; Snell, 2001). Therefore, it is important to develop novel and effective antiviral 

drugs to combat arenaviral hemorrhagic fevers. 

T-705 (favipiravir; 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) is a pyrazine 

derivative with broad antiviral activity against RNA viruses, including influenza viruses 

(Furuta et al., 2002; Kiso et al., 2010; Sidwell et al., 2007; Sleeman et al., 2010), 

flaviviruses (Julander et al., 2009; Morrey et al., 2008), bunyaviruses, and several 
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nonpathogenic arenaviruses (Gowen et al., 2007, 2008, 2010). Moreover, studies 

employing the hamster Pichinde virus (PICV) infection model of acute arenaviral disease 

have demonstrated that T-705 can be used effectively to treat advanced infections in 

animals (Gowen et al., 2008). However, T-705 has not yet been tested against highly 

pathogenic human arenaviruses. 

Evidence indicates that T-705 is ribosylated and phosphorylated to the active T-

705-4-ribofuranosyl-5′-triphosphate form (T-705RTP) that inhibits influenza virus 

infection by interfering with viral RNA replication and transcription through inhibition of 

the virus RNA-dependent RNA polymerase (RdRp) (Furuta et al., 2005). The broad 

activity of T-705 against a number of RNA viruses suggests that this inhibitor may target 

a conserved functional element in the viral polymerase. The ability of T-705 to 

specifically target the viral replication machinery may minimize the possibility of in vivo 

toxicity. In contrast, ribavirin also inhibits cellular IMP dehydrogenase (IMPDH), a key 

enzyme in guanosine biosynthesis, and thereby perturbs cellular nucleotide pools. In the 

present study, we explored the mechanism of action of T-705 in cell culture and assessed 

the in vitro activity of T-705 against three highly pathogenic arenaviruses. 

B. Materials and Methods 

Viruses.  JUNV, Candid 1 strain (JUNV-C), and GTOV, strain S-26764, were provided 

by Robert Tesh at the World Reference Center for Emerging Viruses and Arboviruses 

(WRCEVA; University of Texas Medical Branch [UTMB], Galveston, TX). JUNV, 

Romero strain (JUNV-R), and MACV, strain Carvallo, were kindly provided by Tom 

Ksiazek (Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, 
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GA). Virus stocks of JUNV-R, MACV, and GTOV were grown in Vero (African green 

monkey kidney) cells. All work with JUNV-R, MACV, and GTOV was performed under 

biosafety level 4 (BSL4) containment at the Robert E. Shope Laboratory at UTMB. 

Tacaribe virus (TCRV), strain TRVL 11573 (ATCC, Manassas, VA), was 

passaged once in baby hamster kidney (BHK) cells and three times in Vero cells. The 

attenuated JUNV-C was passaged once in BSC-1 cells and once in Vero cells. Purified 

stocks were prepared for both TCRV and JUNV-C by sucrose cushion 

ultracentrifugation. Infected Vero cells culture lysates were clarified by low-speed 

centrifugation (4,500 × g), and the supernatants were overlaid onto a 20% (wt/vol) 

sucrose solution (TN buffer; 0.05 M Tris-HCl, pH 7.4, and 0.1 M NaCl) and centrifuged 

at 100,000 × g for 1 h in an SW28 rotor (Beckman Coulter, Brea, CA). The virus pellets 

were resuspended in phosphate-buffered saline (PBS), aliquoted, and stored at −80°C 

until use. 

Antiviral compounds, nucleotides, and nucleosides.  T-705 was provided by the 

Toyama Chemical Company, Ltd. (Toyama, Japan). Ribavirin was from MP Biomedical 

(Santa Ana, CA). Adenine, adenosine, guanine, guanosine, 2-deoxyguanosine, inosine, 

hypoxanthine, xanthine, cytosine, cytidine, thymine, thymidine, uracil, uridine, and uric 

acid were from Sigma (St. Louis, MO), and 2-deoxyadenosine, 2-deoxycytidine, and 

xanthosine were from ICN Nutritional Biochemicals (Cleveland, OH). 

 

Virus yield reduction assays.  For experiments evaluating drug inhibition of JUNV-R, 

MACV, or GTOV replication, Vero E6 (African green monkey kidney) cell cultures were 
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infected with a multiplicity of infection (MOI) of 0.1 in duplicates in the presence of 

serially 2-fold diluted (1,000 to 4 uM) T-705 or ribavirin. Supernatants from infected 

cells were harvested at 4 days postinfection (d p.i.) for MACV, 6 d p.i. for JUNV-R, or 

10 d p.i. for GTOV. 

Viral titers for drug-treated JUNV-R infections were determined by plaque assay. 

Vero E6 cells were infected with serial 10-fold dilutions of virus for 1 h at 37°C. Cell 

monolayers were then overlaid with 0.5% SeaKem ME agarose (Cambrex, East 

Rutherford, NJ) in minimal essential medium (MEM) supplemented with 2% fetal bovine 

serum (FBS) and 1% penicillin and streptomycin (P/S). Infected cells were cultured for 6 

days, at which time a second overlay containing 1% neutral red was added. PFU were 

counted 18 to 24 h after addition of the second overlay, and the 90% and 50% effective 

concentrations (EC90 and EC50, respectively) were calculated by regression analysis. 

GTOV titers were also measured by plaque assay. Vero cell monolayers were 

infected with serial 10-fold dilutions of GTOV for 1 h at 37°C. After infection, cells were 

overlaid with 0.5% methyl cellulose in MEM supplemented with 2% FBS and 1% P/S. 

After a 10-day culture period, the overlay was removed, and cells were fixed with 10% 

buffered formalin for 20 min and stained with 1% crystal violet (Sigma). PFU were 

counted, and the EC90 and EC50 were calculated by regression analysis. 

MACV titers were measured by a focus-forming unit (FFU) assay. Vero E6 

monolayers were infected with serial 10-fold dilutions of virus for 1 h at 37°C. Following 

infection, cells were overlaid with 0.8% tragacanth (Sigma) in MEM supplemented with 

2% FBS and 1% P/S. After infected cells were cultured for 4 days, the overlay was 
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removed, and cells were fixed with 10% buffered formalin for 30 min and then 

refrigerated overnight. Fixed cells were permeabilized in 70% ethanol for 20 min and 

washed with PBS. Primary antibodies were diluted in PBS with 5% milk and 1% Tween 

20. MACV-infected cells were incubated with primary antibody, JUNV-C antisera 

(kindly provided by R. Tesh, WRCEVA, UTMB), and incubated overnight at room 

temperature. The primary antibody was removed, and the plates were washed once with 

PBS. The secondary antibody, goat anti-mouse IgG labeled with horseradish peroxidase 

(HRP; Southern Biotech, Birmingham, AL), was diluted in PBS with 1% bovine growth 

serum and added to plates for 1 to 5 h at room temperature, and then the plates were 

washed with PBS. AEC substrate chromogen (DakoCytomation, Carpinteria, CA) was 

added for 15 min at room temperature. The reaction was stopped with distilled water, and 

fluid was removed from the wells. FFU were counted, and the EC90 and EC50 were 

calculated as described above. 

Time-of-addition and reversal of antiviral activity assays. In time-of-addition and 

reversal of antiviral activity assays, Vero monolayers (70% confluent) were first 

inoculated with TCRV or JUNV-C. Cells and virus were incubated at 37°C for 1 h to 

allow virus adsorption. The inoculum was removed, monolayers were washed twice, and 

test medium (MEM containing 2% FBS and 50 μg/ml gentamicin) was added to the 

wells. 

Two time-of-addition methods were employed. In method 1, monolayers were 

infected with TCRV or JUNV-C at an MOI of 0.2 (time zero), and T-705 was added at 1, 

2, 4, 6, 8, 10, 12, or 15 h p.i. to give a final concentration of 200 μM. Cells were 
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incubated at 37°C, and culture supernatants were collected at 24 h p.i. for virus yield 

determination by cell culture infectious dose assay (Gowen et al., 2007). Briefly, each 

sample was serially diluted in 10-fold increments and plated on Vero cells in 96-well 

microplates. Plates were incubated for 7 days, and viral cytopathic effect (CPE) was 

determined for calculation of 50% endpoints (50% cell culture infectious dose [CCID50]) 

as previously described (Reed and Muench, 1938). 

In the second method, cell monolayers in triplicate wells were infected with an 

MOI of 0.05, and cells were treated by adding T-705 to a final concentration of 400 μM 

for the indicated periods (−2 to 0, 0 to 3, 3 to 6, 6 to 9, 9 to 12, 12 to 15, and 15 to 18 h 

p.i.). Test medium was replaced, and incubation was continued. Cells were incubated at 

37°C, supernatants were collected 24 h p.i., and virus yields were determined. 

Reversal of antiarenaviral T-705 activity by the addition of a molar excess of 

purine and pyrimidine bases and nucleosides was investigated with Vero cells infected 

with an MOI of 0.2 of TCRV or JUNV-C. T-705 was added to a final concentration of 

200 μM; each competitive agent was added to triplicate wells to a final concentration of 

400 μM. Cells were incubated at 37°C until 48 h p.i., at which time supernatants were 

collected and virus yields determined. 

LCMV MG rescue assay.  The lymphocytic choriomeningitis arenavirus (LCMV) 

minigenome (MG) rescue assay was used as previously described (Lee et al., 2000, 

2002). Briefly, BHK-21 cells were transfected with one plasmid that directs synthesis of 

an LCMV MG RNA expressing the firefly luciferase (fLuc) reporter gene in an antisense 

orientation together with two polymerase II expression plasmids encoding the L 
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polymerase (pC-L) and nucleoprotein (pC-NP), required for MG replication and 

expression. The plasmid mixture was transfected at a 1:2:1 ratio of MG-fLuc-pC-L-pC-

NP using Lipofectamine 2000 (Invitrogen, Carlsbad, CA). To assess potential cytotoxic 

effects of T-705 and ribavirin, the cells were also cotransfected with the pRL-CMV 

plasmid (Promega, Madison, WI) expressing the Renilla luciferase (RLuc) reporter gene 

under the control of cellular, rather than viral, transcription machinery. Four hours later, 

cells were reseeded into 96-well microculture dishes and incubated for 44 h with replicate 

serial dilutions of T-705 or ribavirin. Cells were then lysed, and fLuc and RLuc activities 

were detected using a dual reporter assay kit (Promega) and SpectraMax L luminometer 

(Molecular Devices, Sunnyvale, CA). 

Reversal of T-705 and ribavirin activity in the LCMV replicon system by the 

addition of purine or pyrimidine bases and nucleosides was also investigated with BHK 

cells using the LCMV replicon system. T-705 or ribavirin was added to cells at a final 

concentration of 200 or 100 μM, respectively, and each base/nucleoside was added to a 

final concentration of 400 μM. Cells were lysed 48 h posttransfection and assayed for 

bioluminescence. 

C. Results 

T-705 activity against hemorrhagic fever-causing arenaviruses.  T-705 has been 

shown to inhibit the replication of several nonpathogenic arenaviruses but has not to date 

been tested for activity against the highly pathogenic viruses known to cause VHFs. 

Therefore, we evaluated the inhibitory activity of T-705 in JUNV-R, MACV, and GTOV 

infection. As shown in Table 1, T-705 was effective against GTOV, JUNV-R, and 
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MACV at inhibitory concentrations similar to those reported for JUNV-C and other 

nonpathogenic arenaviruses (Gowen et al., 2007). Ribavirin was also effective against the 

three viruses, but to a lesser degree, as reflected by higher inhibitory concentrations 

(Table 1) and right-shifted dose-response curves (figure 7) relative to T-705. Evidence of 

cytotoxicity by either compound was not observed at the tested concentrations. 
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T-705 time-of-addition effect on arenavirus multiplication in cultured cells. Time-of-

addition studies were conducted to assess the stage of arenaviral replication at which T-

705 imparts its antiviral activity. Inhibitor was added at various times p.i., and the 

reduction in virus production relative to the untreated culture was assessed at 24 h p.i. In 

untreated cultures, infectious TCRV and JUNV-C particles could be detected in the 

supernatant by 14 h (not shown), suggesting an eclipse period of approximately 14 h. 

TCRV replication was inhibited when drug was added up to 6 h p.i. and left on 

throughout the 24-h incubation period (figure 8, left). With JUNV-C, inhibition was seen 

when T-705 was withheld until as late as 8 h p.i. (figure 8, right). Robust inhibition was 
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observed generally in cultures treated within 6 to 8 h of infection. As T-705 is likely 

metabolized by the cell to form T-705RTP (Smee et al., 2009), these times represent 

minimal estimates for T-705 sensitivity. Nonetheless, the data suggest that T-705 acts at 

early or middle stages of the virus life cycle. 

 To investigate the timing of inhibition by T-705 in more detail, we conducted 

experiments wherein cells were exposed to the drug for short periods within the 24-h time 

frame of the experiment. The most robust inhibition of TCRV and JUNV-C replication 

was observed upon T-705 treatment during postinfection periods of 3 to 6 h, 6 to 9 h, 9 to 

12 h, and 12 to 15 h (figure 8B). Little or no inhibition was seen when T-705 was added 

from −2 to 0 h, 0 to 3 h, or 15 to 18 h p.i. Taken together, these studies suggest a window 

for T-705 inhibition within the early and intermediate stages of virus replication, 

following virus entry and prior to virus assembly and budding. 

Effects of purines at molar excess concentration on T-705-mediated anti-TCRV and 

-JUNV-C activity.  Based on a previous study demonstrating that the antiviral action of 

T-705 in influenza virus-infected cells could be reversed by the addition of purines or 

purine nucleosides, but not by pyrimidines (Furuta et al., 2005), we investigated the 

requirements for the reversal of T-705 activity in arenavirus infection. As seen in figure 

9, TCRV and JUNV-C production could be rescued from T-705 action by the addition of 

a molar excess of purines, including adenine, adenosine, 2-deoxyadenosine, guanine, 

guanosine, 2-deoxyguanosine, inosine, and hypoxanthine. In contrast, compounds 

generated in purine catabolism (xanthine and uric acid) and xanthosine did not reverse 

the action of T-705. Likewise, the pyrimidine nucleobases (cytosine, thymine, and uracil) 
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and nucleosides (cytidine, 2-deoxycytidine, thymidine, and uridine) had little or no 

impact on T-705 anti-arenavirus activity. 

 

Effect of T-705 on the activity of an LCMV MG. Previous studies have shown that 

arenavirus replication can be modeled using a recombinant plasmid replicon system 

comprising the viral RdRp (L), the nucleoprotein (N), and an RNA MG (Flatz et al., 

2006; Lee et al., 2000, 2002; Rusnak et al., 2009). To specifically investigate the effects 

of T-705 on viral replication and transcription, we made use of the LCMV replicon 

system. In this assay, RdRp-dependent replication of the antigenomic viral RNA is 

evidenced by expression of a firefly luciferase (fLuc) reporter gene in the MG RNA. 

Inhibition of fLuc expression in cells transfected with the three-plasmid replicon would 

be consistent with a disruption of RdRp function. As shown in figure 10A, transcription 

from the LCMV replicon system was inhibited by T-705 (EC50 of 29 μM). Cell-driven 
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expression of a cotransfected Renilla luciferase (RLuc) plasmid, which provides a 

measure of the effects on cellular transcription, was minimally affected at the highest 

concentrations of T-705 tested (figure 10B). This result demonstrates the specificity and 

apparent absence of general cytotoxicity by T-705. Ribavirin was also shown to inhibit 

fLuc expression by the LCMV replicon (EC50 of 13 μM), but considerable cytotoxicity 

(50% cytotoxic concentration [CC50] of ∼100 μM) was also observed (figure 10B). This 

cytotoxic effect likely contributes to the unusually steep dose-response curve observed 

for ribavirin (figure 10A) and artifactually reduces its EC50. 

Consistent with our antiviral studies, the inhibitory action of T-705 was also reversed by 
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purines and purine nucleosides when assessed using the LCMV replicon system. 

Significant rescue from inhibition was provided by adenine, adenosine, 2-

deoxyadenosine, 2-deoxyguanosine, inosine, and hypoxanthine (figure 11). Guanine and 

guanosine also reversed the effect of T-705, albeit to a lesser extent. The pyrimidines, as 

well as xanthine, xanthosine, and uric acid, were again inactive in this assay. Inhibition 

by ribavirin was also partly reversed by guanine and guanosine. In contrast to T-705, 

however, the addition of adenine or adenosine did not prevent inhibition by ribavirin. 

This is consistent with the known inhibitory effect of ribavirin on the cellular IMPDH, 

which is not involved in adenosine biosynthesis. This observation suggests that the target 

for inhibition by T-705 is distinct from that of ribavirin, which appears to act 

predominantly to inhibit IMPDH and the synthesis of GMP. 
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D. Discussion 

T-705 has demonstrated remarkably broad in vitro activity against a range of 

RNA viruses.  For many of these viruses, treatment options are severely limited, and in 

the case of influenza virus, oseltamivir resistance remains a concern (Bloom et al., 2010). 

In particular, therapeutic options for treating severe arenaviral hemorrhagic fever cases 

are restricted to the use of ribavirin (Borio et al., 2002) or, in the case of Argentine 

hemorrhagic fever, to transfusion of immune plasma. Safer and more effective 

countermeasures are clearly needed (Enria et al., 2008; Khan et al., 2008). T-705 is 

currently being evaluated in clinical trials in Japan and the United States for use in the 

treatment of influenza virus infections (Furuta et al., 2009). FDA approval for the safe 

use of T-705 for influenza virus infection would facilitate its development for other RNA 

virus treatment indications. Here, we have demonstrated for the first time that T-705 is 

active against the highly pathogenic human arenaviruses JUNV-R, MACV, and GTOV 

and provided evidence that suggests that T-705 may act as a purine nucleoside analog 

specifically targeting arenaviral RdRp. 

A recent study exploring the mechanism of action of T-705 against influenza 

virus infection suggests that the viral polymerase is the principal target of the active T-

705 metabolite T-705RTP (Furuta et al., 2005). We hypothesize that T-705 is also able to 

inhibit arenavirus multiplication by targeting the virus polymerase complex. It has been 

shown that influenza virus replication is inhibited by T-705 at an early or middle stage of 

infection and that purines but not pyrimidines are able to competitively reverse anti-
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influenza virus activity (Furuta et al., 2005).  In the present study, we observed analogous 

results in arenavirus infection. 

In our studies of the reversal of T-705 inhibition, nearly all purine-based 

compounds showed a significant effect on T-705 activity. The notable exceptions were 

uric acid, xanthine, and xanthosine. Uric acid is the end product of purine degradation 

and would thus not be expected to affect inhibition by T-705. The biological 

consequences of xanthine and xanthosine metabolism are poorly defined. Indeed, all 

biosynthetic and catabolic purine pathways in the cell are highly interconnected and 

tightly regulated, making it difficult to ascribe a specific mechanism for the reversal of T-

705 inhibition. However, in in vitro assays of influenza virus RdRp activity, GTP has 

been shown to be competitive with T-705RTP (Furuta et al., 2005).  Further biochemical 

studies are needed to test the leading hypothesis that T-705 acts as a nucleoside analog to 

inhibit the arenaviral RdRp. Additional information from the analysis of T-705 resistance 

will also be helpful in identifying the precise viral target. 

Inhibition of the LCMV MG system indicates that T-705 interferes with virus 

transcription and/or replication. The molecular mechanism for inhibition, however, is not 

known and may include effects on L, NP, or MG. Cellular transcription, as measured by 

the RLuc reporter, was unaffected. In contrast, ribavirin demonstrated significant 

inhibition of cellular processes at concentrations only slightly greater than those that 

inhibit the LCMV replicon. This is consistent with its known inhibition of IMPDH 

(Furuta et al., 2005; Streeter et al., 1973) and its recognized in vivo toxicity(Chapman et 

al., 1999; Rusnak et al., 2009). The ability of hypoxanthine to reverse inhibition by T-
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705, but not by ribavirin, provides additional evidence that T-705 does not inhibit cellular 

IMPDH (Weber et al., 1992). The specific inhibitory activity of T-705 against South 

American VHF viruses and its apparent lack of cellular toxicity bode well for further 

development of T-705 in the treatment of severe arenaviral hemorrhagic fevers. 
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Abstract 

The arenavirus envelope glycoprotein (GPC) retains a stable signal peptide (SSP) as an 

essential subunit in the mature complex. The 58-amino-acid residue SSP comprises two 

membrane-spanning hydrophobic regions separated by a short ectodomain loop that 

interacts with the G2 fusion subunit to promote pH-dependent membrane fusion. Small-

molecule compounds that target this unique SSP-G2 interaction prevent arenavirus entry 

and infection. The interaction between SSP and G2 is sensitive to the phylogenetic 

distance between New World (Junín) and Old World (Lassa) arenaviruses. For example, 

heterotypic GPC complexes are unable to support virion entry. In this report, we 

demonstrate that the hybrid GPC complexes are properly assembled, proteolytically 

cleaved, and transported to the cell surface but are specifically defective in their 

membrane fusion activity. Chimeric SSP constructs reveal that this incompatibility is 

localized to the first transmembrane segment of SSP (TM1). Genetic changes in TM1 

also affect sensitivity to small-molecule fusion inhibitors, generating resistance in some 

cases and inhibitor dependence in others. Our studies suggest that interactions of SSP 
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TM1 with the transmembrane domain of G2 may be important for GPC-mediated 

membrane fusion and its inhibition.  

A. Introduction 

Arenaviruses comprise a diverse family of enveloped negative-strand RNA 

viruses that are endemic to rodent populations worldwide. Infection can be transmitted to 

humans to cause severe acute hemorrhagic fevers with high morbidity and mortality. 

Lassa fever virus (LASV) is prevalent in western Africa, infecting a half-million persons 

annually (McCormick et al., 1987). Five species of New World (NW) hemorrhagic fever 

viruses are distributed throughout South America, including the Junín virus (JUNV) in 

Argentina. New arenavirus species frequently emerge from rodent reservoirs (Briese et 

al., 2009; Centers for Disease Control and Prevention (CDC), 2000; Eichler et al., 2003). 

In the absence of effective vaccines or therapies, the hemorrhagic fever arenaviruses are 

recognized to pose significant threats to public health and biodefense. Accordingly, these 

viruses are classified as Category A priority pathogens, and JUNV has additionally been 

determined by the Department of Homeland Security to pose a Material Threat to the 

U.S. population.  

Arenavirus entry into the host cell is mediated by the virus envelope glycoprotein 

(GPC) (figure 12). Upon binding to a cell surface receptor (reviewed in references (Choe 

et al., 2011; Rojek and Kunz, 2008), the virion is endocytosed, and GPC-mediated fusion 

of the viral and endosomal membranes is activated upon acidification in the maturing 

endosome. GPC is synthesized as a precursor glycoprotein and cleaved by the cellular 

SKI-1/S1P protease in the Golgi (Kunz et al., 2003; Lenz et al., 2001) to generate the 
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receptor-binding (G1) and transmembrane fusion (G2) subunits. The mature GPC 

complex is metastable and thus primed to mediate membrane fusion in response to acidic 

pH. Upon activation, GPC undergoes a series of conformational changes leading to 

formation of a trimer-of-hairpins structure (Eschli et al., 2006; Igonet et al., 2011; York et 

al., 2010) and fusion of the viral and cellular membranes (reviewed in 

references(Harrison, 2008; White et al., 2008)). The arenavirus GPC is unique among 
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class I envelope glycoproteins in that it retains its cleaved signal peptide as a third 

subunit (Eichler et al., 2003; Froeschke et al., 2003; York et al., 2004).  

The 58-amino-acid stable signal peptide (SSP) of GPC contains two hydrophobic 

segments that span the membrane and are joined by a short ectodomain loop figure 12 

(Agnihothram et al., 2007). The cytoplasmic N terminus of SSP is myristoylated, while 

the penultimate C-terminal cysteine (C57) coordinates with a zinc-binding domain in the 

cytoplasmic tail of G2 to form an intersubunit structure that anchors SSP in the GPC 

complex (Briknarová et al., 2011; York and Nunberg, 2007a).  SSP association masks 

endogenous endoplasmic reticulum (ER) retention/retrieval signals in the cytoplasmic 

domain of G2 to facilitate GPC transport through the Golgi (Agnihothram et al., 2006), 

whereupon the precursor is proteolytically cleaved and transported to the cell surface for 

virion assembly.  

Our studies suggest that pH-induced activation of the mature GPC complex is 

controlled by a unique interaction between the short ectodomain loop of SSP and the G2 

fusion subunit. Side chain substitutions that reduce positive polarity at SSP K33 depress 

the pH required to trigger membrane fusion (York and Nunberg, 2006) , and this 

phenotype can be rescued by secondary mutations in G2 (York and Nunberg, 2009). 

Importantly, this SSP-G2 interaction provides a molecular target for small-molecule 

compounds that stabilize the prefusion GPC complex, thereby preventing pH-induced 

activation in the endosome (Bolken et al., 2006; Larson et al., 2008; Lee et al., 2008; 

York et al., 2008).  The different classes of fusion inhibitors demonstrate distinct patterns 

of specificity against New World (NW) and Old World (OW) arenaviruses yet share a 
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binding site on GPC (Bolken et al., 2006; Larson et al., 2008; Thomas et al., 2011; York 

et al., 2008).  Sequence variation at the nominal SSP-G2 interface likely accounts for the 

differences in species specificity ( Thomas et al., 2011; York et al., 2008). Several of 

these fusion inhibitors have recently been shown to protect against lethal arenavirus 

disease in animal models (Bolken et al., 2006; Cashman et al., 2011).  

Sequence variation between OW and NW arenavirus species may also affect the 

ability of one SSP to function in the context of a heterotypic GPC complex. For instance, 

recombinant JUNV virions in which SSP and the G1G2 precursor are heterotypic are not 

viable (Albariño et al., 2011). We have exploited this interspecies incompatibility 

between LASV and JUNV GPCs to identify determinants in SSP required for membrane 

fusion activity. We found that SSP association, proteolytic maturation, and transport to 

the cell surface are promiscuous in interspecific hybrid GPCs and that heterotypic SSPs 

support these functions in the context of either JUNV or LASV G1G2 precursors. 

Preservation of pH-dependent membrane fusion, however, requires a specific homotypic 

match in the first transmembrane domain (TM1) of SSP. We propose that this 

amphipathic helical region of SSP interacts with the transmembrane domain of G2 and 

thus contributes to the pH-dependent membrane fusion activity of arenavirus GPC.  

B. Materials and Methods 

Plasmids. GPC from the pathogenic MC2 isolate of JUNV (Ghiringhelli et al., 1991) and 

from the Josiah isolate of LASV (Larson et al., 2008) was expressed using the minimal 

T7 promoter sequence in pcDNA 3.1-based vectors (Life Technologies). In order to 

obviate concerns regarding signal peptidase cleavage of SSP in the chimeric GPC 
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constructs, SSP and G1G2 open reading frames were expressed from separate plasmids, 

taking advantage of the ability of the two polypeptides to associate in trans to reconstitute 

the functional GPC complex (Eichler et al., 2003; York and Nunberg, 2007b).  The G1G2 

precursor was directed to the membrane using the conventional signal peptide of human 

CD4, as previously described (York and Nunberg, 2007b). An innocuous FLAG affinity 

tag was appended to the C terminus of LASV G1G2 to facilitate detection (York et al., 

2004). SSP chimeras were constructed using conventional PCR procedures, and 

mutations were introduced using QuikChange methodology (Stratagene).  

Antibodies and small-molecule entry inhibitors .JUNV G1-specific monoclonal 

antibodies (MABs) BF11 and BE08 (Sanchez et al., 1989) were obtained through the 

NIAID Biodefense and Emerging Infections Research Resources Program 

(BEIResources) and the FLAG peptide-specific MAB (M2) was purchased from Sigma. 

The LASV G1-specific MAB L52 134-23 (Ruo et al., 1991) was kindly provided by 

Connie Schmaljohn (USAMRIID). The small-molecule fusion inhibitors ST-294, ST-

193, ST-161, and ST-761 have been previously described (Bolken et al., 2006; Larson et 

al., 2008; Thomas et al., 2011; York et al., 2008) and were kindly provided by SIGA 

Technologies (Corvallis, OR).  

Analysis of GPC expression. GPC was expressed by transient transfection in Vero cells 

infected with the vTF-7 vaccinia virus expressing T7 polymerase (Fuerst et al., 1986) or 

in engineered BHK-21 cells expressing T7 polymerase (BSR T7/5) (Buchholz et al., 

1999), kindly provided by Klaus Conzelmann (Ludwig-Maximilians-University Munich). 

Proteins were metabolically labeled using 
35

S-labeled amino acids (Perkin Elmer) and 
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immunoprecipitated with the appropriate MAB as previously described  (York and 

Nunberg, 2007b).   Flow cytometric detection of cell surface GPC was hindered by low 

levels of expression using our pcDNA-based vectors in BSR T7/5 cells, especially for 

LASV GPC (see Results and Discussion). Therefore, for these studies GPC was 

expressed in Vero cells using a pCAGGS-MCS vector (Niwa et al., 1991) provided by 

Juan Carlos de la Torre (Scripps Research Institute) (Urata et al., 2011). Cell surface 

expression was determined using the JUNV G1-specific MAB BE08 (Sanchez et al., 

1989)or the LASV G1-specific MAB L52 134-23 (Ruo et al., 1991), and a secondary 

fluorescein isothiocyanate (FITC)-labeled anti-mouse immunoglobulin antibody. The cell 

populations were stained with propidium iodine to exclude dead cells, fixed with 2% 

formaldehyde, and analyzed using a FACSCalibur flow cytometer (BD Biosciences).  

Analysis of GPC-dependent membrane fusion .The recombinant vaccinia virus-based 

assay for GPC-mediated cell-cell fusion was performed as previously described  (York 

and Nunberg, 2006). Briefly, Vero cells infected by vTF-7 and expressing GPC are 

cocultured with cells infected with a recombinant vaccinia virus vCB21R-lacZ bearing 

the β-galactosidase gene under the control of the T7 promoter (Nussbaum et al., 1994). 

Cell-cell fusion is triggered by exposure to medium adjusted to pH 5.0 and detected 

through β-galactosidase expression in the newly formed syncytia. Fusion is quantitated 

by chemiluminescence using the GalactoLite Plus substrate (Life Technologies). Fusion 

inhibition by small-molecule SIGA compounds was determined as previously described 

(York et al., 2008) and GraphPad Prism software was used for nonlinear regression 

calculations using a single-slope dose-response model constrained to 100% fusion in the 

absence of inhibitor.  
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In order to circumvent biosafety concerns associated with the use of vaccinia 

viruses, we developed an alternative fusion reporter assay based on expression of T7 

polymerase in BSR T7/5 cells. In this format, GPC-expressing BSR T7/5 cells were 

cocultured with human 293T cells transfected with the internal ribosome entry site 

(IRES)-containing pT7EMC-luc reporter plasmid expressing luciferase under the control 

of the T7 promoter (Satoh et al., 2008), which was kindly provided by Yoshiharu 

Matsuura (Osaka University). Following a 5-min exposure to medium adjusted to pH 5.0, 

the coculture was continued at neutral pH for 12 h to allow for luciferase expression. 

Cell-cell fusion was detected using the luciferase assay kit substrate (Promega). 

Consistency of GPC expression was monitored by immunohistochemical staining. 

Results from this novel fusion reporter assay were validated in parallel experiments using 

the well-established vaccinia virus-based assay.  

C. Results and Discussion 

Divergence between JUNV and LASV SSPs.  A comparison of the amino acid 

sequences of JUNV and LASV SSPs reveals a high degree of sequence divergence, as 

well as an overall conservation of sequence motifs (figure 12). The two hydrophobic 

domains (hϕ1 and hϕ2) in each are separated by a short region containing the conserved 

K33 residue (York and Nunberg, 2006). A myristoylation motif and zinc-coordinating 

cysteine (C57) are present in both N- and C-terminal cytoplasmic domains, respectively 

(Agnihothram et al., 2007). Both SSPs are also predicted to possess similar secondary 

structure features, with two helical regions interspersed by an unstructured ectodomain 
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loop. Despite these similarities, fewer than 40% of the amino acids are identically 

conserved.  
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Hybrid GPC containing heterologous SSP and G1G2.  Reverse-genetics studies have 

shown that hybrid GPC complexes are functional for arenavirus infection if and only if 

SSP is homotypic with the TM and C-terminal cytoplasmic domains of G2 (Albariño et 

al., 2011). To investigate the molecular basis for this finding, we characterized the 

assembly, transport, and function of hybrid GPCs. Taking advantage of the observation 

that SSP can associate in trans with the G1G2 precursor to reconstitute the functional 

GPC complex (Eichler et al., 2003; York et al., 2004), we coexpressed JUNV or LASV 

SSP with the reciprocal G1G2 precursors, which contained the conventional signal 

peptide of human CD4 (York and Nunberg, 2007b; York et al., 2004). Membrane fusion 

activity of the homologous and heterologous hybrid GPCs was determined using a 

biosafe modification of the well-characterized vaccinia virus-based cell-cell fusion assay 

(York et al., 2004). BSR T7/5 cells expressing the bacteriophage T7 polymerase 

(Buchholz et al., 1999) were cotransfected with pcDNA3.1-based plasmids expressing 

SSP and the G1G2 precursor under the control of the T7 promoter. These cells were then 

cocultured with 293T fusion reporter cells expressing luciferase in a T7 polymerase-

dependent manner. Cell-cell fusion was initiated by exposing the coculture to medium 

adjusted to pH 5.0, and luciferase expression in the newly formed syncytia was 

determined following continued incubation at neutral pH. Using this assay, we verified 

that neither of the two heterotypic GPC hybrids (JUNV SSP with LASV G1G2 or LASV 

SSP with JUNV G1G2) was able to mediate membrane fusion (figure 13A). Concordant 

cell-cell fusion results were obtained using the vaccinia virus-based fusion reporter assay 

((York et al., 2004) and data not shown).  
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Hybrid GPC assembles and is transported to the cell surface. To determine the 

molecular basis of heterotypic incompatibility, we first investigated the ability of SSP to 

associate with the G1G2 precursor. It is possible that the absence of membrane fusion 
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activity reflects an inability of SSP to bind the heterologous G1G2 precursor, thereby 

preventing GPC transport through the Golgi, proteolytic maturation, and cell surface 

expression. To assess GPC biogenesis, SSP and the G1G2 precursor were expressed in 

trans, and metabolically labeled GPC was immunoprecipitated (York and Nunberg, 

2007b) using MABs directed to either JUNV G1 (Sanchez et al., 1989) or the C-terminal 

FLAG tag on LASV G2. We found that GPC protein synthesis was markedly reduced in 

BSR T7/5 cells relative to that typically seen in Vero cells infected with recombinant 

vaccinia viruses expressing T7 polymerase (Fuerst et al., 1986; York et al., 2004), 

presumably reflecting the absence of mRNA capping in the cytosol of transfected BSR 

T7/5 cells. Nevertheless, SDS-PAGE analysis showed that SSP association in the 

heterotypic GPCs was similar to that in the homotypic complex (figure 14A). 

Furthermore, this association was sufficient to promote a significant degree of proteolytic 

maturation of the heterologous G1G2 precursor (figure 14A).   Flow cytometry was used 

to confirm trafficking of the heterotypic GPC hybrids to the cell surface. Due to the low 

level of expression of LASV GPC in BSR T7/5 cells (figure 14A), we used a well-

characterized pCAGGS plasmid vector (Niwa et al., 1991)  for these studies of GPC 

transport(Urata et al., 2011). Cell surface accumulation of heterologous GPC hybrid was 

found to be similar to that of the homotypic protein in both cases (figure 14B).  As GPC 

transport does not require proteolytic cleavage (Agnihothram et al., 2006; Schibli and 

Weissenhorn, 2004), these findings assess an independent function of SSP association. 

Conversely, transit of GPC through the Golgi, as evidenced by proteolytic cleavage, is 

predictive of cell surface expression. Despite substantial sequence divergence, both 

heterologous SSPs were capable of promoting the assembly and maturation of the hybrid 
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GPC complex, as well as its transport to the plasma membrane. This result agrees with 

previous studies using a recombinant LASV GPC encoding JUNV SSP (Albariño et al., 

2011). Because very low levels of mature GPC are sufficient to support membrane fusion 

activity (Agnihothram et al., 2007; York et al., 2005), we surmise that the partial 

reductions in SSP association and proteolytic cleavage in the heterotypic GPC hybrids are 

by themselves insufficient to explain the complete loss of fusogenicity. This conclusion is 

reinforced by the overall lack of correlation between variations in proteolytic cleavage 

and membrane fusion activity in studies using chimeric SSP molecules (see below).  

Interchange of the ectodomain loop in SSP.  We have previously shown that the short 

ectodomain loop of SSP is critical for pH-dependent membrane fusion and its inhibition 

by small-molecule inhibitors (York and Nunberg, 2006; York et al., 2008). This region of 

JUNV SSP is defined by charged residues at the ectodomain termini of TM1 and TM2 

(K33 and K40, respectively) (figure 12). We therefore subdivided SSP into three regions 

for purposes of constructing chimeras: region 1 included the myristoylated N terminus of 

SSP and TM1 (residues M1 to K33), region 2 comprised the ectodomain loop (K33 to 

K40 in JUNV, T40 in LASV), and region 3 contained TM2 and the short cytoplasmic 

domain bearing C57 (to the C-terminal T58). All combinations of the three JUNV and 

LASV subdomains were constructed (figure 13A), and the chimeric SSPs were named 

according to the three regions. For instance, JJJ represents the wild-type JUNV SSP and 

JLJ signifies a chimera in which the ectodomain from LASV was fused to regions 1 and 3 

of JUNV SSP. For clarity, we will refer to recombinant SSPs as chimeras and reserve the 

term hybrid for the reconstituted GPC complex.  
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As anticipated from the fully heterotypic GPC hybrids (figure 14A) , all of the 

chimeric SSPs associated with the JUNV G1G2 precursor and supported proteolytic 

cleavage in BSR T7/5 cells (figure 15). Parallel metabolic labeling studies using LASV 

GPC again showed poor expression but nonetheless allowed similar conclusions (not 
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shown). These findings were further validated using recombinant vaccinia virus to drive 

GPC expression ((York et al., 2004) and data not shown). We conclude that the sequence 

requirements for SSP association and proteolytic maturation are relatively relaxed in 

interspecific GPC chimeras.  

Despite its critical role in membrane fusion, interspecific exchange of the 

ectodomain loop had little effect on the fusion activity of hybrid GPCs (figure 13). LJL 

did not restore fusion activity to the JUNV G1G2 hybrid (∼3% of wild-type JUNV GPC) 

and likewise the reciprocal JLJ SSP in the LASV G1G2 hybrid (<1% of wild-type LASV 

GPC). Conversely, replacement of the ectodomain in JUNV SSP with that of LASV (JLJ) 

had a relatively small effect on the fusion activity of the hybrid JUNV GPC (∼40% of 

JUNV GPC). The reciprocal hybrid, LASV G1G2 bearing LJL SSP, retained a lower 

albeit significant level of activity (∼10% of LASV GPC). We conclude that a homotypic 

ectodomain loop in SSP is neither sufficient nor absolutely necessary to support 

membrane fusion by the hybrid GPC complex.  

Region 1 of SSP is essential for membrane fusion activity.  Analysis of the remaining 

SSP chimeras did reveal an important role for the N-terminal region 1 in SSP function. 

Only LASV hybrids containing the homologous region 1 (LJL, LLJ, and LJJ) showed 

significant membrane fusion activity (figure 13A). Whereas the LJL hybrid supported 

∼10% of wild-type activity (above), the latter two SSP chimeras promoted cell-cell 

fusion at levels comparable to those of native LASV GPC. The reciprocal pattern was 

seen with the JUNV G1G2 precursor and the JLJ, JJL, and JLL chimeras. In JUNV GPC, 

SSP bearing a mismatch in regions 1 and 2 (LLJ) unexpectedly also exhibited fusion 
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activity (∼20% of the wild type). By comparison, all hybrids displayed similar patterns of 

GPC expression (figure 15). Taken together, these results indicate that homotypic pairing 

in SSP region 1 is paramount for membrane fusion activity. Region 2 appears to 

contribute somewhat to activity when the homologous region 1 is present (JJL and LLJ), 

whereas homology in region 3 is relatively unimportant. The reciprocal relationship 

between JUNV and LASV hybrids validates the importance of region 1 as a determinant 

of GPC-mediated membrane fusion.  

The apparent indifference to sequence variation in region 3 is consistent with 

previous results from mutational studies (Agnihothram et al., 2007). Triplet alanine 

replacements in TM2 of JUNV SSP (44FQF46 and 47FVF49 mutants) have no effect on 

fusogenicity. Similarly in the short C-terminal cytoplasmic tail of SSP, only the 

conserved C57 side chain is essential for membrane fusion activity (York and Nunberg, 

2007b). Collectively, these observations suggest a lack of sequence specificity in the 

function of region 3. However, the presumed helical nature of TM2 appears to be 

important, as SSP association is completely abrogated by single amino acid deletions that 

are expected to alter the register of the helix (Agnihothram et al., 2007).  

TM1 forms an extended helical domain.  To further dissect the role of region 1 in 

fusogenicity, we bisected the N-terminal cytoplasmic and TM regions using the 

conserved E17 as the nominal cytosolic junction of TM1. Thus, the (J1L2) exchange in 

region 1 comprised JUNV residues M1 to E17 and LASV residues E17 to K33 (figure 

13B).  SSPs including the reciprocally exchanged sequences (J1L2 and L1J2) associated 

with and supported proteolytic maturation of both JUNV (figure 15) and LASV 
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precursors (not shown) but were entirely defective in promoting membrane fusion (figure 

13B).  In contrast, the parental SSP chimeras containing the intact region 1 (JJL and LJL) 

produced functional hybrids with their respective G1G2 precursors. The symmetric loss 

of fusogenicity at this junction is likely to reflect an internal sequence incompatibility 

within the SSP chimeras rather than between SSP and G2.  

Secondary structure predictions suggested a possible explanation for this 

intramolecular incompatibility (figure 12). For both JUNV and LASV SSP, prediction 

algorithms (Rost and Sander, 1993) suggest that the helical structure of TM1 extends N 

terminally to the conserved proline at position 12. To test this notion, we generated 

additional region 1 exchanges in which TM1 was extended N terminally to P12. We 

found that an SSP chimera including the extreme N-terminal residues of LASV (residues 

M1 to P12) and the extended helical region of JUNV (residues P12 to K33), referred to as 

(LexJ)JL, supported cell-cell fusion comparably to the parental JJL chimera in the hybrid 

JUNV GPC (figure 13B).  Likewise, SSPs containing the (JexL)LJ and (JexL)JL 

exchanges promoted detectable fusion activity in LASV G1G2 hybrids. In keeping with 

our previous finding that replacing E17 with alanine did not disrupt membrane fusion 

activity (York and Nunberg, 2006), we propose that TM1 spans P12 to K33 to form a 

functional transmembrane subdomain in SSP.  

The above results also suggest that the extreme N terminus of SSP, comprising a 

myristoylation motif (GxxxS/T) and residues through I11, is interchangeable between 

JUNV and LASV. Indeed, alanine-scanning mutagenesis in this region of LCMV SSP 

showed only minimal effects on fusogenicity (Saunders et al., 2007). The amino acid 
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sequence of the cytoplasmic portion of region 1 appears relatively unimportant for 

membrane fusion activity. By contrast, the lack of myristoylation in SSP reduces 

fusogenicity by ∼80% through an unknown mechanism (Saunders et al., 2007; York et 

al., 2004) .  

Genetic analysis of the extended TM1. Site-directed mutagenesis was used to probe the 

extended TM1 helix in JUNV SSP. We reasoned that deletion of a single amino acid 

residue would alter the register of the helix without disrupting the overall helical fold 

(Agnihothram et al., 2007). A JUNV GPC mutant bearing a deletion at TM1 residue A25 

was found to be devoid of membrane fusion activity (figure 13C), consistent with a 

requirement for specific interhelical interactions within the GPC complex. Replacing 

hydrophobic amino acids with arginines in a membrane-spanning region is expected to be 

highly destabilizing, and the F14R and A25R mutants were indeed defective in 

membrane fusion (figure 13C). The deficiency in F14R supports our previous suggestion 

that SSP enters the membrane at P12. Neither the deletion nor arginine replacement 

mutants associated with the G1G2 precursor (not shown). Taken together, these results 

point to the critical importance of the extended TM1 helix in GPC biology.  

Owing to the helix-breaking property of proline, TM1 is unlikely to include 

residues N terminal to the conserved P12. To determine whether P12 itself is essential for 

GPC assembly and fusogenicity, we mutated this position in JUNV SSP to alanine. The 

P12A mutant was found to possess wild-type fusion activity (figure 13C). The identical 

mutant in LCMV SSP also showed significant fusion activity (∼30% of the wild type) 

but did not promote entry by recombinant virus-like particles  (Saunders et al., 2007) . 
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Thus, a proline-dependent articulation between the cytosolic N terminus and TM1 is not 

required for fusogenicity per se.  

TM1 forms an amphipathic helix.  A helical-wheel projection diagram reveals distinct 

hydrophobic and hydrophilic faces to the extended TM1 helices in JUNV and LASV 

SSPs  (figure 16).   By contrast, TM2 of SSP (K40/T40 to G54) is uniformly 

hydrophobic. As TM2 was found to be highly tolerant of triplet-alanine substitutions 

(Agnihothram et al., 2007), we employed a similar strategy to examine the requirement 

for side chain-specific interactions in TM1. We replaced three hydrophobic sequences in 

TM1 of JUNV SSP (13TFL15, 22ALV24, and 29IAI31) with triplet alanines, a small 
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residue with high helical propensity. Alanine substitutions at 13TFL15 and 22ALV24 

were found to disrupt membrane fusion activity (figure 13C). Fusogenicity was 

unaffected by alanine replacements at 29IAI31, probably due to its position in the helix 

and the conservative nature of the change. The defect in the 13TFL15 and 22ALV24 

mutants strongly suggests that TM1 participates in side chain-specific interactions in the 

GPC complex, likely with the transmembrane helical domain of G2.  

To probe the contributions of specific side chains in TM1 to these interactions, we 

individually replaced each polar residue on the hydrophilic face of TM1 with alanine  

(figure 13C) . T13A, Q16A, and S27A GPCs were essentially wild type in cell-cell fusion 

activity, as was E17A (Agnihothram et al., 2007). The N20A mutation, however, 

decreased membrane fusion activity to ∼30% of the wild type  (figure 13C) , as did the 

identical mutant in LCMV GPC  (Saunders et al., 2007). Interestingly, structural 

predictions by the Robetta server (http://robetta.bakerlab.org) (Kim et al., 2004) 

consistently position N20 at a kink in the TM1 helix (not shown).  

SSP chimeras differ in sensitivity to small-molecule fusion inhibitors.  We have 

previously shown that both pH-dependent activation and its inhibition by small-molecule 

fusion inhibitors are mediated through interactions between SSP and the G2 fusion 

subunit (York and Nunberg, 2006, 2009; York et al., 2008)). We therefore examined the 

sensitivity of hybrid GPCs to inhibition by the four chemically distinct fusion inhibitors 

discovered by SIGA Technologies (Corvallis, OR) (Bolken et al., 2006; Larson et al., 

2008; Thomas et al., 2011; York et al., 2008).  These compounds share a binding site 

(Thomas et al., 2011) but differ in their specificity toward NW and OW arenaviruses: ST-
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294 and ST-761 are active only against NW viruses, ST-161 is specific for LASV, and 

ST-193 is broadly inhibitory against both OW and NW arenaviruses (Bolken et al., 2006; 

Larson et al., 2008; Thomas et al., 2011; York et al., 2008).  

As hybrid GPCs heterotypic in SSP region 1 are nonfunctional, we focused our 

attention on the ectodomain loop, a region previously shown to affect inhibition (York et 

al., 2008). Substitution of the JUNV ectodomain loop in LASV GPCs [LJJ and (JexL)JL] 

abrogated inhibition by the LASV-active compounds ST-161 and ST-193 (not shown). In 

contrast, replacement of the ectodomain loop in JUNV GPCs (JLL, JLJ) showed no 

significant effects on sensitivity; all were inhibited by ST-294, ST-761, and ST-193 and 

resistant to ST-161 (not shown). Structural differences at the hybrid inhibitor-binding site 

likely contribute to the differing contributions of the heterotypic SSP ectodomain in 

LASV and JUNV GPC. None of the hybrids displayed de novo sensitivity to inhibition.  

We utilized the panel of alanine mutations in JUNV TM1 to further identify 

specific side chains that may influence sensitivity to inhibition. The triplet-alanine mutant 

(the 29IAI31 mutant), with substitutions adjacent to the SSP ectodomain and the critical 

K33 residue, was found to be unchanged in its sensitivity to ST-294 and ST-193 and 

resistance to ST-161 (figure 17 and table 2).  Similarly, individual alanine mutations at 

Q16, E17, and S27 on the hydrophilic face of TM1 did not significantly alter the pattern 

of inhibition. By contrast, alanine substitutions toward the cytosolic terminus of TM1 

(P12A and T13A) engendered resistance to ST-193 without qualitative or quantitative 

changes in the effects of ST-294, ST-761, or ST-161 (figure 17 and table 2).  

Furthermore, the N20A mutant was now strikingly dependent on ST-193 for wild-type 
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fusion activity. Fusion was enhanced by the addition of ST-193 in a dose-dependent 

manner. Maximal activity approaches that of the wild-type JUNV GPC at ∼10 μM ST-

193, at which point inhibitory and/or cytotoxic effects may intervene. Sensitivities to ST-

294 and ST-161 remain unaffected. The diversity in the effects of these different amino 

acid substitutions highlights the multiplicity of determinants for fusion inhibition within 

the GPC complex (York and Nunberg, 2009; York et al., 2008).  

We suggest that ST-193 binding to N20A compensates for structural changes 

induced by the mutation, thereby facilitating on-path conformational changes during pH-

induced activation of membrane fusion. Mutations in G2 previously reported to increase 

the pH of activation in the K33Q mutant to wild type without themselves affecting pH 

sensitivity may act similarly (York and Nunberg, 2009). Among these compensatory G2 

mutations, two (D400A and F427A) also engender resistance to ST-193 and ST-294 

((York et al., 2008) and unpublished data). Based on the dependence of the N20A mutant 

on the presence of inhibitor, we infer that resistance at the two G2 positions, as well as 

that in P12A and T13A SSP mutants, may reflect a balance of inhibitory and 

compensatory consequences of ST-193 binding rather than a simple loss in binding 

affinity.  
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D. Conclusions 

Our previous studies have shown that the short ectodomain loop of SSP and its 

interactions with G2 are important determinants for both pH-dependent membrane fusion 

and its inhibition by small-molecule compounds (York and Nunberg, 2006; York et al., 

2008). The present study identifies the critical role of the first membrane-spanning 

domain of SSP in these events. By characterizing a series of SSP chimeras containing 

JUNV and LASV sequences, we demonstrate that a homotypic pairing between TM1 and 

G2 is required for GPC-mediated membrane fusion. We propose that multiple 

intersubunit contacts between these transmembrane helices serve to position the critical 

K33 side chain in the SSP ectodomain for pH-sensitive interactions with the G2 

ectodomain. Small-molecule compounds that stabilize these interactions in the prefusion 

GPC complex have been shown to prevent pH-induced fusion activation in the endosome 

and thereby inhibit arenavirus entry. Detailed knowledge of the atomic interactions 

between SSP and G2 in the membrane-anchored GPC trimer will be important for 

understanding the mechanism of pH-dependent membrane fusion and guiding the design 

of potent and broadly active small-molecule fusion inhibitors.  
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Chapter 4: Engineering of a Potential Model for Transmembrane Interactions 

within the Trimeric Arenaviral Glycoprotein Complex 

 

A. Introduction 

 

 Mutational analysis and fusion inhibition studies have illustrated the dependence 

of pH-mediated fusion on the interaction between SSP and G2.  While several key 

residues in the pH-sensitive interface are in the membrane proximal and extracellular 

domains, residues within the TM domains have also been shown to alter fusion activity 

(F427A, A435I, F438I, W428A in G2 and N20A in SSP) and drug sensitivity (F427A in 

G2 and P12A, T13A, and N20A in SSP) (Messina et al., 2012; York and Nunberg, 2009; 

York et al., 2008).  In contrast to the second TM region of SSP (TM2), which has been 

shown to be resilient to alanine mutations and uniformly hydrophobic (Agnihothram et 

al., 2007), side-chain specific interactions within the N-terminal TM region of SSP 

(TM1) are important for fusion activity and both the TM domain in G2 and TM1 are 

predicted to be amphipathic helices.  Therefore, we hypothesize that TM1 and the TM 

region of G2 interact with each other within the trimeric GPC.  We propose that the polar 

faces of the TM domains will be buried, interacting with each other, and the hydrophobic 

faces will be presented outward to interact with the hydrophobic membrane.  

To pursue this hypothesis, I engineered a novel TM construct, termed TMCON, 

which might serve as a model for the potential interactions between the TM domains.  

TMCON is comprised of the first 34 residues of SSP connected to a FLAG tag, which is 

flanked by short linker regions, and then connected to the terminal 70 residues of G2 

(figure 18).  I also created two more constructs, with the S-peptide tag (spep) on the N- or 

C-terminus, respectively. The objective of this work is to express, purify, and perform 
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preliminary biochemical and in vitro characterizations of the construct.  

 

B. Methods 

Cloning. pcDNA3.1 TMCON was created using the primers GC-SSPTM1-G2TM and 

SSPTM1-G2TM (table 3), with the Junin GPC-spep plasmid as a template, in the 

QuikChange II XL Site-Directed Mutagenesis (Agilent 200521).  To express TMCON in 

insect cells, the TMCON open reading frame transferred into the pDEST8 plasmid using 

the Gateway System (Invitrogen) two-step protocol. 

 

Membrane preparations. Hi5 cell pellets were thawed in cold TMNZ buffer (25mM 

Tris pH 7.6, 5mM MgCl2, 250mM NaCl, 100 µM ZnSO4, plus protease inhibitors (1 μg 

[each] of aprotinin, leupeptin, and pepstatin/ml). All subsequent steps are performed at 

4
o
.  Nitrogen decompression (1000 PSI in a Parr Bomb for 60 min) was used to disrupt 
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cells, which were then spun at 3,000 RPM for 10 min to remove cellular debris. 

Membranes were then isolated from the supernatant by ultracentrifugation at 100,000 × g 

for 1 h. The pellet was resuspended by dounce homogenization in TMNZ buffer and the 

high speed spin was repeated.  The pellet was then dounced again in TMNZ buffer with 

detergent (either 3% DDM or 10% sarkosyl) and then allowed to solubilize with mild 

agitation for either 2 hrs or overnight. A final 1hr 100,000 × g spin was performed and 

both the pellet and supernatant are saved to analyze the detergent insoluble (pellet) and 

soluble fractions (supernatant).  

 The lipids, palmitoyloleoyl phosphatidylcholine, palmitoyloleoyl 

phosphatidylethanol, and palmitoyloleoyl phosphatidylglycerol (POPC, POPE, and 

POPG, respectively) were used as a mixture at a ratio of 3:1:1 to improve purification 

efficiency from FLAG-resin (Sigma A2220).  

Size Exclusion Chromatography (SEC).  DDM soluble protein was allowed bind to 

FLAG-affinity resin for 2 or more hours. The resin was subsequently washed twice with 

TMNZ containing 1% DDM and 1 time with TMNZ buffer containing 0.1% DDM.   

TMCON was then eluted with 5 μM of 3×FLAG peptide in (Sigma F4799). The eluate 

was subjected to SEC using a Superdex-200/G-75 tandem column (GE) to purify 

TMCON and determine its oligomeric state. SEC buffer contained 0.05% DDM.  

Molecular weight sizes were determined by comparison to the elution profile of the Gel 

Filtration Standard (BioRad 151-1901).  
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Co-immunoprecipitation. BSR cells were transfected as described in chapter 3.  Cells 

were harvested in cold PBS, and suspended in TX-100 lysis buffer (50 mM Tris-HCl (pH 

7.5), 150 mM NaCl, 1% Triton X-100, and protease inhibitors).  Lysates were cleared by 

centrifugation at 14,000RPM, 4
o
, 15 min, and then supernatants were incubated for 2 hrs, 

with rocking, at 4
o
, with 1µL BF11 (1mg/ml) and 50µL protein-A sepharose beads.  After 

washing, samples were heated in 2X LDS (Invitrogen) with reducing agent at 70
o
, run on 

pre-cast 4-12% Bis-Tris polyacrylamide gels (Invitrogen), and transferred to PVDF 

membranes.  The blots were probed sequentially with the monoclonal anti-spep mouse 

IgG antibody (Pierce MA1-981) at a 1:1000 dilution for 60 min, and then the secondary 

horseradish peroxidase tagged goat anti-mouse.  

 

Crosslinking. SEC purified TMCON was dialyzed into 10mM HEPES plus .05% DDM 

to remove the Tris.  The Bis(sulfosuccinimidyl)suberate (BS
3
, Pierce 21585) crosslinking 

agent is an amine-reactive crosslinker with an 8-carbon spacer arm.  To crosslink 

TMCON, 2 µL of BS
3
 was added to 32µL of dialyzed TMCON.  The reaction was then 

vortexed and incubated on ice for 2 hrs. The reaction was quenched by adding 2µL 1M 

Tris pH 7.5.  Samples were then run on reducing SDS-PAGE gels and analyzed by 

Western blotting as described above.   

 

Confocal Microscopy. Transiently transfected BSR cells were re-seeded into 4-chamber 

glass bottom dishes (Greiner 627870), 80,000 cells per chamber, 16 hrs post-transfection.  

12 hrs later, cells were washed 3 times with RT PBS and then fixed for 45 min at RT with 

ice-cold and freshly prepared 4% Paraformaldehyde (PFA).  Next, cells were treated with 
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50mM Tris for 20 min then and permeabilized with 0.2% TX-100 in PBS for 10 min.   

Cells were blocked for 20 min and then probed for 90 min with primary antibody (Golgi 

specific α-GM130 (abcam  at 1:250, TMCON-spep specific α-spep at 1:250, or α-G1 

MAB BE08 at 1:500) in block solution (5% BSA in 0.1% TX-100 PBS). Chambers were 

washed 5 times with block solution and then cells were incubated with the secondary, 

GAM-568 or GAR- 488, at a 1:800 dilution for 90 min. After washing five times, cells 

were treated with SlowFade Gold with DAPI (Invitrogen S36938) and examined using an 

Olympus Fluoview 1000 laser scanning confocal microscope.  

 

Flow cytometry.  Cells were transfected with TMCON-spep plasmid alone or with 

wtJGPC plasmid, or salmon sperm DNA as a negative control, harvested 24hrs later, 

washed and resuspended in PBS, and stained with either anti-FLAG, anti-spep, or BE08 

Ab (all used at 1:50) for 45 min on ice. Cells were then washed and probed with a 

secondary fluorescein isothiocyanate (FITC)-labeled anti-mouse antibody. The cell 

populations were then stained with propidium iodine to exclude dead cells, fixed with 

fresh 2% PFA, and immediately analyzed using a FACSCalibur flow cytometer (BD 

Biosciences). 

 

C. Results 

Develop a Purification Scheme for TMCON expressed in Insect Cells. Our laboratory 

has an established protocol for the purification of JGPC from Hi5 cells using DDM to 

solubilize JGPC as a soluble trimer (Thomas et al., 2011, 2012).   My initial attempts to 

purify TMCON using this protocol resulted in a large portion of the protein in a 
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remaining in the detergent-insoluble pellet (figure 19).  I examined several conditions to 

solubilize the peptide.  TMCON is not readily soluble in acetic acid, methanol, DDM, or 

TX-100.  TMCON can be solubilized in GnHCl, Urea, SDS, and sarkosyl.  Sarkosyl has 

been used to efficiently solubilize proteins in a native form from inclusion bodies in E. 

coli (Francis et al., 2012; Tao et al., 2010).   Following the strategy from Tao et al, I 

solubilized the isolated membrane fraction in 10% sarkosyl overnight.  To affinity purify 

TMCON using FLAG-affinity beads, I diluted the sarkosyl solution with TX-100 and 

CHAPS to a final concentration 1% sarkosyl, 2% TX-100 and 20mM CHAPS.  This 

creates mixed micelles which prevents the sarkosyl from interfering with the interaction 

between the anti-FLAG MAB and the FLAG tag.  The diluted protein was applied to a 

FLAG-affinity column, washed once with 1% sarkosyl, 2% TX-100, and 20mM CHAPS, 

washed a second time with 1% sarkosyl, and then eluted with 3X-FLAG peptide.  With 

this protocol, I was able to purify TMCON, but I required excessively high 

concentrations of the 3X-FLAG peptide to elute the construct (up to four times the 

recommended 100 µg/ml recommended by Sigma).   To improve solubility and elution 

efficiency, I added a 0.1mg/ml mixture of lipids to all detergent containing buffers, which 

allowed efficient elution from the FLAG-resin with 100 µg/ml 3X-FLAG peptide (figure 

19). Purified TMCON remained soluble in sarkosyl + lipid solutions with as little as 

0.1% sarkosyl, which may aid downstream applications. 
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TMCON can form trimers.  To determine the oligomeric state TMCON, we analyzed 

the DDM-soluble fraction of the membrane prep by SEC.  Most of TMCON elutes as 

aggregates.  However, some TMCON elutes in a minor peak consistent in size with a 

dimer or trimer (figure 20).  To further study this fraction, we treated it the crosslinker, 

BS
3
. Significantly, when incubated with increasing amounts of BS

3
,
 
TMCON from this 

peak undergoes specific crosslinking, as shown in figure 20.  In a dose dependent 

fashion, TMCON forms specific crosslinked species consistent in size with a timer and a 

hexamer.   
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TMCON associates weakly with JGPC.   We next asked if TMCON can associate 

with Junín GPC (JGPC) in vitro.  If TMCON is well-folded, we reasoned it may form 

mixed trimers with JGPC and perhaps traffic through the cell in a similar fashion to 

JGPC.  To determine if TMCON can associate with JGPC, I expressed TMCON alone or 

with JGPC in mammalian BSRT7/5 cells and then performed a co-immunoprecipitation 

with the G1 specific MAB, BF11, to pull-down JGPC and any associated TMCON.  I 

was able to reproducibly detect a faint TMCON-spep band that co-precipitated with GPC 

(figure 21E).  To determine if TMCON could traffic properly through the cell, I 
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performed confocal microscopy experiments to determine the intracellular localization of 

TMCON with and without co-expression of JGPC.  Previous work in our laboratory has 

demonstrated that wt-JGPC traffics through the cell from the ER to the Golgi, and then to 

the cell surface.  The cytosolic region of G2 contains two dibasic sequences which serve 

as ER-retention/retrieval signals.  Co-expression of SSP with G1/G2 is essential to 

masking these dibasic ER-retention sequences for transport.  However, removal of these 

sequences relieves G2 of its dependence on SSP for proper trafficking  (Agnihothram et 

al., 2006).  Expressed alone, TMCON aggregated as large puncta in the cell.  When co-

expressed with JGPC, TMCON was found more diffusely in the cell and in the Golgi 

apparatus.  We next asked if mutating the ER-retention signals in TMCON would affect 

its intracellular localization.  When I expressed the mutant TMCON KK/RR, which 

contains alanine substitutions in place of the dibasic sequences, this construct was found 

throughout the cytosol and in the Golgi.  However, expressed alone or with wtJGPC, 

neither TMCON nor TMCON KK/RR was detectable on the surface of healthy cells by 

surface staining and confocal microscopy.  This result was confirmed by flow cytometry.  

Because TMCON could insert into the membrane in a variety of orientations with one or 

both of the TM domains crossing the membrane, we used both α-spep and α-FLAG to 

detect possible cell surface expression, but we saw no significant population of cells 

positive for surface expression of TMCON with either antibody (figure 21A-D,F,G). 
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D. Discussion  

TMCON contains the first TM region of SSP and the C-terminal 70 residues of 

G2, which includes both the TM region and cytosolic region.  Expressed alone, TMCON 

appears to be excluded from the Golgi and remains in the cytosol as large puncta, 

suggesting misfolding and aggregation of the construct.  Notably, removing the ER-

retention signals does alter its intracellular localization, indicating that the G2 region 

within TMCON does behave in a similar fashion to wtJGPC.  Pulldown experiments 

further demonstrate that TMCON can interact with JGPC.  Though this interaction may 

not be robust, the fact that co-expression of the two proteins changes the trafficking of 

TMCON indicates the interaction is functional.  These data, combined with the 

observation that TMCON can form trimers, suggest that the construct might capture 
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elements of the inter-helical interactions within the trimer. 

 With a purification protocol in place, TMCON can be produced and purified in 

large quantities, which will ease future biochemical studies.  Further characterization to 

determine if it is a suitable model for studying the interactions between the TM domains 

will be required.  Limited proteolysis experiments may be performed to identify a stable 

protease resistant core (Blacklow et al., 1995; Lu et al., 1995).  To determine the structure 

and orientation of TMCON in a membrane, protease protection assays in the presence 

and absence of liposomes can be done to determine which residues are protected and 

which are accessible to proteolysis. The resulting peptide fragments could be analyzed 

using silver-stained gels, mass spectrometry, and protein sequencing. If TMCON is well 

folded, it may be a suitable candidate for future structural studies such as electron 

paramagnetic resonance (EPR) (Mchaourab et al., 2011) or X-ray crystallization.   
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Chapter 5: Cysteine Scanning Mutagenesis and Crosslinking within the G2 

Transmembrane Domain 

A. Introduction 

GPC, like other class-I fusion proteins, takes the form of a trimeric spike on the 

viral envelope.  The “head” of the spike is comprised of the receptor binding subunit (in 

our case, G1) and the subunit that contains the fusion peptide and spans the membrane (in 

GPC, this is G2) forms the “stalk” (figure 2 and figure 5).  Studies detailing the 

arrangement of other class-I fusion proteins reveal that the “stalk” forms a tightly 

associated trimer and that the TM domain is important to fusion (Bissonnette et al., 

2009a; Chang et al., 2008; Kemble et al., 1994; Lamb and Jardetzky, 2007; Smith et al., 

2012; Weissenhorn et al., 2007).  Because site-directed mutagenesis has indicated that 

that specific residues within the TM domain of G2 and TM1 are important to fusion and 

drug sensitivity (Messina et al., 2012; York and Nunberg, 2009; York et al., 2008), we 

reasoned that the specific packing interactions between these TM domains are important 

to the overall geometry and function of GPC.  We hypothesized that the first TM region 

of SSP and the TM region of G2 interact with each other within the trimeric complex.  

We predict the G2 forms a tight trimer through the TM domain which is surrounded by 

the SSP TM domains (figure 22).  However, GPC is unique in its retention of SSP in the 

mature complex and other arrangements are possible. To determine the orientation of 

these TM domains to each other, I used a cysteine-scanning mutagenesis and disulfide 

crosslinking approach as described below. This strategy has proven very useful in 

probing the structures of several other membrane proteins and the class-I paramyxovirus 

F protein (Amin et al., 2006; Bissonnette et al., 2009a; Hamdan et al., 2002; Lee et al., 
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2006; Loo et al., 2004; Schwem and 

Fillingame, 2006; Winston et al., 2005).   

I created a library of single 

cysteine mutations spanning the entire 

TM of G2 (between residues proline-

419 and proline-445). The wt-G2 

contains one cysteine within its TM, so 

I used the TM cys-less background 

mutant C426S (which mediates wt-level 

fusion) for this mutational analysis. In 

each mutant GPC trimer, there will be 

three cysteines in the TM available for 

crosslinking.  We predicted that if they 

are oriented towards each other, and are 

within bonding distance, two will form a disulfide bond (and one will remain unbound) 

when exposed to a membrane soluble oxidant, such as I2 (Bass et al., 2007) or 

Cu(II)(1,10-phenanthroline)3 (Bissonnette et al., 2009).  If, on the other hand, they are not 

facing each other, they will not readily form a disulfide bond.  Thus, under non-reducing 

conditions on a SDS-PAGE gel, we should be able to readily distinguish a significant 

shift in the population of G2 monomers to dimers.  In this fashion, we hoped to map 

which face(s) of the G2 TM region may be interacting with each other and which may be 

free to interact with SSP.  

I first characterized this library of mutants by examining fusion activity.  I then 
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attempted to crosslink G2:G2 and G2:SSP cysteine pairs using multiple crosslinking 

agents under a variety of conditions.  Unfortunately, I was unable to detect any specific 

crosslinking under the conditions tested.   

B. Methods 

Cysteine mutants. Individual cysteine substitutions were made in G2 residues from P419 

to P445 in the pcDNA3.1 CD4-Adapt C426S-spep plasmid.  In other work, cysteine 

substitutions were also made in the pcDNA3.1 SSP plasmid to change residues T13, E17, 

and N20.  All substitutions were made using the QuikChange Lightning Multi Site-

Directed Mutagenesis Kit (Agilent 210516).  Primers used are listed in table 3. Cycling 

conditions were as follows: 95
o
 for 2 min, 30 cycles (95

o
 for 20 sec, 55

o
 for 30 sec, 65

o
 

for 4 min), 65
o
 for 5 min, hold at 4

o
.  Cysteine mutants within the TM region of the fusion 

subunit (F) of  the Paramyxovirus glycoprotein were kindly provided by Dr. Robert Lamb 

at Northwestern University (Bissonnette et al., 2009a) and used as positive controls. 

Protein expression, processing and detection.  Junin proteins were expressed in 

BSRT7/5 cells (described in chapter 3) and the paramyxovirus F proteins were expressed 

in 293 cells by transient transfection.   6µg of G1G2 and 2µg of SSP plasmid were 

transfected into a 6well cluster plate seeded with 450,000 cells using 25µL 

lipofectamine2000 (Invitrogen). Starting at 6 hrs post-transfection, cells were 

metabolically labeled using 
35

S-labeled amino acids (GE) overnight. 293 cells were 

transfected using the manufacturer recommend amounts of DNA and lipofectamine2000.  

18hrs post transfection, 293 cells were metabolically starved for 1 hour and then 
35

S-

labeled for 2 hours per the Lamb’s laboratory protocol (Bissonnette et al., 2009a). 
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 For oxidative crosslinking in membranes, cells were dounce homogenized (50 

strokes) in RSB buffer (10mM Tris pH 7.5, 10mM KCl, 15mM MgCl2 plus protease 

inhibitors). Homogenates were then treated with CuP, I2, or mock treated with equal 

volumes 50mM Tris pH7.5 or ethanol, respectively.  Specific crosslinking conditions are 

discussed in the Results and Discussion section below.  Reactions were quenched with 

10mM EDTA alone or with an additional 10mM NEM and 100mM IAM for 10 min at 

RT. Samples were then solubilized with an equal volume 2X lysis buffer.  Bissonette et al 

utilize 2X RIPA buffer (50mM Tris pH 7.5, 1mM EDTA, 150mM NaCl, 2% NP40, 0.2% 

sodium deoxycholate, 0.2% SDS plus protease inhibitors) (Bissonnette et al., 2009a) 

whereas our established IP protocol uses a TX-100 lysis buffer described above (1% TX-

100 final).  Solubilized samples were then spun at maximum speed in a microcentrifuge 

for 15 min.  Cleared supernatants were then immuno-precipitated with 1µL of the anti-G1 

MAB BF11 or 10µL of the paramyxovirus F protein specific polycolonal α-F2 (kindly 

provided by Robert Lamb). For the crosslinking of solubilized protein, cells were 

harvested in cold PBS, spun at 1500 RPM for 10 min, and then resuspended in 1ml TX-

100 lysis buffer.  Lysates were cleared, treated with crosslinker (I2 or CuP), and then 

quenched and immunoprecipitated as described above.  Buffers used during oxidative 

crosslinking of GPC samples also contained 50µM zinc to maintain the intersubunit zinc-

binding domain (Briknarová et al., 2011).                           

 For non-oxidative crosslinking experiments in membranes with 

bis(maleimido)ethane (BMOE, Pierce 22323), a bifunctional maleimide crosslinker with 

an 8Å linker arm, cells were dounce homogenized (50 strokes) in hypotonic lysis buffer 

(0.1X PBS) with  protease inhibitors. Homogenates were then spun at maximum speed in 



75 

the microcentrifuge for 15 min at 4
o
.  Pelleted membranes were then resuspended in 1X 

PBS plus protease inhibitors and either treated with BMOE or mock-treated with an equal 

volume of DMSO.  Crosslinking conditions are discussed in the following section.  After 

crosslinking, reactions were quenched with DTT (10mM final) for 15min at RT.  

Samples were then diluted 5 fold in 1.2X TX-100 lysis buffer (final 1% TX100) and 

immunoprecipitated with the α-G1 antibody, BF11.   

After immunoprecipitation, samples are heated to 90
o
 for 20 min in 4X LDS 

buffer (Invitrogen) with or without reducing agent and subsequently resolved on 4-12% 

Bis-Tris pre-cast polyacrylamide gels (Invitrogen), which were subsequently fixed, dried, 

and proteins were visualized by phosphorimaging with a Fuji FLA-3000G instrument.  

 Fusion assays were performed as described in chapter 3.  
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 C. Results and Discussion 

TM Cysteine Substitutions are well tolerated.  The nominal N-terminal junction of the 

G2 TM is at the charged D424.  Structural prediction programs (Roy et al., 2010)  

suggest the TM of G2 extends from L420 to L441 or I444.  I extended our cysteine-

scanning analysis from P419 to P445 to ensure complete coverage of the G2 TM.  We 

also created three cysteine substitutions in SSP: T13C, E17C, and N20C.  These residues 

are all predicted to be on the same helical face of the first TM domain and alanine 

substitutions at these residues were shown to alter drug sensitivity (Messina et al., 2012).   

Each of the G2 mutants was assessed biochemically for association between G2 and SSP 



77 

by radio-IP and for cell-cell fusion activity.  SSP association and cleavage of G1-G2 was 

observed in all cases.  Figure 23C,D shows an example of these data.  A subset of the 

mutation panel biochemical data is shown in figure 23C.  All of the mutants displayed 

greater fusion activity than the negative (no SSP) control and, with few exceptions 

(P419C, L420C, L422C), all demonstrated greater than 25% activity (figure 23A, B).    
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Looking at the fusion assay data we observed some degree of periodicity, 

particularly between residues V431 and P445 (figure 23A). The rise and fall of fusion 

activity about every 4 residues may be consistent with an important α-helical interface.  

These data also indicate that the cysteine mutations were not disruptive to the structure of 

GPC, and thus we hypothesized that a specific pattern of crosslinking would reveal the 

G2 TM domain to have a G2:G2 interacting face and a G2:SSP face. 

 

 Crosslinking Conditions.  I attempted to oxidatively crosslink G2 in dounced 

homogenates using CuP and I2.  I searched the literature to define the ranges of 

conditions used for oxidative crosslinking within membrane proteins (Hamdan et al., 

2002; Loo et al., 2004; Ma et al., 2004; Miller et al., 2003).  I then proceeded to test a 

range of crosslinker concentrations (25 – 3000 µM CuP and 20 – 500 µM I2), 

temperatures (4
o
, RT, 37

o
), and reaction times (5 min to 1hr for CuP and 30 sec to 5m for 

I2) with my samples.  The primary stumbling block was in finding a set of conditions 

which did not result in a loss of GPC protein.  At high concentrations of crosslinking 

agent, GPC precipitated out of solution and I saw a significant loss in signal.  Longer 

reaction times and crosslinking at 37
o
 caused excessive background crosslinking and 

higher order aggregates such that proteins did not enter the gel. After lengthy 

troubleshooting, the conditions which worked best for preserving signal and reducing 

background were to treat dounced homogenized cells with 25µM CuP for 20m at RT.  

However, under these conditions, I detected no specific crosslinking between G2 or SSP 

mutants.  

As crosslinking maybe inefficient in the membrane and given that our laboratory 
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has an established protocol for immunoprecipitating solubilized GPC (Agnihothram et 

al., 2006; York et al., 2004, 2005), I also attempted crosslinking in TX-100 solubilized 

samples over a similar range of conditions listed above.  However, excessive background 

crosslinking and protein precipitation (figure 24C) again proved to be problematic.  After 

examining the same range in crosslinker concentration, temperature, and timing as 

described above, I established a protocol of crosslinking for 10m at RT using 25µM CuP 

(figure 24D).  To verify this protocol with a positive control, we obtained paramyxovirus 

F protein samples from Dr. Robert Lamb’s laboratory (Bissonnette et al., 2009).  Using 

both their published protocol (3mM CuP) and the one described above (25µM CuP), I 

was able to demonstrate strong and specific crosslinking at residue 506, but not 505, 

replicating their published results (figure 24 B,A respectively).  In this figure, one can 

observe a clear increase in the ratio of F dimers (about 55kDa) to monomers (about 100 

kDa) using both protocols.   However, I was not able to demonstrate any specific 

crosslinking with my G2 or SSP mutants using either protocol (figure 24 C, D).  Under 

low CuP concentrations (25 µM), I do observe a band consistent in size (about 120 kDa) 

with an uncleaved G1G2 dimer (figure 24D).  However, I also see this band in untreated 

controls resolved under  non-reducing conditions (data not shown) and this band is seen 

consistently in all the G2 mutants without variation in the ratio of this potential dimer to 

the monomer.  Therefore, we have concluded this band is most likely background dimer 

formation.  A similar background level of dimer formation may be seen in the 

paramyxovirus F mutants (figure 24 A,B).  

To address the possibility that the G2 domains are not oriented symmetrically, I 

also tried crosslinking each G2 cysteine mutant with each of its four upstream and four 
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downstream neighboring residues.   This set of experiments also failed to yield any 

specific crosslinking. 

 

To address the possibility that the G2 helices maybe not be packed tightly enough 

for cysteine pairs to form a disulfide bond (2 Å), I used a bifunctional maleimide 

crosslinker with an 8Å linker arm, BMOE (Hamdan et al., 2002).  This non-oxidative 

crosslinker will form a covalent bond between two cysteine residues. I tried BMOE (0.02 

mM to 2.0mM) using both solubilized and dounce-homogenized samples at 4
o
, RT, and 

37
o
, over a range of reaction times (20 min to 120 min) without a positive result. 

We expected these crosslinking studies to show that the G2 TM domains associate 

with each other and with the TM1 (figure 22).  As the G2 TM is thought to be α-helical, 

we predicted a periodicity in disulfide bond forming which would allow us to determine 
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the inner and outer faces of the G2 TM domain (Bissonnette et al., 2009).  By extending 

our cysteine substitution library past the nominal borders of the TM domain and using a 

longer crosslinker, we hoped to account for the possibility that the TM domains may 

curve or tilt away from each other in such a way that only residues within a certain region 

of the helix are close enough form disulfide bonds (Alisio and Mueckler, 2004).  

However, as I was unable to demonstrate any specific G2:G2 or G2: SSP crosslinking 

similar to what we observed with the paramyxovirus controls, we were unable to 

elucidate the arrangement of the TM domains using this approach.   

Potential reasons for my negative results are manifold.  Despite the exhaustive 

search for appropriate crosslinking conditions, it is possible that I was unable to identify 

the specific reaction conditions necessary to induce crosslinking within GPC.  This 

hurdle may be related to the intersubunit zinc-binding domain (ZBD).  The zinc-

interacting cysteines may not be protected from crosslinking agents, even in the presence 

of excess zinc.  It is possible that at the concentrations of crosslinker needed to induce 

G2:G2 or G2:SSP dimers, the crosslinker is disrupting the ZBD, causing non-specific 

crosslinking or a collapse of the GPC trimer. It could also be that the helices are arranged 

in novel way so that the G2 domains are not facing each other or that the TM helices are 

spaced further apart and a crosslinker with a longer (than 8Å) arm is required.  
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Chapter 6: Conclusions and Future Directions 

 Arenaviruses continue to be a significant public health threat due to severity of 

illness caused and the lack of suitable treatments.  Therefore, the search continues for 

improved antiviral strategies and better understanding of arenavirus biology.  My 

dissertation research has centered on two important topics.  The first project, as detailed 

in chapter 2, addresses the question of how T-705 inhibits highly pathogenic 

arenaviruses.  Chapters 3-5 discuss the second thrust of my research that focuses on 

defining the inter-subunit interactions within GPC and how these interactions may affect 

fusion and drug sensitivity.  

Options for treating severe arenaviral hemorrhagic fever cases are limited to the 

off-label use of  ribavirin, which is known for its negative side effects, and transfer of 

immune plasma for JUNV patients (Borio et al., 2002; Chapman et al., 1999; Rusnak et 

al., 2009).  Thus, the development of alternative antivirals for use in arenaviral infection 

is critical.  T-705 has been shown to be an effective inhibitor of RNA viruses, but it had 

not been previously evaluated against highly pathogenic arenaviruses.  Studies in chapter 

two demonstrate for the first time that T-705 is effective at inhibiting the replication of 

highly pathogenic viruses in vitro.  Further, we show that T-705 works against these 

viruses in the middle of the viral life cycle and specifically inhibits viral transcription at 

concentrations similar to ribavirin. In contrast to ribavirin, T-705 showed very little 

reduction in cellular transcription activity, even at the highest doses tested.  These data 

indicate T-705 may have fewer off-target cellular effects and be a safe alternative to 

ribavirin for treatment of arenaviral infection. This study is an important step in the 

process of understanding how T-705 inhibits arenaviral replication and in the 
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development of T-705 for use as a treatment for arenaviral HF.  Our data are consistent 

with studies that show T-705 does not significantly inhibit IMPDH (Furuta et al., 2005) 

while ribavirin does (Graci and Cameron, 2006). It is known that T-705 RTP, likely acts 

as a purine analog against the influenza polymerase (Furuta et al., 2005).  Our data 

demonstrating that nearly all purine-based compounds showed a significant effect on T-

705 activity are consistent with this observation and suggest a conserved mechanism of 

action against viral RNA polymerases.  A  recent publication has shown that T-705 can 

be mutagenic in H1N1 influenza (Baranovich et al., 2013) serially passaged in tissue 

culture.  Interestingly, another very recent report demonstrates that T-705RTP can block 

nascent RNA chain elongation in crude RdRp preparations (Sangawa et al., 2013).  

Further studies will be needed to determine which of these mechanisms may be at play 

during arenavirus infection and to study the safety and efficacy of using T-705 to treat 

arenaviral infection in vivo.  Importantly, T-705 has completed phase 3 clinical trials in 

Japan and phase 2 clinical trials in the U.S. for the treatment of influenza infection. T-705 

was demonstrated to significantly reduce the symptoms of influenza infection and shorten 

the time to clear virus with an excellent safety record (DOD, 2013; in Furuta et al, 2013).  

Our studies and those done by others demonstrate that T-705 is effective against 

arenaviruses in tissue culture and in animal models (reviewed in Furuta et al, 2013).  

Taken together, T-705 is a very good candidate for further study in the treatment of 

arenaviral HF.  

Elucidating the detailed structure and function of GPC is critical to understanding 

and inhibiting membrane fusion.   Previous studies in our laboratory have shown that the 

interactions between the membrane proximal region of G2 and the extracellular loop of 
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SSP are key to the pH-sensitive triggering of fusion (York and Nunberg, 2009).  In 

chapter 3, I demonstrated a homotypic match between G2 and the ectodomain loop of 

SSP enhanced, but was not required, for fusion activity.  Instead, a match between G2 

and TM1 was shown to be necessary and sufficient for fusion competency. My work 

defined an essential sub-domain within SSP from residues P12-K33 and suggests that the 

TM domain begins at P12, not E17 as previously thought (Eichler et al., 2004).  I also 

show that this TM region is more sensitive to mutation than the second SSP TM domain 

(Agnihothram et al., 2007).  We further demonstrate that residues within this TM domain 

are key to drug sensitivity (T13, E17, N20).  These data reveal an important role for the 

first SSP TM region and indicate that sequence specific interactions with the G2 TM 

region are necessary for the proper geometry of GPC. 

This and previous work (York and Nunberg, 2009; York et al., 2008) 

demonstrating that some residues within the G2 TM domain are important for mediating 

fusion and drug sensitivity is consistent with the knowledge that the TM domains of 

class-I fusion proteins are more than simple membrane anchors (Kemble et al., 1994; 

Smith et al., 2012).  Studies show that in many of these TM domains, a degree of 

sequence specificity is required for fusion activity, that these domains are closely 

associated with each other (Bissonnette et al., 2009a; Chang et al., 2008; Smith et al., 

2012) and are important to protein folding and trimer formation (Smith et al., 2012).   

As GPC is unique among class-I fusion proteins in its retention of SSP, and given 

that the trimer has nine TM domains instead of three, it will have a unique arrangement 

of helices in the membrane.  By analogy to other class-I fusion proteins, we hypothesize 

that the G2 helices form a tight core that is closely associated with the SSP TM domains 
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(figure 22).  This arrangement seems likely because the G2 TM domain has clear 

hydrophilic and hydrophobic faces, as does SSP TM1. Additionally, side chain-specific 

interactions between the helices appear to be important for fusion and drug sensitivity.  

Further, we know that residues at the periphery of the membrane regions must be in close 

proximity to interact with each other (K33 in SSP with membrane proximal residues in 

G2) (Messina et al., 2012; York and Nunberg, 2009; York et al., 2008).  Given the 

difficulties inherent in crystallizing glycoproteins (Chasman, 2003; Forster et al., 2005; 

Shimizu et al., 2008), other approaches to elucidating the interactions within GPC should 

be explored.  I created a novel truncated construct, TMCON, to serve as a potential model 

for these TM interactions (chapter 4) and I attempted to map the arrangement of the TM 

domains within the GPC trimer using cysteine-scanning mutagenesis and crosslinking 

assays (chapter 5).   

Until the structure of the intact GPC complex can be determined, deciphering the 

structure of specific subdomains within GPC remains a valid approach.  I cloned and 

characterized the model construct, TMCON, to serve as a potential tool in this divide-

and-conquer approach to elucidating the relationship between the TM domains within 

GPC.  TMCON does not perform like wtJGPC, but it does retain some important 

functional properties, such as its ER-retention pattern and the abilities to form trimers and 

associate with wtJGPC.  Thus, this novel construct has the potential to be an informative 

model of the interactions between TM1 and the TM domain of G2.   However, additional 

questions regarding its structure and its interactions with membranes remain. For 

instance, I have shown that TMCON and wtJGPC can associated with each other, but the 

nature of this interaction is unclear.  We could examine the ability of wtJGPC to traffic 
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and mediate fusion when co-expressed with TMCON to determine if the interaction 

between these two proteins is detrimental to the functioning of wtJGPC.  Additionally, 

while I have demonstrated that TMCON is purified in membrane preps from insect cells, 

we may address the possibility that the construct maybe pelleted as aggregates by 

performing floatation assays.  We expect that these assays would show a significant 

portion of TMCON is membrane associated, as others have shown that insertion of Lassa 

GPC into the ER-membrane requires only one of the two SSP TM domains (Eichler et al, 

2004).  Further, assuming that TMCON is a bona-fide membrane-associated protein, it is 

essential to determine its topology in the membrane. To characterize the structure and 

orientation of TMCON in a membrane, protease protection assays in the presence and 

absence of liposomes can be done to determine which residues are protected and which 

are accessible to proteolysis. The resulting peptide fragments could be analyzed using 

silver-stained gels, mass spectrometry, and protein sequencing.  

 In chapter 5, I used a cysteine-scanning mutagenesis approach that has proven 

useful in mapping TM domains in other proteins (Amin et al., 2006; Bissonnette et al., 

2009a; Hamdan et al., 2002; Lee et al., 2006; Loo et al., 2004; Schwem and Fillingame, 

2006; Winston et al., 2005). However, as I was unable to achieve specific crosslinked 

products despite an exhaustive search of reaction conditions, we cannot make any 

definitive statements about the arrangement of the GPC TM domains.  It is possible that 

the G2 TM arrangement varies from the typical coiled central core, as has been suggested 

for Moloney murine leukemia virus (MoMuLV).  If the G2 TM domains are arranged in a 

similar fashion to the TM domains of the  MoMuLV glycoprotein, splayed  like a tripod 

(Forster et al., 2005; Löving et al., 2012), or are in a novel configuration  in which  the 
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TM domains are not tightly packed, they will not be amenable to crosslinking.  It is also 

possible that I was unable to find the reaction conditions that induce specific crosslinking 

and maintain the structural integrity of the GPC trimer.  Other crosslinking conditions, 

such as lysis buffer used, crosslinking in vivo, or using a longer crosslinker could be 

explored. Theoretically, if cysteine substitutions were made throughout all the TM 

domains in GPC, we could ascertain the TM organization of GPC even if the TM 

domains were not symmetrically arranged. However, this would be logistically 

unfeasible. Others in our laboratory are currently working to establish protocols for mass-

spectrometry (MS) analysis of GPC TM peptides.  If these studies are successful, another 

approach of using a heterobifunctional (sulfhydryl to non-specific) crosslinker may be 

informative.  Using a G2 cysteine mutant, we could perform a crosslinking reaction 

which would link the free cysteine nonspecifically to whichever TM domain(s) are 

nearby. After isolating crosslinked products on a gel, they could be analyzed using MS to 

narrow down the interacting domains within the TM region of GPC.  Other approaches to 

studying the structure of the TM region within GPC could include cryo-EM of viruses or 

virus-like particles (Forster et al., 2005; Zhang, et al, 2013) and EPR (Mchaourab et al., 

2011).   

Taken together, the works presented in this dissertation provide new insights into 

the action of T-705 arenaviral inhibition and the interactions within GPC, though much 

work remains to be done.  Absent any structural data of the TM domains, several 

important questions remain.  We do not know how the TM domains physically interact 

with each other nor do we know at which step(s) of the fusion process these interactions 

occur. Understanding the geometry within the TM region of GPC would be a great boon 
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to our knowledge of how SSP and G2 function together during fusion and may lead to 

novel improvements in fusion inhibitors.   
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