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Prion protein (PrP) is expressed on a wide variety of cells and plays an important 
role in the pathogenesis of transmissible spongiform encephalopathies. However, 
its normal function remains unclear. Mice that do not express PrP exhibit deficits 
in spatial memory and abnormalities in excitatory neurotransmission suggestive 
that PrP may function in the glutamatergic synapse. Here we show that transport 
of D-aspartate, a non-metabolized L-glutamate analog, through excitatory amino 
acid transporters (EAATs) was faster in astrocytes from PrP knockout (PrP KO) 
mice than in astrocytes from C57BL/10SnJ wildtype (WT) mice. Experiments 
using EAAT subtype-specific inhibitors demonstrated that in both WT and PrP 
KO astrocytes, the majority of transport was mediated by EAAT1. Furthermore, 
PrP KO astrocytes were more effective than WT astrocytes at alleviating L-
glutamate-mediated excitotoxic damage in both WT and PrP KO neuronal 
cultures. Thus, in this model, PrP KO astrocytes exerted a functional influence on 
neuronal survival and may therefore influence regulation of glutamatergic 
neurotransmission in vivo. 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CHAPTER ONE 
INTRODUCTION 

 

 Prion protein (PrP) is expressed in several mammalian tissues and is 

highly expressed in the central nervous system. While the precise function of PrP 

is unknown, studies suggest that PrP plays a role in many aspects of 

neurotransmission mediated by the neurotransmitter L-glutamate. Glutamatergic 

neurotransmission is dependent on L-glutamate availability in the synaptic cleft 

and subsequent activation of L-glutamate receptors. Specificity of activity is 

regulated by excitatory amino acid transporters (EAATs) expressed on neurons 

and astrocytes. The potential role PrP plays in neurotransmission and the pivotal 

role of EAATs in controlling L-glutamatergic neurotransmission provided the 

rationale to studying whether a function of PrP is to regulate concentrations of L-

glutamate through modulation of EAAT activity. 

 

1.1 Prion Protein 

Prion Protein (PrP) is an evolutionarily conserved protein expressed in a 

number of different species including fish, amphibians, birds, cervids, ungulates, 

rodents and primates (Aguzzi et al., 2008). The gene encoding PrP is located on 

chromosome 2 in mus musculus (Prnp) and chromosome 20 in homo sapiens 

(PRNP). In some species, including bovine, deer, elk, mouse, rat and sheep, the 

Prnp gene contains 3 exons, while in other species including hamsters and 

humans, the gene contains 2 exons. Uniquely, the entire reading frame is 

contained in one exon (Basler et al., 1986), which in mice is exon 3. Gene 

expression is controlled by sequences contained in the 5’-flanking region, first 

intron and 3’-untranslated sequences.  

 Similar to other membrane proteins, biosynthesis of PrP begins in the 

rough ER and traffics through the Golgi to its final location on the plasma 

membrane. In the rough ER, PrP is subject to post-translational modifications 

including removal of its N-terminal signal peptide, addition of a C-terminal 

glycosyl-phosphatidylinositol (GPI) anchor, addition of N-linked glycosylations 
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and formation of a disulfide bond. PrP then passes through the Golgi for further 

modifications before reaching the plasma membrane where it exists as a double 

glycosylated protein anchored to the plasma membrane in detergent- resistant 

lipid rafts via the GPI anchor. 

 PrP exists as a disordered amino terminal flexible domain (amino acid 

residues 23-124) and globular carboxyl terminal domain (amino acid residues 

125-226). The N-terminal domain contains a highly conserved octapeptide repeat 

region that is able to bind copper with µM affinity. The C-terminal domain 

contains three alpha helices (amino acid residues 144-154, 173-194 and 200-

220) and an anti-parallel beta sheet formed by beta strands 128-131 and 161-

164. A disulfide bond links cysteine residues 179 and 214.  

 

 
Figure 1.1 Prion Protein. a) NMR solution structure of elk PrP residues 121-231 (adapted from 

(Gossert et al., 2005)).  

 

 While the majority of PrP molecules are at the cell surface, a pool are 

constitutively cycling between the plasma membrane and endocytic 

compartments. Surface iodination of PrP revealed that a population of PrP 

molecules cycle between the plasma membrane and endocytic compartments 

with a transit time of 60 minutes (Shyng et al., 1993).  However the mechanism 

of endocytosis is controversial. Immunogold EM revealed PrP enriched in 

caveolae at the plasma membrane of CHO cells (Peters et al., 2003) suggesting 



 3 

a mechanism involving a caveolae-mediated endosomal pathway. However, 

stronger evidence exists suggesting PrP endocytosis is clathrin-mediated, which 

is unusual for GPI anchored proteins that lack an intracellular sequence 

necessary for interaction with endocytic adaptor proteins. Electron microscopy 

revealing PrP in clathrin-coated vesicles, prevention of internalization by 

disrupting clathrin lattices (Shyng et al., 1994) and studies using cells transfected 

with dynamin mutant K44A  (Magalhaes et al., 2002) strongly suggest clathrin is 

involved in endocytosis. Internalization of GPI anchored PrP may involve usage 

of its positively charged domain (KKRPKP) in the amino terminal region to 

interact with the extracellular region of an integral membrane protein that also 

contains a localization signal in its cytoplasmic domain for clathrin-mediated 

endocytosis. 

While GPI anchored proteins have many diverse functions, a definitive 

understanding of the physiological function of PrP is still unknown.  With the 

intent of understanding the function of PrP, two independent lines of PrP 

knockout mice were generated. The lines differed in the strategy used to disrupt 

Prnp gene expression: in Zurich PrP0/0 mice, a portion of exon 3 of the Prnp gene 

was replaced with a neomycin phosphotransferase (neo) gene (Bueler et al., 

1992) and in Edinburgh PrP-/- mice, a neo gene was inserted into exon 3 of the 

Prnp gene (Manson et al., 1994). In both lines of mice, there was a lack of overt 

disturbances in development or behavior (Bueler et al., 1992; Manson et al., 

1994). Though PrP KO mice did not obviously suggest a function for PrP, they 

did provide definitive evidence that expression of PrP was necessary for 

productive infection with transmissible spongiform encephalopathies (Bueler et 

al., 1993; Sailer et al., 1994). 

 Further examination of PrP knockout mice revealed several subtle 

abnormalities suggestive of varied physiological functions (Table 1). However, 

many of the functional studies compared PrP KO mice to PrP expressing mice 

with different genetic backgrounds. Both Zurich PrP0/0 and Edinburgh PrP-/- mice 

were constructed using a sub-strain of 129 embryonic stem cells. However, to 

maintain the PrP knockout phenotype, many subsequent lines were crossed to 
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different strains of mice resulting in a mixed background. Thus, in several 

studies, the possibility exists that the phenotype is a result of other genes whose 

alleles differ between the knockout and wild-type mice compared. The only 

studies to compare mice of the same genetic background (Edinburgh PrP-/- 

versus 129/Ola mice) demonstrated PrP KO mice to have an abnormal quantity 

and morphology of mitochondria (Miele et al., 2002), altered regulation of amyloid 

beta production in the brain (Parkin et al., 2007), altered oxidative homeostasis in 

the brain (Wong et al., 2001) and an inability to induce long term potentiation 

(LTP) in the hippocampus (Manson et al., 1995). 
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Phenotype of PrP KO 
mice1 

Implied Function 
of PrP 

Background Strains of 
Mice Compared 2,3 Citation 

Did not have LTP deficits 
when exposed to amyloid-β 
oligomers 

Amyloid-β oligomer 
receptor 

PrP-/- bc C57BL.6 vs. C57 
BL/6 
PrP0/0 hybrid vs. C57BL6 
“hybrid” 

Lauren et al., 
2009 
Balducci et 
al., 2010 4 

Chronic demylenating 
polyneuropathy 5 Myelin maintenance PrP0/0 bc Balb/c vs. Balb/c Bremer et al.,  

Increased susceptibility to 
kainate induced seizures 
Altered expression of 
glutamate and GABA 
receptor subunits 

Maintaining neuronal 
homeostasis 

PrP0/0 bc C57BL/6 vs. 
C57BL/6 

Rangel et al., 
2009 

Inefficient iron transport. 
Decreased iron content in    
red blood cells 

Iron uptake and 
transport PrP0/0 bc FVB vs. FVB Singh et al., 

2009 

Increased lung colonization of 
immortalized PrP0/0 

mesenchymal embryonic 
cells 

Control of metastasis 
formation 

PrP0/0 mixed vs. F1 (129/Sv 
X C57BL/6J) 

Muras et al., 
2009 

Reduced induction of T-
helper cell cytokines 
Poor control of autoimmune 
and infectious diseases 

Late T-cell activation 
antigen 
 

PrP0/0 bc FVB/N vs. FVB/N Ingram et al., 
2009 

Reduced olfactory detection 5 

Reduced paired pulse 
plasticity at dendrodendritic 
synapses 5 

Influences 
processing of 
sensory information 
by the olfactory 
system 

PrP0/0 mixed vs. F1 (129/Sv 
X C57BL/6J) 
PrP-/- vs. 129/Ola 

Le Pichon et 
al., 2009 

Increased anxiety and poor 
performance in social 
recognition asks following 
brain injury influencing 
cortical development 

Aids in recovery 
following brain injury 
Influences cortical 
development relating 
to short term memory 

PrP0/0 mixed vs. F1 (129/Sv 
X C57BL/6J) 
 

Xikota et al., 
2008 

Slower rate of astrocyte 
maturation 
Reduced neuritogenesis 

Receptor for stress 
inducible protein 
Mediates astrocyte 
development 
Modulates neuron-
glia crosstalk 

PrP0/0 mixed vs. F1 (129/Sv 
X C57BL/6J) 
PrP-/- bc C57BL/10 vs., 
Prnpwt/wt 

Arantes et al., 
2009 
Caetano et 
al., 2008 
Lima et al., 
2007 

Delayed feedback inhibition 
of hypothalamic-pituitary-
adrenal (HPA) axis following 
acute stress 

Regulation of HPA 
axis PrP-/- vs. 129/Ola 

Sanchez-
Alavez et al., 
2008 

Abnormal functioning and 
lack of LTP formation in 
cerebellar granule cells 
Poor performance in motor 
control tasks 

Granule cell 
development 

PrP0/0 mixed vs. F2 
(129S1/SvImJ X C57BL/6J) 
 

Prestori et al., 
2008 

Decreased defense 
responses when confronted 
with coral snakes 

Modulation of innate 
fear and panic 
related behaviors 

PrP0/0 mixed vs. F1 (129/Sv 
X C57BL/6J) 

Lobao-Soares 
et al., 2008 
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Phenotype of PrP KO 
mice1 

Implied Function 
of PrP 

Background Strains of 
Mice Compared 2,3 Citation 

Higher activity of neutral and 
acid sphingomyelinase 

Regulation of 
sphingolipid 
associated signaling 

PrP0/0 mixed vs. F1 (129/Sv 
X C57BL/6J) 

Schmalzbauer 
et al., 2008 

Increased and prolonged 
NMDA evoked currents in 
hippocampal neurons 
Increased susceptibility to 
NMDA mediated neuronal 
death 

Inhibitor of NR2D 
subunit of NMDA 
receptor 

Littermates of PrP0/0 X 129 
or FVB) 

Khosravani et 
al., 2008 

Decreased infiltration of 
inflammatory cells and 
activated microglia following 
encephalomyocarditis virus 
infection 
Increased neuronal apoptosis 

Role in induction of 
inflammation and 
inhibitor of apoptosis 

PrP0/0 mixed vs. F1 (Prnp0/+ 

X Prnp0/+) 

Nasu-
Nishimura et 
al., 2008 

Weaker 
afterhyperpolarizations in 
cererbellar and hippocampal 
neurons due to stronger 
calcium buffering and 
extrusion rates 

Role in neuronal 
calcium homeostasis PrP0/0 bc FVB/N vs. FVB/N Powell et al., 

2008 

Increased mitochondrial 
respiration and free radical 
production 
Defects in mitochondrial 
morphology 
Altered superoxide dismutase 
activities 

Protection against 
oxidative stress PrP-/- vs. 129/Ola 

Paterson et 
al., 2008 
Lobao-Soares 
et al., 20054 

Altered dorsal root ganglion 
axonal growth (substrate 
dependent) 

Interacts with 
vitronectin 

PrP0/0 mixed vs. F1 (129/Sv 
X C57BL/6J) 
PrP-/- bc C57BL/10 vs., 
Prnpwt/wt 

Hajj et al., 
2007 

Resistant to thermal and 
visceral inflammatory 
nociception 

Role in nocicpetive 
transmission 
mediated by 
inflammation 

PrP0/0 mixed vs. F1 (129/Sv 
X C57BL/6J) 
 

Meotti et al., 
2007 

Decreased [Ca2+] I levels 
Decreased neuronal viability 
to H2O2 

H2O2 sensor 
PrP0/0 mixed vs. F1 (129/Sv 
X C57BL/6J) 
 

Krebs et al., 
2007 

Higher percentage of CD8+ 
spleen dendritic cells 

Influences 
development of CD8- 
dendritic cells 

PrP0/0 bc C57BL/6 vs. 
C57Bl/6 

Martínez del 
Hoyo G, 2006 

Decreased Ca2+ influx via L-
type voltage gated Ca2+ 

channels 
Ca2+ homeostasis  Littermates of C57Bl6 x 

129Sv Prnp+/- mice  
Fuhrmann et 
al., 2006 

Reduced allogenic T Cell 
response 

Role in 
immunological 
synapse between 
dendritic cells and T 
cells 

PrP0/0 bc C57BL/6 vs. 
C57Bl/6 

Ballerini et al., 
2006 
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Phenotype of PrP KO 
mice1 

Implied Function 
of PrP 

Background Strains of 
Mice Compared 2,3 Citation 

Increased infarct volume 
following transient or 
permanent ischemia 
Reduced Akt activation 
Enhanced caspase 3 
activation 

Anti-apoptotic 
PrP0/0 mixed vs. F1 (129/Sv 
X C57BL/6J) 
 

Weise et al., 
2006 

Delay in neural differentiation 
Role in neurogenesis 
and adult neural 
development 

PrP-/- bc C57BL.6 vs. C57 
BL/6 

Steele et al., 
2006 

Impaired self renewal of 
hematopoietic stem cells 

Supports self renewal 
of hematopoietic 
stem cells 

PrP-/- bc four or six times to 
C57 BL/6J CD45.2 vs. 
CD45.2 C57BL/6 

Zhang et al., 
2006 

Arrested NCAM dependent 
neurite outgrowth 

Nervous system 
development using 
NCAM as a signaling 
receptor 

PrP0/0 bc C57BL/6 vs. 
C57Bl/6 

Santuccione 
et al., 2005 

Impaired hippocampal 
dependent spatial learning 
Impaired LTP in dentate gyrus 

Regulator of 
glutamatergic 
signaling 

PrP-/- bc two times to 
C57BL.6 vs. C57 BL/6 
PrP-/- vs. 129/Ola 

Criado et al., 
20055 

Reduced copper content in 
synaptosomes 

Regulates copper 
concentrations in 
synaptosomes 

PrP0/0 hybrid vs. C57BL6 
and 129 “hybrid” 

Giese et al., 
2005 

Increased male susceptibility 
to ischemia 

Neuroprotection 
against ischemia PrP0/0 hybrid vs. C57BL/6 

Sakurai-
Yamashita et 
al., 2005 

Decreased anxiety and 
locomotion in response to 
acute stress 

Modulation of anxiety 
and muscle activity in 
response to stress 

PrP0/0 mixed vs. F1 (129/Sv 
X C57BL/6J) 
 

Nico et al., 
2005 

Increased infarct size (200% 
after ischemia, increased 
Erk1/2, STAT I and caspase 3 

Neuroprotective, anti-
apoptotic 

PrP0/0 mixed vs. F1 (129/Sv 
X C57BL/6J) 

Spudich et al., 
2005 

 
 

1 Phenotype of PrP KO mice or primary cells harvested from PrP KO mice 
2 PrP 0/0 = Zurich PrP KO mice on a mixed background. PrP -/- = Edinburgh PrP KO mice on a 129/Ola 
background 
3 bc = backcross to the wild-type strain (as indicated) for at least eight generations 
4 Disputed results or conclusions of the study 
5 Phenotypic rescue in PrP expressing transgenic lines of mice 
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 A number of studies, albeit using mice of different backgrounds, have also 

reported synaptic abnormalities relating to L-glutamatergic neurotransmission. 

PrP KO mice suffer from deficits in hippocampal spatial memory (Criado et al., 

2005), have abnormal responses to NMDA receptor antagonist  MK-801(Coitinho 

et al., 2002)  and exhibit reduced excitatory post-synaptic potentials (Carleton et 

al., 2001) and afterhyperpolarization potentials (Mallucci et al., 2002). Decreased 

levels of LTP in PrP KO mice has been rescued by expression either of human 

PrP (Whittington et al., 1995; Asante et al., 2004) or by neuronal expression of 

mouse PrP (Criado et al., 2005). Primary neurons cultured from PrP KO mice 

exhibit increased NMDA receptor activation and an increased vulnerability to 

NMDA mediated excitotoxicity (Khosravani et al., 2008). Collectively, these 

observations suggest that PrP KO mice suffer from deficits in neurotransmission, 

consistent with attenuated glutamate signaling, which could result from excessive 

clearance of L-glutamate from the synaptic space. 

 

 

1.2 The Glutamatergic System 

 L-glutamate is the primary excitatory neurotransmitter in the mammalian 

nervous system, mediating neuronal communication that includes fast synaptic 

transmission and higher order processing necessary for development and 

learning and memory. L-glutamate is sequestered intracellularly maintaining an 

intracellular-extracellular concentration gradient of several million-fold (Zerangue 

and Kavanaugh, 1996; Herman and Jahr, 2007). Thus, preserving homeostatic 

levels of L-glutamate is important in maintaining specificity of signaling and 

appropriate receptor activation. 

 The highest concentration of L-glutamate in the CNS is found in nerve 

terminals (Ottersen et al., 1992) . Here, L-glutamate is packaged into synaptic 

vesicles by proton-dependent vesicular transporter, V-GLUT. Once an action 

potential reaches the nerve terminal, vesicles loaded with L-glutamate fuse with 

the plasma membrane and release their contents extracellularly. In the synaptic 

space, L-glutamate can activate G-protein coupled metabotropic L-glutamate 
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receptors and ionotropic L-glutamate receptors. Diffusion of L-glutamate also 

permits activation of receptors extrasynaptically. 

 Metabotropic L-glutamate receptors are G-protein coupled receptors 

whose activation play a modulatory role by regulating the production of 

intracellular messengers and consequently activating or inhibiting second 

messenger systems. The receptors belong to Class C G-protein coupled 

receptors, characterized by 7 transmembrane helices connected by 3 

intracellular and 3 extracellular loops. To date, there have been 8 metabotropic 

glutamate receptors cloned that are divided into 3 groups. Group I includes 

mGlu1 and mGlu5 that are localized post-synaptically on neurons and who are 

coupled to phosplipase C. Group II includes mGlu2 and mGlu3, found both pre- 

and post-synaptically and are negatively coupled to adenylyl cyclase. Group III 

includes mGlu4, mGlu6, mGlu7 and mGlu8 that are localized pre-synaptically. 

The synaptic location of these receptors allows them to modulate both 

neurotransmitter release and regulation of fast acting ionotropic L-glutamate 

receptors.    

 Fast-acting ionotropic L-glutamate receptors are L-glutamate gated ion 

channels that permit an influx of sodium and/or calcium from the extracellular 

environment to the inside of the cell. Binding of L-glutamate to low affinity AMPA 

or Kainate receptors (who also preferentially bind AMPA and kainate, 

respectively) causes an influx of sodium, which serves to depolarize the cell. In 

contrast, the high affinity NMDA receptor acts as a coincidence detector, 

requiring glycine and L-glutamate binding, as well as previous depolarization of 

the membrane in order to permit the entrance of sodium and calcium into the cell. 

Compared to AMPA and kainate receptors, NMDA receptors have slow 

deactivation times and are critical in mediating higher order processing. 

Several distinct subtype compositions have been identified differing in 

their sensitivities to pharmacological agents, their channel opening times, their 

distribution in the brain and their relative concentrations during development.  

Most NMDA receptors are heteromeric molecules consisting of two obligatory 

NR1 subunits and two NR2 subunits. Four isoforms of the NR2 subunit have 
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been identified, NR2A, NR2B, NR2C and NR2D. These isoforms are distinct in 

determining characteristics of the NMDA receptor, which influence channel 

kinetics. The type of NR2 subunit present determines deactivation times of the 

receptor in response to L-glutamate. The deactivation times span a 50-fold range 

with NR2A subunits deactivating fastest and NR2D subunits slowest (NR2A > 

NR2C = NR2B >> NR2D). NMDA receptor subunit composition and subsequent 

receptor deactivation kinetics reflect the nature of the synapse in which they are 

expressed. NR2A containing receptors are present at most mature synapses 

while NR2B containing receptors are expressed predominantly during 

development. The changes in the molecular makeup of NMDARs are part of 

what defines the “critical period” during development in which neuronal circuits 

are fine tuned (Cull-Candy and Leszkiewicz, 2004).  

 L-glutamate is the major excitatory neurotransmitter in the CNS and as 

such, extracellular levels of L-glutamate must be tightly controlled to maintain 

specificity of signaling. Depending on the location of the synapse, L-glutamate 

signaling has various functions throughout the CNS such as mediating 

experience dependent synaptic plasticity through the phenomena of long-term 

potentiation (LTP) and long-term depression (LTD), development and fine-tuning 

of excitatory synapses, the perception of pain and modulation of signaling by 

other neurotransmitters such as dopamine. The concentration of L-glutamate in 

the extracellular space and the amount of time it remains in the space 

determines the number of L-glutamate receptors activated. Therefore, keeping 

extracellular concentrations of L-glutamate low allows for a high signal-to-noise 

ratio in synaptic and extrasynaptic transmission (Danbolt 2001).  

Furthermore, keeping the extracellular concentration of L-glutamate low 

prevents neuronal death. Excessive activation of L-glutamate receptors and 

prolonged excitatory synaptic transmission can lead to neuronal death through 

excitotoxicity (Olney 1996). L-glutamate mediated excitotoxicity is mediated by a 

sustained activation of L-glutamate receptors. Because of its high permeability to 

calcium, the NMDA receptor in particular mediates the majority of excitotoxic 

insult although AMPA and Kainate receptors play a role in sustained 
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depolarization of neurons (Salinska et al., 2005; Waxman and Lynch 2005). The 

molecular events leading to neuronal death are unclear although altered calcium 

homeostasis plays a distinctive role in dysregulation of signal transduction 

pathways, activation of calcium dependent calpains (Wu et al., 2004), and 

activation of metabolic pathways that generate free radicals (Salinska et al., 

2005). Neuronal death follows excitotoxicity and therapeutic strategies aimed 

against excitotoxcity are hoped to delay pathogenesis of many neurodegerative 

diseases.  

Thus, maintaining basal concentrations of L-glutamate is critical in 

maintaining signal specificity and preventing neuronal death. Levels of L-

glutamate following vesicular release are believed to reach millimolar levels 

during excitatory transmission (Clements 1992) but must be rapidly cleared to 

markedly lower (0.1-1µM) homeostatic levels (Herman and Jahr 2007). 

Extracellular L-glutamate concentrations are regulated by the activity of 

excitatory amino acid transporters present on neurons and astrocytes. 

 

1.3 Excitatory Amino Acid Transporters 

  Unlike other neurotransmitters, such as acetylcholine whose extracellular 

concentrations are controlled by enzymatic degradation, rapid termination of L-

glutamate signaling is achieved by cellular uptake. The majority of L-glutamate 

transport is mediated by high affinity, Na+ dependent excitatory amino acid 

transporters (EAATs). To date, five EAAT subtypes with high affinity for L-

glutamate have been identified.  EAAT1 (GLAST) and EAAT2 (GLT-1) are 

primarily glial transporters responsible for the bulk of L-glutamate clearance. 

EAAT3 (EAAC), EAAT4 and EAAT5 are expressed by neurons.   

Levels of transporter subtypes are regionally, developmentally and functionally 

specific.  

 Characterization of the EAATs was aided by molecular pharmacology, 

used to both distinguish between subtypes and understand the transport 

process. Experiments aimed at understanding basic amino acid substrate 

selectivity identified D-aspartate as an inhibitor of L-glutamate uptake and 
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excellent alternate substrate with a Km in glial cultures of 60-80µM compared to 

L-glutamate whose Km is 30-90µM (reviewed in Bridges et al., 1999). One of the 

earliest competitive inhibitors characterized, effective at all five EAATs and a 

substrate of EAAT1-4, was B-threo-hydroxyaspartate (ß-THA). Subsequently, ß-

THA has been used as a backbone for the development of other EAAT inhibitors 

incuding ß-threo-benzyloxyaspartate (TBOA), a non-substrate pan-EAAT 

inhibitor with Ki values in the 1-10µM range.  

To date, the majority of inhibitors exhibiting a high degree of selectivity for 

one transporter subtype over the others are limited to EAAT2. Potent inhibitors of 

EAAT2 include the classic inhibitor dihydrokainate (DHK, Ki = 23µM) and, more 

recently, WAY213613 (IC50 = 85nM) (Bridges et al., 1999; Dunlop et al., 2005). 

Alternate substrates at EAAT1, 4-MG and L-serine-O-sulfate can be used to 

distinguish EAAT 1 from EAAT2 activity. Recently, a selective EAAT1 inhibitor, 

UCPH 101, has been developed (Jensen et al., 2009). The usage of 

pharmacology, either through subtype selective inhibitors or through subtype 

specific alternate substrates, has allowed understanding the delineation of 

subtype-specific roles in the transport of L-glutamate. 

Glial transporters, EAAT1 and EAAT2 are expressed throughout the 

mature CNS and are responsible for the majority of L-glutamate clearance. 

However, there is developmental and regional enrichment of one subtype over 

the other. During development, EAAT1 is the dominant transporter expressed 

and functional though protein levels of both transporters increase dramatically 

during synaptogenesis (Shibata et al., 1996; Sutherland et al., 1996). In the adult 

however, EAAT1 expression and function dominates in Bergmann glia of the 

cerebellum. In other regions of the brain, EAAT2 is the major glutamate 

transporter functional though EAAT1 expression remains high (Danbolt, 2001). 

Whether the same astrocyte expresses both EAAT1 and EAAT2 is controversial; 

immunogold labeling demonstrated co-expression (Haugeto et al., 1996) while 

analysis of promoter activity demonstrated a non-overlapping pattern of 

expression (Regan et al., 2007). The importance of the relative stoichiometry of 

one subtype over the other in a single astrocyte or region is unknown. EAAT2 
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knockout mice do suffer from lethal spontaneous seizures (Tanaka et al., 1997). 

However, levels of neuronal death following selective pharmacological 

inactivation of EAAT2 in adult mice did not mirror that when all glutamate 

transporters were rendered inactive (Selkirk et al., 2005), suggesting that 

following stress, EAAT1 can rapidly be mobilized for dominant function.  

In contrast to glial L-glutamate transporters, neuronal transporters are 

considered to make a minor contribution to overall L-glutamate clearance. 

EAAT3 expression is highest in the hippocampus, cerebellum, basal ganglia, 

forebrain and spinal cord. EAAT4 expression is highest on Purkinje neurons in 

the cerebellum and EAAT5 expression is limited to the retina. EAAT3 and EAAT4 

are expressed postsynaptically and are though to provide L-glutamate as a 

precursor for GABA synthesis (Sepkuty et al., 2002).   

 

Figure 1.2 The Glutamatergic Synapse.  
Following an action potential in the presynaptic neuron, L-glutamate vesicles fuse with the plasma 

membrane and release L-glutamate into the synaptic cleft. L-glutamate can bind to and activate 

NMDA, AMPA, Kainate and metabotropic L-glutamate receptors causing fast or long-lasting 
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changes in the activated neuron. The L-glutamate signal is terminated by transport of L-glutamate 

into astrocytes by EAAT1 and EAAT2. L-glutamate is then rapidly synthesized into glutamine 

(Gln) by glutamine synthetase. L-Glutamate is also transported by EAAT3 and Xct. EAAT 3 is 

localized to neurons and provides L- glutamate for GABA synthesis. System Xct, localized to 

astrocytes, exchanges glutamate for cysteine, which is subsequently used for gluthathione 

synthesis. PrP is expressed on astrocytes and neurons in the synapse. 

The EAATs are defined as symporters, transporting the substrate by co-

transport and counter-transport of ions (Bunch et al., 2009). The overall goal of 

transport is to accumulate L-glutamate intracellularly against its concentration 

gradient. This is powered by the co-transport of 3 Na+ ions and one H+ ion. 

Following release of co-transported L-glutamate and ions, one K+ ion is counter-

transported and released to the extracellular space (Zerangue and Kavanaugh, 

1996). The EAATs also conduct a thermodynamically uncoupled Cl- flux, thereby 

acting as a Cl- channel (Wadiche et al., 1995a).  

 The transport cycle occurs by an alternating access mechanism 

(Kavanaugh, 1998; Yernool et al., 2004) or cow chute mechanism (personal 

communication, Terri Mavencamp) in which two major conformations of the 

EAATs are employed. The first conformation is an outward conformation where 

the substrate-binding site faces the synaptic space. The second conformation is 

inward, allowing the substrate-binding site to be accessible to the cytoplasm of 

the cell. The full cycle of transport begins with binding of the co-transported ions 

(3 Na+, 1 H+) and substrate to the transporter in the outward conformation. This 

leads to translocation of the transporter resulting in an inwards conformation. The 

co-transported ions and substrate are released and intracellular K+ binds. 

Consequently, the substrate binding site reorients to the outside (Tzingounis and 

Wadiche, 2007). Possibly due to the steps required sequester L-glutamate 

intracellulary, the full cycle is relatively slow, estimated to be between 60-80ms 

(Wadiche et al., 1995b). Reconciling the slow transport cycle with the mM 

amounts of L-glutamate present in the synaptic cleft during vesicular release 

suggest that the EAATs initially function as L-glutamate buffers, terminating 

excitatory signaling by trapping L-glutamate (Diamond et al., 1997). 
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 Much of the structure of the EAATs has been inferred following the 

elucidation of the crystal structure of a bacterial orthologue of the EAATs, a 

sodium-dependent Asp transporter from Pyrococcus horikoshii, GltPh  (Yernool et 

al., 2004). The membrane transporter is composed of a bowl shaped homomer 

with three independent subunits. Each subunit of the trimer is capable of a 

transport cycle. The monomer contains an intercellular N and C termini, eight 

transmembrane (TM) regions and two hairpin loops. The glutamate binding site is 

at the bottom of the bowl, between the 2 hairpin loops, which are hypothesized to 

act as gates to the binding site (Boudker et al., 2007). The EAATs are 

glycosylated in the hydrophilic loop between TM 3 and TM4 although the number 

of glycosylations in the region differ among the EAAT subtypes (Seal and Amara, 

1999). 

 The overall purpose of the EAATs is to maintain homeostatic levels of L-

glutamate. Too much L-glutamate can lead to neuronal death through initiation of 

excitotoxic cascades. The impact of glial protection from L-glutamate mediated 

excitotoxicity through EAAT activity has been demonstrated in primary cultures 

altering glia/neuron ratios and by pharmacological blockade of the EAATs 

(Rosenberg and Aizenman, 1989; Robinson et al., 1993; Rothstein et al., 1996). 

Several neurodegenerative diseases have implicated low EAAT activity as 

contributing to pathology, including amyotrophic lateral sclerosis (ALS) (Rothstein 

et al., 1992), HIV-associated dementia (Sardar et al., 1999), and Alzheimer’s 

Disease (Masliah et al., 1996). Thus, increasing activity has been a therapeutic 

target. In a mouse model of ALS, increased EAAT expression through 

administration of β-lactam antibiotics delayed neuronal loss (Rothstein et al., 

2005). However, high EAAT activity can also decrease the amount of synaptic L-

glutamate necessary for proper L-glutamatergic neurotransmission. Elevated L-

glutamate transport has led to decreased LTP in the hippocampus (Filosa et al., 

2009) and impaired hippocampal dependent learning (Carmona et al., 2009). 

Hyperactive EAAT activity might contribute to reduced L-glutamatergic signaling 

observed in schizophrenia (Miyamoto et al., 2005). Thus, the EAATs play a 

powerful role in carefully regulating activation of L-glutamate receptors, ensuring 
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enough L-glutamate can be present for signaling without having too much to 

initiate excitotoxic pathways. Dysfunction in EAAT activity may be one of the 

causes of disease in Transmissible Spongiform Encephalopathies. 
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Abstract  
Prion protein (PrP) is expressed on a wide variety of cells and plays an important 

role in the pathogenesis of transmissible spongiform encephalopathies. However, 

its normal function remains unclear. Mice that do not express PrP exhibit deficits 

in spatial memory and abnormalities in excitatory neurotransmission suggestive 

that PrP may function in the glutamatergic synapse. Here we show that transport 

of D-aspartate, a non-metabolized L-glutamate analog, through excitatory amino 

acid transporters (EAATs) was faster in astrocytes from PrP knockout (PrP KO) 

mice than in astrocytes from C57BL/10SnJ wildtype (WT) mice. Experiments 

using EAAT subtype-specific inhibitors demonstrated that in both WT and PrP 

KO astrocytes, the majority of transport was mediated by EAAT1. Furthermore, 

PrP KO astrocytes were more effective than WT astrocytes at alleviating L-

glutamate-mediated excitotoxic damage in both WT and PrP KO neuronal 

cultures. Thus, in this model, PrP KO astrocytes exerted a functional influence on 

neuronal survival and may therefore influence regulation of glutamatergic 

neurotransmission in vivo. 



 29 

Introduction 
 Prion protein (PrP) is an evolutionarily conserved, 

glycophosphatidylinositol-anchored membrane protein expressed in the 

mammalian nervous system, as well as in many other tissues. Expression in the 

CNS begins early in development and remains throughout adulthood (Miele et 

al., 2003). Despite its wide expression, the function of PrP remains enigmatic. 

While PrP knockout mice (PrP KO) do not suffer from overt disturbances in 

development or behavior (Bueler et al., 1992; Manson et al., 1994), they do 

exhibit subtle abnormalities which suggest PrP involvement in various cellular 

processes including neuroprotection against oxidative stress, support for neurite 

outgrowth, and maintenance of myelinated axons (reviewed in Aguzzi et al., 

2008). In particular, PrP KO mice suffer from deficits in hippocampal spatial 

memory (Criado et al., 2005) and NMDA receptor-related neurophysiological and 

behavioral abnormalities, suggestive of a function of PrP within the glutamatergic 

synapse (Collinge et al., 1994; Manson et al., 1994; Carleton et al., 2001; 

Mallucci et al., 2002; Criado et al., 2005; Khosravani et al., 2008). These 

dysfunctions in PrP KO mice could be attributable to a variety of underlying 

mechanisms involving aberrant signaling through glutamate receptors on 

neurons and/or abnormal neurotransmitter regulation by glutamate transporters 

on astrocytes. 

 One of the major functions of astrocytes is to sequester the excitatory 

neurotransmitter L-glutamate intracellularly and thereby regulate activation of 

excitatory amino acid receptors (Anderson and Swanson, 2000; Bridges and 

Esslinger, 2005; Eulenburg and Gomeza, 2010). Clearance of L-glutamate is 

primarily mediated by high affinity, sodium-dependent excitatory amino acid 

transporters (EAATs). Two of the five identified transporter isoforms, EAAT1 and 

EAAT2, are highly expressed on astrocytes in the cerebellum, hippocampus and 

cerebral cortex. Both transporters are located on glial plasma membranes in 

close apposition to the neuropil and, in combination, are responsible for the bulk 

of L-glutamate transport in the CNS (Danbolt, 2001). The EAATs play a pivotal 

role in controlling excitatory signaling as highlighted both by their anatomical 
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specificity (Anderson and Swanson, 2000) and ability to protect neurons from 

glutamate-mediated excitotoxicity (Robinson et al., 1993; Rothstein et al., 1996).  

An inability of astrocytes to regulate L-glutamate neurotransmission might 

lead to deficits in excitatory neurotransmission and, in particular may contribute 

to deficits observed in PrP KO mice. In the present experiments, we carried out 

detailed kinetic studies on EAAT-mediated glutamate transport in astrocytes 

prepared from C57BL/10SnJ wildtype (WT) mice and from PrP KO mice 

containing 98.5% sequence identity to the C57BL/10SnJ genotype. We found 

that astrocytes from PrP KO mice exhibited higher rates of sodium dependent 

transport of the EAAT-selective substrate D-aspartate than did astrocytes from 

WT PrP expressing mice. Using inhibitors selective for EAAT subtypes, we 

examined the type of transporters functional in both PrP KO and WT astrocytes 

and investigated whether PrP related changes in activity could influence neuronal 

vulnerability to glutamate-mediated excitotoxicity. These results provide a 

potential explanation for the behavioral abnormalities observed in PrP KO mice. 
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Materials and Methods  
Animals.  

C57BL/10SnJ mice (WT) were purchased from Jackson Labs (Bar Harbor, 

ME). Homozygous PrP null (PrP KO) mice on the 129/Ola background (Manson 

et al., 1994) were backcrossed nine times to C57BL/10SnJ mice selecting for the 

PrP KO allele by PCR identification at each cross (Race et al., 2009). Single 

nucleotide polymorphism (SNP) analysis was performed on DNA from PrP KO 

mice, and results were compared to DNA from C57BL/10SnJ mice (Taconic 

Farms Inc., Rensselaer, NY). Non-C57BL/10SnJ SNPs, i.e. from the 129/Ola 

mouse strain donor of the knockout Prnp gene, were identified only on 

chromosome 2, adjacent to the Prnp gene locus. 

Astrocyte and Neuron Cell Cultures.  

Mixed glial cells were harvested from the cortices of WT and KO 1-2 day 

old mice using modifications of the method of McCarthy and de Vellis (McCarthy 

and de Vellis, 1980).  Cortices, with meninges removed, were triturated, plated in 

T-25 flasks with DMEM/F12 (Invitrogen, Carlsbad, CA) containing 15% fetal 

bovine serum (HyClone, Omaha, NE) and maintained in a 5% CO2 incubator at 

37°C. Approximately seven days later, when cultures were confluent, microglia 

and oligodendrocytes were removed from the astrocyte cultures by orbital 

shaking (overnight, 250 rpm). Purified astrocyte cultures were harvested with 

trypsin. For D-aspartate uptake assays, astrocytes were reseeded at 1 x 105 

cells/well in 12 well plates and maintained with fresh media every three days. In 

some experiments, astrocytes were assayed seven days post-seeding, upon 

reaching confluence. In other experiments, confluent cultures were treated with 

0.25mM dibutyryl cyclic AMP (dbcAMP) (Sigma Aldrich, St. Louis, MO) for an 

additional ten days with media changes including dbcAMP every three days. The 

inclusion of dbcAMP induces biochemical and morphological changes more 

representative of astrocytes in vivo including greater EAAT expression (Schlag et 

al., 1998). Consistent with other reports (Schlag et al., 1998), we found that 

treatment with dbcAMP significantly increased EAAT1 and EAAT2 expression as 

judged by analysis of mRNA by quantitative PCR (Figure 3). 
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Primary cortical neurons were prepared essentially as described by Kaech 

and Banker (Kaech and Banker, 2006). Briefly, whole cerebral neocortices 

removed from either WT or PrP KO embryos (14-16 days gestation) were 

digested for 30 minutes with 0.25% trypsin (Invitrogen, Carlsbad, CA) and 

washed four times in Hanks Balanced Salt Solution (HBSS) (Invitrogen, 

Carlsbad, CA).  Cells, 5 x 104 cells/well, were plated onto a bed of 2.5 x 104 

purified astrocytes that had been plated in 24 well plates two days earlier. 

Neuron cultures were initially seeded in MEM with 10% heat - inactivated horse 

serum (HyClone, Omaha, NE) and 0.25% glucose. The media was completely 

replaced 6 hours later with Neurobasal media (500µl) (Invitrogen, Carlsbad, CA) 

supplemented with Glutamax (Invitrogen, Carlsbad, CA), B-27 with antioxidants 

(Invitrogen, Carlsbad, CA) and 5µM cytosine arabinoside (Sigma Aldrich, St. 

Louis, MO) to halt cell proliferation. Cells were fed once at day 7 by replacing half 

the media with fresh media. Neuronal cultures were used 14 days later, 

coinciding with NMDA receptor expression (Choi et al., 1987).  

PrP immunocytochemistry. 

 PrP staining was performed on live primary astrocytes using a 1:1000 

dilution of humanized monoclonal anti-PrP antibody D13 (Williamson et al., 

1998). Following 1 hour incubation at room temperature, cells were fixed in 3.7% 

formaldehyde in PBS for 20 minutes, washed in PBS, permeabilized in 0.1% 

Triton x100, 0.1% sodium citrate for ten minutes, washed in PBS and labeled 

with rabbit anti-GFAP (1:1500) (Dako, Carpinteria, CA) followed by Alexa 

Fluor568 conjugated goat anti-rabbit IgG (1:3000) (Invitrogen, Carlsbad, CA) to 

identify astrocytes and Alexa Fluor488 goat anti-human IgG (1:3000) (Invitrogen, 

Carlsbad, CA) to visualize PrP staining. Fluorescent images were photographed 

on an upright microscope (Olympus BX51) with a 10X objective using Microsuite 

Analysis software. Control wells stained with secondary antibodies alone did not 

show immunofluorescence.  

Surface PrP staining and FACS analysis. 

 Purified WT and KO astrocytes were rinsed with PBS and removed from 

T-25 flasks by incubation with 5mM EDTA for 15 minutes at 37°C. PrP staining 
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was performed on 200,000 live primary astrocytes using 1 µg monoclonal 

antibody D13, specific for PrP, in 50µL PBS. Following 1 hour incubation at 37°C, 

cells were fixed in 3.7% formaldehyde in PBS for 20 minutes, blocked in 0.1M 

glycine in PBS for 30 minutes and incubated for 1 hour at RT with 1 µg Alexa 

Fluor488 goat anti-human IgG (Invitrogen, Carlsbad, CA) in 50µL PBS. Control 

tubes of WT and KO astrocytes were fixed, blocked and incubated with Alexa 

Fluor488 goat anti-human IgG alone. Data was collected by FACSCanto II flow 

cytometer (Becton Dickinson, San Jose CA) and analyzed using FlowJo (Tree 

Star, Ashland, OR). 

Na+ dependent D-aspartate uptake assays.   

Confluent astrocytes in 12 well plates were rinsed with a physiological 

transport buffer (138 mM NaCl, 11 mM D-glucose, 5.3 mM KCl, 0.4 mM KH2PO4, 

0.3 mM Na2HPO4, 1.1 mM CaCl2, 0.7 mM MgSO4, 10 mM HEPES, pH 7.4) and 

pre-incubated at 37 °C for 5 min. Transport rates were determined using 3H-D-

aspartate, which is effectively transported as an EAAT substrate, yet not 

metabolized by cells following uptake (Koch et al., 1999). Transport assays were 

carried out in which uptake was initiated by replacing the preincubation buffer 

with buffer containing 3H-D-aspartate (5-300µM, 2-12µCi/ml). Following a five-

minute incubation, uptake was terminated by 3 consecutive washes with ice-cold 

buffer. Cells were lysed with 0.4N NaOH for 24 hours and analyzed for 

radioactivity by liquid scintillation counting and for protein by the bicinchoninic 

acid method (Pierce, Rockford, IL). Uptake [pmol D-asp/min/mg protein] was 

calculated and corrected for background radiolabel accumulation at 4°C. 

Previous studies confirmed that uptake measured under these conditions was 

linear with respect to time and protein content (Esslinger et al., 2005). Values are 

reported as mean + SEM pmol/min/mg with each “n” value equaling the number 

of determinations, each done in duplicate. Data was fit to the Michaelis-Menten 

equation using non-linear regression (Prism 5). Transport of D-aspartate was 

also measured in the presence of selective EAAT inhibitors: L-serine-O-sulfate 

(LSOS) (Sigma Aldrich, St. Louis, MO), dihydrokainate (DHK) (Tocris Bioscience, 
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Ellisville, MO), and TBOA (Tocris Bioscience, Ellisville, MO)), which were added 

simultaneously at the indicated concentrations with 5µM 3H-D-aspartate.  

Quantitative RT-PCR Analysis.   

Purified astrocytes, 1 x 104, were seeded onto 24 well plates. Upon 

reaching confluence, some wells were treated with 0.25mM dbcAMP for an 

additional ten days. Confluent astrocytes were harvested with trypsin and lysed 

using Qiashredder (Qiagen, Valencia, CA). Neuron – astrocyte cocultures as 

described above were also harvested with trysin and lysed using Qiashredder 

after 14 days in vitro. Total RNA was isolated using RNeasy mini kit with DNAse 

treatment (Qiagen, Valencia, CA). RNA was reverse-transcribed into cDNA using 

reverse transcription reagents with random hexamers (Applied Biosystems, 

Foster City, CA). The cDNA product was then amplified in a new tube using gene 

expression assays specific for the EAAT1 gene (Slc1a3), EAAT2 gene (Slc1a2), 

and mouse β-actin gene (Applied Biosystems, Foster City, CA). Gene expression 

was quantified using the first cycle number at which each sample reached a fixed 

fluorescence threshold (CΤ). The quantity of expression of each gene was 

normalized to mouse β-actin (∆ CΤ). Fold expression = 2 -∆ CΤ 

Immunoblotting 

Purified WT astrocyte cultures were washed briefly in 5ml cold PBS. 

Astrocytes were lysed by shaking incubation with 1ml cold lysis buffer (5mM Tris 

HCl p.H 7.4, 150mM NaCl, 5mM EDTA, 0.5% Triton X-100, 0.5% deoxycholate, 

1X Protease Inhibitor Cocktail) at 4°C for 5 minutes. Cell lysates were placed in a 

pre-cooled 1.5ml centrifuge tube and centrifuged at 100g for 15 minutes. 

Supernatants were collected and stored at -20°C. Protein concentration was 

quantified using the bicinchoninic acid method (Pierce, Rockford,IL). cell lysates 

(10ug) were boiled in 1X Sample Buffer containing Reducing Agent (Invitrogen, 

Carlsbad, CA) for 3 minutes and loaded onto 4-12% Bis Tris gels (for EAAT1) 

and 12% Tris-Glycine gels (for EAAT2). 4-12% Bis-Tris gels, used for assessing 

monomeric and multimeric EAAT2 that runs at 64kDa and above, were run at 

120 V for 4 hours in MOPS buffer. Proteins were electrophoretically transferred 

onto a polyvinylidene fluoride membrane (37V, O/N). Membranes were blocked 
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in TBS with 0.1% tween 20 containing 5% milk. Membranes were probed with 

either antibodies specific for EAAT1 (1:2000, Tocris Cookson, St. Louis MO), or 

actin (1:10,000, Sigma Aldrich, St. Louis, MO) in TBS–tween for one hour at 

room temperature. Following three ten-minute washes with TBS-tween, 

membranes were probed with appropriate horseradish peroxidase conjugated 

secondary antibodies (EAAT 2 goat anti rabbit (1:3000); actin: goat anti-mouse 

(1:3000)) diluted in TBS tween for one hour at room temperature. Visualization 

was performed using chemiluminescence, according to manufacturer’s 

recommendations (GE Healthcare Life Sciences, Pittsburg, PA). 

 

L-Glutamate-mediated excitotoxicity. 

At 14 days in vitro, neuron-glial co-cultures were exposed to varying 

concentrations of L-glutamate (10-50µM) in 500µl fresh Neurobasal (Invitrogen, 

Carlsbad, CA) media for ten minutes at room temperature. Following exposure, 

cells were gently rinsed with HBSS, after which half their original media (250µl) 

was added back to the well combined with 250µl fresh Neurobasal media with 

B27 supplement to maintain original culture conditions. Twenty-four hours 

following L-glutamate exposure, surviving neurons were enumerated. Cells were 

fixed with 3.7% formaldehyde for 15 minutes, washed with PBS, permeabilized 

with 0.1% Triton x100, 0.1% sodium citrate for ten minutes rinsed with PBS, and 

labeled with mouse anti- MAP2 (1:1000) (Millipore, Billerica, MA) to identify 

neurons followed by incubation with Alexa Fluor 488 conjugated goat anti- mouse 

IgG (1:3000) (Invitrogen, Carlsbad, CA). Nuclei were visualized by incubation 

with DAPI (Invitrogen, Carlsbad, CA).  To count neurons, three randomly chosen 

fields per well were photographed. The surviving MAP2-positive neuronal cell 

bodies that colocalized with DAPI stained nuclei were quantified (Shin et al., 

2005). Neuronal survival following L-glutamate exposure was expressed as 

percent survived relative to the total number of neurons counted in wells that had 

not been exposed to L-glutamate. Data were obtained from 4 independent co-

culture experiments. 
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Statistical Analysis 

Statistical analysis was performed using non-parametric Mann-Whitney tests. 

Calculations were performed on Prism GraphPad software (version 5). Statistical 

significance was reported for values P<0.05.  

 
 
Results  

PrP expression on primary astrocytes 
To confirm PrP expression on WT primary C57BL/10 astrocytes in vitro, 

cortical astrocytes were purified from 1-2 day old mice and cultured in vitro for 7 

days as described in Methods. Astrocytes from PrP KO mice were used as 

negative controls. Cells were labeled with anti-GFAP, to identify astrocytes, and 

with a monoclonal antibody, D13, reactive with PrP.  As expected, the majority of 

cells in both WT and PrP KO cultures were astrocytes and PrP immunoreactivity 

was only observed on WT astrocytes and not on PrP KO astrocytes  (Figure 2-

1A). Primary WT and PrP KO astrocytes were also examined by flow cytometry 

where live cells were labeled with D13. Surface expression of PrP was only 

observed on WT astrocytes (Figure 2-1B).  

 
Figure 2-1 

Comparison of PrP expression on primary astrocytes harvested from WT and PrP KO mice 

 A. Live primary astrocytes from WT and PrP KO mice were labeled with anti-PrP monoclonal 

antibody, D13 (green), fixed, permeabilized and labeled with anti-GFAP, specific for astrocytes 

(red). Primary antibodies were visualized following incubation with Alexa Fluor-conjugated 
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secondary antibodies as described in Methods. Nuclei were stained with DAPI. Results show 

strong PrP staining on the cell surface of WT astrocytes and no PrP staining on PrPKO 

astrocytes. 

B. Study of surface PrP expression on WT and PrP KO primary astrocytes by flow cytometry. Live 

astrocytes were labeled with primary antibody, D13 anti-PrP. D13 immunoreactivity was 

measured by FACS following fixation and incubation with an Alexa Fluor-conjugated secondary 

antibody as described in Methods. Graph shows cell frequency plotted versus fluorescence 

intensity. WT astrocytes showed strong cell surface PrP staining and KO astrocytes showed no 

detectable PrP staining.  

 
Comparison of EAAT activity in WT and PrP KO astrocytes  

We next examined the potential influence of PrP expression on L-

glutamate homeostasis by analyzing EAAT–mediated transport by astrocytes 

prepared from WT and PrP KO mice. Both EAAT1 and EAAT2 are localized to 

astrocytes and are known to be responsible for the bulk of CNS glutamate 

transport (Danbolt, 2001). Sodium-dependent transport assays were performed 

using the non-metabolized EAAT substrate, D-aspartate, at a range of 

concentrations. As shown in Figure 2-2A, transport rates between WT and PrP 

KO astrocytes clearly diverged at concentrations of D-aspartate greater than 

50µM. When fit to the Michaelis Menten equation, the Vmax values were 1.7 fold 

higher in the PrP KO astrocytes compared to WT astrocytes (687 vs. 407 

pmol/min/mg, Table 1-1 and Figure 2-2C).  

Previous studies have demonstrated that treatment of primary astrocytes 

with dibutyryl-cyclic AMP (dbcAMP) produces morphological and biochemical 

changes more representative of astrocytes found in vivo (e.g. increased 

expression of EAATs, GFAP, glutamine synthetase, and neurotransmitter 

receptors) (Khelil et al., 1990; Le Prince et al., 1991; Miller et al., 1994; Jackson 

et al., 1995; Hosli et al., 1997; Swanson et al., 1997; Schlag et al., 1998; 

Daginakatte et al., 2008). Therefore, we also studied WT versus PrP KO 

astrocytes treated for ten days with dbcAMP (0.25mM).  Initial experiments also 

confirmed that transport rates in the untreated cells were not significantly altered 

by the additional ten days in culture (data not shown).  When dbcAMP-treated 

astrocytes were stained with D13 anti PrP, PrP immunoreactivity was only 
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observed in WT astrocytes (data not shown). In transport experiments, PrP KO 

astrocytes treated with dbcAMP exhibited a 2.5 fold increase in Vmax for D-

aspartate transport when compared to WT astrocytes treated with dbcAMP (1768 

vs. 697 pmol/min/mg, Figure 2-2B, Figure 2-2D, and Table 2-1). This increase 

was larger than the 1.7 fold increase observed in untreated astrocytes (Table 2-

1).  Thus, the highest Vmax for  D-aspartate transport were found in cells lacking 

PrP that had been treated with dbcAMP.  

Though differences in Vmax were observed between WT and PrP KO 

astrocytes both before and after treatment with dbcAMP, Km values were only 

significantly different when astrocytes were cultured with dbcAMP (66 vs. 173µM, 

Table 2-1).  Alterations in Vmax values may reflect changes in either transporter 

activity or expression. However, the observed change in Km between WT and 

PrP KO astrocytes following dbcAMP treatment suggest that factors associated 

with PrP may have a direct influence on transporter activity in the differentiated 

cells.  
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Figure 2-2  

Comparison of D-aspartate transport by EAATs in WT and PrP KO astrocytes. 

A. EAAT activity was measured in primary astrocytes derived from WT and PrP KO neonatal 

mice cultured 7 days post-harvest. Astrocytes were incubated with 5µM, 10µM, 30µM, 75µM or 

150µM D-aspartate, a non-metabolized analog of L-glutamate, for 5 minutes. Transport rate at 

each concentration was measured (solid and open circles) and then fit to the Michaelis Menten 

equation using non-linear regression (solid and dashed curves). Results are averages of data 

from multiple independent observations (N=13 for WT, N=9 for PrP KO). Results show faster 

transport by PrP KO astrocytes.  

B. EAAT activity was measured in primary astrocytes, which were cultured in the presence of 

dbcAMP for an additional 10 days. This treatment induced morphological and biochemical 

changes in astrocytes including the increase in number of functional transporters. Astrocytes 

were incubated with 5µM, 10µM, 30µM, 75µM, 150µM or 300µM D-aspartate for 5 minutes. As 

expected, transport rates increased in both WT and PrP KO astrocytes (note the scale bar 

difference between Figure 2-2A and 2-2B). Transport rate at each concentration of D-aspartate 

(solid and open circles) was fit to the Michaelis Menten equation using non-linear regression 

(solid and dashed curves). Data are averages of multiple independent observations (N=11 for 

WT, N=9 for PrP KO). Results show faster transport by PrP KO astrocytes.  
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C. The Vmax of EAAT-mediated transport for each experiment examining primary astrocytes 7 

days post harvest is shown. WT astrocytes are respresented with solid circles and KO astrocytes 

represented as solid squares.  Results show higher Vmax values in PrP KO astrocytes. 

D. Similar to 2-2C, the Vmax of EAAT-mediated transport for each experiment is shown examining 

primary astrocytes treated with dbcAMP for ten additional days. Results show higher Vmax values 

in dbcAMP-treated PrP KO astrocytes.  

 

Table 2-1. Kinetics of D-aspartate transport in WT and PrP KO 

astrocytes 

Genotype Treatment n Km
1 Vmax

2 Fold 
Change3 

WT None 13 40 + 8 407 + 29 
KO None 9 63 + 19 687 + 614 1.7 + 0.19 x 

WT dbcAMP 11 66 + 10 697 + 57 
KO dbcAMP 9 173 + 296 1768 + 1005 2.5 + 0.2 x 

 
Data from Figure 2-2 were fit by non-linear regression to the Michaelis 

Menten equation. n is the number of independent observations. Vmax and Km 

values are mean + SEM. 
1 µM 
2 pmol/min/mg protein 
3 Fold increase in Vmax 
4 p = 0.0007, comparison of Vmax in WT vs. PrP KO astrocytes. All statistics 

were done using non-parametric Mann-Whitney u-test. 
5 p = 0.0005, comparison of Vmax in dbcAMP-treated WT vs. PrP KO 

astrocytes 
6p = 0.002, comparison of Km in dbcAMP-treated WT vs. PrP KO astrocytes. 
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Evaluation of EAAT1 and EAAT2 expression and activity in WT and PrP KO 
astrocytes 
 The increased Vmax values for transport observed in PrP KO astrocytes 

could be due to alterations in transporter expression levels. Quantitative RT-PCR 

was performed using mRNA from WT and PrP KO astrocytes. In untreated 

astrocytes, EAAT1 expression was approximately 16-fold higher than EAAT2 

expression (30% vs. 2% of actin expression, Figure 2-3A). As expected, 

dbcAMP-treated astrocytes showed increased expression of both EAAT1 and 

EAAT2 mRNA (Schlag et al., 1998). In dbcAMP treated astrocytes, EAAT1 

expression was approximately 12.5-fold higher than EAAT2 (100% vs. 7% of 

actin expression, Figure 2-3A). Therefore EAAT1 appeared to be the major 

transporter observed in both untreated and dbcAMP-treated astrocytes. In 

addition, EAAT1 mRNA levels were similar in PrP KO vs. WT astrocytes, and 

likewise, EAAT2 mRNA levels were similar in these same cells (Figure 2-3A). 

Therefore the increased transport observed in PrP KO astrocytes compared to 

WT astrocytes did not correlate with increased production of either EAAT1 or 

EAAT2 transporter mRNA. 

Though dbcAMP treatment produces morphological and biochemical 

changes more representative of astrocytes in vivo, including an increase of both 

EAAT1 and EAAT2, co-culture with neurons can specifically induce EAAT2 

expression (Gegelashvili et al., 1997; Swanson et al., 1997). Therefore, we also 

evaluated EAAT subtype expression in WT and PrP KO astrocyte-neuron co-

cultures. Co-culture with neurons increased EAAT2 expression to 30% of actin 

expression, which was also detectable at the protein level (Figure 2-3B). 

However, EAAT1 expression was also increased in astrocyte-neuron co-cultures 

to 100% of actin expression, though upregulation did not differ from what was 

observed in dbcAMP astrocytes. Despite a 10-fold increase in EAAT2 expression 

specific to co-culture with neurons, however, EAAT1 mRNA expression was still 

higher than EAAT2 expression (100% vs. 30% of actin expression).  

  

 

 



 42 

A. 

 
B. 

 
 

Figure 2-3 EAAT expression in WT and PrP KO astrocytes 

A. Analysis of EAAT1 and EAAT2 in WT and PrP KO astrocytes by real time RT-PCR. 

EAAT1 and EAAT2 mRNA levels were quantified in WT and PrP KO (KO) astrocytes 7 days 

following purification (as defined in Methods), following an additional 10 day treatment with 

0.25mM dbcAMP (as described in Methods) or following 14 day co-culture with neurons of the 

same genotype. Values shown are average ∆CT+ SEM of four - seven cultures where results 

were normalized to mouse ß actin. A low ∆CT value corresponds to higher amount of transcript 

detected. Though dbcAMP treatment and co-culture with neurons increased EAAT2 expression, 
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EAAT1 expression was always higher in astrocyte cultures. In no comparison did PrP KO and WT 

astrocytes differ from each other significantly in EAAT mRNA expression. 

B. Immunoblot of EAAT2 in WT astrocytes. EAAT2 immunoblot of lysates prepared from 

astrocytes 7 days following harvest (A) or following 14 day co-culture with WT neurons (A+N). 

EAAT 2 expression, which is undetectable in primary astrocytes, is upregulated when astrocytes 

are co-cultured with neurons.   

 

 To assess the contribution of individual EAAT subtypes to the total 

observed transport of D-aspartate in WT and PrP KO astrocytes, transport of 

5µM D-aspartate was measured in the presence of inhibitors that preferentially 

act on individual EAAT subtypes (Bridges and Esslinger, 2005). In each of the 

cultures, activity was markedly reduced in the presence of EAAT1 selective 

inhibitor, LSOS (i.e. remaining activity was 20-30% of control measurements in 

the presence of 500µM LSOS, Table 2-2).  Consistent with these results, the 

inclusion of the EAAT2 selective inhibitor, dihydrokainate (DHK, 

300µM), produced much less inhibition and the remaining activity ranged from 

73-89% of control (Table 2-2).  Thus, the majority of uptake observed was 

mediated by EAAT1 as predicted by our mRNA expression data (Figure 3A and 

3B). This was similar to previous reports of primary in vitro astrocyte cultures, 

including those treated with dbcAMP (Duan et al., 1999; Munir et al., 2000; Lin et 

al., 2001; Adolph et al., 2007).  

Because of the marked increase in EAAT2 mRNA expression observed in 

astrocyte-neuron co-cultures, the pharmacological profile of WT and PrP KO co-

cultures was also assessed. In all co-cultures, D-aspartate activity was markedly 

reduced in the presence of EAAT1 selective inhibitor, LSOS (i.e. remaining 

activity was 20-32% of control measurements, Table 2-2), while activity in the 

presence of EAAT2 selective inhibitor, DHK, produced much less inhibition (i.e. 

remaining activity was 73-77% of control measurements, Table 2-2). Thus, while 

EAAT2 mRNA and protein expression was increased in these co-cultures, its 

contribution to L-glutamate transport was masked by the high amounts of EAAT1 

expression. 
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Table 2-2. D-aspartate transport in WT and PrP KO astrocytes in the 
presence of various EAAT inhibitors 

 
 

 
% activity retained in the presence of EAAT 

Inhibitors1 

Genotype    Treatment2 D-asp transport3         
(pmol/min/mg) 

LSOS    
(EAAT1) 

DHK 
 (EAAT2) 

TBOA  
(EAAT 1-5) 

WT  None 30 + 2 18 + 4 % 76 + 11 % 7 + 4 % 

PrP KO  None 31 + 3 20 + 4 % 89 + 8 % 8 + 4 % 

WT dbcAMP 39 + 7  30 + 6 % 82 + 6 % 11 + 3 % 

PrP KO dbcAMP 38 + 2 26 + 3 % 73 + 13 % 9 + 3 % 

WT Neurons 25 + 0 32 + 1 % 77 + 5 % 6 + 2 % 

PrP KO Neurons 27 + 0 20 + 1 % 73 + 8 % 5 + 2 % 
 

1 Na+ dependent transport of 5µM D-aspartate was measured in the presence of 

500µM LSOS, 300µM DHK or 500µM TBOA. These blockers were included in 

the assays at concentrations estimated to block at least 80% of either EAAT1 or 

EAAT2 activity. TBOA was used as a control for maximal inhibition with 

specificity for both EAAT1 and EAAT2. Activity retained (% control) is shown as 

mean + SEM of four independent observations.  
2 WT and PrP KO were cultured for 7 days as described in Method, treated for an 

additional ten days with 0.25mM dbcAMP to increase EAAT expression or were 

cultured in the presence of neurons, as described in Methods for 14 days. 
3 transport was measured at a concentration of 5µM D-aspartate. 
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Comparison of sensitivity of WT and PrP KO neurons to glutamate-
mediated excitotoxicity 

 Numerous studies have concluded that inadequate clearance of L-

glutamate by astrocytes can lead to excitotoxic neuronal death through excessive 

activation of ionotropic excitatory amino acid receptors, especially the NMDA 

subtype (Rosenberg and Aizenman, 1989; Choi, 1992; Speliotes et al., 1994). 

Therefore, we tested the ability of WT and PrP KO astrocytes to protect neurons 

of the same genotype from L-glutamate-mediated excitoxicity in vitro. After 14 

days in culture, coinciding with NMDA receptor expression and the excitotoxic 

vulnerability of neurons, the co-cultures of astrocytes and neurons were exposed 

for ten minutes to L-glutamate at concentrations ranging from 10µM to 50µM. 

The number of surviving neurons was quantified based on MAP2 

immunoreactivity 24 hours later as previously described by Shin et al (Shin et al., 

2005). Compared to untreated controls, exposure to 20µM L-glutamate caused a 

slight reduction in the number of both WT and PrP KO neurons (Figure 2-4A and 

2-4B), although the morphology of WT and PrP KO neurons remained similar to 

untreated controls (not shown). In contrast, exposure to 30µM and 40µM L-

glutamate led to significantly reduced survival of neurons in the WT cultures 

compared to neurons in the PrP KO cultures (Figure 2-5A). Furthermore, the 

surviving neurons exhibited a decreased number of neurites and altered neurite 

morphology (Figure 2-4C-F). At 50µM L-glutamate, both WT and PrP KO cultures 

showed similar damage (Figure 2-4G and 2-4H). Thus, the increased EAAT 

activity observed in the PrP KO cultures correlated with an increased resistance 

to damage by a window (30µM and 40µM) of L-glutamate concentrations 

compared to WT neurons cultured with WT astrocytes. 



 46 

 
Figure 2-4 
Neuronal sensitivity to L-glutamate-mediated excitotoxicity.  

Neuronal cultures derived from WT or PrP KO mice (gestational period 14-16) were plated onto a 

bed of purified WT or PrP KO astrocytes, respectively, and co-cultured for 14 days as described 

in Methods. On day 14, coinciding with NMDA receptor expression, co-cultures were exposed to 

20µM (A-B), 30µM (C-D), 40µM (E-F) and 50µM (G-H) L-glutamate for 10 minutes. 24 hours 

following exposure, co-cultures were fixed, permeabilized, and stained with anti-MAP2 to identify 

neurons. MAP2 staining was visualized following incubation with an Alexa Fluor-conjugated 

secondary antibody. Nuclei were visualized with DAPI. WT neurons showed more damage than 

PrP KO neurons at glutamate concentrations of 30 and 40µM.  
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Figure 2-5 

Increased astrocytic protection against L-glutamate-mediated excitotoxicity by PrP KO 

astrocytes. 

A. Percent of MAP-2-positive WT or PrP KO neurons in neuron/astrocyte co-cultures 24 hours 

following a ten minute L-glutamate exposure (30µM or 40µM). The data (mean + SEM) were 

obtained from four independent co-culture experiments. Results show increased toxicity in 

cultures with WT neurons co-cultured with WT astrocytes. Cultures of WT neurons and PrP 

KO astrocytes showed significantly less toxicity. Experiments in which PrP KO neurons were 

plated on WT astrocytes yielded variable results (data not shown), which are most likely the 

result of contaminating PrP KO astrocytes from preparations of PrP KO neurons.  

B. Percent of MAP-2 positive neurons in neuron/astrocytes co-cultures 24 hours following a ten 

minute exposure to NMDA. The data (mean + SEM) were obtained from three independent 

co-culture experiments as described in panel A. In the presence of NMDA, increased 

neurotoxicity was seen in PrP KO co-cultures compared to WT co-cultures. 

 

We next examined if PrP KO astrocyte cultures could similarly provide 

increased protection to WT neurons. WT neurons were grown on a bed of 

purified PrP KO astrocytes in the presence of 5µM cytosine arabinoside (as 

described in Methods) to prevent WT astrocyte contamination and growth. After 

exposure to 30µM and 40µM, WT neurons exhibited a higher degree of survival 

when cultured on PrP KO astrocytes than when cultured on WT astrocytes 

(Figure 2-5A). The levels of survival were similar to those observed when PrP KO 

neurons were cultured with PrP KO astrocytes (Figure 2-5A). These data 

demonstrated that PrP KO astrocytes were able to uniformly lessen the extent of 

excitotoxic neuronal loss in both WT and PrP KO co-cultures. 
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A previous report showed that PrP KO neurons were more vulnerable to 

excitotoxicity than WT neurons when NMDA was used to induce the insult 

(Khosravani et al. 2008). This was opposite to the results we observed using L-

glutamate as the excitotoxic agonist. To study whether these differences might 

be due to methodological differences or, more likely, to the inability of EAATs to 

clear NMDA from the extracellular space, we tested the vulnerability of our 

cultures to NMDA.  When 1mM NMDA was added to our cultures in place of L-

glutamate, KO neurons had a lower survival than did WT neurons (Figure 2-5B), 

consistent with Khosravani et al. Taken together, these results suggest that 

because L-glutamate is an EAAT substrate, the increased clearance by PrP KO 

astrocytes functioned to counteract the oversensitivity of PrP KO neurons to 

stimulation by excitatory receptor agonists. 

 

Discussion 

In our kinetic and pharmacological characterization of primary astrocyte 

cultures, we observed increased EAAT activity in cells from PrP KO mice 

compared to PrP expressing WT mice. This finding was observed in astrocytes 

cultured both in the absence and presence of dbcAMP, which has been shown to 

induce biochemical and morphological characteristics of astrocytes observed in 

vivo (Khelil et al., 1990; Le Prince et al., 1991; Miller et al., 1994; Jackson et al., 

1995; Hosli et al., 1997; Swanson et al., 1997; Schlag et al., 1998; Daginakatte et 

al., 2008). Furthermore, increased transport by PrP KO astrocytes was shown to 

be functionally significant as KO astrocytes protected both KO and WT neurons 

from L-glutamate-mediated excitotoxicity to a greater extent than did WT 

astrocytes. Levels of L-glutamate are believed to reach millimolar levels in the 

synaptic cleft during excitatory transmission (Clements et al., 1992) and are 

rapidly cleared to markedly lower (0.1-1µM) homeostatic levels (Herman and 

Jahr 2007). Therefore, the differences in Vmax observed between PrP KO and WT 

astrocytes could have a marked influence on transmitter clearance and 

glutamatergic signaling.  
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Though the kinetic and physiological data clearly suggests that PrP KO 

astrocytes have a greater capacity to transport L-glutamate, the underlying 

mechanisms for increased EAAT activity have been difficult to ascertain.  We 

observed increased EAAT1 and EAAT2 activity in PrP KO versus WT astrocytes 

without increased expression of either transporter. Given the very high levels of 

EAAT protein present in these cultures, it has, however, been difficult to 

accurately correlate expression with activity (Schlag et al., 1998). As an 

alternative to higher total levels of EAAT protein, increased activity could be due 

to indirect mechanisms that affect surface expression of the transporters and/or 

changes in intrinsic activity, though we currently do not have data to differentiate 

between these processes. As opposed to the changes in Vmax, the difference in 

Km between dbcAMP-treated WT and PrP KO astrocytes argues for a direct 

modulation of the transporters resulting in changed affinity for L-glutamate.  L-

Glutamate transporters are subject to interactions with modulating proteins 

(Jackson et al., 2001) and posttranslational modifications that can result in 

altered transporter function  (Adolph et al. 2007; Duan et al. 1999; Lin et al. 2001; 

Munir et al. 2000, Schlag et al. 1998). PrP expression may be involved in such 

modifications; we observed an increase in PrP mRNA expression following 

dbcAMP treatment in WT astrocytes. The localization of PrP and EAATs to lipid 

rafts may provide an environment conducive to interaction between these 

molecules (Butchbach et al. 2004; Naslavsky et al. 1997). As functional data 

indicate the majority of the transport quantified in the present experiments. 

Including astrocyte-neuron co-cultures, is mediated by EAAT1, it suggests that it 

is this subtype that is altered in the PrP KO astrocytes and leaves open the 

issues as to whether or not PrP expression may also influence EAAT2 and 

EAAT3.  

In contrast to our findings, a previous study reported that cultures of 

astrocytes expressing PrP transported L-glutamate at a faster rate than did PrP 

KO astrocytes and that this difference was likely attributable to increases in Km 

without a change in Vmax (Brown and Mohn 1999). However, the decease in the 

rate of transport in the PrP KO astrocytes was only reported at a single 



 50 

concentration (100 µM).  A number of methodological differences, including the 

use of 3H-L- glutamate as a substrate rather than 3H-D-aspartate, determinations 

of background and specific uptake, as well as treating the cells with dbcAMP, 

make direct comparisons difficult. The most notable difference between the two 

studies, however, concerns the genetics of the strains used to generate the cell 

cultures. In the Brown and Mohn study, the PrP WT mice were (129/Sv(ev) x 

C57BL/6J) F1 hybrids, while PrP KO mice were homozygous for a random 

mixture of 129/Sv(ev) and C57BL/6J genes. Thus, the background genes of 

these PrP KO mice differed completely from the WT mice used. In contrast, the 

PrP KO mice used in our experiments were backcrossed nine times to 

C57BL/10SnJ mice, which was used as the WT for comparison.  Therefore, in 

our PrP KO mice, only the Prnp (PrP) gene itself and areas immediately adjacent 

to the Prnp gene were still of strain 129/Ola origin. It is possible that these 

adjacent genes might also contribute to the differences observed in our 

experiments.   

Astrocytic EAATs mediate the fine balance between having sufficient L-

glutamate in the synapse for neuronal signaling without exceeding the threshold 

that would trigger excitotoxic pathology. To test if the increased transport 

exhibited by PrP KO astrocytes was physiologically relevant, we studied the 

toxicity of L-glutamate on mixed cortical cultures, where differences in transport 

capacity have previously been shown to modulate susceptibility to excitotoxicity 

(Rosenberg and Aizenman, 1989; Robinson et al., 1993; Rothstein et al., 1996). 

In our experiments, PrP KO astrocytes treated with dbcAMP exhibited the 

highest levels of transport (Table 2-1). Notably, co-culturing astrocytes with 

neurons induces many of the same morphological and biochemical changes 

induced by dbcAMP, including EAAT1 and EAAT2 expression (Gegelashvili et 

al., 1997; Schlag et al., 1998; Perego et al., 2000). When co-cultures contained 

PrP KO astrocytes, we found decreased evidence of excitotoxicity within a 

narrow range of L-glutamate concentrations (Figure 2-5A), suggesting that 

enhanced glutamate transport by PrP KO astrocytes, possibly at the rates seen 

in dbcAMP-treated PrP KO astrocyte cultures, lessened neuronal death. 
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However, this protection from L-glutamate-mediated excitotoxicity is 

distinct from the increased neuronal vulnerability of PrP KO neurons to NMDA-

mediated excitotoxicity observed in our experiments (Figure 2-5B) and by others 

(Khosravani et al 2008).  Exposure to NMDA demonstrated that PrP KO neurons 

are intrinsically more vulnerable than WT neurons to excitotoxic insults induced 

by excessive NMDA receptor activation. While L-glutamate and NMDA are both 

agonists at the NMDA receptor, L-glutamate transporters do not transport NMDA. 

Thus, when NMDA was added to the mixed neuron-astrocyte co-cultures (Figure 

2-5B), the experiment reflected the direct effect of NMDA on PrP KO and WT 

neurons, as the EAATs could not transport NMDA and decrease its effective 

concentration. In contrast, when L-glutamate was added (Figure 2-5A), astrocytic 

transport of L-glutamate was able to alter its concentration, in agreement with the 

D-aspartate uptake measurements, and reduce the excitotoxic challenge.  

Unfortunately, the fragility of neurons precluded direct assays of transport 

capacity in the co-cultures. Thus, increased transport of L-glutamate by PrP KO 

astrocytes appeared to be effective in protecting PrP KO neurons from death 

despite an increased vulnerability to excitotoxic injury. Similar results were 

observed in the G93A SOD1 mouse model of amyotrophic lateral sclerosis where 

a drug-induced increase in EAAT activity (approximately 2-fold) was shown to be 

neuroprotective in vitro and delayed neuronal loss in vivo (Rothstein et al., 2005). 

Increased clearance of L-glutamate by astrocytes in vivo may contribute to 

the neurophysiological abnormalities observed previously in PrP KO mice. For 

example, reduced excitatory post-synaptic potentials (Carleton et al. 2001), 

impaired formation of long-term potentiation (Collinge et al. 1994; Criado et al. 

2005; Manson et al. 1995), reductions in afterhyperpolarization potentials 

(Mallucci et al., 2002) and abnormal responses to NMDA antagonist MK-801 

(Coitinho et al., 2002) observed in PrP KO mice all suggest attenuation of L-

glutamate-mediated signaling. Many of these alterations would be consistent with 

the premature termination of the L-glutamate signal and/or the excessive 

clearance of L-glutamate from the extracellular space surrounding EAA 

receptors. Consistent with such a conclusion, the EAATs have been shown to 
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regulate the extracellular levels of L-glutamate available to activate synaptic and 

extrasynaptic receptors in specific excitatory circuits (Turecek and Trussell, 2000; 

Dzubay and Otis, 2002; Huang et al., 2004; Diamond, 2005). Thus, the impact of 

alterations in EAAT activity may be greatest in those synaptic connections 

ensheathed by astrocytes, where the presence and positioning of the 

transporters has been shown to modulate glutamatergic neurotransmission 

(Anderson and Swanson, 2000; Bridges and Esslinger, 2005; Eulenburg and 

Gomeza, 2010). 

Low EAAT activity has been reported in a number of neurodegenerative 

diseases, including amyotrophic lateral sclerosis (Rothstein et al., 1992), HIV-

associated dementia (Sardar et al., 1999), and Alzheimer’s Disease (Masliah et 

al., 1996). Increased levels of glutamate in the synaptic cleft may lead to 

neuronal death through excitotoxicity (Beart and O'Shea, 2007).  Accordingly, 

enhancement of L-glutamate transport has been regarded as a potential 

therapeutic goal. However, hyperactive EAAT activity and consequent reduced 

NMDA receptor signaling is not without its own complications, as has been 

suggested to be the case in schizophrenia (Miyamoto et al., 2005).  Similarly, the 

present work suggests that increased EAAT activity in the PrP KO mouse may 

contribute to its neurophysiological phenotype. Taken together, therapeutic 

approaches modulating EAAT activity in any disease will require targeting a level 

of transporter activity that will maintain an optimal level of L-glutamate in the 

synaptic cleft, balancing physiological and pathological signaling during all 

phases of neuronal activity.  
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ABSTRACT 
Though the precise function of Prion protein (PrP) is unknown, numerous studies 

suggest a role in glutamatergic neurotransmission. In chapter two, we showed that PrP 

influenced L-glutamate signaling in vitro by impacting its clearance from the vicinity of 

neurons. Therefore, we investigated whether similar localization of PrP and excitatory 

amino acid transporters (EAATs) to lipid rafts influenced astrocytic EAAT activity. 

Astrocytes were harvested from C57BL10 (WT) mice, PrP knockout (PrP KO) mice and 

transgenic mice expressing a non-membrane, GPI anchorless form of PrP (tg88). 

Though hypothesized that EAAT activity in PrP anchorless astrocytes would be the 

same as PrP non-expressing astrocytes, tg88 EAAT activity did not mimic PrP KO 

astrocytic EAAT activity. Further co-immunoprecipitation studies did not reveal a strong 

interaction between WT PrP and EAAT1, the transporter subtype responsible for the 

majority of transport activity in primary astrocytes. Thus, in these models, detectable 

evidence for PrP and EAAT interaction within the lipid raft was not found.  
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INTRODUTION 
Increased EAAT activity in PrP KO astrocytes and the consequent ability to 

reduce neuronal death following exposure to toxic levels of L-glutamate suggested that 

expression of PrP regulated L-glutamate transport (Chapter 2).  This modulation of 

transport could be a result of upstream signaling events including RNA and protein 

expression, unique to PrP expression. However, the association of PrP and the EAATs 

to the plasma membrane may provide a location where these molecules can interact 

 PrP is a cell surface glycoprotein, bound to the outer leaflet of the plasma 

membrane, attached by a GPI anchor (Stahl et al., 1987). GPI linked proteins are 

typically localized to lipid rafts. In agreement, processed PrP is found in detergent 

insoluble, cholesterol rich lipid raft microdomains (Naslavsky et al., 1997). However, the 

physiological relevance of PrP localization to lipid rafts is unknown except in 

susceptibility to TSE diseases (Speare et al., 2010). Attachment to the plasma 

membrane is unique in amyloid diseases; TSEs are the only diseases in which the 

converted protein is GPI anchored. However, transgenic mice that express PrP without 

the GPI anchor (tg44) appear normal and are still susceptible to TSEs although they 

present with markedly different clinical symptoms, pathology and incubation period 

(Chesebro et al., 2005; Chesebro et al., 2010). Presumably, the physiological role of 

PrP takes advantage of lipid raft locale as either an area in which PrP can modulate the 

action of other proteins or, itself, be modulated. 

The EAATs are trimeric, membrane-spanning proteins responsible for buffering 

and transporting L- glutamate from the synaptic space. Astrocytic (EAAT1, EAAT2) and 

neuronal (EAAT3, EAAT4) L-glutamate transporters are localized to cholesterol rich, 

detergent insoluble, lipid rafts (Butchbach et al., 2004). Localization of neuronal L-

glutamate transporters to lipid rafts influences the efficacy of L-glutamate transport 

through the clustering of proteins that can modulate transport. Interaction of GTRAP3–

18 and EAAT3 has been shown to negatively modulate L-glutamate transport (Lin et al., 

2001). In contrast, GTRAP41 and GTRAP48 have been shown to increase EAAT4 

mediated L-glutamate transport (Jackson et al., 2001). To date, lipid raft proteins which 

interact with astrocytic EAATs have not been identified. 
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 In order to understand whether PrP negatively modulates astrocytic EAAT 

activity, the interaction between PrP and EAATs were investigated. Co-

immunoprecipitation experiments were performed investigating whether a strong 

interaction between PrP and the EAATs existed. EAAT activity was also investigated 

comparing astrocytes harvested from mice expressing GPI anchorless PrP (tg88), 

membrane anchored, wild-type PrP (WT) or no PrP at all (PrP KO).  

 

METHODS 
Animals 

 C57BL/10SnJ (WT) mice were purchased from Jackson Labs (Bar Harbor, ME). 

Homozygous PrP knockout (PrP KO) mice on the 129/Ola background (Manson et al., 

1994) were backcrossed nine times to C57BL/10SnJ mice selecting for the PrP KO 

allele by PCR identification at each cross (Race et al., 2009). Transgenic GPI 

anchorless PrP mice (tg44+/−) (Chesebro et al., 2005) were backcrossed to 

C57BL/10SnJ-Prnp−/− mice for six to nine generations with selection for the Prnp−/− 

genotype and the tg44+/− genotype. Heterozygous tg44+/- were then interbred to 

create homozygous transgenic GPI anchorless PrP mice (tg44-/-, also known as tg88). 

Thus these mice expressed anchorless PrP but lacked normal anchored mouse PrP 

allele (Chesebro et al., 2010). 

Astrocyte Cultures 

Mixed glial cells were harvested from the cortices of WT and KO 1-2 day old 

mice using modifications of the method of McCarthy and de Vellis (McCarthy and de 

Vellis, 1980). Cortices, with meninges removed, were triturated, plated in T-25 flasks 

with DMEM/F12 (Invitrogen, Carlsbad, CA) containing 15% fetal bovine serum 

(HyClone, Omaha, NE) and maintained in a 5% CO2 incubator at 37°C. Approximately 

seven days later, when cultures were confluent, microglia and oligodendrocytes were 

removed from the astrocyte cultures by orbital shaking (overnight, 250 rpm). Purified 

astrocyte cultures were harvested with trypsin. For D-aspartate uptake assays, 

astrocytes were reseeded at 1 x 105 cells/well in 12 well plates and maintained with 

fresh media every three days. In some experiments, astrocytes were assayed seven 

days post-seeding, upon reaching confluence. In co-immunoprecipitation experiments, 
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confluent cultures were treated with 0.25mM dibutyryl cyclic AMP (dbcAMP) (Sigma 

Aldrich, St. Louis, MO) for an additional ten days with media changes including dbcAMP 

every three days.  

Na+ dependent D-aspartate uptake assays.   

Confluent astrocytes in 12 well plates were rinsed with a physiological transport 

buffer (138 mM NaCl, 11 mM D-glucose, 5.3 mM KCl, 0.4 mM KH2PO4, 0.3 mM 

Na2HPO4, 1.1 mM CaCl2, 0.7 mM MgSO4, 10 mM HEPES, pH 7.4) and pre-incubated at 

37 °C for 5 min. Transport rates were determined using 3H-D-aspartate, which is 

effectively transported as an EAAT substrate, yet not metabolized by cells following 

uptake (Koch et al., 1999).Transport assays were carried out in which uptake was 

initiated by replacing the preincubation buffer with buffer containing 3H-D-aspartate (5-

300µM, 2-12µCi/ml). Following a five-minute incubation, uptake was terminated by 3 

consecutive washes with ice-cold buffer. Cells were lysed with 0.4N NaOH for 24 hours 

and analyzed for radioactivity by liquid scintillation counting and for protein by the 

bicinchoninic acid method (Pierce, Rockford, IL). Uptake [pmol D-asp/min/mg protein] 

was calculated and corrected for background radiolabel accumulation at 4°C. Previous 

studies confirmed that uptake measured under these conditions was linear with respect 

to time and protein content (Esslinger et al., 2005). Values are reported as mean + SEM 
pmol/min/mg with each “n” value equaling the number of determinations, each done in 

duplicate. Data was fit to the Michaelis-Menten equation using non-linear regression 

(Graph Pad Prism 5, GraphPad Software Inc, La Jolla, CA). 

Co-immunoprecipitation 

Purified WT astrocyte cultures were washed briefly in 5ml cold PBS. Astrocytes 

were lysed by shaking incubation with 1ml cold lysis buffer (5mM Tris HCl p.H 7.4, 

150mM NaCl, 5mM EDTA, 0.5% Triton X-100, 0.5% deoxycholate, 1X Protease 

Inhibitor Cocktail) at 4°C for 5 minutes. Lysates were placed in a pre-cooled 1.5ml 

centrifuge tube and centrifuged at 100g for 15 minutes. Supernatants were collected 

and stored at -20°C. Protein concentration was quantified using the bicinchoninic acid 

method (Pierce, Rockford,IL). 

Immunoprecipitation of PrP was done by incubating 0.1mg astrocyte lysate with 

0.1M NaCl, antibodies specific for PrP: R30, R20, or R18 at indicated concentrations 
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and co-IP buffer (50mM Tris HCl pH 7.5, 15mM EDTA, 100mM NaCl and 0.1% Triton X-

100 and 1X Halt Protease Inhibitor) to a final volume of 500µL. Antibody-lysate 

complexes were incubated on ice for 90 minutes and occasionally inverted. A Protein A-

sepharose slurry was added to the tubes (50µL) and incubated with rotation for 45 

minutes at 4°C.  Immunoprecipitates were pelleted by centrifugation (1000rpm, 30 

seconds) and washed 3 times with 1 ml co-IP buffer. Immunoprecipitates were collected 

by boiling pellets for 5 minutes, centrifugation to pellet the beads, and collection of the 

supernatant.   

Immunoblot 

 One half of immunoprecipitate eluate or cell lysates (10ug) were boiled in 1X 

Sample Buffer containing Reducing Agent (Invitrogen, Carlsbad, CA) for 3 minutes and 

loaded onto 4-12% Bis Tris gels (for EAAT1) and 12% Tris-Glycine gels (for EAAT2). 4-

12% Bis-Tris gels, used for assessing monomeric and multimeric EAAT1 that runs at 

64kDa and above, were run at 120 V for 4 hours in MOPS buffer. 12% Tris Glycine gels 

that were used to assess PrP expression, which runs at 33 KDa, were run for 1 hour at 

120V. Proteins were electrophoretically transferred onto a polyvinylidene fluoride 

membrane (37V, O/N). Membranes were blocked in TBS with 0.1% tween 20 containing 

5% milk. Membranes were probed with either antibodies specific for EAAT1 (1:2000, 

Tocris Cookson, St. Louis MO), PrP (1:5000, D13, Williamson et al. 1998) or actin 

(1:10,000, Sigma Aldrich, St. Louis, MO) in TBS–tween for one hour at room 

temperature. Following three ten-minute washes with TBS-tween, membranes were 

probed with appropriate horseradish peroxidase conjugated secondary antibodies 

(EAAT 1: goat anti rabbit (1:3000); PrP: rabbit anti human (1:3000); actin: goat anti-

mouse (1:3000)) diluted in TBS tween for one hour at room temperature. Visualization 

was performed using chemiluminescence, according to manufacturer’s 

recommendations (GE Healthcare Life Sciences, Pittsburg, PA).  
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RESULTS 
Immunoprecipitation of PrP does not bring down EAAT1 

 Though PrP KO astrocytes exhibited higher EAAT activity compared to WT 

astrocytes, detectable differences in mRNA expression were not observed, as 

described in Chapter Two. In contrast to transport differences being mediated by 

expression level, it is possible that PrP interacts with the EAATs, decreasing the rate 

transport. Therefore, a direct interaction between PrP and EAAT1, the dominant 

transporter operational in this primary culture system, was investigated.  

PrP was immunoprecipitated from WT astrocyte cultures and protein-protein 

interactions with EAAT1 were investigated. Low amounts of PrP were 

immunoprecipitated when astrocytes were lysed in a non-ionic detergent buffer (Figure 

1). Therefore, astrocytes were lysed in 0.5% sodium deoxycholate, 0.5% Triton X-100 

and incubated alone or in combinations of three polyclonal rabbit antibodies specific for 

PrP – R30 (89-103), R18 (142-155), and R20 (218-232). R30 alone was most efficient 

at immunoprecipitating PrP (Figure 2). The addition of other antibodies in conjunction 

with R30 did not increase the amount of protein immunoprecipitated. Monomeric 

EAAT1, which in primary astrocyte cultures runs at approximately 65 kDa was not 

observed in lysates that had been immunoprecipitated. EAAT 1 was also not co-

immunoprecipitated in primary astrocytes treated with dbcAMP (Figure 3).  The absence 

of EAAT1 co-immunoprecipitates suggested that if any interaction between PrP and 

EAAT1 existed, it was not preserved under these lysis conditions.  
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Figure 3-1.  

Assessment of ionic versus non-ionic detergent containing lysis buffers.  

Two different lysis buffers were investigated to determine which was most effective at solubilizing PrP and 

EAAT1. Astrocyte cultures lysed in a nonionic detergent consisting of 1% Triton-X100 was able to 

solubilize EAAT1 to the same degree as the ionic detergents consisting of either 0.5% sodium 

deoxycholate or 1% sodium deoxycholate, although interestingly, only multimeric forms of EAAT1 was 

detected. In contrast, a marginal amount of PrP was solubilized with the non-ionic detergent compared to 

the amount of PrP solubilized with 0.5% sodium deoxycholate. Therefore, in co-immunoprecipitation 

experiments, 0.5% sodium deoxycholate was used as the astrocyte lysis buffer. 
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Figure 3-2.  

Co-immunoprecipitation of PrP and EAAT1 in primary WT and PrP KO astrocytes.  

Astrocyte lysates were immunoprecipitated with 5ul and 2.5ul R30, R20 or R18. Lysates were also 

immunoprecipitated with 2.5ul each of two of the above antibodies in combination to see if more PrP 

could be latticed together and pulled down. 5ul and 2.5ul R30 pulled out the greatest amount of PrP from 

WT astrocyte lysates compared to R20 and R18 alone. Compared to R30 alone, a detectable increase in 

the amount of PrP pulled out with antibody combinations containing R30 was not observed. Interestingly, 

the combination of R20 and R18 pulled out more PrP than either R20 or R18 alone. Therefore, R30 was 

the best antibody to use for immunoprecipitating PrP. However, EAAT1 was not detected in any of the 

immunoprecipitates. The band running approximately 50 KDa corresponds to IgG heavy chain.  
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Figure 3-3.  

Co-immunoprecipitation of PrP and EAAT1 in primary WT and PrP KO astrocytes treated with 

dbcAMP. 
Astrocyte lysates were immunoprecipitated with 2.5ul R30 and immunoblotted against PrP and EAAT1. 

EAAT1 was not detected in immunoprecipitated lysates. The band running at approximately 50kDa 

corresponds to IgG heavy chain. 

 

Astrocytes expressing anchorless PrP do not differ in D-Aspartate transport  

Lipid raft microdomains provide a membrane environment conducive to the 

clustering and interaction of membrane bound proteins. Tg88 transgenic mice express 

anchorless PrP that lacks the glycophosphatidylinositol anchor and thus is no longer 

associated with the membrane and lipid raft, but is secreted (Chesebro et al., 2005). 

Therefore, if similar location of PrP and the EAATs affected L-glutamate transport rates, 

the absence of PrP from the membrane in Tg88 astrocytes should increase the EAAT 

activity. Astrocytes from tg88 neonates were cultured and Na+ dependent transport of 

D-aspartate was measured. At higher concentrations of substrate, tg88 astrocytes did 

not significantly transport D-aspartate differently than WT or PrP KO astrocytes.  The 

Vmax of transport in tg88 astrocytes was also not significantly different from WT or PrP 

KO astrocytes (tg88: 487+ 32, WT: 396+31, PrP KO: 657+44 pmol/min/mg). Though 
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tg88 mice lacked PrP expression on the cell membrane, their transport of substrate did 

not mimic transport observed in KO astrocytes. 

 
Figure 3-4.  

Comparison of D-aspartate transport by EAATs in WT, PrP KO and GPI-/- astrocytes. 

A. EAAT activity was measured in primary astrocytes derived from WT and PrP KO neonatal mice 

cultured 7 days post-harvest. Astrocytes were incubated with 5uM, 10uM, 30uM, 75uM or 150uM 

D-aspartate, a non-metabolized analog of L-glutamate, for 5 minutes. Transport rate at each 

concentration was measured and then fit to the Michaelis Menten equation using non-linear 

regression. Results are averages of data from multiple independent observations. Results show 

faster transport by PrP KO astrocytes.  

B. The Vmax of EAAT-mediated transport for each experiment examining primary astrocytes 7 days 

post harvest is shown. Results show intermediate Vmax values in GPI-/- astrocytes compared to 

WT or PrP KO astrocytes (tg88: 487+ 32, WT: 396+31, PrP KO: 657+44 pmol/min/mg). 

 

DISCUSSION 

Because of the increased EAAT1 activity observed in PrP KO astrocytes, we 

hypothesized that homeostatic levels of EAAT activity are governed by a direct 

interaction between PrP and EAAT1. Both PrP and EAAT1 are membrane-associated 

proteins localized to lipid rafts, a site where they could interact with each other either 

directly or indirectly. For example, the unstructured N-terminal domain of PrP (residues 

22-90) could transiently occlude the ability of glutamate to enter the bowl-shaped EAAT 

and reduce its transport into the astrocyte.  

However, co-immunoprecipitation experiments failed to reveal a strong protein-

protein interaction between PrP and EAAT1 although the experimental approach may 

have prevented an ability to see such an interaction. The lysis conditions used to extract 
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PrP contained an ionic detergent, which may have broken apart a protein-protein 

interaction. It is possible that an interaction between PrP and EAAT1 was weak and 

would not be maintained by the co-immunoprecipitation procedure, as might be 

expected with a transient interaction. Because of previous data based on mRNA 

expression and pharmacology of the PrP KO and WT astrocyte cultures, the majority of 

transport was determined to be by the EAAT1 subtype (Chapter 2). Thus, co-

immunoprecipitation experiments specifically looked for an interaction of PrP with 

EAAT1 and not with EAAT2, which is expressed and functional albeit at markedly lower 

levels compared with EAAT1. The possibility exists that modulation of glutamate 

transport by PrP is subtype specific and that it acts on the less expressed EAAT2.   

It is also possible that a direct interaction between PrP and the EAATs is not 

what modulates transporter efficiency but location does. EAAT1, EAAT2 and PrP are all 

localized to lipid rafts and such an environment may be conducive to the clustering and 

interaction of proteins that serve to regulate levels of EAAT activity. If location was 

indeed what mitigated transport,it was hypothesized that the lack of PrP membrane 

anchoring in tg88 astrocytes would cause transport activity to mimic PrP KO astrocytes.. 

However, in tg88 astrocytes, moderate levels of transport were observed, not different 

from WT or PrP KO astrocytes to which they were compared. However, expression 

levels may explain why tg88 astrocytes demonstrate a phenotype similar to both PrP 

KO and WT astrocytes. Tg88 astrocytes express a secreted PrP but at levels 4-5 times 

less than WT PrP. If a direct interaction between PrP and EAAT1 did occur, possibly it 

could happen between secreted PrP and EAAT1 and thus, the effect of PrP on EAAT 

activity could be PrP dose dependent.  
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ABSTRACT 

Though highly expressed in the central nervous system, the function of prion 

protein (PrP) is unknown. Abnormalities observed in PrP knockout (PrP KO) mice 

suggest a function in L-glutamate mediated neurotransmission. Previously, we 

showed that transport of D-aspartate, a non-metabolized L-glutamate analog, 

through excitatory amino acid transporters (EAATs) was faster in astrocytes from 

PrP knockout (PrP KO) mice than in astrocytes from C57BL/10SnJ wild-type 

(WT) mice. However, since PrP KO mice contained 98.5% sequence identity to 

the WT strain they were compared to, the difference in EAAT activity could be 

attributed to the influence of allelic variants in other genes. Therefore, evaluation 

of EAAT activity in astrocytes harvested from transgenic PrP expressing mice 

with mixed genetic backgrounds was performed. Astrocytes harvested from a 

PrP over-expressing mice (tga20 +/-) did not transport D-aspartate faster than 

PrP null littermates (tga20 -/-). Astrocytes harvested from mice expressing 

hamster PrP only on neurons (tgNSE) did not transport D-aspartate faster than 

hamster PrP over- expressing astrocytes (tg7).  Experiments altering PrP 

expression using PrP silencing in WT astrocytes and PrP transduction in PrP KO 

astrocytes had varied results due to variable expression changes. Taken 

together, these studies suggest WT expression levels of PrP may regulate EAAT 

activity.  
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INTRODUCTION 

  Though evolutionarily conserved, developmentally regulated, and highly 

expressed in numerous tissues, the physiological function of prion protein (PrP) 

is unknown. Mice devoid of PrP expression (PrP KO) develop normally and do 

not exhibit gross abnormalities (Bueler et al., 1992; Manson et al., 1994). 

However, PrP KO mice exhibit several subtle abnormalities suggesting that PrP 

plays a role in cellular homeostasis (reviewed in Chapter one), including 

maintenance of L-glutamate concentrations in the synaptic cleft through 

regulating the activity of excitatory amino acid transporters (EAATs) (Chapter 

Two).  

 PrP KO mice were originally generated through disruption of the Prnp 

gene on chromosome 2 by homologous recombination of embryonic stem (ES) 

cells (Bueler et al., 1992; Manson et al., 1994). In the Edinburgh line of PrP KO 

mice, ES cells from 129/Ola mice were electroporated with recombinant DNA 

containing a neo insertion in the Prnp gene (Manson et al., 1994). Following 

selection, resulting mice were PrP null on a 129/Ola background. Functions of 

PrP could be assessed comparing these mice to 129/Ola wild type mice and 

such studies demonstrated that PrP KO mice had decreased LTP (Manson et al., 

1995) and mitochondrial abnormalities (Miele et al., 2002).  

However, maintenance of the PrP KO line on a 129/Ola background has 

been notoriously difficult and in many laboratories, mice were crossed to better 

breeding lines of mice such as C57BL/10. Despite multiple backcrosses, genetic 

purity of the C57BL/10 strain cannot be re-established and genes immediately 

flanking the Prnp gene locus will be of 129/Ola origin. The PrP KO mice used to 

assess the influence of PrP on EAAT activity were on the C57BL/10 background 

though areas immediately surrounding the Prnp gene locus may have 129/Ola 

genetic determinants (Figure 4-1). Thus, allelic variation in other genes may have 

accounted for the differences observed.  
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Figure 4-1. Schematic of the Prnp gene on chromosome 2 and the area immediately 

surrounding the Prnp gene in wildtype and PrP KO mice.  

 

In an effort to distinguish whether abnormal levels of EAAT activity 

observed in PrP KO astrocytes was due to the lack of PrP expression or flanking 

genes from the 129/Ola strain, activity was measured in PrP expressing and non-

PrP expressing astrocytes. In some experiments, astrocytes were harvested from 

transgenic lines of mice who contain a neo cassette in the Prnp gene but whose 

PrP expression is driven on another chromosome. In other experiments, PrP 

expression was either silenced or induced. 

MATERIALS AND METHODS 

Animals 

 C57BL/10SnJ (WT) mice were purchased from Jackson Labs (Bar Harbor, 

ME). Homozygous PrP knockout (PrP KO) mice on the 129/Ola background 

(Manson et al., 1994) were backcrossed nine times to C57BL/10SnJ mice 

selecting for the PrP KO allele by PCR identification at each cross (Race et al., 

2009).  Homozygous tgNSE (Race et al., 1995), tgGFAP (Raeber et al., 1997) 

and tg7 (Race et al., 1995) mice, originally on a mixed background were 

subsequently backcrossed to PrP KO mice to eliminate mouse PrP gene 

expression, as described (Race et al., 2000). Tga 20 mice (Fischer et al., 1996), 

on a mixed background, were in the process of being backcrossed to PrP KO 

mice. Tga20 mice were bred with PrP KO mice and resulting offspring were 

distinguished by PCR as either heterozygous for the tga20 transgene (+/-) or 

homozygous null mice for the tga 20 transgene (-/-). This generation of 

experimental mice was approximately 93% C57BL/10. 

Astrocyte Cultures 
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Mixed glial cells were harvested from the cortices of WT and KO 1-2 day 

old mice using modifications of the method of McCarthy and de Vellis (McCarthy 

and de Vellis, 1980).  Cortices, with meninges removed, were triturated, plated in 

T-25 flasks with DMEM/F12 (Invitrogen, Carlsbad, CA) containing 15% fetal 

bovine serum (HyClone, Omaha, NE) and maintained in a 5% CO2 incubator at 

37°C. Approximately seven days later, when cultures were confluent, microglia 

and oligodendrocytes were removed from the astrocyte cultures by orbital 

shaking (overnight, 250 rpm). Purified astrocyte cultures were harvested with 

trypsin. For D-aspartate uptake assays, astrocytes were reseeded at 1 x 105 

cells/well in 12 well plates and maintained with fresh media every three days. In 

some experiments, astrocytes were assayed seven days post-seeding, upon 

reaching confluence. 

Na+ dependent D-aspartate uptake assays.   

Confluent astrocytes in 12 well plates were rinsed with a physiological 

transport buffer (138 mM NaCl, 11 mM D-glucose, 5.3 mM KCl, 0.4 mM KH2PO4, 

0.3 mM Na2HPO4, 1.1 mM CaCl2, 0.7 mM MgSO4, 10 mM HEPES, pH 7.4) and 

pre-incubated at 37 °C for 5 min. Transport rates were determined using 3H-D-

aspartate, which is effectively transported as an EAAT substrate, yet not 

metabolized by cells following uptake (Koch et al., 1999). Transport assays were 

carried out in which uptake was initiated by replacing the preincubation buffer 

with buffer containing 3H-D-aspartate (150µM, 10µCi/ml). Following a five-minute 

incubation, uptake was terminated by 3 consecutive washes with ice-cold buffer. 

Cells were lysed with 0.4N NaOH for 24 hours and analyzed for radioactivity by 

liquid scintillation counting and for protein by the bicinchoninic acid method 

(Pierce, Rockford, IL). Uptake [pmol D-asp/min/mg protein] was calculated and 

corrected for background radiolabel accumulation at 4°C. Previous studies 

confirmed that uptake measured under these conditions was linear with respect 

to time and protein content (Esslinger et al., 2005). Values are reported as mean 

+ SEM pmol/min/mg with each “n” value equaling the number of determinations, 

each done in duplicate. Data was fit to the Michaelis-Menten equation using non-

linear regression (Graph Pad Prism 5, GraphPad Software Inc, La Jolla, CA). 
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Immunoblot 

Purified astrocyte cultures were washed briefly in 5ml cold PBS. 

Astrocytes were lysed by shaking incubation with 1ml cold lysis buffer (5mM Tris 

HCl p.H 7.4, 150mM NaCl, 5mM EDTA, 0.5% Triton X-100, 0.5% deoxycholate, 

1X Protease Inhibitor Cocktail) at 4°C for 5 minutes. Lysates were placed in pre-

cooled 1.5ml centrifuge tubes and centrifuged at 100g for 15 minutes. 

Supernatants were collected and stored at -20°C. Protein concentration was 

quantified using the bicinchoninic acid method (Pierce, Rockford, IL). Cell lysates  

were boiled in 1X Sample Buffer containing Reducing Agent (Invitrogen, 

Carlsbad, CA) for 3 minutes and loaded 16% Tris Glycine gels that were used to 

assess PrP expression, which runs at approximately 33-37 KDa . Gels were run 

for 1 hour at 120V. Proteins were electrophoretically transferred onto a 

polyvinylidene fluoride membrane (37V, O/N). Membranes were blocked in TBS 

with 0.1% tween 20 containing 5% milk. Membranes were probed with antibody 

specific for PrP (D13, 1:5000 (Williamson et al., 1998)) in TBS –tween for one 

hour at room temperature. Following three ten-minute washes with TBS-tween, 

membranes were probed with rabbit anti human (1:3000) diluted in TBS tween 

for one hour at room temperature. Visualization was performed using 

chemiluminescence, according to manufacturer’s recommendations (GE 

Healthcare Life Sciences, Pittsburg, PA).  

Transfection of primary astrocytes with siRNA 

Purified WT and PrP KO astrocytes were plated in 12 well plates at a 

density of 75,000 cells/well. Approximately four days later, when cell appeared 

75% confluent, astrocytes were transfected with 2.5nM, 5nM, 10nM siRNA 

against Prnp (siRNA ID # s72188, Applied Biosystems, Carlsbad, CA ) or 30nM 

scrambled siRNA or 30nM GAPDH siRNA  both of which came with the 

transfection reagent and were used at concentrations recommended by the 

manufacturer. siPORT Amine transfection reagent (Applied Biosystems, 

Carlsbad, CA) was used at 1.5ul per well which was previously determined to be 

a reagent and concentration sufficient to silence GAPDH expression without 

causing visible toxicity to astrocytes. siPORT Amine was diluted in 23.5ul 
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OPTIMEM (Invitrogen, Carlsbad, CA) and incubated for ten minutes at room 

temperature. Meanwhile, siRNA at the indicated concentrations above was 

diluted in OPTIMEM to a final volume of 25ul. Both diluted siRNA and diluted 

transfection reagent were mixed and incubated together at room temperature for 

an additional ten minutes. Complexes were placed onto cells and incubated for 

72 hours in a 37°C, 5% CO2 incubator for 72 hours at which point cells were 

stained harvested for FACS analysis or assayed for Na+ dependent D-aspartate 

transport assays. For immunofluorescent staining, astrocytes were plated onto 

chamber slides and transfection was scaled down to 0.3ul siPORT amine 

transfection reagent in 10ul OPTIMEM and 10ul diluted siRNA. 

Viral transduction of primary astrocytes 

 PrP KO astrocytes were transduced with supernatant from Psi2 cells who 

had been tranfected with retrovirus pSFF or pSFF in which hamster PrP had 

been cloned (graciously given by Suzette Priola, Rocky Mountain Labs, Hamilton 

MT).  Astrocytes were transduced with 500ul stock virus in the presence of 

4ug/ml polybrene. In some wells, astrocytes were treated with 4ug polybrene 

alone. Astrocytes were incubated at 37°C at 5% CO2. Media was completely 

replaced 24 hours after transduction and assessment of PrP expression by 

FACS analysis and D-aspartate transport assays performed 7 days after 

transduction. 

Surface PrP staining and FACS analysis 

 Astrocytes plated in chamber slides were rinsed with PBS 3 times and 

stained live for PrP using 1ug monoclonal antibody D13, specific for PrP diluted 

in PBS with 2% FBS. Following 30 minute incubation at 37°C and 3 washes with 

PBS, astrocytes were fixed in 3.7% formaldehyde for 20 minutes at room 

temperature, washed and permbealized in 0.1% tx-100 and 0.1% sodium citrate 

for 10 minutes at room temperature. Cells were then blocked in 0.1M glycine for 

30 minutes and with NGS/BSA for an additional 30 minutes. Cells were  labeled 

with anti-GFAP (1:1500) (Dako, Carpinteria, CA) conjugated with AlexaFluor568 

goat anti-rabbit IgG (1:3000) (Invitrogen, Carlsbad, CA) to identify astrocytes and 

AlexaFluor488 goat anti-human IgG (1:3000) (Invitrogen, Carlsbad, CA) to 
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visualize PrP staining. Fluorescent images were photographed on an upright 

microscope (Olympus BX51) with a 10X objective using Microsuite Analysis 

software. Control wells stained with secondary antibodies alone did not show 

immunofluorescence.   

 For FACS analysis, astrocytes were rinsed with PBS and removed from T-

25 flasks by incubation with 0.5mM EDTA for 15 minutes at 37°C. PrP staining 

was performed on 200,000 live primary astrocytes using 1 µg monoclonal 

antibody D13, specific for PrP. Following 1 hour incubation at 37°C, cells were 

fixed in 3.7% formaldehyde for 20 minutes, blocked in 0.1M glycine for 30 

minutes and incubated for 1 hour at 22°C with 1 µg AlexaFluor488 goat anti-

human IgG (Invitrogen, Carlsbad, CA). Sister tubes of WT and KO astrocytes 

were fixed, blocked and incubated with AlexaFluor488 goat anti-human IgG 

alone. Data was collected by FACSCanto II flow cytometer (Becton Dickinson, 

San Jose CA) and analyzed using FlowJo (Tree Star, Ashland, OR). 

 

RESULTS 

PrP KO mice contain non-C57BL10 allelic variants 

Though the PrP KO mice used in the experiments described in chapters 

two and three had been serially backcrossed nine times to homozygous 

C57BL10 mice, it was possible that genes immediately adjacent to the Prnp gene 

locus could still be of 129/Ola origin. These genes, which may have differed from 

the WT mice used in experiments, could have also played a role in the increased 

transport observed in PrP KO mice. Therefore, DNA from C57BL10 and PrP KO 

mice were compared using SNP analysis. Non-C57BL10 SNPs were found in 

submitted PrP KO mice only on chromosome two in a 48 mega base pair region 

surrounding the Prnp gene locus. This region of differences contains 556 genes, 

including Slc1a2 which encodes EAAT2. 
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EAAT activity in astrocytes harvested from transgenic mice expressing hamster 

PrP 

 Since genes other than PrP may have contributed to the differences in 

EAAT activity observed between astrocytes harvested from congenic PrP KO 

and WT mice, rescue experiments were performed using mice containing a PrP 

transgene. These transgenic mice were backcrossed to PrP KO mice several 

times.  Importantly, these mice contained the neo insertion in the Prnp gene on 

chromosome 2 and contained the same flanking genes surrounding the Prnp 

gene locus (Figure 4-2).   

 
Figure 4-2. Comparison of astrocytes harvested from mice containing a PrP transgene. 

Transgenic PrP expressing mice contain a neo insertion in the Prnp gene on chromosome 2 as 

well as genes linked to the Prnp gene locus (red). Transgene insertion on chromosome n leads to 

cell-specific PrP expression, ie astrocyte specific or neuron specific (yellow). Trangenic mice 

contain 129/Ola genes (blue) but contain 93-98% genetic identity to the C57BL/10 strain. All 

astrocytes compared for EAAT activity contain the PrP KO gene complex. 

  

 PrP expression was confirmed on astrocytes harvested from hamster PrP 

expressing transgenic lines of mice. Tg-NSE mice express hamster PrP driven 
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by neuron specific promoter, NSE. Tg-7 mice overexpress hamster PrP on 

multiple cell types. As expected, FACS analysis of surface PrP expression 

demonstrated that tg7 and C57BL10 WT astrocytes express PrP whereas Tg-

NSE astrocytes did not express any PrP (Figure 4-3A). Furthermore, levels of 

PrP expression were higher in tg7 astrocytes, consistent with overexpression in 

total brain. Immunoblot of whole astrocyte lysate also revealed overexpression of 

PrP in tg7 astrocytes compared to C57BL/10 WT astrocytes (Figure 4-3B). 

 

 
Figure 4-3. PrP expression on primary astrocytes harvested from PrP-
expressing transgenic mice. 
A. FACS detection of surface PrP expression on astrocytes harvested from C57BL/10, tgNSE 

and tg7 mice. Live primary astrocytes were labeled with D13, specific for PrP. Only C57BL/10 

astrocytes and tg7 astrocytes express PrP. TgNSE astrocytes show the same fluorescent 

intensity as astrocytes labeled with secondary antibody alone. B. PrP immunoblot of lysates 

prepared from WT, tga20 and tg7 purified astrocyte cultures.  

 

The influence of PrP expression on EAAT mediated glutamate transport 

was investigated by measuring EAAT activity in astrocytes harvested from PrP 

expressing transgenic mice. In these experiments, tgNSE astrocytes, tg7 

astrocytes and tgGFAP astrocytes were compared. Tg-GFAP mice express 

hamster PrP driven by the GFAP promoter, and thus, only express PrP on glial 
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cells (Raeber et al., 1997) though with expression in total brain much lower 

compared to WT brains. Sodium dependent transport assays were performed 

using the non-metabolized EAAT substrate, D-aspartate, at 150uM, a 

concentration high enough to delineate activity differences (Chapter 2). As shown 

in Figure 4-4, transport of 150uM D-aspartate was indistinguishable between 

tgNSE astrocytes, tgGFAP astrocytes and tg7 astrocytes (459+26, 372+46, 

451+32 pmol/min/mg respectively, Figure 4-4). Astrocytes were treated with 

0.25mM dbcAMP for ten days to increase EAAT1 and EAAT2 expression and 

thereby increase transport velocities that might distinguish the different 

transgenic lines of astrocytes (Chapter 2). However, treatment of dbcAMP 

treatment, while increasing transport, also did not reveal differences between 

tgNSE, tgGFAP or tg7 astrocytes (597+42, 658+34, 588+94 pmol/min/mg 

respectively, Figure 4-4). Thus, in both untreated and dbcAMP treated 

astrocytes, lack of hamster PrP expression did not change EAAT activity 

compared to low expression of PrP or overexpression of PrP. 
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Figure 4-4. EAAT activity in tgNSE, tgGFAP and tg7 astrocyes. Uptake of 150uM D-aspartate 

was quantified in primary astrocytes cultured from tgNSE, tgGFAP and tg7 mice, which differ in 

levels of hamster PrP expression.  

 

 

EAAT activity in astrocytes harvested from transgenic mice expressing mouse 

PrP 

 Similar experiments attempting to rescue the difference observed between 

PrP KO and WT mice were performed on a line of transgenic mice, tga20, who 

overexpress mouse PrP (Fischer et al., 1996) and were in the process of being 

backcrossed to PrP KO mice. Littermates were either heterozygous at the tga20 

locus and expressed 3-fold higher levels of PrP (tga20 +/-), or were null at the tga 

20 locus and did not express PrP (tga20 -/-). Littermates all contained the Prnp 

null gene complex on chromosome 2 (Figure 4-2). Immunoblot lysates of primary 

astrocytes harvested from tga20 mice demonstrated overexpression of PrP 

compared to WT astrocytes (Figure 4-3B). When transport of 150uM D-aspartate 

was measured in tga20 astrocytes, a difference between tga20 +/- PrP 

expressing and tga20 -/- PrP non-expressing astrocytes was not observed 
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(455+40 vs. 483+22 pmol/min/mg respectively, Figure 4-5). A difference in 

transport velocity was also not observed in dbcAMP treated tga20 +/- vs tga20 -/- 

astrocytes (947+68 vs. 741+62 pmol/min/mg, respectively, Figure 4-5). Thus, 

overexpression of mouse PrP compared to non-expression also did not rescue 

the EAAT activity differences observed between WT and PrP KO astrocytes.  

 
Figure 4-5. EAAT activity in tga20 +- and tga20 -/- astrocytes. Uptake of 150uM D-aspartate 

was quantified in primary astrocytes cultured from tga20 +/- and tga20 -/ astrocytes which 

overexpress or do not express mouse PrP. 

 

EAAT activity in KO astrocytes transduced to express PrP or WT astrocytes with 

silenced PrP expression 

 Usage of transgenic mice to describe EAAT activity as a function of PrP 

expression is still prone to the influence of background genes. Therefore, EAAT 

mediated D-aspartate transport was measured in WT astrocytes whose PrP 

expression was silenced and PrP KO astrocytes induced to express PrP.  

 To rescue the PrP KO phenotype, PrP expression was silenced in WT 

astrocytes by transfecting Prnp specific siRNA, as described in Methods. Levels 

of PrP silencing between experiments were variable and may have depended on 

how the detection method of PrP expression. In some experiments when 

immunoblot and immunostaining of PrP KO astrocytes were employed, silencing 
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specific to siRNA against Prnp compared to a scambled siRNA sequence was 

observed (data not shown). However, FACS analysis showed surface reduction 

of PrP expression independent of the siRNA sequence (Figure 4-6A.). When the 

effect of silencing PrP on EAAT activity was assayed, an increased in D-

aspartate transport was observed in all conditions and was probably the result of 

siRNA transfection (Figure 4-6B).  

 
Figure 4-6. Knockdown of PrP expression following transfection with Prnp specific siRNA. 

A. FACS detection of surface PrP expression on C57BL10 WT astrocytes 72 hours following 

transfection with siRNA against PrP or a scrambled siRNA sequence. Live primary astrocytes 

were labeled with D13, specific for PrP. expression. In this experiment, a reduction in PrP 

expression is observed independent of siRNA sequence. B. Uptake of 150uM D-aspartate was 

quantified in primary PrP KO and WT astrocytes following 72 hours transfection with either siRNA 

against PrP or a scrambled sequence. In all treatments, there was an increase in EAAT activity. 

 

 To rescue PrP expression in PrP KO astrocytes in an attempt to mimic the 

WT phenotype, PrP expression was induced in PrP KO astrocytes and EAAT 

activity was measured. PrP KO astrocytes were transduced in the presence of 

polybrene with retrovirus pSFF in which hamster PrP had been cloned. While 

levels of expression varied experiment to experiment (ranging from 45% - 60%, 

Figure 4-7A), PrP KO astrocytes did express PrP. However, PrP KO astrocytes 

expressing PrP did not exhibit reduced transport compared to PrP KO astrocytes 

not expressing PrP (Figure 4-7B).  
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Figure 4-7. EAAT activity following induction of PrP expression in PrP KO astrocytes. A.  

FACS detection of surface PrP expression 7 days following transduction with pSFF-haPrP in the 

presence of 4ug/ml polybrene (pb). Live primary astrocytes were labeled with D13, specific for 

PrP. expression. Compared to PrP KO astrocytes, 50% transduced astrocytes expressed PrP. B. 

Uptake of 150uM D-aspartate was quantified in PrP KO and WT astrocytes seven days following 

transduction. PrP KO astrocytes transduced to express PrP did not have decreased transport 

compared to untreated KO astrocytes.  

 

DISCUSSION 

 The experiments described in this chapter were aimed at replicating the 

observation that PrP KO astrocytes have higher EAAT activity than WT 

astrocytes. The phenotype observed could not be definitively attributed to PrP 

expression; the mice compared were genetically identical except at chromosome 

2 in the region surrounding the Prnp gene. Here, 129/Ola genes existed in PrP 

KO astrocytes, different than the C57BL10 astrocytes, and thus differences 

observed could be due to the expression of these 129/Ola genes. The gene 

encoding EAAT2, Slc1a2, is located in this region and according to SNP 

analysis, differs between WT and PrP KO mice. Of note, most of the transport in 

the system studied was due to EAAT1 encoded by Slc1a3, located on a 

chromosome 11 and lacking any genetic differences between PrP KO and WT 

mice. 

These experiments used astrocytes harvested from transgenic mice 

whose PrP expression driven by a promoter other than the PrP promoter and 
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whose genome contained the Prnp KO gene complex. If 129/Ola genes flanking 

the Prnp KO gene locus contributed to the differences observed in PrP KO 

versus WT astrocytes, these transgenic mice would have the same 129/Ola 

genes and EAAT would be similar. In experiments examining EAAT activity in 

PrP-expressing transgenic mice, PrP expression did not rescue the WT 

phenotype. The simplest explanation therefore is expression of129/Ola genes in 

the area surrounding the Prnp KO gene locus did play a role in the EAAT activity 

differences observed between WT and PrP KO astrocytes. 

However, there are important caveats to interpreting EAAT activity in PrP 

expressing transgenic mice. The tga20 mice used in this study are of a mixed 

background. Other genes on other chromosomes may be different between the 

lines of mice compared, i.e. Slc1a3 encoding for EAAT1. Furthermore, the PrP 

expressing transgenic mice did not express wild-type levels of PrP. Interestingly, 

the two comparisons that showed similar levels of transport, tgNSE vs tg7 and 

tga20+/- vs. tga20-/-, both compared the lack of PrP expression to the 

overexpression of PrP. Transgene expression can lead to phenotypes by itself 

either due to site of insertion, abnormal expression or overexpression. Tga20 

mice have disturbed T cell development (Jouvin-Marche et al., 2006; Zabel et al., 

2009), increased susceptibility to kainic acid induced seizures and decreased 

synaptic facilitiation and long term potentiation (Rangel et al., 2009). Aggregation 

of PrP has been described in other PrP overexpressing transgenic mice 

(Westaway et al., 1994; Chiesa et al., 2008). The inability, therefore, of the 

rescue experiments to mimic EAAT activity observed in PrP KO and WT mice 

may be due to other reasons unrelated to the Prnp gene and genes flanking the 

region on chromosome two. 

Multiple approaches to understanding the influence of PrP on EAAT 

activity were taken. This includes assessment of another PrP knockout line, 

Zurich PrP 0/0 and the strain used to make the knockout mouse, 129/Ola (data 

not shown). However, because of the same caveats described, interpretation is 

limited. With siRNA and viral transduction experiments, the efficiency of 

manipulation was variable and made comparisons against untreated astrocytes 
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difficult. The best comparison performed was that comparing C57BL/10 wildtype 

and PrP KO mice who share 98.6% genetic identity. The only comparison better 

would be studying the PrP knockout on the 129/Ola background, which will be 

accomplished in future studies.  
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CHAPTER FIVE 
CONCLUSION 

 

 Two questions hover over the fields of prion protein (PrP) biology and excitatory 

amino acid transporter (EAAT) biology: what is the function of PrP and how is EAAT 

activity controlled. Multiple lines of evidence demonstrate that both PrP and the EAATs 

regulate aspects of L-glutamate neurotransmission though a link between them has not 

been demonstrated. The overall aim of this dissertation research was to use PrP KO 

mice as a tool to characterize the influence of PrP on astrocytic EAAT mediated L-

glutamate transport. We found that astrocytes harvested from PrP KO mice displayed 

abnormal EAAT activity that was mediated primarily by the EAAT1 subtype. However, 

the similar localization of the EAATs and PrP to lipid rafts did not appear to control 

EAAT activity nor did overexpression of PrP. Thus, WT PrP expression appeared to 

regulate astrocytic EAAT activity. 

 How might PrP be regulating EAAT activity? EAAT activity is regulated at 

multiple levels: DNA transcription, translation, post-translational modifications and 

localization. At the level of detection, PrP expression did not influence transcriptional 

regulation of EAAT1 or EAAT2 (Chapter 2). PrP expression may influence post-

translational modifications of the EAATs that may subsequently affect functional 

properties of the EAATs. For example, EAAT 1 is glycosylated in the extracellular loop 

of transmembrane helices 3 and 4 (Conradt et al., 1995) and it was not addressed in 

this research whether PrP expression alters the ratio of unglycosylated versus 

glycosylated forms. However, the role of EAAT glycosylations is unknown as both forms 

traffic to the plasma membrane and show similar levels of uptake activity (Conradt et al., 

1995; Raunser et al., 2005). Therefore, the likelihood that PrP affects glycosylation of 

the EAATs is possible though mediating functional outcomes is unlikely. 

 If not through transcriptional regulation or post-translational modification, PrP 

may influence EAAT activity by location. Both PrP and EAATs are localized to lipid rafts 

(Stahl et al., 1987; Butchbach et al., 2004) and such a locale may be conducive to a 

direct or indirect interaction between them. In Chapter 3, we investigated the importance 

of PrP lipid raft localization to EAAT mediated transport by utilizing PrP mutant mice 
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(tg88) which express a soluble form of PrP. Uptake measurements in tg88 astrocytes 

did not demonstrate transport activity that was dependent on lipid raft location. 

However, it is possible that soluble PrP can still bind extracellularly to the EAATs, 

therefore never necessitating membrane localization to control transport. EAAT 

interaction with intracellular proteins in the lipid raft have been identified: GTRAP 41 and 

GTRAP 48 increases EAAT4 activity (Jackson et al., 2001) while GTRAP 3-18 

decreases EAAT 3 activity (Lin et al., 2001). All three EAAT interacting proteins, the 

only ones identified so far, act on neuronal EAATs through binding to the C-terminal 

intracellular domains. It is possible that PrP is an astrocytic EAAT interacting protein 

that decreases EAAT activity through interaction with the extracellular domains on 

EAAT1 and/or EAAT2. 

 The EAATs are also subject to regulation through membrane trafficking and it is 

possible that PrP exerts its influence on EAAT activity by affecting local concentrations 

of EAAT protein on the membrane. Pre-incubation with L-glutamate has been shown to 

alter membrane expression of EAAT1, which was prevented by actin disrupting agents 

(Duan et al., 1999). It has been suggested that EAAT2 can be rapidly internalized by 

clathrin-mediated endocytosis (Zhou and Sutherland, 2004; Susarla and Robinson, 

2008). Alterations in membrane levels of EAAT1/2 may be a mechanism to maintain 

local glutamate concentrations but would require an extracellular sensor (Chaudhry et 

al., 1995). As an extracellular protein, PrP could act as a sensor and mediate the 

internalization of astrocytic L-glutamate transporters in response to L-glutamate 

concentration. Previous studies have suggested that PrP can act as a stress sensor for 

hydrogen peroxide (Krebs et al., 2007) and copper (Rachidi et al., 2003). In our studies, 

EAAT activity was measured by exposing WT and PrP KO astrocytes to varying 

concentrations of D-aspartate. We observed substrate concentration dependant 

differences in EAAT activity between PrP KO and WT astrocytes. Interestingly, 

evidence suggests PrP is also internalized via clathrin-mediated endocytosis, which is 

unusual for a GPI-anchored protein lacking an intracellular sequence necessary for 

interaction with endocytic adaptor proteins. It is possible that internalization of PrP 

requires its interaction with an integral membrane protein that contains a localization 



  93 

sequence for clathrin-mediated endocytosis. Thus, PrP interaction with EAAT 1 and/or 

EAAT 2 may serve to maintain a local glutamate concentration at the synapse.  

 EAAT internalization through clathrin-mediated endocytosis was specifically 

studied on EAAT 2 and whether a similar action of activity dependent internalization of 

EAAT1 is unknown. In our studies, the transporter subtype responsible for the majority 

of transport was EAAT1, which was most likely a result of EAAT1 being highly 

expressed in our cultures. Despite efforts to increase EAAT2 expression through 

dbcAMP treatment and co-culture with neurons, levels of EAAT2 expression were 

typically 10 fold lower than EAAT2 in all cultures. Thus, the contribution of EAAT2 to 

transport in WT and PrP KO astrocytes was overshadowed by the high contribution of 

EAAT1. We hypothesized that the influence of PrP on primary astrocyte L-glutamate 

transport was through modulation of EAAT1 activity and it remains to be seen whether 

similar modulation by PrP would act on EAAT2 and EAAT3 in the synapse. Future 

studies looking at transport in synaptosomes, whose pharmacology profile is EAAT2 

dominant, will address this issue.  

 However, if PrP specifically acted on EAAT1 to decrease L-glutamate transport, 

its contribution to regulating L-glutamate concentrations in vivo would not be 

insignificant.  EAAT1 is expressed throughout the brain though, in contrast to primary 

astrocytes in vitro, its expression is lower than EAAT2 whose expression dominates in 

all areas of the brain except the cerebellum (Danbolt, 2001). The assumption that 

EAAT2 is the most relevant L-glutamate transporter in vivo is most likely due to its high 

expression. For example, quantitative immunoblotting demonstrated that in the 

hippocampus, EAAT2 is four times higher than EAAT1 (Lehre and Danbolt, 1998). Over 

90% EAAT2 activity is immunoprecipitated from crude forebrain extracts of reconstituted 

activity (Haugeto et al., 1996) and the pharmacology profile of synaptosomes is mainly 

EAAT2 (Koch et al., 1999b). Thus, analogous to what we observed in our primary 

astrocyte cultures, expression differences of EAAT1 and EAAT2 might hide functional 

contributions to overall L-glutamate transport. Understanding the contribution of other 

transporters to maintenance of L-glutamate homeostasis is overshadowed by EAAT2 

dominant expression. Interestingly, pharmacological inactivation of EAAT2 did not lead 

to widespread neuronal death as expected, suggesting that other L-glutamate 
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transporters such as EAAT3 and EAAT 1 can be rapidly mobilized to clear L-glutamate 

(Selkirk et al., 2005). 

 The importance of EAAT1 is poorly understood in vivo. EAAT1 is the dominant 

transporter expressed during development in all regions of the brain and its expression 

remains throughout adulthood.  EAAT1 is the primary transporter expressed by 

Bergman glia in the cerebellum and EAAT1 knockout mice suffer from cerebellar ataxia. 

Interestingly, dysfunction in EAAT1 is implicated in schizophrenia (Karlsson et al., 

2009), a disease in which a hypothesized mechanism is decreased glutamate signaling 

(Miyamoto et al., 2005). PrP KO mice suffer from abnormalities that may be related to 

dampened L-glutamatergic neurotransmission including reduced synaptic transmission, 

long term potentiation and poor behavior in learning and memory tasks (Criado et al., 

2005). These observations may be the result of premature clearance of glutamate by 

overactive astrocytic EAATs. 

Does abnormal L-glutamate transport contribute to the synaptic dysfunction 

observed in transmissible spongiform encephalopathies (TSEs)? TSEs are fatal 

neurodegenerative diseases. Several mammalian TSE strains exist, including bovine 

spongiform encephalopathy or “mad cow disease” in cattle, scrapie in sheep and goats, 

chronic wasting disease in deer and elk and Gerstmann Sträussler Scheinker 

syndrome, familial Creutzfeldt-Jacob Disease (CJD), fatal familial insomnia, variant 

CJD, and kuru in humans. Notably, the species barrier usually restricts transmission of 

TSE diseases from one species to another, but as evident with BSE transmission to 

humans, is possible. Fortunately, the difficulty in crossing the species barrier as well as 

increased surveillance in human consumed game and livestock has rendered human 

transmission low; the incidence of disease is one or two cases per million humans. 

Nevertheless, the spread of disease within an infected herd and threat of human 

infection has consequently made an enormous economic impact on the livestock and 

hunting industries. 

TSE strains are unique in the targeted species, incubation time, clinical 

presentation and tissues affected. However, they share common histopathological 

characteristics. Disease manifests itself as grey matter spongiform vacuolation, 

neuronal dropout and gliosis, usually colocalizing with PrPres. PrPres is conformationally 
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distinct from PrP in that it is β-sheet rich and prone to aggregation. PrPres accumulates 

at the cell surface in intracellular vesicles or as diffuse extracellular deposits (Caughey 

et al., 2009). Typically, TSEs are characterized by a long incubation time in which most 

symptoms, in relation to the incubation period, shortly precede death. Spongiform 

vacuolation may be an early morphological marker as neurons are not lost yet but 

vacuoles are formed within them (Moreno and Mallucci, 2010). In mouse models, 

synaptic pathology represents one of the earliest changes seen in the disease (Clinton 

et al., 1993; Fuhrmann et al., 2007; Mallucci et al., 2007) and results in reduced 

synaptic responses and behavioral deficits related to spatial learning (Mallucci et al., 

2007). The disease progresses into ataxia and wasting. In humans, clinical symptoms 

are characterized by cognitive decline, dementia and cerebellar ataxia (Aguzzi et al., 

2008). 

 The causes of synaptic pathology in TSEs are unknown but abnormal EAAT 

activity could be a contributing factor. The direct and indirect vulnerability of neurons to 

PrPres induced damage demonstrates that the disease takes advantage of the 

relationship between neurons and astrocytes. Mice expressing PrP only on neurons are 

susceptible to TSE infection (Race et al., 1995), suggesting that PrP expression on non-

neuronal cells is not necessary for disease. However, neurons secrete soluble factors 

that affect EAAT expression (Gegelashvili et al., 1997; Swanson et al., 1997; Yang et 

al., 2009) as well as present PrPres extracellularly which may cause compromised 

astrocytic EAAT function. Interestingly, mice expressing PrP only on astrocytes are also 

susceptible to TSE (Raeber et al., 1997), demonstrating that neuronal damage from 

infection can come indirectly. Astrocytes are one of the earliest sites of PrPres 

accumulation in the brain (Diedrich et al., 1991) and PrPres toxicity might also cause 

disturbance in astrocytic EAAT activity, thereby perturbing synaptic L-glutamate 

homeostasis. These abnormalities could precede the development of neuropathological 

changes but affect more subtle phenotypes such as altered dendritic spine morphology 

(Fuhrmann et al., 2007) and depressed synaptic responses (Mallucci et al., 2007). 

Gliosis in the terminal stages of disease may lead to reversal of glutamate uptake (Koch 

et al., 1999a) in which the EAATs may act as a site of efflux for cellular L-glutamate. 

Interestingly, increased EAAT1 expression was observed in microglia of patients with 
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CJD and FFI who had long survival periods suggesting that, though not sufficient to 

prevent neurological deterioration, microglial expression of EAAT1 might be 

neuroprotective. If EAAT dysfunction plays a role in pathology of TSE diseases several 

questions would have to be addressed, such as the duration of exposure to TSE, 

whether PrPres accumulation is necessary and whether possible dysfunction is great 

enough to lead to neuronal damage. 

 The function of PrP may be multidimensional, converging on a role maintaining 

synaptic specificity in which activity dependent events are targeted towards appropriate 

neurons and receptors, limiting spillover, excessive activation or premature signal 

termination. The importance of EAATs in controlling glutamate signaling is region 

dependent and thus, PrP’s influence may be most critical in areas where astrocytes 

tightly ensheath nerve terminals. Perhaps in other areas where termination of signal 

operates through diffusion, PrP affects L-glutamate receptor distribution or activation. 

The symptoms and pathology of TSE infection may take advantage of the role of PrP in 

the glutamatergic system starting with a pre-clinical stage characterized by low-level 

synaptic dysfunction and ending with a clinical stage that may be a result of 

excitotoxicity and transporter reversal. Through modulation of EAAT activity and 

glutamate receptor dynamics, the function of PrP may be to maintain an optimal level of 

L-glutamate in the synaptic cleft during all phases of neuronal signaling.  
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