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Abstract 

 
Electrokinetic chromatography (EKC) is a powerful analytical technique where analytes are 

separated according to their interactions with the pseudostationary and mobile phases within an 

electric field.  Pseudostationary phases (PSPs) are an integral part of EKC and currently there 

are a limited number of PSPs available.    As the fields of medicinal, environmental, and 

forensics chemistry grow, the necessity for PSPs with varied selectivity and high efficiencies 

becomes apparent.  Until recently, polymeric synthesis of novel PSPs has been difficult due to 

the lack of control in structure and size distribution.  Recent developments in polymeric 

synthesis, utilizing the Reversible addition−fragmentation chain-transfer polymerization (RAFT) 

process, have overcome the aforementioned problems. 

 

This study furthers the research of latex nanoparticles as PSPs. 2-Acrylamido-2-methylpropane 

sulfonic acid (AMPS) was chosen as a novel ionic nanoparticle shell due to its high acidic 

character.  Butyl acrylate was chosen for the hydrophobic core to stay consistent with previous 

work.  Through the RAFT process, nanoparticles were successfully synthesized, demonstrating 

size control of both the hydrophilic block and hydrophobic block. 

 

The novel PSP performance was characterized in EKC by obtaining its electrophoretic mobility 

(μep) with respect to size and pH.  Retention and selectivity were characterized by linear 

solvation energy relationships (LSER) and compared with currently used PSPs.     

  

  



iii 
 

Acknowledgements 

 

I would like to thank Chris Palmer for the support he has given, enabling this project to be what 

it is today.  Thank you for all the time, motivation, and encouragement throughout this project. 

 

Thank you Jesse Hyslop for providing a creative environment, where ideas could grow, be 

discussed, and then be implemented. 

 

Thank you my beautiful wife for putting up with the lights being on at 3AM.  Thank you for all 

your support and love.  I couldn’t have done it without you.  Thank you to our families, without 

whom, this would have been ten times as hard.  Thank you Charlie dog for being the best 

Aussie ever. 

 

 

 
  



iv 
 

Table of Contents 

Abstract ............................................................................................................................. ii 

Acknowledgements ........................................................................................................... iii 

List of abbreviations .......................................................................................................... vi 

List of schemes ............................................................................................................... viii 

List of tables ..................................................................................................................... ix 

List of figures ..................................................................................................................... x 

List of Equations .............................................................................................................. xii 

Chapter 1: Introduction and objectives ................................................................................. 1 

1.1 Introduction ................................................................................................................. 1 

1.2 Electrokinetic Chromatography ................................................................................... 1 

1.3 Free radical polymerization ......................................................................................... 3 

1.4 Reversible addition−fragmentation chain-transfer polymerization ............................... 4 

1.5 Objectives of the study ................................................................................................ 5 

1.6 Thesis layout .............................................................................................................. 6 

Chapter 2: Theoretical background ...................................................................................... 7 

2.1 Introduction ................................................................................................................. 7 

2.2 Free radical polymerization ......................................................................................... 8 

2.3 Reversible addition−fragmentation chain-transfer polymerization ..............................11 

2.3.1 Single Block Polymers to AB Diblock Copolymers ...............................................18 

2.4 Capillary electrophoresis ............................................................................................20 

2.5 Electrokinetic chromatography ...................................................................................24 

2.5.1 Polymeric PSPs...................................................................................................24 

2.5.2 Resolution, Efficiency, and Capacity ....................................................................28 

2.6 Linear solvation energy relationships and methylene selectivity .................................29 

Chapter 3: Synthesis and characterization of RAFT agents and diblock copolymers ...........32 

3.1 Introduction ................................................................................................................32 

3.2 Materials ....................................................................................................................33 

3.3 Experimental Procedure ............................................................................................33 

3.3.1 Synthesis of CTA agent .......................................................................................33 

3.3.2 Synthesis of macro CTA ......................................................................................34 

3.3.3 Synthesis of diblock copolymers ..........................................................................35 

3.4 Characterization .........................................................................................................37 

3.4.1 CTA .....................................................................................................................37 

3.4.2 Macro-CTA ..........................................................................................................40 

3.4.3 Diblock copolymer nanoparticles .........................................................................43 



v 
 

Chapter 4: Performance characterization of nanoparticles in electrokinetic chromatography
 .................................................................................................................................................47 

4.1 Introduction ................................................................................................................47 

4.2 Experimental Details ..................................................................................................47 

4.3 Separations of alkyl-phenone derivatives at pH 9.2 ...................................................48 

4.4 Electrophoretic mobility, pH dependence, Size dependence, Migration Range, 
Methylene Selectivity .............................................................................................................49 

4.5 LSER analysis ...........................................................................................................50 

Chapter 5: Results and Discussion ......................................................................................52 

5.1 Introduction ................................................................................................................52 

5.2 Synthesis of poly (AMPS) macro-CTA .......................................................................52 

5.2.1 Neutralization of acrylamides in the synthesis of mCTA ......................................52 

5.2.2 RAFT control .......................................................................................................52 

5.2.3 NMR analysis and conversion .............................................................................54 

5.3 Chain extension of poly(AMPS) macro-CTA with butyl acrylate .................................56 

5.3.1 Reaction dependency on pH ...............................................................................56 

5.3.2 NMR and DLS discussion ....................................................................................57 

5.4 Methylene Selectivity and CE Current ........................................................................59 

5.5 Electrophoretic mobility and efficiency .......................................................................62 

5.6 LSER .........................................................................................................................65 

5.6.1 Retention .............................................................................................................65 

5.6.2 Selectivity ............................................................................................................71 

Chapter 6: Conclusions and recommendations ...................................................................72 

6.1 Conclusions ...............................................................................................................72 

6.2 Recommendations for future work .............................................................................72 

Bibliography ........................................................................................................................74 

 

  



vi 
 

List of abbreviations 

[Io]  Initiator Concentration A Analyte 

[Mo] Monomer Concentration f initiator efficiency 

µo  Electroosmotic mobility Rs Resolution 

ua  Analyte velocity µa Analyte electrophoretic 
mobility 

AIBN Azoisobutylnitrile initiator to Elution time for an 
unretained analyte 

CE Capillary Electrophoresis V501 4, 4'-Azobis (4-
Cyanovaleric Acid) 
initiator 

EKC Electrokinetic Chromatography  MEKC Micellar electrokinetic 
chromatography 

FWRAFT Molecular weight of RAFT PSP Pseudostationary Phase 

HPLC High-performance liquid 
chromatography 

FWm Molecular weight of 
monomer 

K Distribution Coefficient DLS Dynamic Light Scattering 

kB Boltzmann Constant µep or 
µep,psp 

Electrophoretic mobility of 
analyte or PSP 

L Capillary length to detector u net velocity 

LSER Linear solvation energy relationships PDI Polydispersity Index 

mCTA macro chain transfer agent PDI* DLS Polydispersity Index 

Mi Molar mass of polymer species Ni number of moles 
(intensity) of polymer 
species 

Mn Number average molar mass Mw Weight average molar 
mass 

MS Mass Spectrometer uo Electroosmotic flow 
velocity 

MW Molar weight UV Ultraviolet 

NMR Nuclear magnetic resonance ESI-MS Electrospray Ionization 
Mass Spectrometry 

R• Radical I• Initiator Radical 

RAFT Reversible addition-fragmentation 
chain-transfer 

CTA Chain Transfer Agent 

SDS sodium dodecyl sulfate [RAFTo] Initial RAFT 
Concentration 

t Time r Stokes radius 

T Temperature k Retention Factor 

tpsp elution time of a fully retained analyte EOF Electro Osmotic Flow 

tr Analyte elution time Lt Total Capillary length 

V Voltage x fractional conversion at 
time t 

ε Relative permittivity ζ zeta potential 

η Viscosity E Electric field strength 

SPM Solvation parameter model N Plate Number 

upspnet Net PSP velocity ABS Absorbance 

µepnet Net PSP electrophoretic mobility Dv Distribution by volume 

kopt Optimal retention factor NP Nanoparticle 



vii 
 

MWCO Molecular weight cutoff αCH2 Methylene selectivity 

DAD Diode array detector   



viii 
 

List of schemes 

 
Scheme 1: Thermal decomposition of dicumyl peroxide. ...................................................... 8 
Scheme 2: Photolysis of azoisobutylnitrile (AIBN) gives two free radical initiators and 

nitrogen gas. .............................................................................................................................. 9 
Scheme 3: Phenyl initiator attacks and attaches to a double bond on styrene ...................... 9 
Scheme 4: Two pathways of free radical polymerization termination: Combination and 

disproportionation. ....................................................................................................................10 
Scheme 5: Mechanism of RAFT polymerization. [28] "Reprinted with permission from {G. 

Moad, E. Rizzardo and S. H. Thang, "Living Radical Polymerization by the RAFT Process," 
Australian Journal of Chemistry, vol. 58, pp. 379-410, 2005.}. Copyright {2013} Australian 
Journal of Chemistry." ...............................................................................................................16 

Scheme 6:  A) General reaction process for the creation of a AB diblock copolymer.  In 
illustration the hydrophobic block is added first, followed by the hydrophilic block. [32] B) 
Micellization and further polymerization with the hydrophobic monomer. [30]  The surfactant is 
the mCTA.  Reaction takes place in an aqueous solvent.  Initiator molecules consist mostly of R• 
with a small amount being I•. Schme 6 A and B were "Reprinted with permission from {C. 
Furgeson, R. Hughes, D. Nguyen, B. Pham, R. Gilbert, A. Serelis, C. Such and B. Hawkett, "Ab 
Initio Emulsion Polymerization by RAFT-Controlled Self-Assembly," Macromolecules, vol. 38, 
pp. 2191-2204, 2005.}. Copyright {2013} American Chemical Society." And the Dave Weitz 
group at Harvard University, respectively. .................................................................................20 

Scheme 7:  Synthetic route to producing 2-{[(butylsulfanyl)carbothioyl]sulfanyl]}propanoic 
acid ...........................................................................................................................................33 

Scheme 8:  Synthetic pathway to the mCTA through the RAFT process. ............................35 
Scheme 9: Synthetic pathway to the AB diblock nanoparticle through the RAFT process. ..36 

 

  



ix 
 

List of tables 

 
Table 1: Four classes of CTAs. ...........................................................................................13 
Table 2: Commercially available CTAs on the left and monomers on top [27].  The “+” 

indicates a favorable reaction. “Reprinted with permission from Sigma-Aldrich, copyright 2013”
 .................................................................................................................................................14 

Table 3: Results of DLS Analysis.  The polydispersity index (PDI*) calculated from DLS is 
different than the PDI discussed earlier.  While PDI is a based on weight distribution, PDI* is 
obtained from DLS as a time dependent intensity distribution.  A PDI* of <0.1 is considered very 
monodisperse.  A PDI* <0.4 is fairly monodisperse while a PDI* of >0.7 is considered very 
polydisperce ..............................................................................................................................46 

Table 4: Electrophoretic properties of AU19B and AU31A in 10mM borate buffer (pH 9.2). 49 
Table 5: Electrophoretic mobility and migration range dependence on pH. .........................50 
Table 6: Determined k and log k values.  Solute descriptors are also reported. ...................51 
Table 7: System constants for AU31A PSP. ........................................................................51 
Table 8:  AMPS 1 and 2 were synthesized by Sumerlin and analyzed by aqueous size 

exclusion chromatography.  JSH32A was analyzed by ESI-MS. ...............................................52 
Table 9: Theoretical vs. experimental results for mCTA polymerizations presented by 

Ladaviere (black) and Mori (blue). [46] [47] ...............................................................................53 
Table 10:  Qualitative analysis of nanoparticles dissolved in H2O synthesized at different pH.

 .................................................................................................................................................56 
Table 11:  Results for DLS and NMR analysis of synthesized nanoparticles.  The number 

associated with NMR integration gives the average number of polymerized butyl acrylate 
monomers. ................................................................................................................................58 

Table 12: Methylene selectivities .........................................................................................59 
Table 13:  Methylene selectivities table, recreated from Shamsi et.al., of four homologous 

series polymeric PSPs. [52] ......................................................................................................60 
Table 14:  Comparison between different PSPs and their effects on analysis current.  

AU19A and AU19A’ is the same PSP, the only difference being in the application of post-
synthetic dialysis.  Poly-SUS is a polymerized micelle-like structure consisting of 
sodiumundecylenic sulfate. .......................................................................................................61 

Table 15:  Performance characteristics for nanoparticles, SDS, and random block polymers.
 .................................................................................................................................................62 

Table 16:  Electrophoretic mobilities, EOFs, and migration ranges at different pH.  Data 
obtained from results presented in Chapter 4. ...........................................................................64 

Table 17:  LSER system constants for AU31A (AMPS-Butyl Acrylate) PSP, Palmer NP 
(Acrylic Acid-Butyl Acrylate) PSP, SDS, Poly(SUA) (poly(sodium undecylenate)), and  
Poly(C12Mat/AMPS) (a copolymer of dodecyl methacrylate (15%) and AMPS).  SDS values are 
averages from several studies as reported by Fu and Khaledi. .................................................66 

Table 18:  Normalized system constants obtained from  using Equation 29. .......................71 
 
  



x 
 

List of figures 

 
Figure 1: Typical molecular weight distributions for a conventional (broad peak) and living 

radical (narrow peak) polymerization.  Peak PDI values obtained from GPC data are 1.74 and 
1.04 respectively. [22] "Reprinted with permission from {G. Moad, E. Rizzardo and S. H. Thang, 
"Living Radical Polymerization by the RAFT Process," Australian Journal of Chemistry, vol. 58, 
pp. 379-410, 2005.}. Copyright {2013} Australian Journal of Chemistry." ..................................11 

Figure 2:  A general representation of a CTA. .....................................................................12 
Figure 3: Major products of the RAFT process decreasing in prevalence from left to right...17 
Figure 4: GPC data showing a linear relationship between conversion and molecular weight 

(circles).  Polydispersity is exponentially minimized with conversion (squares). [62] "Reprinted 
with permission from {C. L. Mccormick and A. B. Lowe, "Aqueous RAFT Polymerization: Recent 
Developments in Synthesis of Functional Water-Soluble (Co)polymers with Controlled 
Structures," Acc. Chem. Res., vol. 37, pp. 312-325, 2004.}. Copyright {2013} American 
Chemical Society." ....................................................................................................................17 

Figure 5:  Basic CE instrument setup. .................................................................................21 
Figure 6: a) A zoomed representation of a capillary column in CE.  Acharge represents an 

analyte of a certain charge.  Hydrated cations are balancing the negatively charged oxides 
establishing the EOF.  μM+ represents the velocity of positively charged ions.  μM- represents 
the velocity of negatively charged ions.  The EOF and net migration is towards the cathode.  b)  
Elution order of analytes, positive ions are followed by neutral compounds, followed by negative 
ions. ..........................................................................................................................................21 

Figure 7: a) Flow profile of a pressure driven flow system.  b) Flow profile of an EOF system.
 .................................................................................................................................................22 

Figure 8:  A cross sectional representation of a capillary column filled with a buffer solution 
and a PSP.  Black interior represents the hydrophobic area of the PSP.  Green areas represent 
the anionic components of the PSP.  Analytes A and B partition between the buffer and PSP 
phases.  Analyte B has a partition coefficient less than that of Analyte A thus its net velocity is 
faster and tr is smaller.  A hypothetical chromatogram illustrates the elution order. ...................25 

Figure 9:  Resolution as a function of the retention factor.  The curves are color coded to the 
theoretical chromatogram (top), illustrating migration range’s effect on resolution. ....................29 

Figure 10: A) An HPLC chromatogram at 210nm of CTA01 of time vs. ABS. B) Extracted 
spectra of the main peak at 2.75 min. compared to the ABS spectra reported by Shen and 
group. .......................................................................................................................................39 

Figure 11: 1H NMR spectra and peak assignments for the synthesized CTA in d-chloroform.  
Each multiplet (labeled at the top) is assigned to the structure at the top left of the figure.  For 
example: M01(m,9) is assigned to the hydrogens of carbon 9. ..................................................40 

Figure 12:  Mass spectrum of poly(n-AMPS) macro-CTA where the AMPS component has a 
MW of ~207 and n=number of AMPS/chain.   The chromatogram shows a distribution of a RAFT 
polymerization product with a polydispersity index of 1.03.  The major component is the highest 
intensity peak showing 4-AMPS/chain. .....................................................................................41 

Figure 13: 1H NMR spectra reported by Sumerlin and group. [42]  "Reprinted with 
permission from {B. Sumerlin, M. Donovan, Y. Mitsukami, A. Lowe and C. McCormick, "Water-
Soluble Polymers. 84. Controlled Polymerization in Aqueous Media of Anionic Acrylamido 
Monomers via RAFT," Macromolecules, vol. 34, pp. 6561-6564, 2001.}. Copyright {2013} 
American Chemical Society." ....................................................................................................42 

Figure 14: 1H NMR spectra of mCTA JSH32A in D2O.  Polymerization can be observed by 
the broad peak shapes of the monomer’s hydrogen signals.  The AMPS monomer structure is 
presented to illustrate the vinyl groups present on a free monomer.  No vinyl groups are seen in 
the spectra. ...............................................................................................................................43 

file:///C:/Users/anumansky/Desktop/Andre%20Thesis%205.0.docx%23_Toc358040926
file:///C:/Users/anumansky/Desktop/Andre%20Thesis%205.0.docx%23_Toc358040926
file:///C:/Users/anumansky/Desktop/Andre%20Thesis%205.0.docx%23_Toc358040926
file:///C:/Users/anumansky/Desktop/Andre%20Thesis%205.0.docx%23_Toc358040926
file:///C:/Users/anumansky/Desktop/Andre%20Thesis%205.0.docx%23_Toc358040926
file:///C:/Users/anumansky/Desktop/Andre%20Thesis%205.0.docx%23_Toc358040926
file:///C:/Users/anumansky/Desktop/Andre%20Thesis%205.0.docx%23_Toc358040928
file:///C:/Users/anumansky/Desktop/Andre%20Thesis%205.0.docx%23_Toc358040928
file:///C:/Users/anumansky/Desktop/Andre%20Thesis%205.0.docx%23_Toc358040928
file:///C:/Users/anumansky/Desktop/Andre%20Thesis%205.0.docx%23_Toc358040928
file:///C:/Users/anumansky/Desktop/Andre%20Thesis%205.0.docx%23_Toc358040928
file:///C:/Users/anumansky/Desktop/Andre%20Thesis%205.0.docx%23_Toc358040928
file:///C:/Users/anumansky/Desktop/Andre%20Thesis%205.0.docx%23_Toc358040929
file:///C:/Users/anumansky/Desktop/Andre%20Thesis%205.0.docx%23_Toc358040929
file:///C:/Users/anumansky/Desktop/Andre%20Thesis%205.0.docx%23_Toc358040930
file:///C:/Users/anumansky/Desktop/Andre%20Thesis%205.0.docx%23_Toc358040930
file:///C:/Users/anumansky/Desktop/Andre%20Thesis%205.0.docx%23_Toc358040930
file:///C:/Users/anumansky/Desktop/Andre%20Thesis%205.0.docx%23_Toc358040930
file:///C:/Users/anumansky/Desktop/Andre%20Thesis%205.0.docx%23_Toc358040930


xi 
 

Figure 15: 1H NMR spectra of butyl acrylate in d-chloroform. ..............................................44 
Figure 16: 1H NMR spectra of AU19B in D2O after polymerization with butyl acrylate. ........44 
Figure 17: 1H NMR spectra of AU31A in D2O after polymerization with butyl acrylate. ........45 
Figure 18: DLS analysis of AU19B showing a lognormal size distribution by volume. ..........46 
Figure 19: DLS analysis of AU31A showing a lognormal size distribution by volume. ..........46 
Figure 20: Separation of acetone (0.2%) and alkyl-phenyl ketones:  1. Acetophenone 

(3.72ppm), 2. Propiophenone (3.18ppm); 3. Butyrophenone(3.14ppm); 4. 
Valerophenone(3.31ppm); 5. Hexanophenone(3.32ppm); 6. Heptaphenone(6.30ppm).  The 
separation was performed using a 10mM borate buffer (pH 9.2) and 0.6% AU19B PSP. ..........48 

Figure 21: Separation of acetone (0.2%) and alkyl-phenyl ketones:  peaks as labeled in 
Figure 20..72ppm), 2. Propiophenone (9.18ppm); 3. Butyrophenone(9.14ppm); 4. 
Valerophenone(9.31ppm); 5. Hexanophenone(9.32ppm); 6. Heptaphenone(18.30ppm).  The 
separation was performed using a 10mM borate buffer (pH 9.2) and 0.35% AU31A PSP. ........48 

Figure 22:  Separation of six alkyl-phenone derivatives at pH 7.55. .....................................50 
Figure 23: Separation of six alkyl-phenone derivatives at pH 5.45. ......................................50 
Figure 24: 1H NMR spectra of mCTA JSH32A in D2O. ........................................................54 
Figure 25:  1H NMR spectra of mCTA JSH42B8 in D2O.  LH31A2 mCTA before dialysis 

(BLUE) and after dialysis (GREEN).  The green spectrum of dialyzed mCTA is offset to the left 
to make the figure clearer. ........................................................................................................55 

Figure 26:  Plate count for each analyte separated using AU19B as a PSP ........................65 
Figure 27: Representative electropherogram for four LSER compounds. Mix # 4 was run 

under conditions described in chapter 3. 1) Phenyl Acetate. 2) Propiophenone. 3) 4-
Nitrotoluene. 4) Iodobenzene. ...................................................................................................66 

Figure 28: A graphical representation of the data presented in Table 17. ............................67 
Figure 29:  Hydrated interphase region in SDS micelles [61].  Sulfate groups are hydrated 

through H-bonds. "Reprinted with permission from { R. Buchner, C. Baar, P. Fernandez, S. 
Shrodle and W. Kunz, "Dielectric spectroscopy of micelle hydration and dynamics in aqueous 
ionic surfactant solutions," Journal of Molecular Liquids, vol. 118, no. 1-3, pp. 179-187, 2005.}. 
Copyright {2013} American Chemical Society." .........................................................................68 

Figure 30: A 3D representation cutout of an AMPS-Butyl Acrylate nanoparticle.  For 
illustration purposes, only one subunit of the poly AMPS block and poly Butyl Acrylate (BA) 
block is shown. Note that although the carboxylic acid and butanethiol terminal ends look 
significant in this image, they only comprise a small portion of the full polymeric NP.................70 
 
  



xii 
 

List of Equations 

 
Equation 1:  PDI ................................................................................................................... 4 
Equation 2: Calculation to determine the theoretical molecular weight of the polymer at a 

certain conversion.  The initiator terms are included..................................................................18 
Equation 3:  Calculation to determine the theoretical molecular weight of the polymer at a 

certain conversion.  The initiator terms are omitted. ..................................................................18 
Equation 4: EOF velocity. ....................................................................................................22 
Equation 5: Electric field strength ........................................................................................23 
Equation 6: Electroosmotic mobility. ....................................................................................23 
Equation 7: Charged analyte velocity ..................................................................................23 
Equation 8: Analyte electrophoretic mobility ........................................................................23 
Equation 9:  Stockes radius .................................................................................................23 
Equation 10: Experimental calculation of analyte electrophoretic mobility ...........................24 
Equation 11: Net analyte velocity ........................................................................................24 
Equation 12: Electrophoretic velocity of a PSP ....................................................................26 
Equation 13: PSP net velocity .............................................................................................26 
Equation 14: EOF velocity ...................................................................................................26 
Equation 15: PSP net velocity .............................................................................................26 
Equation 16: Analyte velocity ..............................................................................................26 
Equation 17: EOF electrophoretic ........................................................................................26 
Equation 18: PSP apparent electrophoretic mobility ............................................................26 
Equation 19: Analyte electrophoretic mobility ......................................................................26 
Equation 20:  Analyte velocity in EKC .................................................................................27 
Equation 21: Retention factor ..............................................................................................27 
Equation 22: Retention factor experimental determination. .................................................27 
Equation 23: Rearrangement of Equation 22 .......................................................................28 
Equation 24: Determination of the retention factor from electrophoretic mobility ..................28 
Equation 25:  Master resolution equation for EKC ...............................................................28 
Equation 26: The solvation parameter model ......................................................................30 
Equation 27: The log of the partition coefficient is related to the selectivity of the PSP 

through the change in free-energy ............................................................................................31 
Equation 28:  Experimental determination of electrophoretic mobility. .................................49 
Equation 29:  Normalization parameter for LSER system constants. ...................................71 

 
 



1 
 

 

Chapter 1: Introduction and objectives 

1.1 Introduction 

 
This study addresses the need for new pseudostationary phases (PSPs) for electrokinetic 

chromatography in order to accommodate the need for analysis of a large number of chemically 

different analytes.  The focus of this study is twofold.   First, a novel PSP was synthesized 

through the Reversible addition−fragmentation chain-transfer polymerization (RAFT) process 

and characterized.  Second, the PSP was used in EKC separations through which its 

performance was characterized and compared to currently used PSPs. 

 

The RAFT process was chosen for PSP synthesis because of its high control of molecular 

weight, narrow molecular weight distributions, and the ability to prepare complex 

macromolecular architectures [1].  The synthesis of the PSP confirmed the advantages of 

utilizing the RAFT process. 

 

Chapter 1 is a very brief introduction to the methods used in this research.  Historical 

information is presented in order to outline how this group took interest in this research.  The 

main methods and theories, staples to this research, such as capillary electrophoresis, 

electrokinetic chromatography, and RAFT are presented in this chapter only as an introduction.  

In-depth discussions follow in Chapter 2  

1.2 Electrokinetic Chromatography 

 
The electrophoresis effect was first observed by a Russian physicist Reuss in 1809 [2], though 

the theoretical aspects were not formulated until 1897 by Kohlrausch [3].  Introduced in the 

1960’s by Tiselius and Hjerten, capillary electrophoresis (CE) is an analytical scale technique 

which utilizes the differences in analyte charge and size to effect separations in a capillary tube 

[4]. CE, as known today, was first demonstrated, in 1981, on open-tubular fused silica capillaries 

by Jorgenson and Lukacs [5] [6].  In 1984 the Terabe group reported on a modification of the 

CE separation technique by including a PSP which allowed separations of charged and neutral 

compounds [7].  Terabe and group used sodium dodecyl sulfate (SDS) as their PSP, a 

compound which forms micelles in solutions and thus micellar electrokinetic chromatography 
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(MEKC) was born.  While the technique is described in great detail in Chapter 2, a brief 

introduction follows:   

 

In this technique, the method of separation is dependent on how the analyte interacts with the 

chosen anionic PSP and the buffered mobile phase in the presence of an electric field.  Due to 

the anionic character of the PSP, its affinity is towards the anode; away from the detector which 

is installed at the cathode end of the instrument.  The mobile phase flow is established by the 

presence of cations along the capillary walls and the applied electric field along that capillary, 

resulting in electroosmotic flow.  The mobile phase thus moves towards the detector at or near 

the cathode.  Because of this strong mobile phase flow the net movement of the PSP, although 

with a different velocity than the mobile phase, is towards the cathode as well.  As analytes 

interact, selectively, with the mobile phase and the PSP (migrating with different velocities) 

relative transport is established and thus different analytes separate from each other. 

 

The experiments in this work follow the general setup in Terabe’s original experiments.  The 

mobile phase is chosen to be basic, although the effect of slightly acidic mobile phases is also 

investigated.  The synthesized PSPs are similar in principle to SDS, containing anionic shells 

and hydrophobic cores.          

 

Although SDS is an excellent pseudostationary phase there are significant limitations to its 

performance.  Highly retained compounds such as biphenyl have large retention factors and 

lose resolution in a MEKC separation.  The solution is to add an organic solvent as a modifier to 

the mobile phase to lower the retention factor.  SDS, being a micelle, will begin to disassociate 

in higher organic modifier concentrations losing separation performance.  

 

In 1997 Palmer et al. oligomerized sodium 10-undecylenyl sulfate, a compound analogous to 

SDS [8].    This micelle-polymer PSP was found to provide selective and efficient separations 

similar to SDS.  Because the new PSP had a polymerized core, its performance was superior to 

SDS in highly organically modified mobile phases.  The issue of tuning PSP selectivity through 

structural architecture still remained.   

 

The potential of polymeric PSPs made them of great interest to the EKC community and 

launched a plethora of investigations of how the chemistry of polymers affects selectivity.  Many 

anionic polymeric PSPs like poly(sodium 10-unecenyl sulfate), sodium-N-undec-10-en-1-oyl 
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taurate, and sodium-N-undec-10-en-1-oyl aminoethyl-2-phosphate were synthesized and 

characterized [9]. Random block copolymers utilizing 2-acrylamido-2-methylpropanesulfonic 

acid (AMPS) and lauryl methacrylamide were synthesized and showed good stability and the 

potential for different selectivity by introduction of novel functional groups.  At this time 

cyclodextrins, which are readily available to the chemical industry, were also successfully 

employed in EKC [9].   

 

Many other PSPs, described in Palmer’s review article [10], demonstrated a real push to 

synthesize polymeric PSPs with different selectivity.  At that time, success in the utility of 

random block copolymers as PSPs, and the discovery that (RAFT) polymeric synthesis can be 

applied to the field of PSP’s, has led to the development of spherical nanoparticles as PSPs 

[10]. 

 

The independent development of controlled RAFT polymerization presented opportunities for 

the synthesis of novel polymeric PSPs.  Recently, Palmer and group demonstrated RAFT 

synthesis and utility of novel latex nanoparticles as PSPs for use in EKC [11] [12].  The group 

synthesized a nanoparticle with a hydrophobic interior and an ionic exterior.  The hydrophobic 

interior was made up of poly(butyl acrylate).  The ionic exterior was composed of poly(acrylic 

acid), which in a basic buffer provided the electrophoretic mobility (μep )necessary for EKC.  The 

novel PSP showed high retention at low concentrations with minimal noise interference with the 

UV detector.  The nanoparticle PSP was also shown to be compatible with mass spectrometric 

detection, providing a significant advantage over micellar PSPs. 

1.3 Free radical polymerization 

 
To fully grasp the advantage of RAFT a short discussion of free radical polymerization follows.  

One of the oldest polymerization techniques, free radical polymerization forms polymers by 

successive additions building blocks to a growing free radical chain.  It is still the most versatile 

method for polymer synthesis due to its compatibility with a wide range of monomers [1].  The 

process consists of three steps; initiation, propagation, and termination.  Because there are 

numerous chains propagating at once, at an extremely high rate, low polydispersity index (PDI, 

Equation 1) and specific architectures are difficult to achieve.  PDI is given by the ratio of 

number average molecular weight (Mn) and weight average molecular weight (Mw).  Ni is the 

number of molecules of molecular weight Mi.  In a typical GPC plot the peak intensity is 
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substituted as Ni.  In other words, PDI describes the magnitude of the difference in chain 

lengths/weights of a particular polymerized sample.   

 

       
  

  
 

∑ 𝒊𝑵𝒊
∑𝑵𝒊

∑ 𝒊𝟐𝑵𝒊
∑ 𝒊𝑵𝒊

 

 
Equation 1:  PDI  

 

Eventually all the growing chains terminate as dead polymers and re-initiation to make new 

architecture becomes impossible.  Free radical polymerization with multiple different types of 

monomers reacting simultaneously results in statistical or random distribution of monomers in 

the growing chain, rather than polymers with controlled architecture consisting of blocks of 

monomer.  The need for a controlled polymerization scheme, resulting in dormant but not dead 

chains, becomes apparent.   

 

1.4 Reversible addition−fragmentation chain-transfer polymerization 

 
In the 1980’s controlled/living radical polymerization was heavily investigated.  Nitroxide 

mediated radical polymerization, a type of controlled/living radical polymerization, gave 

scientists the ability to control chain length and structure.   The process is similar to free radical 

polymerization as it contains steps such as initiation, propagation, and termination.  By using 

reversible radicals, this technique solves the random termination problem as all chains will 

propagate until there is no monomer left [1].  Low PDIs can be achieved.  The process also 

results in dormant polymer chains, which can be reinitiated for further polymerization.   

 
In 1998 Rizzardo and group reported on the RAFT process [13].  RAFT is the most robust 

technique out of the controlled/living group and can be used with a wide range of monomers 

and reaction conditions [13].  The RAFT technique requires a chain transfer agent (CTA), 

usually containing a dithiocarbonate or trithiocarbonate group, which mediates the reaction by 

establishing an equilibrium between growing polymer chains.  This ensures that all chains 

propagate at the same rate giving narrow PDI.  The CTA can also be called a RAFT agent.  The 

ability of the CTA agent to reinitiate ensures precise control of polymer architecture.  An in-

depth discussion follows in Chapter 2.  
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Major requirements of PSPs, that help to ensure good efficiency and tunable selectivity, are 

narrow molecular weight distributions of the polymer and specific structure, respectively.  The 

RAFT process has provided the tools to accomplish just that. 

1.5 Objectives of the study 

 
This study aims to further the research conducted by Palmer and Hilder by synthesizing latex 

nanoparticle PSPs of novel structure, characterizing structure and separation performance of 

the new materials, and comparing the separation performance and selectivity of the novel PSPs 

to previous polymeric and micellar PSPs.   

 

The first part of this research project focuses on the synthesis and structural characterization of 

a novel PSP.  Utilizing the RAFT process, AB diblock copolymers consisting of AMPS as the 

ionic block and butyl acrylate as the hydrophobic block were synthesized.  The method of 

synthesis is a three-step process.  The first step is to synthesize the CTA (2-

{[(butylsulfanyl)carbonothioyl]sulfanyl}propanoic acid) due to commercial unavailability of the 

compound.  The second step is a polymerization of the AMPS head groups.  The polymerization 

is initiated with 4, 4'-Azobis(4-Cyanovaleric Acid) (V501).  These head groups will later become 

the ionic shell of the nanoparticle.  Because the RAFT process minimizes random radical 

termination, the end groups still possess the trithiocarbonate functionality having the same 

polymerization capabilities as the initial CTA.    Due to the retained functionality, the 

differentiation only in polymerized AMPS, the single block polymer is referred to as the macro 

chain transfer agent (mCTA). In the third step, mCTA is re-initiated with V501 and chain 

extended with butyl acrylate monomer providing the hydrophobic interior to the nanoparticles. 

 

The second part of this research project focuses on performance characterization of the PSP in 

EKC separations.  Many micellar PSPs have been characterized by defining their μep, peak 

capacity, theoretical plates, and solvation characteristics.  However, little research has been 

done to determine the effects of different latex polymer chemistry on separation performance.  

The newly synthesized PSP will be used to separate an alkyl-phenone mixture providing μep, 

peak capacity, and theoretical plates.  A study of retention behavior of 39 compounds with 

varied structure will also be performed utilizing the PSP to obtain linear solvation energy 

relationships (LSER) characterization of the retention and selectivity.  It is sometimes necessary 

to perform separations in lower pH environments.  Performance of the new PSP will be 

recorded in three different pH environments. 
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The objectives of the study are as follows: 

1. A mCTA polymer consisting of 4 polymerized AMPS monomers will be synthesized.  

The product will be of 1274 g/mol MW.  The effect of using a sulfonate head group 

as opposed to a carboxylic acid group will be investigated. 

2. Using the mCTA, an AB diblock copolymer will be synthesized for use as a PSP.  

The goal is to achieve synthesis of nanoparticles of about 30 nm.  Butyl acrylate will 

be used for the hydrophobic interior and consist of about 20 polymerized monomers. 

3. The polymerized nanoparticles will be used to separate a mixture of 6 alkyl-

phenones to obtain information on electrophoretic mobility and methylene selectivity 

(αCH2). 

4.  The performance of the PSP will be investigated at lower pHs. The polymerized 

nanoparticle will be used at three different pHs to separate a mixture of 6 alkyl-

phenones.   

5. The polymerized nanoparticles will be used in LSER analysis by separating 39 

different compounds providing PSP selectivity information. 

 

Synthesis of intermediates and nanoparticles will be verified using appropriate analytical 

techniques 

 High performance liquid chromatography (HPLC) will be used to determine CTA purity. 

 1H nuclear magnetic resonance (NMR) will be used to determine CTA, mCTA, and 

nanoparticle structure. 

 Electrospray ionization mass spectroscopy (ESI-MS) will be used to determine the 

molecular weight of the mCTA. 

 Dynamic Light Scattering (DLS) will be used to determine nanoparticle size. 

1.6 Thesis layout 

 
The thesis consists of six chapters. 

 
Chapter One:  Introduction and objectives 

This chapter gives a concise introduction and history to free radical polymerization, RAFT, and 

EKC.  Research objectives are presented. 
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Chapter Two: Theoretical Background 

Theories behind the RAFT process, CE, and EKC are presented and discussed.  EKC with 

micellar PSP use is reviewed and ideas behind the use of AB diblock copolymer nanoparticles 

are presented.  The theories behind LSER and methylene selectivity are also presented. 

 

Chapter Three:  Synthesis and characterization of RAFT agents and diblock copolymers 

Synthesis of CTA, mCTA, and diblock copolymer nanoparticles is described.  Specific examples 

are given.  Analytical techniques used to characterize the formed products are discussed.  

HPLC, NMR, ESI-MS, and DLS data are presented. 

 

Chapter Four: Performance characterization of nanoparticles in electrokinetic 

chromatography  

Methods of analysis, using the novel PSP in EKC, are presented.   

 

Chapter Five: Results and Discussion  

Results obtained from nanoparticle synthesis and EKC are reported, interpreted, and discussed.   

 

Chapter Six: Conclusions and recommendations. 

Overall conclusions relating to the project are made and recommendations for future research 

are made. 

Chapter 2: Theoretical background 

2.1 Introduction 

 
This chapter will give pertinent theoretical background relevant to this research.  The chapter 

begins with a brief discussion of free radical polymerization in order to give some background to 

controlled/living free radical polymerization.  The theory of controlled/living free radical 

polymerization, mainly RAFT, will be presented.   

 

 A detailed discussion of CE is presented followed by an EKC discussion.  The EKC discussion 

is divided into two parts.  The first part will present EKC with use of micelles as a PSP.  The 

second part will deal with the less studied diblock copolymer latex nanoparticles as PSPs.  The 

last part of the chapter will present LSER and the theory behind this characterization. 
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2.2 Free radical polymerization 

 

Free radical polymerization is a process by which polymers can be synthesized.  The polymer 

forms by successive addition of reactive monomers to an active free radical in solution.  Free 

radical polymerization has been, and still is, the choice industrial application for polymer 

synthesis.  In 2001, 40 billion pounds of polymer produced in the United States were produced 

by free radical polymerization [14]. 

 

Reaction Steps: 

Free radical polymerization consists of three main reaction steps.  These same steps are 

included in controlled/living free radical polymerization and need to be discussed in order to fully 

understand RAFT. 

 

1. Initiation 

This is the first step in the polymerization process.   Suitable monomers containing vinyl 

or carbon-oxygen double bond groups are radicalized by an initiator molecule.  Many 

initiator molecules are available for polymerization reactions and they can be radicalized 

in a variety of ways.  A couple of examples are given below but many more ways to 

initiate an initiator exist. 

 

Thermal decomposition:  Addition of heat to the initiator homolytically cleaves a bond, 

producing two radicals (Scheme 1). [15] 

 

CH3

CH3

O

O

CH3

CH3


2 O

CH3

CH3

 

Scheme 1: Thermal decomposition of dicumyl peroxide. 

 
Photolysis:  Photoinitiation occurs when an electron on a molecule can be excited by 

photons enabling the radical to be in a lowest triplet excited state (Scheme 2). [16] 

 



9 
 

CH3

CH3

N
N

CH3

CH3

N

N

h
2

CH3

C

CH3

N

+ N N

 
 
Scheme 2: Photolysis of azoisobutylnitrile (AIBN) gives two free radical initiators and nitrogen gas. 

 

The second phase of initiation can now begin.  This is where the initiator radical attacks 

and attaches to a monomer molecule, thus activating it. (Scheme 3) [17] 

 

C CH2

CH

  
Scheme 3: Phenyl initiator attacks and attaches to a double bond on styrene 

  

2.  Propagation 

This is the second step in the polymerization process.  The polymer chain grows in this 

phase.  The newly formed activated monomer can attack and attach to another double 

bond in a monomer, activating it at the same time [17].  The reaction continues this way 

until all radicals terminate. 

3. Termination 

This is the third and final step in the polymerization process.  There are two main 

pathways a growing polymer chain can terminate.  These are combination and 

disproportion.  The two pathways are illustrated in (Scheme 4).   
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Scheme 4: Two pathways of free radical polymerization termination: Combination and 
disproportionation. 

 

In the combination termination pathway coupling occurs when two of the growing 

polymer chains react, leading to a dead polymer.  In the disproportionation termination 

pathway hydrogen is abstracted from one growing polymer chain and transferred to the 

other giving one saturated and one unsaturated end group [18]. 

 

The termination reaction step is the biggest drawback of free radical polymerization.  Growing 

polymer chains are at relatively high concentrations and can find each other with ease, causing 

termination in some, while others continue to grow.  This leads to very high PDI values of 

greater than 2 [19].  This means that there is a large distribution of polymeric chain size and 

weight.   

 

High polydispersity is not ideal for polymers to be applied as PSPs.  Chromatographers are very 

concerned that stationary phases or PSPs provide high efficiency separations.  One of the main 

requirements of a good efficient phase is for it to be mono disperse.  A mono disperse PSP will 

have very similar molecules of similar weight and size.  This insures that all analytes will interact 

in the same way with each part of the PSP, and that the PSP will have uniform electrophoretic 

mobility. 

 

Another drawback in free radical polymerization is the extremely fast propagation rate.  It is 

difficult to quench the reaction at a targeted molecular weight.  This leads to loss of size control 
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in the polymer.  As researchers we would like to hold some variables constant while changing 

others.  This becomes difficult when using free radical polymerization. 

The last drawback, pertinent to this research, is little control of structure in free radical 

polymerization.  When termination finishes the reaction, all of the polymers are dead and cannot 

be reinitiated to grow with new monomers.  Furthermore, if one initially introduces two different 

monomers into the reaction, random copolymers will form [20].   

 

Palmer and group reported success using random copolymers as PSPs [21].  However, in part 

because the ionic and hydrophobic monomers in the polymeric chain randomly alternate, no 

significant improvements over SDS in hydrophobic interactions, as characterized by methylene 

selectivity are reported. 

 

The recently introduced method of RAFT addresses the issues mentioned above.  RAFT 

polymerization gives us excellent control over PDI (see Figure 1) and structure, enabling the 

creation of efficient PSPs.            

 

 

Figure 1: Typical molecular weight distributions for a conventional (broad peak) and living radical (narrow 
peak) polymerization.  Peak PDI values obtained from GPC data are 1.74 and 1.04 respectively. [22] 
"Reprinted with permission from {G. Moad, E. Rizzardo and S. H. Thang, "Living Radical Polymerization by 
the RAFT Process," Australian Journal of Chemistry, vol. 58, pp. 379-410, 2005.}. Copyright {2013} Australian 
Journal of Chemistry." 
 

 

2.3 Reversible addition−fragmentation chain-transfer polymerization 

 
RAFT is a sub category of controlled/living free radical polymerization.  Within the category are 

also nitroxide mediated polymerization and atom transfer radical polymerization.  For this 

research we have used the RAFT method as our polymerization technique due to the 

ruggedness of the reaction [13].  In other words, of all the types of controlled/living 
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polymerizations, RAFT is least susceptible to the negative contaminants such as oxygen and 

reagent impurities.    

 

First reported by Rizzardo and group, the RAFT process, just like free radical polymerization, 

contains initiation, propagation, and termination.  In addition, the RAFT process utilizes a chain 

transfer agent (CTA) which mediates the reaction [13].  The following section will give some 

theoretical background behind the RAFT process.  

 

Components of RAFT 

Initiators:   Just as in free radical polymerization, RAFT also uses an initiator to start the 

polymerization process.  The mechanisms of initiating the initiator are the same, done by the 

introduction of heat or photons.  Common initiators are AIBN, used in hydrophobic reactions, 

and V501, used in aqueous reaction media.  

 

CTA and Monomer:  The CTA gives a polymer its living characteristics.  CTAs will differ with 

respect to different reactions but will always contain a dithiocarbonate moiety.  The structure of 

the RAFT agent is an integral part of the reaction.  A general form of the CTA is given in Figure 

2.   

 

Z

S

S

R

 

Figure 2:  A general representation of a CTA. 

 
Depending on the Z group there exist four main classes of CTAs.  These are shown in Table 1. 
  

Reactive sulfur 
double bond Good radical 

leaving group 

Weak single bond Activating group 
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Class Activating Group (Z) 

Dithioesters [13] Alkyl or aryl 

Trithiocarbonates [23]  Substituted sulfur 

Xanthates [24]  Substituted oxygen 

Dithiocarbamates [25] Substituted nitrogen 

Table 1: Four classes of CTAs. 

The Z group controls the C-S double bond reactivity thus influencing the rate of radical addition 

and fragmentation.  Dithioesters, especially benzoates, are prone to hydrolysis as they are more 

reactive activating groups.  Trithiocarbonates, although not as fast, still possess high transfer 

constants and are reasonably hydrolytically stable in pHs of 6.5 and lower [26].  Xanthates and 

dithiocarbamates are used with electron-rich monomers.  All CTAs must be compatible with the 

monomer of choice.  Table 2, below, shows CTA to monomer compatibility.  The current study 

uses a trithiocarbonate CTA as the polymerization is performed with acrylamides and acrylates. 

 

The R group should also be considered.  This group should be directly chosen with regard to 

the monomer being used. [22]  The R group is chosen such that it is a good leaving group.  In 

fact, it must be a more stable radical and a better leaving group than the monomer.  The 

monomer, and Z and R groups on the CTA have to be considered in a RAFT reaction.  
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Table 2: Commercially available CTAs on the left and monomers on top [27].  The “+” indicates a favorable 
reaction. “Reprinted with permission from Sigma-Aldrich, copyright 2013”   

 
The RAFT mechanism 
 

The main feature of the RAFT process is the activation/deactivation of growing polymers.  

Mediated by a CTA, all polymer chains have the same probability of growth. The CTA quickly 

exchanges polymer chains making sure that there are only a fraction of chains growing at any 

one time.  The use of CTA gives access to size control and narrow PDIs.  Unlike free radical 

addition, there are six steps in the RAFT mechanism.  These are initiation, propagation, 

reversible chain transfer, reinitiation, chain equilibration, and termination [28].  The RAFT 

mechanism is shown in Scheme 5. 

 

Initiation: The reaction is begun in the same way as free radical addition.  A relatively low 

concentration of initiator such as AIBN or V501 decomposes creating I• radicals.  The initiating 

radical I• adds to monomer M, starting a growing polymeric chain radical of n monomers 
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denoted as P•
n.  It should be noted that at this point very few monomers are initiated due to very 

low concentrations of initiator present in solution.  Low concentrations of initiator make sure that 

the main RAFT mechanism continues through the thiocarbonylthio CTA retaining the “living” 

character. 

 

Reversible chain transfer/propagation (pre-equilibrium): The propagating polymeric radical P•
n, 

initiated by I•, attacks the CTA (1) creating an unstable RAFT adduct radical intermediate (2).  If 

the R group was chosen correctly, it disassociates from the CTA as a radical R• (3).  The need 

for a good leaving group is illustrated in the pre-equilibrium process as it is reversible, where R• 

can reattach and disassociate the P•
n.  It is important to note that the number of R• produced is 

directly related to the original concentration of the CTA.  This feature is what gives control of 

chain length.  Larger concentrations of CTA, keeping monomer concentration constant, will give 

shorter polymers. 

 

Reinitiation: The radicalized R group goes on to initiate more monomer creating a growing 

polymeric radical P•
m. 

 

Chain equilibration/propagation (main RAFT equilibrium):  This is the most important part of the 

RAFT process.  P•
m, an active polymeric chain radical initiated by the R• can attack the dormant 

polymeric CTA (3’).  Again this creates an unstable RAFT adduct radical intermediate (4).  The 

RAFT adduct radical intermediate quickly disassociates the previously attached polymeric group 

as an active radical polymer (3’’).  The process is reversible, and after the polymer has had a 

chance to grow it will associate with another polymeric CTA becoming dormant.  The extremely 

fast equilibrium provides equal opportunity for all chains to grow and allows for the production of 

narrow dispersity polymers [28].  When the reaction is complete or quenched most of the 

polymers retain the thiocarbonylthio functionality and can be reinitiated for use with a different 

monomer leading to AB diblock copolymers. 
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Scheme 5: Mechanism of RAFT polymerization. [28] "Reprinted with permission from {G. Moad, E. Rizzardo 
and S. H. Thang, "Living Radical Polymerization by the RAFT Process," Australian Journal of Chemistry, vol. 
58, pp. 379-410, 2005.}. Copyright {2013} Australian Journal of Chemistry." 

 

Termination:  While the major product of RAFT is a living polymer, some termination does take 

place (Figure 3).  Termination occurs in the RAFT process by the same mechanisms as in free 

radical addition.  When a growing polymeric chain, initiated with R• (P•
m), attaches to a radical 

instead of a CTA; a dead polymer is formed (R-Mm-R).   Due to low concentrations of initiator, 

the concentration of active radicals remains low during the entire process and dead polymers 

from two growing RP•
m  chains combining  are relatively rare.  

RAFT adduct radical 
intermediate 

RAFT adduct radical 
intermediate 

‘ ‘
’ 

(pre-equilibrium) 
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Figure 3: Major products of the RAFT process decreasing in prevalence from left to right. 

 

Less likely to form are, again due to low initiator concentrations, dead polymers initiated by the 

initiator and terminated by R or another initiator fragment (I-Mm-I).  Unlike free radical addition, 

due to low concentrations of growing chains at any one time, it is difficult for radicals to find 

each other in solution and terminate polymerization. 

 

Determination of polymeric molecular weight 

  

As stated before the RAFT process gives unprecedented control over molecular weight.  It has 

been determined that the molecular weight is linear as a function conversion, or polymer 

growth(Figure 4). 

 

 

 

 

 

 

 

 

 

 

Because of this linear relationship, concentrations of monomer, with respect to CTA, needed to 

obtain a polymer with a required molecular weight can be determined (Equation 2), wherein 

Mntheo is the theoretical molecular weight of the polymer,  FWRAFT is the molecular weight of the 

CTA,    is the fractional conversion at time t,   [M0] is the initial monomer concentration,  FWM is 

 

Figure 4: GPC data showing a linear relationship between conversion and molecular weight (circles).  
Polydispersity is exponentially minimized with conversion (squares). [62] "Reprinted with permission from 
{C. L. Mccormick and A. B. Lowe, "Aqueous RAFT Polymerization: Recent Developments in Synthesis of 
Functional Water-Soluble (Co)polymers with Controlled Structures," Acc. Chem. Res., vol. 37, pp. 312-325, 
2004.}. Copyright {2013} American Chemical Society." 
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the molecular weight of the monomer,  [RAFT0] is the initial CTA concentration,  f is the initiator 

efficiency, and  kd is the initiator dissociation constant.  Because the amount of initiator is a key 

factor in producing dead chains, the amount of initiator should be kept small relative to the CTA 

[29].  Because the initiator concentrations are so small, Equation 2 can be simplified by omitting 

the initiator terms.  This gives Equation 3.   

 

               
 [  ]   

[     ]      [[  ](   
    )]

 

Equation 2: Calculation to determine the theoretical molecular weight of the polymer at a certain conversion.  
The initiator terms are included. 
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Equation 3:  Calculation to determine the theoretical molecular weight of the polymer at a certain conversion.  
The initiator terms are omitted. 

 
The polymerizations performed in this research will all use Equation 3 to determine monomer 

and CTA concentrations needed.  The initiator concentration is always set to 10 percent of the 

CTA as this was determined to give the narrowest PDI [22]. 

 

2.3.1 Single Block Polymers to AB Diblock Copolymers 

 

This paragraph describes the general formation of a diblock copolymer.  An AB diblock 

copolymer is a polymer with two distinct subunits composed of different monomers.  After the 

initial RAFT synthesis, producing a single block polymer called a macro chain transfer agent 

(mCTA), mCTA is created and purified for further use.  The mCTA retains the same functionality 

as the original CTA except it now contains the polymeric A block.  Because of its living 

character, the mCTA can be reinitiated in the same fashion and a new monomer, B block, can 

be added.   

 

The general reaction process is given in Scheme 6 (A) and is under aqueous solvent conditions.  

The following describes the path to synthesizing diblock copolymers.  In this reaction the 

hydrophilic monomer is added to the CTA followed by the addition of the hydrophobic monomer.  

As the hydrophobic block grows it self-assembles into micelles.  Further polymerization begins 

to take place inside the newly formed micelles and a locked-in nanoparticle is formed.  In order 



19 
 

for micellization to occur, the pH of the system must be high enough so that the hydrophilic 

groups are ionized yet low enough that the thiocarbonylthio moiety is not hydrolyzed.    

 

This is further illustrated in Scheme 6 (B).  The process described here is macro emulsion 

polymerization [30].  The hydrophobic monomer is emulsified in the aqueous reaction solvent 

creating monomer droplets.  The surfactant molecule, mCTA, slowly adds some hydrophobic 

groups until it can self-assemble into micelles.  The interior of the micelle swells with the 

hydrophobic monomer, and RAFT-controlled polymerization proceeds within the micelle.  

 

It is important to note that the smaller the monomer droplets are, the better the activated R 

groups are distributed through the system; leading to less termination and narrow polydispersity.  

One way to make sure that the monomer droplets are small is to use a micro emulsion 

technique. [31]  In this technique sonication is added to the reaction breaking up monomer 

droplets.  Another technique which minimizes droplet size was demonstrated by Ferguson et. al.  

The monomer is delivered slowly over time making sure that droplets are small and well 

emulsified. [32]  The research done in this project uses Ferguson’s RAFT in emulsion technique 

to create AB diblock copolymer nanoparticles. 
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A B 

Scheme 6:  A) General reaction process for the creation of a AB diblock copolymer.  In illustration the 
hydrophobic block is added first, followed by the hydrophilic block. [32] B) Micellization and further 
polymerization with the hydrophobic monomer. [30]  The surfactant is the mCTA.  Reaction takes place in an 
aqueous solvent.  Initiator molecules consist mostly of R• with a small amount being I•. Schme 6 A and B 
were "Reprinted with permission from {C. Furgeson, R. Hughes, D. Nguyen, B. Pham, R. Gilbert, A. Serelis, C. 
Such and B. Hawkett, "Ab Initio Emulsion Polymerization by RAFT-Controlled Self-Assembly," 
Macromolecules, vol. 38, pp. 2191-2204, 2005.}. Copyright {2013} American Chemical Society." And the Dave 
Weitz group at Harvard University, respectively.        

  

2.4 Capillary electrophoresis 

 

In order to fully describe EKC a brief discussion of basic CE setup and theory will follow.  

Several advantages make CE a powerful alternative with respect to other analytical separation 

systems.  Rapid analysis and sample preparation times are two.  Theoretical plates, or 

instrument efficiency, are an order of magnitude over that which can be achieved by high 

performance liquid chromatography (HPLC).  CE, utilizing open-tubular glass columns, was 

introduced in the 1981 for the separation of ions based on their charge and frictional forces and 

was later modified by Terabe et. al. for use with neutral analytes (discussion to follow). 
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Figure 5:  Basic CE instrument setup. 

 

The CE instrument consists of a high voltage power supply, two reservoirs filled with a buffer 

solution, an anode and cathode submerged into the buffer, a capillary column filled with buffer 

and submerged into the reservoirs, and a detector (Figure 5).  The power supply can deliver 

voltages across the capillary as high as 30 kV.  The buffer solution prevents changes in pH due 

to oxidation and reduction at the anode or cathode as analysis progresses.  The buffer solution 

also provides electrolytes to set up the electroosmotic flow (EOF), which will be explained.  The 

fused silica capillary column interior walls support ionizable silanols, another component which 

sets up the EOF.  In most cases the detector is a ultra-violet (UV) detector.  However, 

fluorescence and mass spectrometry (MS) detectors are also employed. 

 

 

Figure 6: a) A zoomed representation of a capillary column in CE.  A
charge

 represents an analyte of a 
certain charge.  Hydrated cations are balancing the negatively charged oxides establishing the EOF.  
μM

+
 represents the velocity of positively charged ions.  μM

-
 represents the velocity of negatively 

charged ions.  The EOF and net migration is towards the cathode.  b)  Elution order of analytes, positive 
ions are followed by neutral compounds, followed by negative ions.  

A2- A1- 
𝐴

𝐴
 A1+ A2+ 
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The capillary column is flushed with a base in order to create and regenerate ionizable silanol 

sites.  As an electrolyte fills the column hydrated positive ions create a fixed layer (Figure 6 (a)).  

On top of the fixed layer another diffuse layer (not shown) of hydrated cations forms.  This 

mobile layer is loosely held by the silanol sites and is free to establish the EOF.  

 

A voltage is applied across the capillary using the power supply and establishing an electric field 

which moves the cations toward the cathode.  This establishes a flat profile EOF.  In contrast, 

pressure driven flows experience a laminar profile which can lead to efficiency loss due to 

dispersion (Figure 7).  Negative ions will have a negative velocity with respect to the EOF 

(Figure 6 (a)).  However, due to the EOF, the net velocity is still positive towards the detector 

and cathode.  Analytes with a larger negative charge (A2-) will move slower through the column, 

separating from (A-1).  Positively charged analytes will have a positive velocity towards the 

cathode, with higher charged (A2+) moving faster than (A1+).  In this case the EOF adds to the 

velocity of the analytes.  This method of separation will separate neutral analytes from the ionic 

analytes but does not separate neutral analytes (A) from each other.  Neutral analytes move 

through the capillary with the velocity of the EOF.  A simplified electropherogram (Figure 6 (b)) 

shows a separation of positive, neutral, and negative analytes as they elute with time.     

 

The EOF velocity can be defined as uo and is directly dependent on the electric field strength (E) 

and the electroosmotic mobility (µo). (Equation 4)  The electric field strength can be calculated 

from the voltage (V) and total length of the capillary (Lt). (Equation 5) 

         

Equation 4: EOF velocity. 

 
 

Figure 7: a) Flow profile of a pressure driven 
flow system.  b) Flow profile of an EOF 
system.  

http://upload.wikimedia.org/wikipedia/commons/0/05/Flowprofile.gif
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Equation 5: Electric field strength 

 
The electroosmotic mobility is defined by the zeta potential (ζ) of the capillary wall times the 

relative permittivity (ε) of the buffer and divided by viscosity of the medium (η). (Equation 6)  

    
   

 
 

Equation 6: Electroosmotic mobility. 

 
Positive ions migrate towards the cathode and negative ions migrate toward the anode with a 

certain velocity (uep).  The velocity of the analytes is directly dependent on the electric field 

strength and the electrophoretic mobility of the analyte (µep). (Equation 7) 

           

Equation 7: Charged analyte velocity 

 
At a given pH, an analyte will have an electrophoretic mobility dependent on, charge, size, and 

viscosity of the medium as in Equation 8, where Z is the net charge of the analyte and r is the 

stokes radius.   The stokes radius is described by Equation 9, where kB is the Boltzmann 

constant, T is temperature, and D is the diffusion coefficient.      

 

    
 

    
 

Equation 8: Analyte electrophoretic mobility 

 

  
   

    
 

Equation 9:  Stockes radius 

 
 

Some of the values in the equations above are difficult to quantify.  The determination of analyte 

electrophoretic mobility is done experimentally.  Equation 7 is rearranged solving for µep.  

Substituting Equation 7 with Equation 5 and uep with     ⁄  , Equation 10 is obtained where L is 

the distance to the detector and tr is the time it takes the analyte to migrate to the detector 

(retention time) in the absence of any bulk flow.  
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Equation 10: Experimental calculation of analyte electrophoretic mobility 

 

As mentioned before, the net velocity (u) of the analyte is also dependent on the velocity of the 

EOF.  Adding the two velocities together gives u. (Equation 11) 

 

         (      )    

Equation 11: Net analyte velocity 

 
 

Although CE is a powerful technique, it cannot resolve neutral compounds.  In neutral 

compounds uep→0.  Thus all neutral compounds migrate to the detector with the same velocity 

of uo.  A modification of the CE system is required to separate neutral compounds.   

2.5 Electrokinetic chromatography 

 
Electrokinetic chromatography is a modification to the CE system, enabling separation of neutral 

compounds, with the addition of a PSP.  Many different PSPs are employed such as micelles, 

polymers, micro-droplets, dendrimers, and cyclodextrins [33] [34] [7] [8].  This research focuses 

on polymeric nanoparticles fashioned after micelles.  Micellar and polymeric PSPs are most 

frequently used in EKC, the latter being employed mainly in academia as they are not yet 

readily available in commercial settings.  It is the focus of this research to extend 

characterization of polymeric nanoparticles as PSPs.     

 

   

2.5.1 Polymeric PSPs 

 

Although micelles and polymeric PSPs differ in some ways, the principles behind the separation 

of neutral analytes in EKC are the same.  Micelles and polymeric PSPs consist of molecules 

that have ionic and hydrophobic regions.  This study uses anionic head groups.  Because of the 

anionic groups, the PSP will have an electrophoretic mobility (µep) toward the anode, opposite of 

the EOF.  However, just as with negative ions previously discussed, the net PSP mobility 

(µpspnet) is still towards the cathode and the detector. (Figure 8)  
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Analytes can interact with both the anionic and hydrophobic groups on the PSP.  Selective 

transport of the analytes is achieved by taking advantage of the differing PSP affinity for 

individual analytes.   

 

Analytes will have different distribution coefficients (K) or equilibria between the mobile phase 

and PSP.  In other words, based on the chemical makeup of the analyte, the analyte will spend 

a certain amount of time associated with the buffer and a certain time associated with the PSP.  

This is analogous to separations in HPLC.  Because velocities differ between the bulk flow and 

the PSP, analytes will have different elution times based on how much time they associate with 

the bulk flow and the PSP.  Charged analytes’ behavior, when using a PSP, is more complex to 

define as they exhibit their own electrophoretic mobility while interacting with the PSP. [35] 

 

For EKC it is useful to describe the system in terms of the velocities which are determined 

experimentally.  Theoretically determining electrophoretic mobility (µep) of the PSP becomes 

complex, especially with novel PSPs.  Effective electrophoretic velocity (uep,psp) (Equation 12) 

can be obtained by substituting µep in Equation 7 with µep,psp.  The net velocity of the PSP 

(upspnet) can be obtained by substituting uep in Equation 11 with uep,psp. (Equation 13)   

 

These are the same equations used for describing analyte mobility/velocity in CE.  In this 

section, the change in notation is to distinguish that this is an EKC process that utilizes a PSP.  

Figure 8:  A cross sectional representation of a capillary column filled with a buffer solution 
and a PSP.  Black interior represents the hydrophobic area of the PSP.  Green areas represent 
the anionic components of the PSP.  Analytes A and B partition between the buffer and PSP 
phases.  Analyte B has a partition coefficient less than that of Analyte A thus its net velocity 

is faster and tr is smaller.  A hypothetical chromatogram illustrates the elution order.  

Net PSP mobility (µpspnet) 

Electro osmotic flow 

Anionic PSP mobility (μep or µep,psp )  
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However, µep and µep,psp are interchangeable terms, the former being the preferred term for PSP 

electrophoretic mobility in the absence of any bulk flow.  The results given in the following 

chapters will use the µep notation for PSP electrophoretic mobility. 

       

                  

Equation 12: Electrophoretic velocity of a PSP 
 

                   

Equation 13: PSP net velocity 

 

EOF velocity in EKC can be defined by Equation 14 where to is the elution time of a completely 

unretained charge-neutral analyte.  Because the analyte has no interaction with the PSP, the 

analyte moves through the capillary with the same velocity as the EOF.  Equation 15 gives the 

experimental value of upspnet where tpsp is the elution time of an analyte which is only associated 

with the PSP.  Because the analyte has no interactions with the EOF, it represents the net 

velocity of the PSP.  Equation 16 gives the velocity of the analyte as it migrates through the 

capillary where tr is the elution time of the analyte.   

 

   
 

  
 

Equation 14: EOF velocity 

        
 

    
 

Equation 15: PSP net velocity 

   
 

  
 

Equation 16: Analyte velocity 
 

To experimentally obtain apparent electrophoretic mobility for EOF, PSP (µepnet), and analyte 

(µa), Equation 10 is used substituting the appropriate t terms for the EOF and PSP. (Equation 

17)(Equation 18)(Equation 19) 

   (
 

  
)(
  
 
) 

Equation 17: EOF electrophoretic  
mobility 

 

       (
 

    
)(
  
 
) 

Equation 18: PSP apparent 
electrophoretic mobility 

 

   (
 

  
)(
  
 
) 

Equation 19: Analyte 
electrophoretic mobility 

 
Analyte velocity is a time weighted average of the time the analyte spends associated with the 

EOF velocity and the time the analyte spends associated with the PSP velocity (Equation 20). 

How well the analyte is retained on the PSP is given by the retention factor (k).  Analyte velocity 

can also be determined from knowing the retention factor (Equation 20). The retention factor is 
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also related to the distribution coefficient by the ratio of volumes of the PSP (Vpsp) and mobile 

phase (Vmob). (Equation 21) 

   
  

       
    

    
       

         
 

   
     

 

   
         

Equation 20:  Analyte velocity in EKC 

 

  
    
    

  

Equation 21: Retention factor 

 

 

The retention factor is an important piece of information because it provides information on the 

interaction of analytes with the PSP.  The natural logarithm of the retention factor is proportional 

to the free energy involved in the transfer of the analyte from the background electrolyte to the 

PSP.  This is highly useful as it can provide LSER and methylene selectivity information which is 

also based on free energy relationships.  The retention factor for analytes can be obtained by 

rearranging Equation 20 and substituting Equation 14, Equation 15, and Equation 16 for 

velocities. [7]  This gives Equation 22.  

  

  
     

  (  
  
    

)
 

Equation 22: Retention factor experimental determination. 
 

This project characterized the novel PSP through the use of retention factors.  However, 

obtaining tpsp becomes difficult due to the unavoidable use of a fully retained analyte to 

determine tpsp for each injection, given the inherent CE inconsistency in the migration times of 

analytes.  It is possible to avoid using tpsp to determine k when µep,psp, µo, and µa can be 

experimentally determined.  Equation 22 is rearranged into Equation 23.  Substituting apparent 

electrophoretic mobility of analyte, EOF, and PSP, given in Equation 17, Equation 18, and 

Equation 19, Equation 24 is obtained.  Equation 24 will be used in all retention factor 

calculations in this study, with µo and µa being measured for each analyte injection, and µep,psp 

being measured independently.      

 



28 
 

  

 
  
 
 
  

 
  
 

 
    

 

Equation 23: Rearrangement of Equation 22  

 

  
     

         
 

     
   (          )

 

Equation 24: Determination of the retention factor from electrophoretic mobility 

 

2.5.2 Resolution, Efficiency, and Capacity 

 
In chromatography, resolution (Rs) is one of the most important parameters.  Resolution 

describes how well two analyte zones are separated in chromatographic analysis.  Resolution 

depends on efficiency (N), selectivity (α), and the retention factor.  Efficiency is a measure of 

analyte zone broadening with respect to the distance traveled.  Selectivity is given by ratio of 

retention factors (      ⁄ ) where    and   are analyte two and analyte one.    In EKC, 

because the PSP is mobile, the resolution equation is modified relative to conventional with a 

migration range term, which is dependent on the retention factor, which accounts for the mobility 

of the PSP. (Equation 25) [36] 

   
√ 

 
(
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  (
  
    

)   

) 

Equation 25:  Master resolution equation for EKC 

 

In EKC, neutral analytes can only elute within the migration range of the PSP given by (tpsp/to).  

This is illustrated in  

Figure 9.  Unlike conventional chromatography where the stationary phase is bonded to the 

column and tpsp→∞, EKC suffers from having an inherent limited migration range.  The closer 

the net velocity of the PSP approaches 0 the bigger the migration window.  In other words, 

(tpsp/to) gets large.      

 

The retention factor is also important.  In conventional chromatography having a high retention 

factor always leads to better resolution, the only drawback being long analysis times.  In EKC an 

optimum retention factor is given by      √(        ). [36]  Bigger retention factors lead to loss 
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of resolution as analytes that are too retained and begin to stack at tpsp.  This is illustrated by the 

downward slope of the curves after kopt has been achieved. 

 

In summary, EKC requires a large migration range achieved by having a strong PSP µep, and 

the best resolution is obtained with an optimum retention factor for the analytes.      

 
 
Figure 9:  Resolution as a function of the retention factor.  The curves are color coded to the theoretical 
chromatogram (top), illustrating migration range’s effect on resolution.  

 

The migration range in EKC also limits peak capacity.  All analyte peaks elute between to and 

tpsp.  Although the need to attain kopt and a large migration range does cause some difficulties, it 

is easily overcome by the ease of switching the PSP thus changing selectivity.  It is also 

common to achieve extremely high plate counts (N) such as 200,000 and larger.  The added 

efficiency mostly offsets migration range limitations.  In liquid chromatography columns are 

extremely expensive and take time to switch and condition.  In EKC a soluble PSP is added 

right to the buffer requiring only minutes to equilibrate.  The drawback is that not very many 

PSPs have been characterized thus they do not enjoy widespread industry use. 

2.6 Linear solvation energy relationships and methylene selectivity 

 

This research utilizes LSER, methylene selectivity, and electrophoretic mobility to characterize 

the newly synthesized PSP.  LSER provides solvation and retention information about the PSP 
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based on the free energy of solvation of the analytes in the PSP with respect to the bulk phase.  

Methylene selectivity provides information on retention behavior of the PSP for a homologous 

series of compounds with differing numbers of methylene units.  In other words, information on 

how retentive the PSP is towards hydrophobic compounds is obtained.  Electrophoretic mobility 

gives insight into the migration range of a PSP and has already been discussed in the previous 

section. 

 

This research uses the solvation parameter model (SPM) originally suggested by Abraham [37] 

[38] as opposed to the solvatochromic model proposed by Kamlet-Taft.  The advantage of the 

SPM is that it uses solute descriptors which are all free-energy related.  The solute descriptors 

are characteristic to the analyte and can be obtained by calculation or experimental 

measurements.  The solvation characteristics of a PSP can be defined as its capacity for 

various intermolecular interactions relative to the background electrolyte.  The interactions are 

described by system constants which include dispersion, induction, cavity formation, permanent 

dipole, and hydrogen bonding [39].  The system constants describing a PSP solvation and 

retention properties reflect the difference in solute interactions in the bulk solution and the PSP 

[40]. 

 

The change in free-energy of analyte solvation assumes there are three steps [39]. First, a 

cavity, identical to the solute volume, is formed in the PSP. The free-energy required in this step 

is dependent on the forces holding the PSP together and the solute’s size [40]. Second, the 

solute is transferred from the bulk solvent to the cavity and the molecules of the PSP rearrange 

in a way so that chemical interactions can take place.  Finally, the rearranged molecules of the 

PSP participate in the aforementioned intermolecular interactions with the solute.  The process 

of an analyte transferring into the PSP is defined by properties of both the analyte (solute 

descriptors) and the PSP (system constants).  The product of each type of interaction and the 

sum of all products describing the system is proportional to the free-energy change of analyte 

solvation in the PSP relative to the background electrolyte.  Equation 26 describes the solvation 

parameter model where the small letters are system constants (v, e, s, a, b) and capital letters 

represent solute descriptors (V, E, S, A, B). 

  

                       

Equation 26: The solvation parameter model 
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SP is some free energy related property [40].   k is directly related to free-energy and so SP can 

be substituted with k ( 

Equation 27).  The system constants, describing PSP solvent characteristics, are obtained 

using multiple linear regression analysis based on measured retention factors for multiple 

solutes with known descriptors.  The v constant is a measure of the relative ease of forming a 

cavity for the analyte; e describes the ability of the PSP to interact with analyte’s π- and n-

electron pairs; s represents the ability of the PSP to interact with the analyte through dipole-

dipole and induced dipole processes; a describes how willing the PSP is to accept a basic 

interaction from the analyte or hydrogen bond basicity; b describes how willing the PSP is to 

participate in an acidic interaction with a basic analyte, or hydrogen bond acidity [40]. 

  
                       

 
Equation 27: The log of the partition coefficient is related to the selectivity of the PSP through the change in 
free-energy 

 
The solute descriptors are particular for each analyte.  V is the McGowan characteristic volume 

or the volume an analyte takes up in solution; E is the excess molar refraction and describes the 

analyte’s contribution to the change in free-energy from the polarizability of its π- and n-electron 

pairs; S describes the analyte’s ability to engage in dipole-dipole and induced-dipole 

interactions; A and B are the analyte’s hydrogen bond acidity and hydrogen bond basicity, 

respectively [39]. 

 

There are some general requirements which must be observed when characterizing a PSP with 

the help of a SPM.  The model has to be statistically valid.  This requires that a minimum of 

seven solutes be used [40].  However, with only seven solutes it is statistically impossible to 

remove any outliers in the analysis.  To achieve an exhaustive model about 40 analytes should 

be analyzed.  Furthermore, when selecting the analytes careful attention must be paid to their 

solute descriptors.  If all the analytes chosen for LSER analysis have similar characteristics, it is 

possible that the model will cross correlate the descriptors giving erroneous system constants.  

Solutes must be chosen so that they cover, as evenly as possible, the descriptor space to be 

explored [40].      

 

Methylene selectivity is also an important parameter to consider when characterizing a PSP.  It 

refers to the retention behavior of solutes of a homologous series of compounds with different 

numbers of methylene units [41].  A plot of the logarithm of the retention factor versus the 
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number of methylene groups in a homologue will yield a linear slope.  The slope of the line is 

the natural logarithm of methylene selectivity and is a measure of the free energy of transfer of 

one methylene group from the background electrolyte to the PSP [41].  Methylene selectivity 

predominantly characterizes hydrophobic interactions of analyte with the PSP.  A higher 

methylene selectivity value means that the PSP is able to better separate compounds which 

interact primarily through Van der Waals forces.  Large methylene selectivities also mean that 

lower concentrations of PSP can be used to achieve good resolution of hydrophobic 

compounds.  This is extremely important since the PSP is mobile and will flow through the 

detector cell just like the analytes.  Less PSP means a better signal to noise ratio and lower 

current. 

Chapter 3: Synthesis and characterization of RAFT agents and diblock 
copolymers 

3.1 Introduction 

 

This chapter reports on the synthesis techniques and analytical characterization of products.  

The synthetic route to the AB diblock copolymer nanoparticles was adopted from the work 

presented by Ferguson et al. [32]. The three step process includes the formation of a CTA, 

followed by the synthesis of a mCTA, and finally the synthesis of the nanoparticle.   

 

The CTA was chosen to have a trithiocarbonate moiety.  The Z group was chosen to be a thiol 

alkane in order to provide the CTA with a hydrophobic character and good C-S double bond 

activation.  The hydrophobic character of the Z group is important to maintain chain character 

consistency since the third step of the synthesis is an insertion of a hydrophobic block. 

 

mCTA was formulated from the previously described CTA and AMPS.  The AMPS acidic 

monomer is added first because reaction conditions are maintained in aqueous solution 

throughout all steps of the synthesis.  The mCTA is water soluble which makes it ideal for use in 

the diblock polymerization step. 

 

The final step is the formation of AB diblock nanoparticles.  Butyl acrylate was chosen as the 

hydrophobic block based on the compatibility chart and previous research (Table 2) [11].   
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The products were characterized by various analytical techniques including HPLC, NMR, ESI-

MS, and DLS.     

3.2 Materials 

 

The following materials were used:  distilled deionized water (Millipore Milli-Q purification), 

Sodium Hydroxide (EMD Chemicals), 1-butanethiol (Aldrich, 99%), Acetone (Fisher, HPLC 

grade), Carbon Disulfide (Aldrich, 99%), 2-bromopropionic acid (Aldrich, 99%), Hexane (Fisher, 

HPLC grade), Hydrochloric acid (EMD Chemicals),  4, 4'-Azobis (4-Cyanovaleric Acid) (Aldrich, 

>98%), 2-Acrylamido-2-methylpropane sulfonic acid (Aldrich, 99%), Butyl Acrylate (Aldrich, 

99%), Dialysis Tubing (Spectrum Labs). 

3.3 Experimental Procedure 

3.3.1 Synthesis of CTA agent 

 

The synthetic pathway is illustrated in Scheme 7.  1-butanethiol is deprotonated with the 

addition of sodium hydroxide.  In the presence of acetone, carbon disulfide will dissolve in 

solution and react to form an intermediate butyl carbonotrithioate.  Addition of 2-

bromopropionoic acid yields the CTA after clean up and recrystallization.  
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Scheme 7:  Synthetic route to producing 2-{[(butylsulfanyl)carbothioyl]sulfanyl]}propanoic acid 

 
The specific procedure of Scheme 7 is as follows:  To 6.0 ml of water 3.2 g (40 mmol) of 50% 

NaOH solution and 3.6 g (40 mmol) of 1-butanethiol were added.  To this solution, 2 ml of 

Acetone were added.  The solution, a clear colorless liquid, was stirred for 0.5 h.  The solution 

was then treated with carbon disulfide (2.7 ml, 45 mmol) and let stir for another 0.5 h.  The clear 

orange solution was then cooled below 10⁰C and 3.7 ml (41 mmol) of 2-bromopropionoic acid 

were added slowly, drop wise, keeping the exothermic reaction under 30⁰C.  This was followed 
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by another addition of NaOH (3.3 g, 41 mmol) maintaining the <30⁰C requirement.   The 

reaction was kept in the ice bath until the evolution of heat had ceased.  6 ml of water were 

added to the solution and which was then brought to room temperature and was left to stir for 24 

h.  The solution was diluted with 10 ml of H2O and brought below 10⁰C utilizing an ice bath.  6 

ml of 12M HCL were added drop wise, while stirring, keeping the solution temperature under 

10⁰C.  Yellow oil separated from the solution and was extracted with two 10 ml fractions of 

hexane.  The combined hexane fractions were dried using a rotary evaporator (rotovap).  The 

oily substance was then taken to a vacuum oven and further dried under full vacuum at 30⁰ for 

24 h.  The resulting solid was then dissolved in a minimal amount of boiling hexane and placed 

in a freezer for recrystallization.  The recrystallized solid was filtered and washed with cold 

hexane.  The final product was dried in a vacuum oven under full vacuum at 30⁰ for 2 h giving 

an 83.6% yield of CTA.  The CTA was labeled CTA01.         

3.3.2 Synthesis of macro CTA 

 

The synthesis of the mCTA employs the previously discussed RAFT method.  Utilizing the V501 

initiator, previously synthesized CTA, and the AMPS monomer, under aqueous conditions, a 

mCTA is synthesized.  Equation 3 was used to determine the necessary amounts of the CTA for 

a certain amount of monomer at 100% conversion and a 4 monomer unit AMPS chain length.    

As mentioned before, the v501 concentration was 1/10 that of the CTA.  This is a relatively 

simple procedure due to the ruggedness of the RAFT process.  However, stringent conditions of 

maintaining an inert atmosphere during the reaction have to be observed.  At the end of the 

reaction a small sample was taken for NMR analysis.  The rest of the solution was dialyzed.  

The use of NaOH to neutralize the acidic character of AMPS as described by Ferguson et al. 

gave unfavorable results in our synthetic attempts.  Omission of the neutralization step resulted 

in a favorable formation of the mCTA with excellent yields.   Experimentally it is difficult to 

achieve a 100% monomer conversion to polymer.  For the mCTA to be a viable reagent in the 

synthesis of the nanoparticle, all AMPS monomer not polymerized must be removed as it can 

participate in the next reaction randomizing the hydrophobic block.  Scheme 8 visually describes 

the formation of the mCTA. 
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Scheme 8:  Synthetic pathway to the mCTA through the RAFT process. 

 

The specific procedure of Scheme 8 is as follows:  4 ml of H2O, a magnetic stir bar, 2.0 g of 

AMPS monomer, 0.575 g of CTA01, and 67.62 mg of V501 initiator were added to a round 

bottom flask.  The flask was capped tightly with a septum, stirred to dissolve all starting 

materials, and degassed with N2 for 45 min.  After the degassing stage, positive N2 atmosphere 

was maintained throughout the reaction.  The flask was then submerged into a 60⁰C oil bath 

and let stir for 12 h.  The resulting yellow solution was dialyzed using Spectra/Por dialysis 

membrane with a 1000 molecular weight cut off (MWCO). The sealed membrane was 

submerged into 3L of H2O and left alone for 24 h. The solution volume was significantly reduced 

with the aid of a rotovap and the resulting oily solution was transferred to a scintillation vial and 

frozen.  The frozen sample was dried in a freeze drying system forming bright yellow crystals.  

The yield of the mCTA was found to be 66%.  The compound was labeled JSH32A. 

3.3.3 Synthesis of diblock copolymers 

 

Because the mCTA is analogous in function to the CTA, the process for making diblock 

copolymer nanoparticles is somewhat similar to the synthesis of the CTA.  Again, careful 

attention must be paid to the reaction proceeding under inert atmospheric conditions.  Utilizing 
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the mCTA, V501 initiator, and butyl acrylate monomer, an AB diblock copolymer nanoparticle is 

formed. (Scheme 9)  

 

Equation 3 was used to determine the necessary amounts of the mCTA for a certain amount of 

monomer at 100% conversion and a 20 unit butyl acrylate monomer chain length.  As 

mentioned in Chapter 2, the acidic groups of the mCTA must be deprotonated for micellization 

to occur.  Sodium hydroxide was added to the reaction mixture.  Also, maintaining small 

monomer droplets was accomplished with a timed addition of the butyl acrylate monomer. At the 

end of the reaction a small sample is taken for NMR analysis.  The rest of the solution is 

dialyzed to remove most of the sodium hydroxide as it will produce unfavorable current in EKC.  

Although only negligible concentrations of unpolymerized monomer remain during this step, 

dialysis does remove any free butyl acrylate monomers.  

 

 

Scheme 9: Synthetic pathway to the AB diblock nanoparticle through the RAFT process. 

 

The specific procedure for Scheme 9 is as follows: 0.825 g of JSH32A mCTA was added to a 

round bottom flask containing 6.6 ml of H2O.  The flask was sonicated until all of the mCTA was 

dissolved.  The solution was titrated with NaOH, utilizing an electronic pH meter, until a pH of 

6.5 was achieved.  21.68 mg of V501 initiator and a stir bar were added to the flask and 
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contents sealed with a septum.  Using a gas/vacuum manifold, the air inside the flask was 

exchanged with nitrogen.  Nitrogen was then bubbled through the liquid for 45 min.  The 

reaction was then initiated by submerging the flask into a 70⁰C oil bath, keeping a positive N2 

atmosphere.  2.2 ml of butyl acrylate monomer were added in the following way: with the 

addition of heat an initial shot of 0.1 ml was added to the reaction mixture.  The rest of the butyl 

acrylate was delivered with a syringe pump at a rate of 1.5 ml/hr.  The reaction was left to stir for 

24 h.  The resulting solution was dialyzed using a dialysis membrane with a MWCO of 2000 in 

3L of H2O for 24 h.  The dialyzed solution was transferred to a scintillation vial, frozen, and dried 

in a freeze dry system.  The compound was labeled AU19B.  The second nanoparticle, AU31A, 

was made following the same procedure, doubling all the reagents and solvents.  

 

3.4 Characterization 

 

The following subsection gives analytical results using various instruments to show proof of 

synthesis.  

3.4.1 CTA 

 
The synthesis of CTA CTA01 was characterized by HPLC with a UV-Vis diode array detector 

(DAD).  HPLC was found to be the best method for performing purity and functionality analysis 

due to thermal degradation of the CTA on a gas chromatographic system.  Purity and structure 

were then confirmed by 1H NMR.           

3.4.1.1 LC analysis 

 

CTA01 was analyzed on an Agilent 1260 HPLC system utilizing an Agilent ZORBAX Eclipse 

Plus C18 4.4x100mm 3.5-Micron column (P.N. 959961-902).  The advantage of performing a 

separation in addition to collecting absorbance (ABS) is that approximate purity of the sample 

can be calculated.  The ratio of the peak area of the compound of interest to the total peak 

areas gives an estimate of percent purity.  Figure 10 A shows a separation, under the outlined 

conditions, of CTA01.  The broad peak eluting before the first minute was also found in the 

blank and is thought to be an impurity in the system or the solvent.  Because the peak was also 

recorded in the blank sample it was not used for calculating total peak areas.  The separation 

utilized a 210nm wavelength for detection and purity of CTA01 was determined to be 86.27%.   
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The use of a DAD enables spectra extraction of individual peaks.   Shen and group have 

reported on the absorbance of trithiocarbonates. [26]  The reported maximum absorbance is 

306 and 308 nm.  The peaks at 1.695 and 5.117 showed zero absorbance at those 

wavelengths.  Figure 10 B shows the extracted absorbance spectra of the major peak at 2.750.  

The inserted spectrum was reported by Shen and group.  The absorbance of CTA01 matches 

the literature providing proof of the synthesis of a compound with a trithiocarbonate moiety. 

 

A purity of ~86% from absorbance at 210 nm was determined to be acceptable to move forward 

with mCTA synthesis (although it should be recognized that this is only an estimate of purity).  

Because the two detected impurities do not contain CTA functionality, they are not likely to 

participate in the next reaction.  As mentioned before, the next step of the synthesis requires 

dialysis with a 1000 MWCO membrane.  Any unreactive impurities left over from the original 

CTA synthesis will be removed in that step.  

 

Although the HPLC analysis provides information on functionality and purity, it does not contain 

information of structure.  The CTA structure was confirmed by 1H NMR.     
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Figure 10: A) An HPLC chromatogram at 210nm of CTA01 of time vs. ABS. B) Extracted spectra of the main 
peak at 2.75 min. compared to the ABS spectra reported by Shen and group. 

 
 
 
 
 

 
 
 

A 

B 

Operating Conditions 
Column: Agilent C18 
Mobile Phase: Isocratic 
90%MeOH/10%H2O 
Flow Rate: 1.0 mL/min 
Temp: Ambient 
Injection 5µL 
Detector: DAD UV 210nm 
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3.4.1.2 NMR analysis 

 

NMR analysis of the CTA CTA01 was performed using a Varian 500 NMR.  The NMR spectrum 

shown in Figure 11 confirms the synthesis of the CTA.  As noted in the HPLC analysis some 

minor impurities are present. 

 

 

Figure 11: 
1
H NMR spectra and peak assignments for the synthesized CTA in d-chloroform.  Each multiplet 

(labeled at the top) is assigned to the structure at the top left of the figure.  For example: M01(m,9) is 
assigned to the hydrogens of carbon 9.  

 

3.4.2 Macro-CTA 

 

The synthesis of the mCTA labeled JSH32A was characterized by ESI-MS.  While electrospray 

MS does not give quantitative molecular weight distributions (as distinct from giving the precise 

molecular weight of each observed species), it is certainly semi-quantitative, for example, in its 

indications of the relative abundances of tetramers, pentamers, and hexamers of the same 

species. [32]  PDI values and the number of AMPS units polymerized can be obtained from this 

analysis.  NMR was also employed to determine conversion.  The NMR spectrum also gives 

qualitative information on whether polymerization has occurred.       
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3.4.2.1 ESI-MS analysis 

 

ESI-MS analysis was performed by directly injecting a solution of 0.5mg/ml mCTA in 

50%H2O/50%MeOH.  A very respectable PDI of 1.03 was achieved.  The major polymer was 

determined to be a tetramer of 4 AMPS units.  The theoretical MW of a 4 AMPS units CTA 

polymer, with a negative charge of 1, is 1066.38.  The experimental value is 1064.87.  Because 

all of the masses are off by 2 units, the discrepancy is most likely due to instrument calibration.  

The MW of the AMPS monomer is 207 and  

Figure 12 shows that each chain contains one AMPS unit difference.  A strong case can be 

made that polymerization has occurred.  1H NMR further proves polymerization with results 

presented in the next section.   

 

 
 

Figure 12:  Mass spectrum of poly(n-AMPS) macro-CTA where the AMPS component has a MW of ~207 and 
n=number of AMPS/chain.   The chromatogram shows a distribution of a RAFT polymerization product with a 
polydispersity index of 1.03.  The major component is the highest intensity peak showing 4-AMPS/chain.   

 

3.4.2.2 NMR analysis 

 

NMR analysis of the mCTA JSH32A confirms the polymerization and structure of the molecule.  

Figure 13 is an NMR spectrum of poly(AMPS) as presented by Sumerlin and group.  The broad 

peaks indicate good polymerization of the AMPS.    The Mw reported by Sumerlin was 38,600.  

This would give close to 186 polymerized AMPS units.  The Z and R group signals are 

suppressed and are not seen in the NMR spectra due to relatively high levels of the polymerized 

AMPS.   

207 
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n=4 
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n=3 

n=5 
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Figure 14 shows the 1H NMR spectra of JSH32A.   JSH32A is mainly composed of 4 AMPS 

units as determined by ESI-MS.  Because of the relatively small amounts of polymerized AMPS 

the original CTA protons are not masked. The proton signals from the Z group are clearly seen 

in the 0.5-1ppm region.  The R group proton signals seem to be masked just as in Sumerlin’s 

spectra. 

 

 

Figure 13: 
1
H NMR spectra reported by Sumerlin and group. [42]  "Reprinted with permission from {B. 

Sumerlin, M. Donovan, Y. Mitsukami, A. Lowe and C. McCormick, "Water-Soluble Polymers. 84. Controlled 
Polymerization in Aqueous Media of Anionic Acrylamido Monomers via RAFT," Macromolecules, vol. 34, pp. 
6561-6564, 2001.}. Copyright {2013} American Chemical Society." 

 
Broad peaks (h,f,e,g) show good polymerization of the AMPS monomer.  Furthermore, no vinyl 

groups are seen in the 5.25-6.25 ppm region.  This is a clear indicator that polymerization has 

gone to 100%. 
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Figure 14: 
1
H NMR spectra of mCTA JSH32A in D2O.  Polymerization can be observed by the broad peak 

shapes of the monomer’s hydrogen signals.  The AMPS monomer structure is presented to illustrate the 
vinyl groups present on a free monomer.  No vinyl groups are seen in the spectra.    

 

3.4.3 Diblock copolymer nanoparticles 

 

Addition of the hydrophobic block to the mCTA was characterized by 1H NMR and DLS.  

Nanoparticles AU19B and AU31A, synthesized with JSH32A, were characterized.  NMR 

analysis showed good polymerization of the butyl acrylate monomer and retention of the AMPS 

block.  DLS analysis performed on a Malvern Zetasizer instrument provided nanoparticles size 

which is reported as the Z-average in nanometers. 

 

 

 

 

 

 

   

D2O 

No AMPS Vinyl Groups 
h 

g 

CH3 S
S

S

O NH

CH3 CH3

S

O O

OH

CH3

O

OH4

f 

e 

f 
e 

g g 

h O NH

CH3 CH3

S

O

O

OH

CH2

i 

i 



44 
 

3.4.3.1 NMR analysis 

 

Figure 15: 
1
H NMR spectra of butyl acrylate in d-chloroform. 

 

Figure 16: 
1
H NMR spectra of AU19B in D2O after polymerization with butyl acrylate. 

 

Figure 15 gives an NMR spectrum of a butyl acrylate monomer.  The vinyl groups are easily 

identified in the 5.5-6.5 ppm range.  As the polymerization continues the vinyl proton signal 

disappears indicating polymerization has occurred.  Figure 16 shows good polymerization of the 

hydrophobic block and the retention of the AMPS block.  The sharp peaks of the butyl acrylate 

turn broad after polymerization.  The broad AMPS peaks are still present.  

 

The broad peaks and the nature of the nanoparticle, being relatively rigid, make quantitative 

analysis impossible using NMR.  However, integrating the two peaks does give an approximate 
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estimation of the ratio of the two blocks.  From ESI-MS analysis, it was determined that the 

majority of the chains were a 4 AMPS unit polymer.  Setting the AMPS peak to 4 and integrating 

the d peak on the butyl acrylate gives a ratio of about 4:15 indicating that the average chain 

contains a 15 unit hydrophobic block. 

 

Figure 17 shows an NMR spectrum of AU31A diblock nanoparticle.  As with AU19B good 

polymerization of the hydrophobic block is confirmed.  Retention of the AMPS block is also 

confirmed.   

 

Figure 17: 
1
H NMR spectra of AU31A in D2O after polymerization with butyl acrylate. 

3.4.3.2 DLS analysis 

 

DLS analysis was performed to determine the size of the synthesized nanoparticles.  DLS 

analysis results of AU19B and AU31A are shown in Figure 18 and Figure 19.  The Z-average, 

size distribution by volume, and polydispersity index are given in  

 

Table 3.  The Z-average size is the intensity weighted harmonic mean size.  This means that 

the Z-average is calculated based on the weighted intensity of the sample.  Because larger 

molecules have more light scattering it is also useful to look at the size distribution by volume 

(Dv).  This means that the Dv is calculated based on the volume weighted distribution.   

 



46 
 

 

Figure 18: DLS analysis of AU19B showing a lognormal size distribution by volume. 

 

Figure 19: DLS analysis of AU31A showing a lognormal size distribution by volume. 

 

Nanoparticle Z-average(nm) Diameter by 
volume(nm) 

Polydispersity 
Index* 

AU19B 28.41 24.1 0.088 

AU31A 48.93 29.93 0.345 
 
 

Table 3: Results of DLS Analysis.  The polydispersity index (PDI*) calculated from DLS is different than the 
PDI discussed earlier.  While PDI is a based on weight distribution, PDI* is obtained from DLS as a time 
dependent intensity distribution.  A PDI* of <0.1 is considered very monodisperse.  A PDI* <0.4 is fairly 
monodisperse while a PDI* of >0.7 is considered very polydisperce 

Operating Conditions 
Dispersant: Water 
Attenuation Index: 9 

Operating Conditions 
Dispersant: Water 
Attenuation Index: 8 
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Chapter 4: Performance characterization of nanoparticles in electrokinetic 
chromatography 

4.1 Introduction 

 

Chapter 4 presents data obtained from the experiments performed.  The discussion of the data 

obtained is presented in Chapter 5. 

 

The PSP performance was characterized by a separation of different analytes on a Hewlett-

Packard 3D CE.  The electrophoretic mobility of AU19B and AU31A was determined by 

separating a mixture of alkyl-phenone derivatives in a homologous series.  The separation was 

also performed at three different pHs to show how electrophoretic mobility changes with pH and 

the effect on the migration range.  The two synthesized PSPs were determined to be of different 

sizes.  The effect of size on the electrophoretic mobility was explored.  LSER analysis using 39 

different analytes was performed to determine PSP retention and selectivity.  Finally, a 

separation of a mixture, containing 22 different analytes, was performed to show the utility of the 

PSP. 

4.2 Experimental Details  

 

Fused silica capillaries for all experiments were obtained from Polymicro Technologies 

(Pheonix, AZ) and had an internal diameter of 50 µm and an external diameter of 364 µm.  

Detection windows of 2mm were made in the capillaries by removing the polyimide coating with 

the help of a window maker.  All capillaries were rinsed in the beginning of the day with 0.1 M 

sodium hydroxide for 90 min.  The capillary was then flushed with nano-pure water for 10 min 

followed by a flush with the electrolyte/PSP solution for another 10 min.  Capillaries were rinsed 

between injections with the electrolyte/PSP solution.  New capillaries were utilized for each new 

PSP being studied.    

 

All buffers and solutions were prepared in 18 MΩ distilled deionized water.  All buffer solutions 

were filtered through 0.45µm filters before use.  All buffers were made to 10 millimolar 

concentrations.  The utilized buffers vary for different analyses and are listed in the analytical 

conditions windows on the chromatograms. 
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4.3 Separations of alkyl-phenone derivatives at pH 9.2 

 

A homologous series of alkyl-phenones was used to initially characterize PSP electrophoretic 

mobility and performance.  Stock solutions, depending on the phenone, were prepared between 

300 and 700 ppm in acetone.  Sample solutions for EKC analysis were prepared by diluting the 

stock solutions in run buffer to a final concentration of 3 to 7 ppm (see Figure 20 for exact 

concentrations).   Phenone mixtures were injected using a pressure of 40 mBar for 2 seconds.   

Additional experimental details for each phenone separation are provided with the figures. 

 

Figure 20: Separation of acetone (0.2%) and alkyl-phenyl ketones:  1. Acetophenone (3.72ppm), 2. 
Propiophenone (3.18ppm); 3. Butyrophenone(3.14ppm); 4. Valerophenone(3.31ppm); 5. 
Hexanophenone(3.32ppm); 6. Heptaphenone(6.30ppm).  The separation was performed using a 10mM borate 
buffer (pH 9.2) and 0.6% AU19B PSP. 

 

AU19B was used to separate a mixture of alkyl-phenone derivatives and the chromatogram is 

presented in Figure 20.  Acetone was difficult to see at 240 nm.  The retention time of the 

acetone was confirmed by monitoring a 210nm wavelength in addition to the 240 nm 

wavelength. Due to low concentrations of phenones it was advantageous to monitor at their 

maximum absorbance of 240 nm. [43]       

 

Figure 21: Separation of acetone (0.2%) and alkyl-phenyl ketones:  peaks as labeled in Figure 20..72ppm), 2. 
Propiophenone (9.18ppm); 3. Butyrophenone(9.14ppm); 4. Valerophenone(9.31ppm); 5. 
Hexanophenone(9.32ppm); 6. Heptaphenone(18.30ppm).  The separation was performed using a 10mM 
borate buffer (pH 9.2) and 0.35% AU31A PSP. 

Operating conditions 
Column: 48 cm Fused Silica 
Capillary 
Detector: 240 nm @ 40 cm 
Mobile Phase: 10mM Borate pH 9.2 
PSP: AU19B 0.6% 
Voltage: 20 kV 
Injection: 40mBAR @ 2 sec   

Acetone 
(to=1.750) 

1 
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Acetone (to) 

Operating conditions 
Column: 48 cm Fused Silica 
Capillary 
Detector: 240 nm @ 40 cm 
Mobile Phase: 10mM Borate pH 9.2 
PSP: AU31A 0.35% 
Voltage: 20 kV 
Injection: 40mBAR @ 2 sec   
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AU31A was also used to separate a mixture of alkyl-phenone derivatives.  Figure 21 shows the 

resulting chromatogram. 

4.4 Electrophoretic mobility, pH dependence, Size dependence, Migration Range, 
Methylene Selectivity 

 

Electrophoretic mobility is determined by rearranging Equation 12: Electrophoretic velocity of a 

PSP and substituting electrophoretic mobility for velocity, giving Equation 28.  The tpsp was 

determined using the procedure of Bushey and Jorgenson [44]. Because the separated mixture 

is a homologous series, the lognormal retention factor for the alkyl phenones should correlate 

linearly with the number of methylenes.  Excel Solver is used to determine a tpsp value that gives 

a maximum in the correlation coefficient (approaching 1) for a plot of analog phenone log k vs 

methylene number. 

     

              (
 

  
) (
  
 
)  (

 

    
) (
  
 
) 

Equation 28:  Experimental determination of electrophoretic mobility. 

 
 

PSP 
µep  

10-4(cm2/V*s) 
Migration 

Range (tpsp/to) 
Methylene 
Selectivity 

AU19B (Z-ave = 28.41nm) -3.893±0.003 1.74 3.048±0.003 

AU31A (Z-ave = 48.93nm) -3.773±0.004 1.70 3.276±0.003 
 
Table 4: Electrophoretic properties of AU19B and AU31A in 10mM borate buffer (pH 9.2). 

 

 

Table 4 summarizes electrophoretic mobility, migration range, and methylene selectivity of the 

two synthesized PSPs.  The electrophoretic properties are compared at a constant pH of 9.2 in 

10mM borate buffer.  Chapter 5 gives a detailed discussion of these results. 

 

The effect of lowering the pH of the mobile phase, on electrophoretic mobility and migration 

range, was investigated using AU19B PSP and the six alkyl-phenone derivatives.  The 

representative chromatograms of separations at pH 7.55 in a 10 mM TRIS buffer and at pH 5.45 

in a 10 mM phosphate buffer are presented in Figure 22 and Figure 23, respectively.  Results 

are presented in Table 5 and are discussed in detail in Chapter 5. 
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Figure 22:  Separation of six alkyl-phenone derivatives at pH 7.55. 

 
Figure 23: Separation of six alkyl-phenone derivatives at pH 5.45. 

 

AU19B PSP µep 104(cm2/V*s) Migration Range (tpsp/to) 

pH 9.2 -3.893±0.003 1.74 

pH 7.55 -3.695±0.003 1.99 

pH 5.45 -3.674±0.003 2.75 
Table 5: Electrophoretic mobility and migration range dependence on pH. 

4.5 LSER analysis 

 
AU31A was characterized by LSER.  39 compounds with varying solute descriptors were 

separated using the same operating conditions as in Figure 22.  Because some of the analytes 

have very similar k values and spectra, analysis was done using 3-4 very different analytes at a 

time for identification purposes.  k values were determined using Equation 24 and are reported 

in  

Table 6.  Solute descriptors were obtained from Poole. [40]  Some analytes do not have 

significant hydrogen bond acidity (A).  These analytes will have a zero value for solute 

descriptor A. [45]  System constants were determined by multiple linear regression analysis 

using Excel to obtain the constants in  

Equation 27 and are presented in  

Operating conditions 
Column: 48 cm Fused Silica Capillary 
Detector: 240 nm @ 40 cm 
Mobile Phase: 10mM Tris pH 7.55 
PSP: AU19B 0.6% 
Voltage: 20 kV 
Injection: 40mBAR @ 2 sec   

Operating conditions 
Column: 48 cm Fused Silica Capillary 
Detector: 240 nm @ 40 cm 
Mobile Phase: 10mM Phosphate pH 5.45 
PSP: AU19B 0.6% 
Voltage: 20 kV 
Injection: 50mBAR @ 2 sec   
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Table 7.  The system constants describing PSP retention and selectivity are discussed in detail in 

Chapter 5.  



52 
 

# Solute k log k V S A B E 

1 Benzyl Alcohol 2.492E-02 -1.603520599 0.916 0.87 0.33 0.56 0.803 

2 Resorcinol 2.707E-02 -1.567466633 0.834 1 1.1 0.58 0.98 

3 3-methyl benzyl Alcohol 5.151E-02 -1.288119624 1.057 0.9 0.33 0.59 0.815 

4 Phenol 5.906E-02 -1.228698753 0.775 0.89 0.6 0.3 0.805 

5 Acetophenone 1.017E-01 -0.992533668 1.014 1.01 0 0.48 0.818 

6 Phenyl Acetate 1.023E-01 -0.990312399 1.073 1.13 0 0.54 0.661 

7 4-fluorophenol 1.159E-01 -0.936040133 0.793 0.97 0.63 0.23 0.67 

8 Benzonitrile 1.398E-01 -0.8543599 0.871 1.11 0 0.33 0.742 

9 M-Cresol 1.412E-01 -0.850172813 0.916 0.88 0.57 0.34 0.822 

10 p-Cresol 1.485E-01 -0.828262535 0.916 0.87 0.57 0.31 0.82 

11 4-nitroaniline 1.861E-01 -0.730358764 0.9904 1.91 0.42 0.38 1.22 

12 Nitrobenzene 2.763E-01 -0.558656935 0.891 1.11 0 0.28 0.871 

13 Benzene 2.841E-01 -0.546497262 0.716 0.52 0 0.14 0.61 

14 Methyl benzoate 3.152E-01 -0.501423587 1.073 0.85 0 0.46 0.733 

15 4-Chloroaniline 3.153E-01 -0.501232366 0.939 1.13 0.3 0.31 1.06 

16 3,5-Dimethylphenol 3.187E-01 -0.496677486 1.057 0.84 0.57 0.36 0.82 

17 Propiophenone 3.311E-01 -0.480030584 1.155 0.95 0 0.51 0.804 

18 4-ethylphenol 3.535E-01 -0.451568583 1.057 0.9 0.55 0.36 0.8 

19 4-Bromophenol 3.581E-01 -0.445969823 0.95 1.17 0.67 0.2 1.08 

20 4-Chlorophenol 4.772E-01 -0.321273673 0.898 1.08 0.67 0.2 0.915 

21 4-Chloroacetophenone 5.290E-01 -0.27655878 1.136 1.09 0 0.44 0.955 

22 3-Chlorophenol 5.913E-01 -0.228164331 0.898 1.06 0.69 0.15 0.909 

23 Indole 6.482E-01 -0.188297879 0.946 1.12 0.44 0.22 1.2 

24 Anisole 6.800E-01 -0.167489138 0.916 0.75 0 0.29 0.708 

25 4-Nitrotoluene 7.589E-01 -0.119794464 1.032 1.11 0 0.28 0.87 

26 3-Bromophenol 7.767E-01 -0.109742416 0.95 1.15 0.7 0.16 1.06 

27 Toluene 8.340E-01 -0.078851673 0.857 0.52 0 0.14 0.601 

28 Ethylbenzoate 9.121E-01 -0.039979509 1.214 0.85 0 0.46 0.689 

29 Methyl-o-toluate 1.045E+00 0.018984915 1.214 0.87 0 0.43 0.772 

30 Chlorobenzene 1.624E+00 0.210490074 0.839 0.65 0 0.07 0.718 

31 1-Napthol 2.070E+00 0.315939663 1.1441 1.08 0.61 0.4 1.52 

32 p-Xylene 2.459E+00 0.390718532 0.998 0.52 0 0.16 0.613 

33 Ethylbenzene 2.466E+00 0.39198169 0.998 0.51 0 0.15 0.613 

34 Iodebenzene 4.316E+00 0.63509942 0.975 0.82 0 0.12 1.188 

35 4-Chlorotoluene 4.431E+00 0.646540511 0.98 0.67 0 0.07 0.705 

36 Naphthalene 6.962E+00 0.842747698 1.085 0.92 0 0.2 1.36 

37 Propylbenzene 7.161E+00 0.854947477 1.139 0.5 0 0.15 0.604 

38 1-methylnapthalene 1.521E+01 1.182012153 1.226 0.9 0 0.2 1.344 

39 Biphenyl 2.363E+01 1.373472332 1.324 0.99 0 0.22 1.36 

 
Table 6: Determined k and log k values.  Solute descriptors are also reported. 

 

PSP V s a b e 

AU31A 3.10 -0.54 -0.32 -3.37 0.74 
 

Table 7: System constants for AU31A PSP. 

 

As mentioned in chapter 2, a wide range of solute descriptors must be used to prevent cross-

correlation.  Using a linear regression, the cross-correlation was determined for each solute 

descriptor.  All correlations are below 0.8 suggesting that the model is statistically valid [40].  
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Chapter 5: Results and Discussion 

5.1 Introduction 

 

Chapter 4 presented results from synthesis and EKC.  This chapter will focus on interpreting 

those results and comparing them to current and past research.  The overall objective of this 

chapter is to discuss the viability of the synthetic route to novel PSPs by RAFT and the 

performance of the PSP compared to other PSPs used in industry and academia.  In addition, 

this chapter focuses on the achievement of project goals outlined in chapter one, and discusses 

questions raised by the results.   

5.2 Synthesis of poly (AMPS) macro-CTA 

5.2.1 Neutralization of acrylamides in the synthesis of mCTA  

Successful synthesis of mCTA was achieved.  The use of NaOH to neutralize the acidic groups 

on the AMPS monomer gave poor results.  After numerous attempts no polymerization was 

observed.  This is in contrast to the procedure given by Ferguson.  A possible explanation for 

this effect is the hydrolysis of the trithiocarbonate on the CTA by NaOH.  The procedure was 

modified to omit NaOH addition with good results. 

5.2.2 RAFT control 

 

As mentioned before the RAFT process distinguishes itself from free radical polymerization by 

providing polymeric weight control to the chemist.  It is important to demonstrate this control 

over molecular weight, ensuring synthesis viability.  One way to show control of polymerization 

is to compare theoretical weight values with experimental values.  In 2001, Sumerlin and group 

showed that they could control polymerization of acrylamide.  Table 8 shows polymerization 

results AMPS polymers synthesized by Sumerlin et al. and in this study.  Sumerlin’s syntheses 

have a percent error in Mn (expt) vs Mn (theory) of 7.9 and 10.8 and PDI of 1.29 and 1.16, 

respectively, confirming relatively good control of the polymerizations.  

Sample 
Time 

(min) 

Conversion 

(%) 
Mn (theory) Mn (expt) Mw (expt) PDI 

AMPS 1 [42] 255 77.1 26,500 24,400 31,500 1.29 

AMPS 2 [42] 343 88.0 17,600 19,500 22,600 1.16 

JSH32A 1440 100.0 959 1086 1116 1.03 

Table 8:  AMPS 1 and 2 were synthesized by Sumerlin and analyzed by aqueous size exclusion 
chromatography.  JSH32A was analyzed by ESI-MS.  
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JSH32A, the mCTA  synthesized in this work, gives a much better PDI compared to Sumerlin’s 

results.  This may be due to relatively low molecular weight polymerizations.  After ESI-MS 

analysis, a 13.2 percent error between the theoretical and experimental Mn is reported in 

JSH32A.  The relatively small error demonstrates achieved control of the mCTA polymerization.  

Although this error was acceptable to go forth with the next step of the synthesis, many more 

polymerizations should be done to determine the possibility of making this error smaller.  The 

experimental Mn value is larger than expected due to the absence of the n=2 polymer ( 

Figure 12).  This is somewhat of a strange occurrence as the RAFT process statistically 

determines the distribution of poly-AMPS to be symmetric when centered on the major polymer.  

In other words, if the majority of the product is n=4, polymers of n=6 and n=2 should also be 

visible with about the same intensity.  More investigation is needed to determine if the absence 

of the polymer with two units is persistent or due to instrumental/experimental error.   

 

Table 9 presents more data on experimental and theoretical Mn values obtained by Ladaviere 

(black) and Mori (blue). Analyzing results presented in Table 8 and Table 9 shows little pattern 

in experimental vs. theoretical values.  Experimental Mn is expected to be higher than theoretical 

Mn at high conversions due to different termination processes that take place with longer 

reaction times. This however does not always hold true as shown in Table 8 and Table 9.  In 

other words, a long and high conversion synthesis will not necessarily give high experimental Mn 

values and other factors can play an important role.  The higher than expected Mn, in JSH32A, 

cannot be simply explained by RAFT termination processes.  In our case, we believe that the 

missing n=2 polymer is skewing the experimental Mn to a higher value.  The process behind this 

is discussed in the following paragraph.    

 

mCTA (sample) Conv (%) Mn(theo) Mn (expt) 

Poly acrylic acid (4) 99 1800 1800 

Poly acrylic acid (10) 96 3700 3000 

Poly acrylic acid (13) 96 3450 2610 

(CTA 1) 72 6800 7600 

(CTA 2) 99 9300 8000 

Table 9: Theoretical vs. experimental results for mCTA polymerizations presented by Ladaviere (black) and 
Mori (blue). [46] [47]    
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To this group’s knowledge all mCTA RAFT polymerizations currently achieved are of relatively 

high molecular weight.  More studies have to be performed on 2-4 unit polymerizations.  It is this 

group’s theory that n=1 and n=2 growing chains still possess some of the original R group 

character, having only been modified by one or two monomers.  In other words, n=1 and n=2 

could be better leaving groups than n=6 due to chemical or solubility properties of the solution.  

A better leaving group will have a greater chance to grow, thus we don’t detect any n=2 

polymer.  More experiments should be performed to confirm this hypothesis. 

5.2.3 NMR analysis and conversion  

 

The use of 1H NMR for analyzing the mCTA gives an average number of polymerized monomer 

and confirms polymerization.  In addition to ESI-MS analysis, JSH32A was analyzed by NMR.  

Figure 24 shows an integrated spectrum of JSH32A.  Setting the peak area of the terminal 

methyl on the Z group to 3 gives a value of 10 to the hydrogens next to the sulfonyl group.  

Dividing that number by two gives the number of AMPS units contained per polymer.  Because 

NMR analysis is based on averages we do not get detailed information on the distribution of 

polymers.  However the analysis is still useful as it confirms polymerization in terms of broad 

peaks.   

     

 

Figure 24: 
1
H NMR spectra of mCTA JSH32A in D2O. 

 
The spectrum suggests 5 AMPS units per polymer while the ESI-MS analysis shows that 4 

AMPS units per polymer is the major polymer.  These results are within experimental error for 

these two techniques.  NMR should be used in concert with ESI-MS to analyze mCTAs.  The 
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two techniques in tandem are sufficient to characterize the product, showing structure, 

polymerization, PDI, and experimental molecular weights. 

 

Unless one encounters an extremely conducive case where the conversion of monomer is 

100%, dialysis will be necessary.  JSH32A was one of those cases where all of the monomer 

was converted to polymer and dialysis was not necessary.  However, most all other syntheses 

of the mCTA showed conversions between 90 and 98 percent.  An example of a typical mCTA 

spectrum before dialysis is given in Figure 25.  The vinyl group is clearly observed at the higher 

chemical shift on the left side of the spectrum.  The unpolymerized monomer comprises about 

18% of the AMPS in solution thus giving an 82% conversion. 

 

Figure 25:  
1
H NMR spectra of mCTA JSH42B8 in D2O.  LH31A2 mCTA before dialysis (BLUE) and after 

dialysis (GREEN).  The green spectrum of dialyzed mCTA is offset to the left to make the figure clearer.     

 

The green spectrum in Figure 25 is the same mCTA after dialysis.  All the vinyl groups are 

removed indicating that there is no more free monomer in the system.  The sharp AMPS CH2 

peak is also removed.  Dialysis ensures that the next synthesis step forms two distinctive blocks 

in the diblock-copolymer.  Unreacted monomer can still polymerize in the next step randomizing 

the second block.   

 

One issue arises when the reaction fails to go to 100%.  The Mn expt will be lower than Mn theo , not 

considering termination processes.  When calculating reactant concentrations it is impossible to 

predict the exact conversion and 100% is generally used.  This issue, although important, does 

not cause major problems since most conversions are >97%.  The example in Figure 25 is 

AMPS CH2 

Vinyl Groups 
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exaggerated to show the effectiveness of dialysis.  The LH31A2 reaction was quenched early 

after only 4 hrs. reaction time. 

 

This synthetic route to the mCTA is a viable way of achieving the necessary component for the 

diblock synthesis.  The results show good weight control and PDI.  

5.3 Chain extension of poly(AMPS) macro-CTA with butyl acrylate 

5.3.1 Reaction dependency on pH 

Previously presented analyses of AU19B and AU31A show a successful chain extension and 

nanoparticle formation.  As in the mCTA, synthesis pH plays an important part in nanoparticle 

formation.  Due to the omission of the neutralization step in the mCTA formation, the mCTA 

solution should be neutralized before the diblock reaction is initiated.  The Ferguson synthetic 

pathway assumes that the AMPS groups were neutralized in the mCTA reaction and thus gives 

no neutralization step for nanoparticle formation.  This group struggled identifying the problem 

with the nanoparticle synthesis because of the omitted step.  Although the problem did cause 

some delay in producing nanoparticles, it also gave some insight into the synthesis. 

 

Nanoparticle (size nm) pH used in synthesis 30% NP Solution In H2O 

JSH36A (--) <2 Rubbery Yellow Solid 

AU11B  (--) <2 Rubbery Yellow Solid 

AU19B  (24.1) 6.5 
Somewhat Viscous Yellow 

Solution 

AU31A (29.93) 6.5 
Somewhat Viscous Yellow 

Solution 

AU19A (11.4)  8.2 

Some Loss of Yellow Color 

Solution is Non-Viscous 

(Colloidal) 

Table 10:  Qualitative analysis of nanoparticles dissolved in H2O synthesized at different pH. 

 

Table 10 gives a qualitative analysis of synthesized nanoparticles.  Varying the reaction pH 

gives drastically different results.  As discussed earlier, a pH of 6.5 was chosen in order to 

ionize the AMPS groups and minimize hydrolysis of the trithiocarbonate moiety.  Nanoparticles 

synthesized at pH <2 were unusable in EKC due to their poor solubility in water.  Nanoparticles 

synthesized at pH of 6.5 and pH 8.2 performed well in EKC.  AU19A exhibited good 

chromatographic peak shapes but the small size demanded a high PSP concentration 
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producing a lot of noise in the chromatogram producing some light scattering.  The small 

particle size of AU19A is a result of using too little of the butyl acrylate monomer in the 

nanoparticle synthesis step.  Although all nanoparticles synthesized at a pH of 6.5 performed 

well in EKC separations, and DLS analysis confirms particle formation, some concern over 

viscosity still remains.  Synthesized latex nanoparticle solutions should not exhibit viscous 

properties due to their ionic shells.  

  

In the case of the mCTA by McCormick’s group, it was shown that synthesis at pH 7 leads to an 

extremely high PDI signifying loss of raft agent functionality [48].  However, for the diblock 

synthesis, a pH of ~8 is successfully employed as shown by Sumerlin [49].  The slight loss of 

the yellow appearance in the current studies at pH 8.2 could signify hydrolysis of the 

trithiocarbonate moiety, a major concern for this group.  Table 10 gives a clear pattern of 

polymer self-assembly into nanoparticles leading to the following hypothesis.  Synthesis at pH 2, 

6.5, and 8.2 shows formation of rubber-like polymers (no nanoparticles), viscous solution (some 

nanoparticles), and colloidal solution (all nanoparticles), respectively.   Although further 

experiments are needed to fully grasp the viscous vs. colloidal nanoparticle properties, current 

data suggests that optimal conditions for the AMPS-butyl acrylate diblock syntheses would 

require a solution pH of ~7 to 8.   

5.3.2 NMR and DLS discussion 

 

Synthesized nanoparticles AU19B and AU31A were analyzed by NMR and DLS.  Quantitative 

NMR analysis at the diblock level has proved to be challenging.  The broad peaks from the 

AMPS block and the butyl acrylate block begin to overlap and are very broad due to anisotropic 

effects.  NMR is still useful to obtain an approximate value for the number of polymerized 

monomers in the hydrophobic block.  Because the molecule has now become relatively large 

the CH3 on the Z group is masked and we cannot reference hydrogen concentration to that 

peak.  However, good values for the number of polymerized AMPS monomer were obtained by 

NMR and confirmed by ESI-MS in the mCTA.  Thus the broad peak of the AMPS group on the 

diblock copolymer can be referenced.  The degree of polymerization of the butyl acrylate 

determined by this method is presented in Table 11.  Some discrepancy between the degree of 

polymerization by NMR and the particle diameters by DLS is shown in Table 11.   
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Nanoparticle Z-average (nm) Diameter by 
volume(nm) 

Polydispersity 
Index* 

NMR 
Integration 

AU19B 28.41 24.1 0.088 15.42 

AU31A 48.93 29.93 0.345 13.81 
Table 11:  Results for DLS and NMR analysis of synthesized nanoparticles.  The number associated with 
NMR integration gives the average number of polymerized butyl acrylate monomers. 

 
All reagents were kept at the same proportion for the synthesis of AU31A and AU19B.  The only 

difference was in the upscale of the reaction and the lack of degassing the butyl acrylate 

solution.  In NMR analysis the integration values are relatively close as expected. However, 

analyses by DLS give conflicting results when looking at the z-average data.  Insight to the 

discrepancy can be gained by comparing the number of polymerized butyl acrylate monomers 

to the nanoparticle size as determined by volume.  Taking into account that NMR integration is 

an approximate technique, when analyzing diblock copolymers, the size by volume and NMR 

results are in relative agreement.  Due to the fact that the Z-average is based on intensity, large 

particles heavily skew the results although most particles are actually smaller.  DLS analysis by 

volume is based on average concentration showing that most AU31A particles are of about 

30nm.  NMR is also based on an average concentration.  The agreement between the two show 

that most of the nanoparticles are of expected size. 

 

The Z-average being much higher than the by volume result does show that a higher proportion 

of large particles were formed in AU31A.  This is also confirmed by the relatively large PDI*, 

although still in the monodisperse region.  Larger than expected polymers and PDI* are usually 

due to unwanted termination processes.  The omission of the degassing step in the synthesis of 

AU31A, for the butyl acrylate monomer, may be to blame.  PDI* for AU19B is in the excellent 

range as related to monodispersity. 

                      

Although the PDI* for AU31A is larger than expected, both synthesized nanoparticles were 

successfully utilized in EKC.  While some minor improvements such as optimal pH and reaction 

conditions leading to minimal introduction of termination pathways should optimize the synthesis 

of the diblock, currently synthesized nanoparticles exhibit excellent performance in EKC.  The 

synthetic route from CTA to nanoparticle has been determined as viable. 
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5.4 Methylene Selectivity and CE Current 

 

This section begins with a discussion and comparison of methylene selectivities of the 

synthesized PSPs.  As previously discussed, larger PSP methylene selectivities are 

advantageous as lower PSP concentrations can be used in analysis of neutral compounds, 

yielding the same separation performance.  The section concludes with a discussion of analysis 

current.  High current during EKC analysis is to be avoided.  PSP efficiency decreases with 

rising current due to different temperature zones in the bulk phase.  This phenomenon is 

referred to as Joule heating.  This section discusses the necessity for post-synthesis dialysis of 

the AMPS-butyl acrylate PSP and the advantage of nanoparticle PSPs with respect to current 

over SDS.  

 

Table 12 gives methylene selectivity results for AU19B and AU31A AMPS-butyl acrylate 

nanoparticles, Palmer’s acrylic acid-butyl acrylate nanoparticles, and SDS micelles.  All 

nanoparticles exhibit much higher methylene selectivity than SDS micelles.  These 

nanoparticles are able to provide extremely strong hydrophobic interactions.  Nanoparticle PSPs 

generally provide much higher methylene selectivities than most polymeric PSPs [8] [50]. 

      

PSP αCH2 (Methylene Selectivity) 

AU19B (24.1 nm by vol) 3.048±0.003 

AU31A (29.93 nm by vol)  3.276±0.003 

Palmer NP (63nm Z-ave) [11] 3.25±0.03 

Random Block polymers [21] 2.54±0.01 

SDS micelles [51] 2.33±0.04 
Table 12: Methylene selectivities 

 
Acrylic acid-butyl acrylate NPs reported by Palmer and the AMPS-butyl acrylate NPs 

synthesized in this study are similar and provide excellent methylene selectivity.  The Palmer 

and current NPs contain 5 and 4 polymerized monomer unit ionic shells, respectively [11].  The 

current NPs, especially AU31A, also exhibit approximately the same methylene selectivity as 

those synthesized by Palmer.  This is odd as AU31A is about 20nm smaller due to its smaller 

hydrophobic core, and one might expect methylene selectivity to increase with hydrophobic core 

volume. 
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Table 13:  Methylene selectivities table, recreated from Shamsi et.al., of four homologous series polymeric 
PSPs. [52]  

 
Methylene selectivity, for polymeric PSPs, increases with larger hydrophobic cores as shown in 

Table 13.  The same applies to nanoparticle PSPs looking at the methylene selectivities of 

AU19B and AU31A (Table 12).  It is reasoned that the ionic shell in the current NPs, having 

AMPS groups vs. acrylic acid groups in Palmer’s NPs, provides the extra hydrophobic 

interactions.  The AMPS monomer has a branched hydrophobic linker region that is absent in 

acrylic acid.  In theory, having the AMPS groups as the shell and increasing the size of the 

hydrophobic core from 30nm to 60nm, the AMPS-butyl acrylate NPs should provide superior 

methylene selectivity even when compared to Palmer’s NPs. 

 

The experimental procedure in Chapter 3 calls for the dialysis of the mCTA in order to eliminate 

randomization of the B block in the diblock synthesis.  Dialysis of the nanoparticle, as it is the 

final step, is not necessary from a synthetic point of view.  In addition, free monomer was not 

observed in NMR analysis of the nanoparticles (Figure 16 and Figure 17).  However, it has been 

observed that dialysis of the nanoparticle greatly reduces current when it is applied as a 

pseudostationary phase. 

 

The NaOH used in the synthesis of the diblock polymer, if not removed, is carried over to the 

EKC analysis.  The carry-over of NaOH increases the analysis current and could alter the pH of 

background electrolytes.  Table 14 gives examples of typical currents observed by this group 

when applying the newly synthesized PSP to EKC.  The last rows give current when using SDS 

as a PSP.   

 

AU19A PSP was used to perform a separation of the six alkyl-phenone derivatives.  AU19A and 

AU19A’ provide a contrast between a PSP without post-synthetic dialysis and a PSP which has 

undergone dialysis, respectively.  An almost 2 fold current drop is the result.  It has been 

determined that post-synthetic dialysis is mandatory to achieve optimal separation conditions.   

  

Characteristics 
of the polymeric 
surfactants 

Poly-SAIS surfactant’s hydrophobic tail length in carbons 

C8 C9 C10 C11 

αCH2 1.30(±.0.02) 1.39(±.0.03) 1.44(±.0.02) 1.54(±.0.04) 
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PSP (concentration) Dialysis Buffer pH Current (µA) 

No PSP [blank] -- 10mM Borate 9.2 4.3 

AU19A (0.6% (w/v)) no 10mM Borate 9.2 12.0 

AU19A’ (0.6% (w/v)) yes 10mM Borate 9.2 6.9 

AU19B (0.6% (w/v)) yes 10mM Borate 9.2 5.5 

AU31A (0.35% (w/v)) yes 10mM Borate 9.2 4.9 

SDS (0.50% (w/v)) -- 10mM Borate 9.2 30.0 

SDS (1.5% (w/v)) [53] -- 12.5mM 

NaHPO4/Na2B4O7 

9.2 55.0 

Poly-SUS (1.0% (w/v)) 

[53] 

-- 12.5mM 

NaHPO4/Na2B4O7 

9.2 38.0 

Table 14:  Comparison between different PSPs and their effects on analysis current.  AU19A and AU19A’ is 
the same PSP, the only difference being in the application of post-synthetic dialysis.  Poly-SUS is a 
polymerized micelle-like structure consisting of sodiumundecylenic sulfate. 

 
A voltage of 20kV was also applied to a mobile phase containing only borate.  This analysis was 

called the blank.  An inherent current to the borate system of 4.3 µA was observed.  Dialyzed 

PSPs, AU19A’ and AU19B, showed a relatively small increase in the current compared to the 

blank.  As previously discussed larger methylene selectivities give the analyst the ability to use 

lower PSP concentrations.  AU31A exhibits a larger methylene selectivity than AU19B and thus 

is used at a lower concentration.  As expected, a lower concentration of 0.35% (w/v) leads to a 

significant decrease in current.  AU19B increases the base current from the blank by only 0.6 

µA.  In all cases, even with no post-synthesis dialysis, the synthesized AMPS-butyl acrylate 

PSPs have a much smaller current compared to SDS.  This is expected and has been reported 

by multiple groups.  SDS micelles are in equilibrium with free SDS surfactants which cause 

significant current increase.  With respect to current, polymeric PSPs are superior to SDS in 

EKC. 

 

With the majority of AU31A being of about 30nm size, it is evident that performance can still be 

increased.  Lower limits of AU31A, in terms of PSP concentration, are yet to be explored.  

Multiple post-synthesis dialyses may also decrease current as more NaOH should be removed. 

Figure 21, in Chapter 4, shows a separation of alkyl-phenone derivatives using AU31A where 

tpsp =2.98min and the last compound elutes at 2.93min.  Rs is much greater than 1.5 for all 

peaks. It is reasonable to assume that a smaller concentration of AU31A can be used to 
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effectively separate the same mixture.  The decrease in concentration will lead to a lower 

current potentially providing better separation efficiency.  

 

Chain extension with more butyl acrylate, leading to a larger a PSP, should lead to higher 

methylene selectivity.  Synthesized by Palmer, an acrylic acid/butyl acrylate PSP, under typical 

operating conditions, was found to have a negligible 0.02 µA current increase. [11]  Palmer’s 

PSP, having an average size of 63nm, was used at 0.12% (m/v).  Referring back to Table 12 

the methylene selectivities for AU31A and Palmer’s PSP are almost identical although AU31A is 

only half the size.  Increasing the size of the hydrophobic region of the current NPs to a NP 

diameter of about 60nm will most likely enable efficient separations with PSP concentrations of 

<0.1% due to increased methylene selectivity.  With these enhancements the AU PSP should 

not have any noticeable effect on current.  The novel AMPS-butyl acrylate PSP, although not 

yet optimized, already exhibits excellent methylene selectivity and low effect on current.         

 

5.5 Electrophoretic mobility and efficiency 

 

Exhibiting excellent selectivity for hydrophobic compounds, AU19B and AU31A also provide 

competitive electrophoretic mobility.  Table 15 gives experimental results for synthesized 

nanoparticles and comparisons to other PSPs.  

    

PSP 
µep 

10-4(cm2/V*s) 
µo 10-4(cm2/V*s) 

Migration 
Range (tpsp/to) 

Theoretical 
plates(ave) 

AU19B  -3.893±0.003 9.143 1.74 420,000 

AU31A  -3.773±0.004 9.169 1.70 130,000 

SDS [21] -3.97±0.02 -- -- 149,000 

Palmer NP [11] -4.06±0.05 7.20 2.25 205,000 

Random Block polymers 
[21] 

-3.91±0.03 
-- 

-- 
232,000 

Table 15:  Performance characteristics for nanoparticles, SDS, and random block polymers. 

 
Migration range is an important factor in EKC.  For compounds with certain selectivity and 

separation efficiency, migration range determines resolution. [54]  Thus a larger migration range 

provides better resolution.  However, reporting only migration range to describe PSP 

performance is not effective.  Migration range is determined by the ratio of the elution time of a 

fully retained compound and a compound not retained at all by the PSP.  Excellent migration 

ranges can be obtained by reducing the EOF at an impractical cost to analysis time.  It is also 

difficult to compare PSPs synthesized by different researchers due to varying EOFs.   
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A better measurement for characterizing PSP performance, a number that does not vary with 

EOF, is the electrophoretic mobility (µep) of the PSP.  Electrophoretic mobilities are presented in 

Table 15.  Although somewhat lower, AU19B and AU31A exhibit fair electrophoretic mobility 

compared to other PSPs.  Because smaller particles experience less drag they should exhibit 

higher electrophoretic mobility.  This is in fact observed when comparing the smaller AU19A to 

the larger AU31A.  However, when comparing Palmer’s NP of 63nm, to both smaller AU NPs, 

electrophoretic results are unexpected.  The smaller size of the AU NPs should provide higher 

electrophoretic mobility, all PSP characteristics being equal.  The major difference between 

Palmer and AU NPs, other than size, is the ionic head group.  Palmer’s NP utilizes a carboxylic 

acid head group while the AU NP utilizes a sulfonate head group.   The sulfonate head group 

was chosen because it is easily ionizable even at lower pH.  It was also postulated that same or 

better mobilities could also be achieved at pH greater than 7.5 (normal operating conditions).  

While the first statement holds true, some decrease in mobility is seen at pH 9.2 when 

compared to Palmer’s NP.  The difference in mobility might also be explained by the fact that 

Palmer’s nanoparticles had an acrylic acid  degree of polymerization of 5, while the AU 

nanoparticles have a 20% lower degree of polymerization for AMPS of 4.  While further 

investigation is needed to determine the decrease in mobility, this author believes that the 

previously discussed viscosity of the NP’s may be the culprit.  While qualitative viscous 

properties are only observed in the high concentration stock PSP solutions, there may be 

quantifiable interactions between NPs during an EKC separation.  It is postulated that when two 

NPs interact, they effectively double in size, creating more drag, and are swept along by the 

EOF.  This could decrease the PSP mobility. 

 

The electrophoretic mobilities given in Table 15 are examples of the top performers in the PSP 

field.   Today, SDS is still defined as a benchmark for µep.  While AU19B and AU31A exhibit a 

slightly smaller electrophoretic mobility they are still extremely competitive PSPs. 

Electrophoretic mobilities were also determined at relatively low pH.  With respect to SDS, 

nanoparticles synthesized by Palmer exhibit better methylene selectivity, efficiency, and can be 

used with large organic modifier concentrations.  However, the use of the carboxylic acid head 

groups reduces the pH range of the analysis since carboxylic acid will quickly become 

protonated as the pH drops.  As the head group becomes protonated the zeta potential of the 

particle drops resulting in reduced electrophoretic mobility.  This was a main drawback when 

comparing nanoparticles to SDS.  By adding sulfonate head groups, with a low pKa, we have 
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enabled the NP to function at lower pH without much loss in electrophoretic mobility.  Table 16 

illustrates experimental results of electrophoretic mobilities of the AU19B PSP at different pH. 

PSP (pH) 
µep 

10-4(cm2/V*s) 
µo 10-4(cm2/V*s) Migration 

Range (tpsp/to) 

AU19B (9.20)  -3.893±0.003 9.143 1.74 

AU19B (7.55) -3.679±0.007 7.438 1.98 

AU19B (5.45) -3.648±0.007 5.768 2.72 
Table 16:  Electrophoretic mobilities, EOFs, and migration ranges at different pH.  Data obtained from results 
presented in Chapter 4. 

 
At the lowest studied pH of 5.45 the electrophoretic mobility is reduced by only 6.29%.  The 

results show excellent performance of the AMPS modified NPs at low pH.  It is also important to 

note that the electrophoretic mobility decreases far less than the EOF.  Thus the migration 

range increases, especially at a pH of 5.45.  This performance is valuable to analysts who are 

looking to increase their resolution.  Theoretically, with this type of performance, the analysis pH 

can be pushed even lower if need be.  This achievement has put the NP PSP at the same level 

of performance, in some cases better, as SDS. 

 

In most cases the NPs have a better efficiency, plate count (N), than SDS.  Both Palmer NPs 

and random block copolymers exhibit great efficiency. (Table 15)  The novel AMPS-butyl 

acrylate nanoparticles have the potential to greatly surpass SDS and even Palmer’s NPs.  

AU19B exhibits a staggering plate count of almost half a million plates.  This gives the ability to 

perform excellent separations in less time.  Although AU31A show a significant decrease in 

plate count, the issue is synthetic.  The PDI* of the two phases synthesized was previously 

discussed.  AU31A exhibited a somewhat elevated polydispersity.  Polydispersity is expected to 

have negative effects with respect to efficiency.  A PSP composed of different size particles 

provides different separation environments and different mass transfer ratios enabling additional 

diffusion mechanisms.  The plate count in AU31A demonstrated the need for careful synthesis 

while AU19B demonstrates that incredibly high efficiencies can be attained. 

 

The efficiencies reported in Table 15 are averages of each analyte separated.  Theoretically, 

because analytes that are highly retained, spending most their time in the PSP, have less 

chance of experiencing diffusion, an increase in efficiency is expected.  The number of plates, 

efficiency, should increase with higher retained compounds.  The results presented in Figure 26 

and are unexpected.   
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Figure 26:  Plate count for each analyte separated using AU19B as a PSP 

 

While the first three analytes follow the expected pattern, a decrease in efficiency is illustrated 

by the last three analytes.  A similar pattern was reported by Palmer et al for acrylic acid/butyl 

acrylate nanoparticles.  This phenomenon is not particular to polymeric PSPs as Joe Davis has 

also shown this trend with SDS micelles.  In that case, highly retained hydrophobic compounds 

are dispersed by Joule heating in the capillary. [55]  In the current studies, Joule heating is not 

expected to be an issue, and it is unclear why the increased dispersion of more highly retained 

compounds is observed.  Although not an optimal situation for the polymeric PSP, SDS suffers 

from similar drawbacks.  Furthermore, the lowest plate count observed in Figure 27, 

experienced by analyte six, is still higher than the average plate count of SDS.      

5.6 LSER 

5.6.1 Retention 

 

Extensive LSER analysis was applied to AU31A in order to determine and compare the PSP’s 

selectivity.  The exact procedure is outlined in Chapter 3.  LSER analysis gives further insight 

into retention behavior of the PSP.  A representative electropherogram for four LSER solutes is 

shown in Figure 27.  A total of eleven mixes were employed to determine k values for 39 

compounds.  Qualitative analysis of Figure 27 shows excellent efficiency and resolution.  

Furthermore, issues of peak broadening and peak fronting experienced by Palmer, for highly 
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retained analytes, have been minimized.  While peak number four does exhibit some fronting, it 

is much less pronounced when the AU PSP is employed.      

 

 

Figure 27: Representative electropherogram for four LSER compounds. Mix # 4 was run under conditions 
described in chapter 3. 1) Phenyl Acetate. 2) Propiophenone. 3) 4-Nitrotoluene. 4) Iodobenzene. 

 

Error! Reference source not found. gives LSER results for PSPs comprised of SDS micelles, 

polymerized micelle-like Poly(SUA), random block copolymer with AMPS, nanoparticles with 

acrylic acid, and nanoparticles with AMPS.  For ease of comparison the values presented in 

Error! Reference source not found. are graphed in Figure 28.  The poly(SUA) was an 

advancement in PSPs due to its polymerized core.  With respect to SDS, the need to reach 

CMC is eliminated and the PSP is tolerant to organic modifiers.  However, the polymerized core 

of Poly(SUA) provides a ridged-cohesive  

Table 17:  LSER system constants for AU31A (AMPS-Butyl Acrylate) PSP, Palmer NP (Acrylic Acid-Butyl 
Acrylate) PSP, SDS, Poly(SUA) (poly(sodium undecylenate)), and  Poly(C12Mat/AMPS) (a copolymer of 

PSP v e s a b r
2 

AU31A 3.10 (0.22) 0.74 (0.12) -0.54 (0.13) -0.32 (0.09) -3.37 (0.18) 0.97 

Palmer NP [12] 3.29 (0.28) 0.61 (0.16) -0.40 (0.14) -0.41 (0.11) -3.94 (0.22) 0.96 

SDS [56] 2.86 (0.17) 0.45 (0.10) -0.52 (0.14) -0.20 (0.11) -1.77 (0.14) NA 

Poly(SUA) [12] 2.11 (0.09) 0.26 (0.06) -0.16 (0.06) -0.27 (0.11) -1.05 (0.13) 0.99 

Poly(C12MAt/AMPS) [12] 3.65 (0.18) 0.44 (0.11) -0.67 (0.16) -0.27 (0.08) -3.70 (0.22) 0.99 

Mix #4 

to 

1 2 

3 

4 
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dodecyl methacrylate (15%) and AMPS).  SDS values are averages from several studies as reported by Fu 
and Khaledi. 

core environment as described by its low v value.  This means that is has low retention for 

larger compounds as it requires more energy to form larger cavities or cavities in general.   

 

 
The issue of the low v value in poly(SUA) was overcome by utilizing a random block copolymer 

Poly(C12MAt/AMPS).  As expected, a high v value of 3.65 was obtained.  However, due to the 

AMPS group being randomized throughout the backbone; low methylene selectivity is the result.  

The use of nanoparticles high values for both v and methylene selectivity.  Both nanoparticles 

exhibit high v values which rival those of SDS.  The high v value indicates a non-cohesive 

environment in the hydrophobic core for nanoparticle PSPs.  This means that nanoparticles 

exhibit a relatively low energy barrier to cavity formation. 

 

 

Figure 28: A graphical representation of the data presented in Error! Reference source not found.. 

 

The effect of substituting AMPS (AU PSP) for acrylic acid (Palmer PSP) as the ionic shell has 

little impact on the v value, indicating that characteristic volume descriptor is only dependent on 

the hydrophobic core.  Because the hydrophobic core for the two nanoparticle PSPs is 
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composed of poly butyl acrylate, little difference is seen in the v value between the two 

nanoparticles. 

 

The e term represents the ability of the PSP to retain an analyte through polarization of with n 

and π-type electrons.  This term describes both increases in Van der Waals interactions 

(instantaneous polarization) and dipole-induced dipole interactions, and is thus related to, or a 

correction to, the v and s terms in the model [57].  Statistically, except for the poly(SUA) PSP, 

there is little difference in the e term for the presented PSPs.  Poly(SUA) has a much lower e 

term which might be expected based on energetic barriers to forming Van der Waals 

interactions as implied by the low v term.   

 

The s term describes the ability of the PSP to retain a polar or permanent dipole analyte.  

Except for the poly(SUA) PSP, all other PSPs presented have similar values for the s term.  The 

change negative sign for the s value indicates that the PSP can provide less interaction for polar 

analytes than the aqueous background electrolyte used for EKC analysis.  Although a negative 

value, the s term for the presented PSPs is less negative than expected when considering how 

well water interacts with polar molecules.  For SDS micelles, composed purely of a hydrophobic 

12 carbon core, the negative s value is unreasonably small.  For example, when LSER analysis 

was applied to hexane and octanol the resulting s values were -1.79 and -1.05, respectively 

[58].  It has been suggested that the attachment, penetration, content, and orientation of water 

at the interphase micelle regions can provide a retentive environment for hydrogen bonding 

analytes [59] [60].  In addition to being able to provide hydrogen bonding, water can provide a 

favorable environment for polar analytes at the interphase micelle region. (Figure 29)          

 

Figure 29:  Hydrated interphase region in SDS micelles [61].  Sulfate groups are hydrated through H-bonds. 
"Reprinted with permission from { R. Buchner, C. Baar, P. Fernandez, S. Shrodle and W. Kunz, "Dielectric 
spectroscopy of micelle hydration and dynamics in aqueous ionic surfactant solutions," Journal of Molecular 
Liquids, vol. 118, no. 1-3, pp. 179-187, 2005.}. Copyright {2013} American Chemical Society." 
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Water molecules are reduced (but not frozen) in their dynamics [61]  due to the highly dynamic 

structure of the SDS micelle.  The relatively small negative s value for poly(SUA) may be due to 

polar polymerization initiator groups in the core of the polymerized micelle, or to the highly static 

environment of poly(SUA).  The water molecules spend more time oriented the same way with 

respect to time.  The s term for nanoparticles, is quite similar to SDS. This fact suggests that the 

nanoparticles are also hydrated along their shell, and are able to provide limited polar 

interactions in the interfacial region. 

 

Further evidence for analyte surface interaction due to hydration, at least for SDS, is shown 

through the a term of the system constants.  The a term defines the ability of the PSP to interact 

with analytes through the acceptance of hydrogen bonds. There is no statistical difference in 

this term for all presented PSPs.  However, like the s term, the a term is unusually close to zero 

when considering the molecular structures of the PSPs.  The SDS core does not have any 

ability to accept hydrogen bonds; relating SDS to hexane (a=-3.08) the a term for SDS (-0.20) 

should be more negative.  In nanoparticles, whether hydrogen bonding analytes are interacting 

through the hydrated surface or polymeric core is not clear based solely on the a term.  The 

cores of the nanoparticles, illustrated in Figure 30, do contain an ester which could accept 

hydrogen bonds. 

 

The b term gives further insight into where hydrogen bonding analytes interact on the 

nanoparticle PSP.  The b term represents the ability of the PSP to interact with analytes through 

the donation of hydrogen bonds.  All presented PSPs show negative values for b.  However, 

nanoparticles show a much more negative b than SDS or poly(SUA).  Water molecules, when 

hydrating the PSP, use their hydrogen to interact with the oxygen on the carboxylic acid, 

sulfonate, or sulfate head group.  Thus, hydration mostly contributes to the a term.  However, 

some hydrogen bond donation is also experienced at PSP water interface, contributing to the b 

term; comparing hexane with no hydration and SDS, b is -4.64 and -1.77.  Palmer NP and 

AU31A PSP show b values of -3.94 and -3.37, respectively.  Low b values for the NP PSPs 

indicate that ionic shell hydration plays little part in hydrogen bond interactions, and that the 

relatively high a value contribution comes from the core ester group.       

 
When comparing Palmer NP and AU31A, a notable difference between the b terms exists.  

As illustrated in Figure 30, the AU PSP is composed of the hydrophilic AMPS block.  One of the 

major differences when using AMPS is the amide; not present in Palmer’s acrylic acid NP.   
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Figure 30: A 3D representation cutout of an AMPS-Butyl Acrylate nanoparticle.  For 
illustration purposes, only one subunit of the poly AMPS block and poly Butyl 
Acrylate (BA) block is shown. Note that although the carboxylic acid and 
butanethiol terminal ends look significant in this image, they only comprise a small 
portion of the full polymeric NP.   

 

 

The secondary amide provides some ability for the PSP to interact with analytes through 

hydrogen bond donation characterized by the less negative b values.  The random AMPS 

copolymer PSP, poly(C12Mat/AMPS), also shows a less negative b value than the Palmer NP, 

but its intermediate value between the two nanoparticle chemistries does not provide conclusive 

support to the present hypothesis. The less negative b value for the AU PSP, although the 

difference is small, signifies that a small percentage of analytes may interact with the AMPS 
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PSP close to or within the ionic shell.  It is theorized that the small lipophilic region within the 

ionic shell could allow access to the amide for neutral analytes which can participate in 

hydrogen bonding.  However, the majority of PSP-analyte interaction still occurs at the core of 

the NP or at the interface between core and shell regions. 

 

To summarize:  Except for permanent dipole analytes, most retention as characterized by the 

LSER system constants for the AMPS-butyl acrylate PSP occurs at the core of the nanoparticle.  

The hydration of the nanoparticle’s surface only has an effect on polar analyte retention.  Due to 

the inclusion of an amide, some extremely limited ability to donate hydrogen bonding is 

observed. 

5.6.2 Selectivity 

 
When discussing selectivity it is often useful to normalize the LSER constants, with the idea 

being that the larger the relative magnitude of a descriptor in a negative or positive direction, the 

more important that system constant is to selectivity.  For example, if all the system constants 

were equally doubled, retention would change but selectivity would effectively remain the same, 

but normalization would make this similar selectivity very apparent.  Equation 29 gives the 

normalization parameter.  Results are reported Table 18 where the prime symbol indicates a 

normalized value. 

 

  √               

Equation 29:  Normalization parameter for LSER system constants. 

 

PSP v' e' s' a' b' 

AU31A 0.66 0.16 -0.12 -0.068 -0.72 

Palmer NP 0.63 0.12 -0.077 -0.079 -0.76 

SDS 0.83 0.13 -0.15 -0.058 -0.51 

Poly(SUA) 0.88 0.11 -0.067 -0.11 -0.44 

Poly(C12MAt/AMPS) 0.69 0.084 -0.13 -0.051 -0.70 

Table 18:  Normalized system constants obtained from Error! Reference source not found. using Equation 
29. 

 

When comparing the normalized coefficients, it is apparent that AU31A, Palmer NP, and 

Poly(C12MAt/AMPS) all have similar selectivity.  This makes sense as their backbone structure 

is very similar.  When considering v’ and b’, the coefficients with the largest magnitude, it is 
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apparent that the selectivity for those three PSPs is much different from SDS or poly(SUA).  

Backbone structure plays an important role in the PSP selectivity. Small differences are also 

observed between AU31A, Palmer NP, and Poly(C12MAt/AMPS), indicating that subtle changes 

in selectivity may be expected.     

Chapter 6: Conclusions and recommendations 

6.1 Conclusions 

 

The research presented shows excellent control of size and structure of novel PSPs through the 

use of RAFT polymerization.  Excellent values for PDI, plate number, electrophoretic mobility, 

and methylene selectivity were achieved when employing the novel PSP for use in EKC. LSER 

analysis demonstrated that most analyte interactions are at the core of the nanoparticle. 

Selectivity is mostly defined through the v and b system constants showing a relatively non-

cohesive PSP with little ability to donate hydrogen bonds. While somewhat similar to the 

previously synthesized NP PSP by Palmer, the substitution of AMPS for carboxylic head groups 

does provide subtle differences in selectivity.  While SDS still remains a great option for 

separation of neutral analytes, this group’s research indicates that excellent alternatives in the 

form of polymeric nanoparticles can be used just as well.  Furthermore, the ability to tune 

polymeric PSP selectivity should prove these NP PSPs superior in niche applications.  For 

many years chemist have had the ability to employ a wide array of stationary phases in HPLC.  

The door has now been opened, through RAFT polymerization, to develop a wide array of PSPs 

for use in EKC.    

6.2 Recommendations for future work 

 
The ground work for novel nanoparticle PSPs has been laid down.  However, some questions 

still remain and must be addressed. Systematic experiments should be performed by 

synthesizing short chained mCTA polymers to determine if the absence of the n=2 hydrophilic 

group is a constant.  The PDI discrepancy between AU19B and AU31A shows a lack of a 

streamlined synthesis.  More syntheses should be performed to standardize the synthetic 

approach.  

 

High methylene selectivity and Rs values indicate that the PSP concentration can be much less 

than this research utilized.  Concentration limits should be explored and compared to NP size. 
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This research mainly focused on standardizing the size of the ionic shell and optimizing the 

hydrophobic core lengths.  Work should be performed to investigate how changing the 

hydrophilic shell chain length affects separations.  This research indicates that a small amount 

of analyte interactions may be occurring in the proximity of the amide and the small lipophilic 

region located at the shell of the nanoparticle.  Increasing the size of the shell may lead to 

changes in methylene selectivity, v, and b values.  Taking the polymeric nanoparticle research 

further can be accomplished by the introduction of chiral cores enabling chiral separations of 

analytes. The chiral NP PSPs may provide all the excellent separation characteristics 

demonstrated by the current PSP with the addition of chiral selectivity.      
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